KR19990054708A - Continuous casting method of austenitic stainless alloys with less linear defects during hot rolling - Google Patents

Continuous casting method of austenitic stainless alloys with less linear defects during hot rolling Download PDF

Info

Publication number
KR19990054708A
KR19990054708A KR1019970074574A KR19970074574A KR19990054708A KR 19990054708 A KR19990054708 A KR 19990054708A KR 1019970074574 A KR1019970074574 A KR 1019970074574A KR 19970074574 A KR19970074574 A KR 19970074574A KR 19990054708 A KR19990054708 A KR 19990054708A
Authority
KR
South Korea
Prior art keywords
austenitic stainless
hot rolling
continuous casting
casting
during hot
Prior art date
Application number
KR1019970074574A
Other languages
Korean (ko)
Other versions
KR100314851B1 (en
Inventor
김선구
김종완
김지준
Original Assignee
이구택
포항종합제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이구택, 포항종합제철 주식회사 filed Critical 이구택
Priority to KR1019970074574A priority Critical patent/KR100314851B1/en
Publication of KR19990054708A publication Critical patent/KR19990054708A/en
Application granted granted Critical
Publication of KR100314851B1 publication Critical patent/KR100314851B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • B22D11/002Stainless steels
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Continuous Casting (AREA)

Abstract

본 발명은 열간압연시 선상결함이 적은 오스테나이트계 스테인레스 합금의 연속주조방법에 관한 것이며, 그 목적하는 바는 용강과 주조합금과의 온도차를 이용하여 주조속도를 적절히 제어함으로써, 오스테나이트계 스테인레스강의 열간압연시에 발생하는 선상결함이 방지되는 오스테나이트계 스테인레스강의 연속주조 방법을 제공하고자 하는데 있다.The present invention relates to a continuous casting method of austenitic stainless alloys with less linear defects during hot rolling, and its object is to provide austenitic stainless steels by appropriately controlling the casting speed by using a temperature difference between molten steel and the main alloy. An object of the present invention is to provide a continuous casting method of austenitic stainless steel that prevents linear defects occurring during hot rolling.

상기 목적을 달성하기 위한 본 발명은 초정 δ-페라이트로 응고하고, 응고완료전 오스테나이트가 생성되는 오스테나이트계 스테인레스강을 연속주조하는 방법에 있어서, 주조속도(Vc)는 0.7∼1.2m/min 범위이고, 턴디쉬에서의 용강온도와 주조합금의 용융온도차이(△T)는 10∼60℃ 범위로 조업하면서, 상기 주조속도를 상기 범위를 만족하는 동시에 하기 식1에 의해 구해진 주조속도 이하로 유지하여 조업하는 것을 특징으로 하는 열간압연시 선상결함이 적은 오스테나이트계 스테인레스 합금의 연속주조방법에 관한 것을 그 요지로 한다.In order to achieve the above object, the present invention provides a method of continuously casting austenitic stainless steel which solidifies with primary δ-ferrite and generates austenite before solidification is completed, and the casting speed Vc is 0.7 to 1.2 m / min. The melting temperature difference (ΔT) between the molten steel temperature and the main alloy in the tundish is in the range of 10 to 60 DEG C while satisfying the above range and at the same time below the casting speed determined by the following formula (1). The present invention relates to a continuous casting method of an austenitic stainless alloy with less linear defects during hot rolling.

[수학식1][Equation 1]

Vc = 2.44(△T)-0.3 Vc = 2.44 (ΔT) -0.3

Description

열간압연시 선상결함이 적은 오스테나이트계 스테인레스 합금의 연속주조방법Continuous casting method of austenitic stainless alloys with less linear defects during hot rolling

본 발명은 초정 델타 페라이트(δ-ferrite)로 응고하는 오스테나이트계 스테인레스 합금을 열간압연시 코일 표면에 발생하는 선상결함을 방지할 수 있는 연속주조 방법에 관한 것이다.The present invention relates to a continuous casting method capable of preventing linear defects occurring on the coil surface during hot rolling of an austenitic stainless alloy solidified with primary delta ferrite (δ-ferrite).

오스테나이트계 스테인레스 합금은 Cr 및 Ni이 다량 함유된 고합금이기 때문에 열간압연시에 열간가공성이 저하되어 발생된 선상결함이 실수율을 크게 떨어뜨리는 등 제조를 불가능하게 하는 문제점을 야기시키고 있다. 이러한 선상결함을 방지하기 위해 열연과정에서 발생하는 크랙에 관해서는 종래부터 많은 검토가 이루어져서 현재는 성분과 압연조건의 적정화에 의해 제조가 불가능하게 되는 경우는 적어지고 있다.Since the austenitic stainless alloy is a high alloy containing a large amount of Cr and Ni, the hot workability decreases during hot rolling, which causes problems such as the fact that the linear defects generated greatly reduce the error rate. In order to prevent such line defects, a lot of studies have been made in the past on cracks generated during the hot rolling process, and at present, there are fewer cases in which manufacture is impossible due to the optimization of components and rolling conditions.

이처럼 제조 가능여부를 결정짓는 선상결함은 열간압연 공정에서 거의 발견되지 않고, 산세후와 냉연공정에서 검출되는 선상결함이다. 이러한 선상결함은 발생장소가 열연판이고 표면품질이 중요한 스테인레스강에 있어서 치명적인 결함이 되기 때문에 재산세와 그라인딩(grinding) 같은 정정공정을 통해 선상결함을 제거하는 추가 공정이 필요하고, 경우에 따라서는 표면품질 관리측면에서 제품이 되지않는 경우가 있기 때문에, 후판, 박판의 제조공정에서 가격상승의 요인이 되고 있다. 이같은 선상결함을 방지하기 위해 연속주조 공정에서부터 열연 및 소둔공정에 이르기까지 여러 가지 검토가 이루어져 왔다. 특히 선상결함은 열연공정에서 미세한 크랙을 방지하는 관점에서 δ-페라이트(계산) = 3(Cr+Mo+1.5Si-0.5Nb) - 2.8(Ni+0.5Mn+0.5Cu) - 8.4(C+N) - 19.8의 관계식으로부터 결정되는 δ-페라이트 함량을 4% 이하가 되도록 강 조성을 조절하는 것으로 열간가공성을 확보하였다. 한편 주편 표층부의 조직개선의 관점에서 일본의 특공평 2-9651호 공보에서는 오스테나이트계 스테인레스강의 Si 함유량을 규제한 슬라브를 가열로 투입전에 숏 블라스트(shot blast)를 행하는 것으로 표층에 가공층을 만들어서, 가열시에 재결정시킨 슬라브 표층부의 결정립을 미세화시켜서 크랙을 방지하는 기술을 제시하고 있다. 또한 가열시에 스케일에 관점을 둔 것으로는 특공평 4-48865호 공보에서는 sol.Al을 규제하여 슬라브 가열시의 산소농도를 0.5∼5%로 규제하여 선상결함을 방지하는 기술을 제안하고 있다. 그러나 상술한 방법은 추가공정이 요구되기 때문에 공정상의 부하를 증가시키고, 또한 성분이 일정한 경우에도 연속주조시 주편에 존재하는 δ-페라이트 함량은 다르게 나타나기 때문에 위의 방법으로는 선상결함을 완전히 제거하기는 곤란한 실정이다.Such linear defects that determine whether they can be manufactured are rarely found in the hot rolling process and are detected in the post-collecting and cold rolling processes. Since the linear defects are fatal defects in stainless steel where hot spots are produced and surface quality is important, additional processes to remove linear defects through property taxes and grinding are necessary. Since it may not be a product from the viewpoint of quality control, it becomes a factor of price increase in the manufacturing process of a thick plate and a thin plate. In order to prevent such ship defects, various studies have been made, ranging from continuous casting processes to hot rolling and annealing processes. In particular, the linear defects were calculated from the viewpoint of preventing fine cracks in the hot rolling process, δ-ferrite (calculated) = 3 (Cr + Mo + 1.5Si-0.5Nb)-2.8 (Ni + 0.5Mn + 0.5Cu)-8.4 (C + N )-The hot workability was secured by adjusting the steel composition so that the δ-ferrite content determined from the relation of 19.8 was 4% or less. On the other hand, Japanese Patent Publication No. 2-9651 discloses a processed layer on the surface layer by performing a shot blast before heating the slab that regulates the Si content of the austenitic stainless steel in order to improve the structure of the surface portion of the cast steel. A technique for preventing cracks by miniaturizing the crystal grains of the slab surface layer portion recrystallized at the time of heating is proposed. In view of the scale at the time of heating, Japanese Unexamined Patent Publication No. H48-48865 proposes a technique for regulating sol.Al to regulate the oxygen concentration during slab heating to 0.5 to 5% to prevent linear defects. However, the above-mentioned method increases the process load because an additional process is required, and the δ-ferrite content present in the slab during continuous casting appears different even when the component is constant, so that the above-described method completely eliminates the linear defect. Is a difficult situation.

이에, 본 발명자들은 선상결함을 보다 손쉽게 제거하기 위해 연구와 실험을 거듭하고 그 결과에 근거하여 본 발명을 제공하게 된 것으로, 본 발명은 용강과 주조합금과의 온도차를 이용하여 주조속도를 적절히 제어함으로써, 오스테나이트계 스테인레스강의 열간압연시에 발생하는 선상결함이 방지되는 오스테나이트계 스테인레스강의 연속주조 방법을 제공하고자 하는데, 그 목적이 있다.Accordingly, the present inventors have repeatedly conducted research and experiments to remove the linear defects and provide the present invention based on the results. The present invention controls the casting speed appropriately by using a temperature difference between molten steel and the main alloy. Accordingly, an object of the present invention is to provide a continuous casting method of austenitic stainless steel in which linear defects occurring during hot rolling of the austenitic stainless steel are prevented.

도 1은 열연 선상결함과 주조온도 및 주조속도의 관계를 보이는 그래프1 is a graph showing the relationship between hot-rolled linear defect, casting temperature and casting speed

상기 목적을 달성하기 위한 본 발명은 초정 δ-페라이트로 응고하고, 응고완료전 오스테나이트가 생성되는 오스테나이트계 스테인레스강을 연속주조하는 방법에 있어서, 주조속도(Vc)는 0.7∼1.2m/min 범위이고, 턴디쉬에서의 용강온도와 주조합금의 용융온도차이(△T)는 10∼60℃ 범위로 조업하면서, 상기 주조속도를 상기 범위를 만족하는 동시에 하기 식(1)에 의해 구해진 주조속도 이하로 유지하여 조업하는 것을 특징으로 하는 열간압연시 선상결함이 적은 오스테나이트계 스테인레스 합금의 연속주조방법에 관한 것이다.In order to achieve the above object, the present invention provides a method of continuously casting austenitic stainless steel which solidifies with primary δ-ferrite and generates austenite before solidification is completed, and the casting speed Vc is 0.7 to 1.2 m / min. Range, and the melting temperature difference (ΔT) between the molten steel temperature and the main alloy in the tundish is in the range of 10 to 60 ° C, while the casting speed is satisfied by the above range and is obtained by the following formula (1) The present invention relates to a continuous casting method of an austenitic stainless alloy with less linear defects during hot rolling.

Vc = 2.44(△T)-0.3 Vc = 2.44 (ΔT) -0.3

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

본 발명은 초정 δ-페라이트로 응고하고, 응고완료전 오스테나이트가 생성되는 스테인레스강을 연속주조로 제조하는 경우 연주주편을 열간압연시 코일 선상결함의 발생위치와 주편조직의 상관성을 조사하여 슬라브의 표층부 조직을 연속주조시 제어하는 것이다. 초정 δ-페라이트로 응고하고, 응고완료전 오스테나이트가 생성되는 오스테나이트계 스테인레스강은 [Cr/Ni]eq.가 1.5∼1.9에 속하는 범위이며, [Cr/Ni]eq. 는 다음의 해머 앤드 스벤슨(Hammar and Svensson) 관계식인 하기 식(2),(3)으로 부터 구해진다.In the present invention, when solidifying with primary δ-ferrite and manufacturing stainless steel in which austenite is produced before solidification is produced by continuous casting, the correlation between the occurrence position of the coil linear defect and the cast structure during hot rolling of the cast slab is investigated. Superficial tissue is controlled during continuous casting. The austenitic stainless steel solidified with primary δ-ferrite and produced austenite before solidification is in a range in which [Cr / Ni] eq. Is in the range of 1.5 to 1.9, and [Cr / Ni] eq. Is obtained from the following Hammar and Svensson relations (2) and (3).

[Cr]eq. = Cr + 1.37Mo + 1.5Si + 2Nb + 3Ti,[Cr] eq. = Cr + 1.37 Mo + 1.5 Si + 2Nb + 3 Ti,

[Ni]eq. = Ni + 0.31Mn + 22C + 14.2N + 1Cu.[Ni] eq. = Ni + 0.31 Mn + 22 C + 14.2 N + 1 Cu.

열간압연시 코일 표면에 발생하는 선상결함을 야금학적으로 살펴보면, 열간압연시의 선상결함은 δ/γ(델타 페라이트/오스테나이트) 계면에서 발생하는 경우와 γ입계에서 발생하는 경우의 2종류가 있다. δ/γ 계면에서 발생하는 경우는 δ-페라이트가 열간 압연공정에서 상당량 잔존한 경우 열간압연시 δ-페라이트와 γ상의 연신율이 틀리기 때문에 δ/γ 계면에서 열간가공성이 저하되어 크랙이 발생하는 경우이고, 크랙을 방지하기 위해서는 δ-페라이트를 슬라브 상태부터 적게 제어하는 것이 요구된다. 한편 δ-페라이트는 직접적으로 열간가공성에 관련이 있지만 가열시 δ-페라이트가 재결정의 핵생성 위치(site)로 작용하기 때문에 γ립의 성장 및 조대화에도 영향을 미쳐서 γ립의 불규칙 성장을 만드는 원인이 되어 γ입계에서 크랙이 발생하는 경우가 있다. 즉 연속주조 슬라브 표층부에 분포하는 δ-페라이트 함량이 2% 이하로 존재하면 슬라브 표면에 면세로 크랙 및 적열취성을 유발되고, 또한 열간압연시 δ-페라이트가 완전히 소멸되어 γ립 재결정이 지연되기 때문에 γ립이 불규칙하게 성장되어 열간압연시 선상결함을 야기시킨다. 한편, 연속주조 슬라브 표층부의 δ-페라이트 함량이 6% 이상 분포하면 열간압연조건에서 δ-페라이트는 상당부분 잔존하게 되어 열간압연시 δ/γ 계면에서 선상결함이 발생된다.In the metallurgical view of the linear defects occurring on the coil surface during hot rolling, there are two types of linear defects during hot rolling, which occur at the δ / γ (delta ferrite / austenite) interface and at the γ grain boundary. . If the δ-ferrite is generated at the δ / γ interface, a significant amount of δ-ferrite remains in the hot rolling process, and the cracking occurs due to the decrease in hot workability at the δ / γ interface because the elongation of the δ-ferrite and γ phase is different during hot rolling. In order to prevent cracking, it is required to control the δ-ferrite from the slab state to less. On the other hand, δ-ferrite is directly related to hot workability, but since δ-ferrite acts as nucleation site of recrystallization when heated, it also affects growth and coarsening of γ grains, causing irregular growth of γ grains. This may cause cracks at the γ grain boundary. In other words, if the content of δ-ferrite in the surface layer of continuous casting slab is less than 2%, cracks and red brittleness are induced on the surface of slab, and δ-ferrite is completely disappeared during hot rolling, which delays γ grain recrystallization. γ grains grow irregularly and cause linear defects during hot rolling. On the other hand, if the δ-ferrite content of the continuous casting slab surface portion is distributed by 6% or more, the δ-ferrite remains substantially in hot rolling conditions, and linear defects are generated at the δ / γ interface during hot rolling.

상술한 바와 같이 열간압연시 크랙을 유발시키는 연주주편의 δ-페라이트는 응고시 초정으로 생성된 δ-페라이트가 냉각과정에서 완전히 소멸되지 못하고 잔존한 것이다. 응고시 생성되는 δ-페라이트의 크기(λ)는 일반적으로 다음과 같이 표현되는 냉각속도(R)의 관계식인 하기 식(4)로부터 결정되기 때문에 냉각속도를 제어하면 δ-페라이트의 함량 및 크기는 조절할 수 있다고 판단된다.As described above, the δ-ferrite of the cast piece causing cracks during hot rolling is the δ-ferrite produced by crystallization at the time of solidification and is not completely extinguished during the cooling process. Since the size (λ) of the δ-ferrite produced during solidification is generally determined from the following equation (4), which is a relation of the cooling rate R, the content and size of the δ-ferrite is I think it can be adjusted.

λ = 63.1(R) - 0.347λ = 63.1 (R)-0.347

여기서 냉각속도(R)은 응고속도와 온도구배의 곱으로 이루어지기 때문에 본 발명은 연속주조시 주조속도와 주조온도가 δ-페라이트가 큰 영향을 미친다고 판단하였다. 이러한 사실을 확인하기 위해 다음과 같은 실험을 하였다.Since the cooling rate (R) is made of the product of the solidification rate and the temperature gradient, the present invention determined that the casting speed and the casting temperature have a large influence on the δ-ferrite during continuous casting. In order to confirm this fact, the following experiment was conducted.

즉, 스테인레스강을 대상으로 주조속도(Vc)가 0.7(m/min)에서 1.2(m/min) 범위에 있어서, 각종의 주조온도(△T)로 주편을 제조하였고, 통상의 열연 가열조건 및 압연조건으로 압연, 권취한 후 산세하여 코일의 표면결함을 조사하여 선상결함의 발생상황을 평가하였다. 도 1은 이러한 것을 정리하여 나타낸 것이다. 도 1에서 X는 선상결함 발생이 심한 경우이고, △는 선상결함이 미세하게 발행한 경우이며, ○는 선상결함이 발생하지 않은 경우를 의미한다.That is, cast steels were manufactured at various casting temperatures (ΔT) at a casting speed (Vc) of 0.7 (m / min) to 1.2 (m / min) for stainless steel. The rolling defects were rolled, wound and pickled, and the surface defects of the coils were examined to evaluate the occurrence of linear defects. 1 summarizes these things. In FIG. 1, X is a case where line defects are severe, Δ is a case where line defects are finely issued, and ○ means a case where line defects have not occurred.

이와 같은 조사를 여러번 실시하였다. 이 조사에서 선상결함이 미세하게 발생하는 △표시를 따라 표시한 실선은 Vc = 2.44(△T)-0.3으로 표시될 수 있다는 것을 알 수 있었다. 즉 연속주조시 주조온도가 높은 경우 주조속도를 감소시키면 열간압연시 선상결함이 발생하기 어렵게 되고, 한편, 주조온도가 낮은 경우 주조속도를 증가시키면 열간압연시 선상결함이 발생하게 어렵게 된다. 따라서 연속주조시 주조온도를 △T로 한 경우 Vc = 2.44(△T)-0.3으로부터 구해진 Vc 값 이하로 주조속도를 조절하면 열간압연중에 선상결함이 발생하지 않는다는 것을 파악하였다.Several such surveys were conducted. In this investigation, it was found that the solid line displayed along the Δ mark in which line defects occurred minutely could be expressed as Vc = 2.44 (ΔT) -0.3 . That is, if the casting temperature is high during continuous casting, reducing the casting speed makes it difficult to cause linear defects during hot rolling. On the other hand, when the casting temperature is low, increasing the casting speed makes it difficult to produce linear defects during hot rolling. Therefore, it was found that when the casting temperature was set to ΔT during continuous casting, if the casting speed was adjusted to be less than or equal to the Vc value obtained from Vc = 2.44 (ΔT) -0.3 , line defects did not occur during hot rolling.

이때, 주소속도와 주조온도의 관계식과 함께 오스테나이트계 스테인레스강 연속주조시 주조속도 및 주소온도의 설정한계가 요구되는데 이에 대해 서술하면 다음과 같다.At this time, in addition to the relationship between the address speed and the casting temperature, the casting speed and the address temperature setting limit are required for continuous casting of austenitic stainless steel.

즉, 상기 주소속도가 0.7m/min 미만으로 되면 생산량이 떨어질 뿐만 아니라 주편이 과냉되어 주조중 주편이 휘는 현상이 발생되고, 주조속도가 1.2m/min을 초과하면 주조중 주편의 열전달이 늦어져 주편 응고 셀(shell)의 강도가 저하되어 주편 벌징(bulging) 되는 현상이 발생되기 때문에 조업 및 품질의 악화를 초래하게 된다. 그리고 통상의 주조속도는 본 발명에 있어서 Vc = 2.44(△T)-0.3의 관계식으로부터 결정되며, 이때 턴디쉬에서의 용강온도와 주조합금의 용융온도의 차이인 △T(℃)는 하한이 10℃이고, 상한은 60℃가 된다. △T에 있어서 상한 60℃를 초과하게 되면 응고중 응고속도가 느리게 되어 앞에서 서술한 냉각속도와 초정 δ-페라이트 관계식인 상기 식(4)로부터 초정 δ-페라이트는 크게 되므로 연속주편에 잔존하는 δ-페라이트는 높게 되어 열간압연시 선상결함이 야기되기 쉽다. 그리고, △T가 하한 10℃ 미만으로 되면 상기식(4)로부터 연주주편에 잔존하는 δ-페라이트는 낮게 되어 선상결함을 야기시킬 뿐만 아니라 연속주조과정에서 몰드 파우더의 윤활능이 떨어지기 때문에 연속주조 주편에 개재물성 결함을 야기시킨다.That is, when the address speed is less than 0.7 m / min, not only the production falls but also the casting is super-cooled, the casting bend phenomenon occurs during casting, if the casting speed exceeds 1.2 m / min, the heat transfer of the casting during the casting is delayed Since the strength of the slag solidification shell (shell) is reduced and the slab bulging occurs, it causes the deterioration of operation and quality. And the normal casting speed is determined from the relationship of Vc = 2.44 (ΔT) -0.3 in the present invention, wherein ΔT (℃), which is the difference between the molten steel temperature in the tundish and the melting temperature of the main alloy is 10 It is ° C and the upper limit is 60 ° C. When ΔT exceeds the upper limit of 60 ° C., the solidification rate during solidification becomes slow, and the primary δ-ferrite becomes large from the above equation (4), which is the relationship between the cooling rate and the primary δ-ferrite relationship described above, and thus the δ- remaining on the continuous cast. Ferrite becomes high, and linear defects are likely to occur during hot rolling. When ΔT falls below the lower limit of 10 ° C., the δ-ferrite remaining in the cast steel from Equation (4) is lowered to cause linear defects, and the lubricating ability of the mold powder is degraded in the continuous casting process. Causes interstitial defects in the

이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.

실시예Example

[Cr/Ni]eq.가 1.5∼1.9 구간에 속하는 하기 표1과 같은 조성의 304 스테인레스강을 대상으로 하기 표2와 같은 주조조건으로 연속주조로 주편을 제조하였고, 통상의 열연 가열조건 및 압연조건으로 압연, 권취한 후 산세하여 코일이 표면결함을 조사하여 선사결함의 발생상황을 평가하였다. 그 평가결과는 하기 표2에 나타내었다.[Cr / Ni] eq. The cast steels were manufactured by continuous casting under the casting conditions as shown in Table 2 for 304 stainless steels of the composition shown in Table 1 in the section 1.5 to 1.9, and hot rolling conditions and rolling The coils were rolled, wound and pickled, and the coils were examined for surface defects to evaluate the occurrence of prehistoric defects. The evaluation results are shown in Table 2 below.

CrCr NiNi SiSi MnMn PP SS MoMo TiTi CC NN OO [Cr/Ni]eq.[Cr / Ni] eq. 함량(wt%)Content (wt%) 18.3818.38 8.538.53 0.540.54 1.061.06 0.0230.023 0.0030.003 0.140.14 0.0140.014 0.0410.041 0.0340.034 0.0050.005 1.891.89

주조온도(△T, ℃)Casting temperature (△ T, ℃) 주조속도(m/min)Casting speed (m / min) δ-페라이트δ-ferrite 주편표면품질상황Cast Surface Quality 열연코일선상결함발생상황Hot-rolled coil line defect occurrence situation 발명예Inventive Example AA 1010 1.221.22 2.82.8 양호Good 양호Good BB 6060 0.710.71 5.45.4 양호Good 양호Good CC 3030 0.880.88 4.34.3 양호Good 양호Good 비교예Comparative example DD 77 1.361.36 1.51.5 불량Bad 불량Bad EE 1313 1.151.15 4.34.3 불량Bad 양호Good FF 6363 0.710.71 7.57.5 양호Good 불량Bad GG 6565 0.750.75 8.48.4 불량Bad 불량Bad

상기 표2에서 알 수 있는 바와 같이, 본 발명에 의한 발명예(A∼C)는 연속주조 주편 및 열연코일 표면에 벌징, 개재물성 개재물 및 선상결함이 발생하지 않은 양호한 제품을 얻을 수 있었다.As can be seen from Table 2, the inventive examples (A to C) according to the present invention were able to obtain a good product without bulging, inclusion inclusions and linear defects on the surface of the continuous casting cast and hot-rolled coil.

그러나 비교예(D)는 주조온도가 본 발명의 조건을 벗어난 것으로 연주주편에 몰드 파우더가 혼입된 개재물성 결함이 다발하여 주편의 실수율을 저하시켰고, 또한 연주주편의 결함을 그라인딩으로 제거하는 공정이 필요하므로 제품생산시 공정부하가 걸리게 되었다. 그리고 δ-페라이트 함량도 1.5% 로 낮게 존재되어 열연 코일상에 선상결함이 발생되었다.However, in Comparative Example (D), the casting temperature was beyond the condition of the present invention, and the defect of the cast powder was mixed into the cast steel to reduce the error rate of the cast steel. Because of the necessity, the process load was applied during production. In addition, the δ-ferrite content was also present as low as 1.5% to cause linear defects on the hot rolled coil.

또한 비교예(E)는 주조온도가 본 발명의 범위에 속하지만 본 발명에서 제시한 주조속도의 범위를 초과한 경우이다. 상기 표2에서 보이는 바처럼 δ-페라이트 함량은 4.3%로 존재하게 되어 열연 코일상에 선상결함이 발생되지 않고 양호하였지만, 연속주조시 주편 빌징이 발생되었으며, 또한 탕면 헌팅(hunting) 등의 조업 불안정이 발생되었다.In addition, Comparative Example (E) is a case where the casting temperature is in the range of the present invention, but exceeds the range of the casting speed proposed in the present invention. As shown in Table 2, the δ-ferrite content was present at 4.3% so that no linear defects occurred on the hot rolled coil, but good, but cast bilding occurred during continuous casting, and also operation instability such as hot water hunting (hunting). This occurred.

그리고, 비교예(F)는 주조온도가 본 발명보다 높은 경우로 주편품질은 비교적 양호하였으나 δ-페라이트 함량이 7.5%로 존재하여 열연코일상에 선상결함이 발생되었다.In Comparative Example (F), the casting temperature was higher than that of the present invention, but the casting quality was relatively good, but the δ-ferrite content was present at 7.5%, resulting in linear defects on the hot rolled coil.

그리고, 비교예(G)는 주조온도와 주조속도 모두가 본 발명의 기준치 보다 벗어나서 연속주조 주편 및 열연코일에 결함을 야기시키는 문제점을 안고 있다.In addition, Comparative Example (G) has a problem in that both the casting temperature and the casting speed deviate from the reference values of the present invention, causing defects in the continuous cast steel and the hot rolled coil.

이상의 결과를 통해 본 발명예는 적절한 δ-페라이트 함량을 확보할 뿐만 아니라 우수한 연속주조 주편품질을 얻을 수 있어 안정적인 연속주조조업이 가능하다는 것을 알 수 있다.Through the above results it can be seen that the present invention can not only secure the appropriate δ-ferrite content, but also can obtain a good continuous casting cast quality, which enables stable continuous casting operation.

상술한 바와 같이, 본 발명에 의하면 오스테나이트계 스테인레스강을 연속주조함에 있어, 그 주조속도의 상한치를 턴디쉬에서의 용강온도와 주조합금의 용융온도의 차이를 이용하여 설정함으로써, 열간압연시 선상결함이 적은 주편을 얻을 수 있는 효과가 제공된다.As described above, according to the present invention, in the continuous casting of austenitic stainless steel, the upper limit of the casting speed is set by using the difference between the molten steel temperature in the tundish and the melting temperature of the main alloy, so that the ship is hot The effect of obtaining a cast with fewer defects is provided.

Claims (1)

초정 δ-페라이트로 응고하고, 응고완료전 오스테나이트가 생성되는 오스테나이트계 스테인레스강을 연속주조하는 방법에 있어서,In the method of continuous casting of austenitic stainless steel solidified with primary δ-ferrite, where austenite is formed before solidification is completed, 주조속도(Vc)는 0.7∼1.2m/min 범위이고, 턴디쉬에서의 용강온도와 주조합금의 용융온도차이(△T)는 10∼60℃ 범위로 조업하면서; 상기 주조속도를 상기 범위를 만족하는 동시에 하기 식1에 의해 구해진 주조속도 이하로 유지하여 조업하는 것을 특징으로 하는 열간압연시 선상결함이 적은 오스테나이트계 스테인레스 합금의 연속주조방법The casting speed Vc is in the range of 0.7 to 1.2 m / min, and the melting temperature difference ΔT between the molten steel temperature and the main alloy in the tundish is operated in the range of 10 to 60 ° C; The continuous casting method of the austenitic stainless alloy with less linear defects during hot rolling, wherein the casting speed satisfies the above range and is operated at or below the casting speed determined by Equation 1 below. [수학식1][Equation 1] Vc = 2.44(△T)-0.3 Vc = 2.44 (ΔT) -0.3
KR1019970074574A 1997-12-26 1997-12-26 Method for continuously casting austenitic stainless alloy having less linear defects during hot rolling KR100314851B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970074574A KR100314851B1 (en) 1997-12-26 1997-12-26 Method for continuously casting austenitic stainless alloy having less linear defects during hot rolling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970074574A KR100314851B1 (en) 1997-12-26 1997-12-26 Method for continuously casting austenitic stainless alloy having less linear defects during hot rolling

Publications (2)

Publication Number Publication Date
KR19990054708A true KR19990054708A (en) 1999-07-15
KR100314851B1 KR100314851B1 (en) 2002-01-17

Family

ID=37531512

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970074574A KR100314851B1 (en) 1997-12-26 1997-12-26 Method for continuously casting austenitic stainless alloy having less linear defects during hot rolling

Country Status (1)

Country Link
KR (1) KR100314851B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986908B1 (en) * 2003-12-18 2010-10-08 주식회사 포스코 method for manufacturing of continuous cating slab of austenitic stainless steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111014600B (en) * 2019-12-24 2021-05-18 江苏集萃安泰创明先进能源材料研究院有限公司 Process method for reducing difference between casting temperature and solidification temperature of amorphous alloy melt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986908B1 (en) * 2003-12-18 2010-10-08 주식회사 포스코 method for manufacturing of continuous cating slab of austenitic stainless steel

Also Published As

Publication number Publication date
KR100314851B1 (en) 2002-01-17

Similar Documents

Publication Publication Date Title
US4883544A (en) Process for preparation of austenitic stainless steel having excellent seawater resistance
KR100314851B1 (en) Method for continuously casting austenitic stainless alloy having less linear defects during hot rolling
JP3384890B2 (en) Method for producing austenitic stainless steel with excellent surface properties
JPH01262048A (en) Production of high corrosion resistant stainless steel having excellent hot workability and reducing segregation
JPH0565263B2 (en)
US4494998A (en) Process for producing austenitic stainless steels less susceptible to rolling defects
JP3335616B2 (en) Powder for continuous casting for B-containing steel and method for producing B-containing steel
KR100381523B1 (en) Manufacturing method of high nickel equivalent austenitic stainless alloy with excellent surface quality
JP2838468B2 (en) Method for producing Cr-Ni stainless steel alloy for preventing cracking in hot rolling
KR100897143B1 (en) Method of manufacturing high Ni alloy steel with good surface quality
JP3001718B2 (en) Manufacturing method of thin cast slab of ferritic stainless steel
KR100340549B1 (en) A method for manufacturing continuously cast primary δ-ferrite stainless steel having excellent surface quality
KR100450612B1 (en) A continuous casting method of austenitic stainless steel containing high si content
JPH07268455A (en) Production of cr-ni stainless alloy free from microracking in hot rolling
JP2987732B2 (en) Method for producing Cr-Ni stainless steel alloy free from surface flaws by hot rolling
KR100453912B1 (en) Method For Manufacturing Martensite Stainless Steel With Low Hardness
KR20020040435A (en) continuous casting method of stainless steel for decresing surface defect
JP3423815B2 (en) Method for producing ferritic stainless steel to prevent surface flaws from occurring during hot rolling
KR100397298B1 (en) Method for cooling a continuously cast non-magnetic austenite stainiless steel slab
JPH0339420A (en) Production of gamma-alpha duplex stainless steel sheet having coarse graining-prevented weld zone
JPH07268453A (en) Production of cr-ni stainless alloy free from generation of surface flaw by hot rolling
JPH06304606A (en) Manufacture of cr-ni base stainless steel alloy without generating surface flaw
JPH07292418A (en) Production of chromium-nickel stainless steel free from occurrence of surface flaw at hot rolling
JP2619182B2 (en) Hot-rolled steel sheet for deep drawing excellent in secondary work cracking resistance and small in anisotropy and method for producing the same
JPS61193756A (en) Production of continuously cast ingot having good surface characteristic

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121026

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20131028

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20141027

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee