KR19990060821A - Method of forming barrier metal layer of metal wiring in semiconductor device - Google Patents

Method of forming barrier metal layer of metal wiring in semiconductor device Download PDF

Info

Publication number
KR19990060821A
KR19990060821A KR1019970081067A KR19970081067A KR19990060821A KR 19990060821 A KR19990060821 A KR 19990060821A KR 1019970081067 A KR1019970081067 A KR 1019970081067A KR 19970081067 A KR19970081067 A KR 19970081067A KR 19990060821 A KR19990060821 A KR 19990060821A
Authority
KR
South Korea
Prior art keywords
titanium
layer
forming
barrier metal
metal layer
Prior art date
Application number
KR1019970081067A
Other languages
Korean (ko)
Other versions
KR100459235B1 (en
Inventor
김진현
김창영
홍상기
윤경렬
Original Assignee
김영환
현대전자산업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업 주식회사 filed Critical 김영환
Priority to KR1019970081067A priority Critical patent/KR100459235B1/en
Publication of KR19990060821A publication Critical patent/KR19990060821A/en
Application granted granted Critical
Publication of KR100459235B1 publication Critical patent/KR100459235B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • H01L21/76858After-treatment introducing at least one additional element into the layer by diffusing alloying elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76823Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. transforming an insulating layer into a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76822Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc.
    • H01L21/76825Modification of the material of dielectric layers, e.g. grading, after-treatment to improve the stability of the layers, to increase their density etc. by exposing the layer to particle radiation, e.g. ion implantation, irradiation with UV light or electrons etc.
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 반도체 소자의 금속 배선에서 장벽 금속층(barrier metal layer)의 접착층(adhesion layer)을 스퍼터링법(sputtering) 대신에 티타늄(Ti) 이온 주입법으로 형성하므로, 균일한 두께 및 농도를 갖는 티타늄 실리사이드(TiSi2)를 형성할 수 있고, 콘택 저항을 낮출 수 있는 반도체 소자에서 금속 배선의 장벽 금속층 형성 방법에 관한 것이다.According to the present invention, since an adhesion layer of a barrier metal layer is formed by a titanium ion implantation method instead of sputtering in a metal wiring of a semiconductor device, titanium silicide having a uniform thickness and concentration ( A method for forming a barrier metal layer of a metal wiring in a semiconductor device capable of forming TiSi 2 ) and lowering a contact resistance.

Description

반도체 소자에서 금속 배선의 장벽 금속층 형성 방법Method of forming barrier metal layer of metal wiring in semiconductor device

본 발명은 반도체 소자에서 금속 배선의 장벽 금속층(barrier metal layer) 형성 방법에 관한 것으로, 특히 장벽 금속층의 접착층(adhesion layer) 형성 공정의 개선을 통해 균일한 두께 및 농도를 갖는 티타늄 실리사이드(TiSi2)층을 형성할 수 있고, 콘택 저항 및 스텝 커버리지(step coverage)를 개선할 수 있는 반도체 소자에서 금속 배선의 장벽 금속층 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a barrier metal layer of a metal wiring in a semiconductor device. In particular, titanium silicide (TiSi 2 ) having a uniform thickness and concentration through an improvement in the process of forming an adhesion layer of the barrier metal layer is disclosed. A method for forming a barrier metal layer of metal wiring in a semiconductor device capable of forming a layer and improving contact resistance and step coverage.

일반적으로, 반도체 소자의 금속 배선에서 장벽 금속층은 티타늄(Ti)과 티타늄 나이트라이드(TiN)의 이중층(double layer)으로 구성된다. 티타늄층은 금속 배선의 주 재료인 텅스텐(W)이나 알루미늄(Al)이 하부층과 잘 접착되도록 하는 접착층 역할을 하면서, 실리콘 기판과 반응하여 티타늄 실리사이드층(Ti silicide layer)을 형성하므로 콘택 저항을 낮추어 주는 역할을 한다. 티타늄 나이트라이드층은 금속 배선의 주 재료인 텅스텐(W)이나 알루미늄(Al)이 실리콘 기판과 직접 반응하는 것을 차단하는 확산 장벽층(diffusion barrier layer) 역할을 하면서, 금속층 증착시 시드층(seed layer) 역할을 한다.In general, in the metal wiring of a semiconductor device, the barrier metal layer is composed of a double layer of titanium (Ti) and titanium nitride (TiN). The titanium layer acts as an adhesive layer that allows the tungsten (W) or aluminum (Al), which is the main material of the metal wiring, to adhere well to the lower layer, and forms a titanium silicide layer by reacting with the silicon substrate to lower the contact resistance. Role. The titanium nitride layer serves as a diffusion barrier layer that blocks the direct reaction of tungsten (W) or aluminum (Al), which is the main material of the metal wiring, with the silicon substrate, and is a seed layer when the metal layer is deposited. ) Plays a role.

최근, 반도체 소자의 고집적화로 금속 콘택홀의 애스택트 비(aspect ratio)가 커지게 되어, 장벽 금속층의 스텝 커버리지가 나빠지게 된다. 즉, 티타늄층이 콘택홀 저면부에서 스텝 커버리지가 나빠지게 되면, 콘택 저항이 증가되는 주요 원인으로 작용하게 된다. 티타늄층은 주로 물리적 기상 증착법(PVD)으로 증착 하는데, 스텝 커버리지를 개선시키기 위하여, 이온화된 금속 물리적 기상 증착법(Ionized Metal PVD; IMP) 또는 화학적 기상 증착법(CVD)등을 적용하여 증착하고 있다. 이온화된 금속 물리적 기상 증착법은 증착 균일도(deposition uniformity)가 10% 이상으로 너무 나쁜 단점이 있으며, 화학 기상 증착법은 금속 본질 화학 기상 증착법(Metal Organic CVD; MOCVD)을 적용하는 관계로 카본(carbon) 등의 이물질들이 티타늄층을 오염(contamination)시키는 문제가 있다.In recent years, due to the high integration of semiconductor devices, the aspect ratio of the metal contact holes is increased, resulting in poor step coverage of the barrier metal layer. That is, when the titanium layer has a poor step coverage at the bottom of the contact hole, the titanium layer acts as a main cause of increasing the contact resistance. The titanium layer is mainly deposited by physical vapor deposition (PVD). In order to improve step coverage, ionized metal PVD (IMP) or chemical vapor deposition (CVD) is applied. Ionized metal physical vapor deposition method has a disadvantage that the deposition uniformity (deposition uniformity) is more than 10% is too bad, and chemical vapor deposition method is applied to metal organic chemical vapor deposition (MOCVD), carbon (carbon), etc. Foreign matters contaminate the titanium layer.

따라서, 본 발명은 장벽 금속층의 접착층의 스텝 커버리지 불량으로 인한 소자의 전기적 특성 저하를 방지하면서 균일한 두께 및 농도를 갖는 티타늄 실리사이드층을 형성할 수 있고, 콘택 저항을 낮출 수 있는 금속 배선의 장벽 금속층 형성 방법을 제공함에 그 목적이 있다.Accordingly, the present invention can form a titanium silicide layer having a uniform thickness and concentration while preventing the deterioration of electrical characteristics of the device due to poor step coverage of the adhesive layer of the barrier metal layer, and the barrier metal layer of the metal wiring capable of lowering the contact resistance. The purpose is to provide a forming method.

이러한 목적을 달성하기 위한 본 발명의 장벽 금속층 형성 방법은 층간 절연막의 일부분을 식각 하여 실리콘 기판의 일부가 노출되는 콘택홀을 형성한 후, 티타늄 이온 주입 공정을 실시하여 티타늄층을 형성하는 단계; 상기 콘택홀을 포함한 상기 층간 절연막 상에 티타늄 나이트라이드층이 형성하여, 이로 인하여 상기 티타늄층과 상기 티타늄 나이트라이드층으로 된 장벽 금속층이 형성되는 단계; 및 상기 장벽 금속층을 열처리하여 상기 콘택홀 저면을 이루는 상기 실리콘 기판에 티타늄 실리사이드층을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 한다.The barrier metal layer forming method of the present invention for achieving the above object comprises etching a portion of the interlayer insulating film to form a contact hole to expose a portion of the silicon substrate, and then performing a titanium ion implantation process to form a titanium layer; Forming a titanium nitride layer on the interlayer insulating film including the contact hole, thereby forming a barrier metal layer comprising the titanium layer and the titanium nitride layer; And heat treating the barrier metal layer to form a titanium silicide layer on the silicon substrate forming the contact hole bottom surface.

도 1(a) 내지 도 1(d)는 본 발명의 실시예에 따른 금속 배선의 장벽 금속층 형성 방법을 설명하기 위한 소자의 단면도.1 (a) to 1 (d) are cross-sectional views of devices for explaining a method for forming a barrier metal layer of metal wiring according to an embodiment of the present invention.

도면의 주요 부분에 대한 부호의 설명Explanation of symbols for the main parts of the drawings

1: 실리콘 기판 2: 접합부1: silicon substrate 2: junction

3: 층간 절연막 4: 콘택홀3: interlayer insulating film 4: contact hole

5: 티타늄층 6: 티타늄 나이트라이드층5: titanium layer 6: titanium nitride layer

7: 티타늄 실리사이드층 10: 장벽 금속층7: titanium silicide layer 10: barrier metal layer

이하, 본 발명을 첨부된 도면을 참조하여 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1(a) 내지 도 1(d)는 본 발명의 실시예에 따른 금속 배선의 장벽 금속층 형성 방법을 설명하기 위한 소자의 단면도.1 (a) to 1 (d) are cross-sectional views of devices for explaining a method for forming a barrier metal layer of metal wiring according to an embodiment of the present invention.

도 1(a)를 참조하면, 접합부(2)가 형성된 실리콘 기판(1)상에 층간 절연막(3)을 형성하고, 층간 절연막(3)의 일부분을 식각 하여 접합부(2)가 노출되는 콘택홀(4)이 형성된다.Referring to FIG. 1A, an interlayer insulating film 3 is formed on a silicon substrate 1 having a junction part 2 formed thereon, and a portion of the interlayer insulating film 3 is etched to expose a junction hole 2. (4) is formed.

도 1(b)를 참조하면, 티타늄 이온 주입 공정을 실시하여 콘택홀(4)을 통해 노출된 실리콘 기판(1)의 표면부 및 층간 절연막(3)의 표면부에 티타늄층(5)이 형성된다.Referring to FIG. 1B, a titanium layer 5 is formed on the surface of the silicon substrate 1 and the surface of the interlayer insulating layer 3 exposed through the contact hole 4 by performing a titanium ion implantation process. do.

티타늄 이온 주입 공정은 티타늄 소오스 가스로 티타늄이 포함된 TiCl4, Ti(N(CH3)2)4, 티타늄 금속 증기(Ti metal evaporation) 등의 가스를 이용하여 이온 주입 장비에서 Ti+이온을 생성시키고, Ti+이온만을 2 내지 100 KeV의 에너지로 가속시켜 주입한다. 이때 티타늄 이온의 도우즈(dose)는 1E15 내지 1E17 정도로 하고, 이온 주입 장비는 약 10_5Torr 의 고진공 상태로 유지된다.The titanium ion implantation process generates Ti + ions in the ion implantation equipment by using a gas such as TiCl 4 , Ti (N (CH 3 ) 2 ) 4 , titanium metal evaporation, which contains titanium as a titanium source gas. And only Ti + ions are injected to accelerate the energy to 2 to 100 KeV. The dose of titanium ions is about 1E15 to 1E17, and the ion implantation equipment is maintained at a high vacuum of about 10 _5 Torr.

도 1(c)를 참조하면, 화학 기상 증착법 또는 물리적 화학 기상 증착법으로 콘택홀(4)을 포함한 층간 절연막(3)상에 티타늄 나이트라이드층(6)이 형성된다. 티타늄층(5)과 티타늄 나이트라이드층(6)으로 된 장벽 금속층(10)이 형성된다.Referring to FIG. 1C, the titanium nitride layer 6 is formed on the interlayer insulating layer 3 including the contact hole 4 by chemical vapor deposition or physical chemical vapor deposition. A barrier metal layer 10 consisting of a titanium layer 5 and a titanium nitride layer 6 is formed.

도 1(d)를 참조하면, 장벽 금속층(10)을 열처리하여 콘택홀(4) 저면을 이루는 실리콘 기판(1) 표면부에 티타늄 실리사이드층(7)이 형성된다. 티타늄 실리사이드층(7)은 열처리 공정 동안에 실리콘 기판(1)에 형성된 티타늄층(5)의 티타늄 이온과 실리콘 기판(1)의 실리콘 이온이 반응하여 40 내지 1000Å의 두께로 형성된다.Referring to FIG. 1D, a titanium silicide layer 7 is formed on the surface of the silicon substrate 1 forming the bottom surface of the contact hole 4 by heat-treating the barrier metal layer 10. The titanium silicide layer 7 is formed to a thickness of 40 to 1000 kPa by the reaction between the titanium ions of the titanium layer 5 formed on the silicon substrate 1 and the silicon ions of the silicon substrate 1 during the heat treatment process.

이후, 텅스텐(W) 또는 알루미늄(Al) 등으로 금속층 증착 및 패터닝 공정으로 금속 배선이 형성된다.Subsequently, a metal wiring is formed by a metal layer deposition and patterning process using tungsten (W) or aluminum (Al).

상술한 바와 같이, 본 발명은 티타늄층을 2 내지 100 KeV의 에너지로 이온 주입하여 형성하므로 스텝 커버리지로 인한 문제점을 배제시킬 수 있고, 티타늄 이온 주입시 티타늄 이온의 도우즈를 1E15 내지 1E17 정도로 하므로 티타늄 실리사이드층을 충분히 형성시킬 수 있을 뿐만 아니라, 티타늄 실리사이드층은 주입된 티타늄 원자와 실리콘 원자가 직접 반응하여 형성되기 때문에 실리시데이션(silicidation)이 보다 원활하게 이루어져 균일한 두께 및 농도를 갖게 되며, 티타늄 이온은 이온 주입시 직진성을 갖기 때문에 웨이퍼의 표면부분이나 좁은 콘택홀의 하부 지역에 이온의 양을 동일하게 주입할 수 있다.As described above, the present invention is formed by ion implantation of the titanium layer with energy of 2 to 100 KeV, which can eliminate problems due to step coverage, and the titanium ion dose is about 1E15 to 1E17 during titanium ion implantation. Not only can the silicide layer be sufficiently formed, but the titanium silicide layer is formed by directly reacting the injected titanium atoms with the silicon atoms, so that silicidation is more smooth and uniform thickness and concentration are achieved. Since silver has a straightness upon ion implantation, the amount of ions can be equally injected into the surface portion of the wafer or the lower region of the narrow contact hole.

따라서, 본 발명은 장벽 금속층의 티타늄층을 이온 주입 공정으로 형성하므로 스텝 커버리지에 대한 문제점을 배제시킬 수 있을 뿐만 아니라, 콘택 저항을 낮출 수 있어 소자의 전기적 특성 및 수율을 향상시킬 수 있다.Therefore, since the titanium layer of the barrier metal layer is formed by an ion implantation process, the present invention can not only eliminate the problem of step coverage, but also lower the contact resistance, thereby improving the electrical characteristics and the yield of the device.

Claims (6)

층간 절연막의 일부분을 식각하여 실리콘 기판의 일부가 노출되는 콘택홀을 형성한 후, 티타늄 이온 주입 공정을 실시하여 티타늄층을 형성하는 단계;Etching a portion of the interlayer insulating film to form a contact hole exposing a portion of the silicon substrate, and then performing a titanium ion implantation process to form a titanium layer; 상기 콘택홀을 포함한 상기 층간 절연막 상에 티타늄 나이트라이드층이 형성하여, 이로 인하여 상기 티타늄층과 상기 티타늄 나이트라이드층으로 된 장벽 금속층이 형성되는 단계; 및Forming a titanium nitride layer on the interlayer insulating film including the contact hole, thereby forming a barrier metal layer comprising the titanium layer and the titanium nitride layer; And 상기 장벽 금속층을 열처리하여 상기 콘택홀 저면을 이루는 상기 실리콘 기판에 티타늄 실리사이드층을 형성하는 단계를 포함하여 이루어지는 것을 특징으로 하는 금속 배선의 장벽 금속층 형성 방법.And heat treating the barrier metal layer to form a titanium silicide layer on the silicon substrate forming the contact hole bottom surface. 제 1 항에 있어서,The method of claim 1, 상기 티타늄 이온 주입 공정은 티타늄 소오스 가스를 이용하여 이온 주입 장비에서 Ti+이온을 생성시키고, Ti+이온만을 2 내지 100 KeV의 에너지로 가속시켜 이루어지는 것을 특징으로 하는 금속 배선의 장벽 금속층 형성 방법.The titanium ion implantation process is a method of forming a barrier metal layer of a metal wiring, characterized in that by using a titanium source gas to generate Ti + ions in the ion implantation equipment, accelerated only Ti + ions with energy of 2 to 100 KeV. 제 2 항에 있어서,The method of claim 2, 상기 티타늄 소오스 가스는 TiCl4, Ti(N(CH3)2)4및 티타늄 금속 증기 중 어느 하나인 것을 특징으로 하는 금속 배선의 장벽 금속층 형성 방법.The titanium source gas is any one of TiCl 4 , Ti (N (CH 3 ) 2 ) 4 and titanium metal vapor. 제 1 항 또는 제 2 항에 있어서,The method according to claim 1 or 2, 상기 티타늄 이온 주입시 티타늄 이온의 도우즈는 1E15 내지 1E17 인 것을 특징으로 하는 금속 배선의 장벽 금속층 형성 방법.Method of forming a barrier metal layer of a metal wiring, characterized in that the dose of titanium ions at the time of the titanium ion implantation is 1E15 to 1E17. 제 2 항에 있어서,The method of claim 2, 상기 이온 주입 장비는 약 10_5Torr 의 고진공 상태로 유지되는 것을 특징으로 하는 금속 배선의 장벽 금속층 형성 방법.And the ion implantation equipment is maintained in a high vacuum state of about 10 _5 Torr. 제 1 항에 있어서,The method of claim 1, 상기 티타늄 실리사이드층은 40 내지 1000Å의 두께로 형성되는 것을 특징으로 하는 금속 배선의 장벽 금속층 형성 방법.The titanium silicide layer is a barrier metal layer forming method of a metal wiring, characterized in that formed to a thickness of 40 to 1000Å.
KR1019970081067A 1997-12-31 1997-12-31 Method for forming barrier metal layer of metal interconnection of semiconductor device to improve step coverage and reduce contact resistance KR100459235B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970081067A KR100459235B1 (en) 1997-12-31 1997-12-31 Method for forming barrier metal layer of metal interconnection of semiconductor device to improve step coverage and reduce contact resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970081067A KR100459235B1 (en) 1997-12-31 1997-12-31 Method for forming barrier metal layer of metal interconnection of semiconductor device to improve step coverage and reduce contact resistance

Publications (2)

Publication Number Publication Date
KR19990060821A true KR19990060821A (en) 1999-07-26
KR100459235B1 KR100459235B1 (en) 2005-02-05

Family

ID=37376920

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970081067A KR100459235B1 (en) 1997-12-31 1997-12-31 Method for forming barrier metal layer of metal interconnection of semiconductor device to improve step coverage and reduce contact resistance

Country Status (1)

Country Link
KR (1) KR100459235B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600380B1 (en) * 2004-12-29 2006-07-18 동부일렉트로닉스 주식회사 Making Method of Semiconductor Device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05160069A (en) * 1991-12-06 1993-06-25 Mitsubishi Electric Corp Contact of semiconductor device and manufacture thereof
JPH06140358A (en) * 1992-10-28 1994-05-20 Nec Corp Manufacture of semiconductor device
JPH08186075A (en) * 1994-12-29 1996-07-16 Nippon Steel Corp Method and device for manufacturing semiconductor device
JPH08306782A (en) * 1995-04-28 1996-11-22 Sony Corp Fabrication of semiconductor device
KR20000003438A (en) * 1998-06-29 2000-01-15 김영환 Semiconductor device wiring forming method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100600380B1 (en) * 2004-12-29 2006-07-18 동부일렉트로닉스 주식회사 Making Method of Semiconductor Device

Also Published As

Publication number Publication date
KR100459235B1 (en) 2005-02-05

Similar Documents

Publication Publication Date Title
KR0172772B1 (en) Method of forming ruo2 film of semiconductor equipment
JP2978748B2 (en) Method for manufacturing semiconductor device
KR100377672B1 (en) Semiconductor device and its manufacturing method
GB2290166A (en) Wiring structure and method of manufacture
KR100387693B1 (en) Landfill wiring formation method
US20020033533A1 (en) Interconnect structure for use in an integrated circuit
KR100280905B1 (en) Metal Salicide Process Using Ion Metal Plasma Deposition
US5528081A (en) High temperature refractory metal contact in silicon integrated circuits
KR100459235B1 (en) Method for forming barrier metal layer of metal interconnection of semiconductor device to improve step coverage and reduce contact resistance
US5851906A (en) Impurity doping method
KR0124489B1 (en) Forming method of titanium nitride film for semiconductor device
JPH06140358A (en) Manufacture of semiconductor device
KR100458297B1 (en) Method for forming metal interconnection of semiconductor device to avoid generation of overhang and improve quality of layer and step coverage in contact hole
US5350711A (en) Method of fabricating high temperature refractory metal nitride contact and interconnect structure
KR100313417B1 (en) Method of forming a wiring in a seminconductor device
KR100333358B1 (en) A method of forming contact in semiconductor device
KR100875073B1 (en) Metal wiring formation method of semiconductor device
KR920010123B1 (en) Metal wired-film forming method
KR19990041688A (en) How to Form Titanium Salicide
KR20000043916A (en) Metalization of semiconductor device
KR100257154B1 (en) Method of forming metal wiring in semiconductor device
JP4086334B2 (en) Impurity introduction method
JPH06120355A (en) Manufacture of semiconductor device
KR100252843B1 (en) Method for forming diffusion barrier film of semiconductor device
KR100252886B1 (en) Method for forming metal-line of semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101025

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee