KR19990000506A - Anode active material composition for nickel-hydrogen battery and manufacturing method of anode for nickel-hydrogen battery using same - Google Patents

Anode active material composition for nickel-hydrogen battery and manufacturing method of anode for nickel-hydrogen battery using same Download PDF

Info

Publication number
KR19990000506A
KR19990000506A KR1019970023440A KR19970023440A KR19990000506A KR 19990000506 A KR19990000506 A KR 19990000506A KR 1019970023440 A KR1019970023440 A KR 1019970023440A KR 19970023440 A KR19970023440 A KR 19970023440A KR 19990000506 A KR19990000506 A KR 19990000506A
Authority
KR
South Korea
Prior art keywords
nickel
composition
negative electrode
active material
hydrogen
Prior art date
Application number
KR1019970023440A
Other languages
Korean (ko)
Inventor
최수석
손영배
황우현
강병현
장윤한
Original Assignee
손욱
삼성전관 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 손욱, 삼성전관 주식회사 filed Critical 손욱
Priority to KR1019970023440A priority Critical patent/KR19990000506A/en
Priority to JP10086496A priority patent/JPH117948A/en
Priority to CN98107763A priority patent/CN1202015A/en
Publication of KR19990000506A publication Critical patent/KR19990000506A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/26Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/80Porous plates, e.g. sintered carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

니켈-수소 전지용 음극 활물질, 아크릴로니트릴-러버, 스티렌-부타디엔 러버, 부타디엔 러버, 아크릴레이트 부타디엔 러버, 클로로프렌, 아크릴 에멀젼 및 이들의 혼합물로 이루어진 그룹 중에서 선택되는 것인 결착제, 충격흡수제, 발수제와 증점제를 포함하는 니켈-수소 전지용 음극 활물질 조성물을 2차원 전도성 기판에 도포하면 고밀도 수소저장합금 전극을 제조할 수 있다. 따라서 합금의 안정적인 부착상태를 유지하여 극판의 수명이 증가하며 결착제 량의 최소화로 방전전압이 높으며 극판 표면의 3상계면의 충분한 확보로 인해 전지의 내압이 감소되어 밀폐화를 가능하게 하는 효과가 있다.Binders, shock absorbers, water repellents, and the like selected from the group consisting of a negative electrode active material for nickel-hydrogen batteries, acrylonitrile-rubber, styrene-butadiene rubber, butadiene rubber, acrylate butadiene rubber, chloroprene, acrylic emulsion and mixtures thereof When the negative electrode active material composition for nickel-hydrogen batteries including the thickener is applied to a two-dimensional conductive substrate, a high density hydrogen storage alloy electrode may be manufactured. Therefore, it is possible to maintain the stable adhesion state of the alloy to increase the life of the pole plate, to minimize the amount of binder, to increase the discharge voltage, and to secure the three-phase interface on the surface of the pole plate, thereby reducing the internal pressure of the battery to enable sealing. have.

Description

니켈-수소 전지용 음극 활물질 조성물 및 이를 이용한 니켈-수소 전지용 음극의 제조 방법Anode active material composition for nickel-hydrogen battery and manufacturing method of anode for nickel-hydrogen battery using same

[산업상 이용 분야][Industrial use]

본 발명은 니켈-수소 전지용 음극 활물질 조성물에 관한 것으로서, 상세하게는 고용량의 전지를 제조할 수 있는 니켈-수소 전지용 음극 활물질 조성물 및 이를 이용한 니켈-수소 전지용 음극의 제조 방법에 관한 것이다.The present invention relates to a negative electrode active material composition for nickel-hydrogen batteries, and more particularly, to a negative electrode active material composition for a nickel-hydrogen battery capable of producing a high capacity battery and a method for producing a negative electrode for nickel-hydrogen batteries using the same.

[종래 기술][Prior art]

최근 카메라 일체형 VTR, 오디오, 랩탑형 퍼스널 컴퓨터, 휴대용 전화기 등의 새로운 포터블 전자기기의 소형화 및 경량화 추세와 관련하여, 이들 기기의 전원으로 사용되는 전지의 성능을 고성능화하고, 대용량화하는 기술이 필요하게 되었으며, 특히 경제적인 측면에서 이들 전지의 제조 원가를 절감하는 기술 개발 노력이 진행되고 있다. 일반적으로 전지는 망간 전지, 알칼리 전지, 수은 전지, 산화은 전지 등과 같이 일회용으로 사용하는 1차 전지와 납축전지, 금속수소화물을 음극 활물질로 하는 Ni-MH(니켈-메탈하이드라이드) 전지와, 밀폐형 니켈-카드뮴 전지 및 리튬-금속 전지, 리튬-이온 전지(LIB: Lithium Ion Battery), 리튬-폴리머 전지(LPB: Lithium Polymer Battery)와 같은 리튬군 전지 등과 같이 재충전하여 사용할 수 있는 2차 전지, 그리고 연료 전지, 태양 전지 등으로 구분할 수 있다.Recently, with the trend toward miniaturization and lightening of new portable electronic devices such as camera-integrated VTRs, audio, laptop personal computers, portable telephones, and the like, there is a need for a technology for increasing the performance and capacity of batteries used as power sources for these devices. In particular, efforts are being made to develop technologies that reduce manufacturing costs of these batteries, particularly in economic terms. Generally, batteries include primary cells used for single use, such as manganese batteries, alkaline batteries, mercury batteries, and silver oxide batteries, Ni-MH (nickel-metal hydride) batteries using lead-acid batteries and metal hydrides as negative active materials, and sealed types. Rechargeable batteries such as nickel-cadmium batteries and lithium-metal batteries, lithium-ion batteries (LIB: Lithium Ion Battery), lithium group batteries such as Lithium Polymer Battery (LPB), and the like; It can be divided into fuel cell, solar cell and the like.

이 중 1차 전지는 용량이 적고, 수명이 짧으며, 재활용이 되지 않으므로 환경 오염을 일으키는 문제점이 있는데 반하여, 2차 전지는 재충전하여 사용할 수 있어 수명이 길며, 전압도 1차 전지보다 월등히 높아 성능과 효율성 측면에서 우수하며, 폐기물의 발생도 적어 환경 보호 측면에서도 우수하다.Among them, primary batteries have a small capacity, short lifespan, and cannot be recycled, causing environmental pollution. On the other hand, secondary batteries can be recharged and used for a long time, and voltage is much higher than that of primary batteries. It is excellent in terms of efficiency and efficiency, and generates less waste, which is also excellent in environmental protection.

상기한 2차 전지 중 니켈 계열 전지가 리사이클 기술이 가장 확립되어 있어 환경 보호 측면에서도 우수하고, 전지의 고성능화가 가능하여 가장 많이 사용되고 있다.Among the secondary batteries described above, nickel-based batteries are most used because they have the most established recycling technology and are excellent in terms of environmental protection.

상기한 니켈 계열 전지 중 Ni-Cd 전지가 잘 알려져 있고 여러 분야에 사용되어 왔으나 카드뮴으로 인한 환경 오염을 유발하는 문제가 있어, 최근에는 에너지 밀도가 높고 무공해성인 수소저장합금 전극을 이용한 니켈-수소 전지에 대한 관심이 높아지고 있다. 수소저장합금 전극은 낮은 압력에서 수소를 흡방출하는 특성을 갖는 수소저장합금을 전지에 이용한 것이다. 상기한 수소저장합금 전극을 이용하여 밀폐형 니켈-수소 2차 전지를 제조하기 위해서는 하기한 방법들이 지금까지 이용되어 왔다.Among the nickel-based batteries, Ni-Cd batteries are well known and used in various fields. However, Ni-Cd batteries have a problem of causing environmental pollution due to cadmium. Recently, nickel-hydrogen batteries using high-density and non-polluting hydrogen storage alloy electrodes are used. There is a growing interest in. The hydrogen storage alloy electrode uses a hydrogen storage alloy having a characteristic of absorbing and releasing hydrogen at low pressure in a battery. In order to manufacture a sealed nickel-hydrogen secondary battery using the hydrogen storage alloy electrode, the following methods have been used so far.

1) 수소저장합금의 분말을 전기적 전도성이 있는 전도제와 함께 소결(sintering)하여 극판을 제조하는 방법1) Method of manufacturing electrode plate by sintering powder of hydrogen storage alloy together with electrically conductive conductive agent

2) 발포 니켈(foamed nickel)과 같은 전기적 전도성이 있는 3차원 구조의 다공성 기판에 수소저장합금을 주입 또는 적재시키는 방법2) A method of injecting or loading a hydrogen storage alloy into a porous substrate having an electrically conductive three-dimensional structure such as foamed nickel

3) 전기적 전도성이 있는 2차원 구조의 다공성 기판에 수소저장합금을 PTFE(polytetrafluoroethylene)와 같은 고분자 바인더로 부착하는 방법3) A method of attaching a hydrogen storage alloy with a polymer binder such as PTFE (polytetrafluoroethylene) to a porous substrate having an electrically conductive two-dimensional structure

상기한 방법 중 첫째, 소결하는 방법은 소결 공정 중에 수소저장합금의 표면이 산화되고 이로 인해 수소의 흡방출이 억압받게 되어 전극의 전도성이 떨어져 방전전압이 낮아지고 따라서 결과적으로 전지의 방전용량 저하를 가져오게 된다.In the first method, the sintering method oxidizes the surface of the hydrogen storage alloy during the sintering process, thereby suppressing the adsorption and release of hydrogen, thereby lowering the conductivity of the electrode and lowering the discharge voltage. Will be imported.

둘째, 3차원 다공성 기판을 사용하는 방법은 전지에 여러 면에서 유리한 특성을 보일 수 있으나 결정적으로 극판이 차지하는 부피에 비해 수소저장합금이 차지하는 공간의 제약이 심해 전지의 용량이 작게 설계해야 하는 문제점이 있으며, 그 외에도 기본적으로 3차원 다공성 기판의 가격이 상당히 비싸므로 가격경쟁력에 문제가 있다.Second, the method of using the 3D porous substrate may show advantageous properties in many aspects of the battery, but the capacity of the hydrogen storage alloy is severely limited compared to the volume occupied by the electrode plate, so the capacity of the battery must be designed small. In addition, there is a problem in price competitiveness because the price of the three-dimensional porous substrate is quite expensive.

셋째, 2차원 구조의 다공성 기판을 사용하는 방법은 극판 공간의 효율적 이용으로 전극의 에너지 밀도를 높이는 데는 유리하지만, 접착력이 약하여 합금을 2차원 구조의 얇은 판 형태의 집전체에 결착시키기가 힘든 문제점이 있다. 상기한 수소저장합금을 2차원 구조의 집전체에 결착시키기 위하여는 고분자 결착제를 많이 첨가하여야 하며, 결착제가 부도체이므로 이에 따라 극판의 전도도가 낮아져 방전 전압이 낮아진다. 또한, 결착제 피막이 두꺼워 짐으로 인해 합금의 내외부로의 수소 가스 흡방출이 어려워져 결과적으로 수소평형압을 높이고 반응속도를 낮춤으로 인해 전지내압의 증가 및 고율충방전 특성의 저하를 가져오는 문제점이 있다.Third, the method of using the porous substrate of the two-dimensional structure is advantageous to increase the energy density of the electrode by the efficient use of the electrode plate space, but it is difficult to bind the alloy to the current collector of the two-dimensional structure due to the weak adhesive force There is this. In order to bind the hydrogen storage alloy to the current collector having a two-dimensional structure, a large amount of polymer binder must be added. Since the binder is an insulator, the conductivity of the electrode plate is lowered, thereby lowering the discharge voltage. In addition, due to the thickening of the binder film, it is difficult to absorb and release hydrogen gas into and out of the alloy. As a result, the hydrogen balance pressure and the reaction rate are lowered, resulting in an increase in battery pressure and a decrease in high rate charge and discharge characteristics. have.

본 발명은 상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 첫째, 결착 효과가 우수한 결착제를 이용하여 2차원 다공성 기판에 수소저장합금을 부착시켜 전지 전체의 에너지 밀도를 증가시킬 수 있는 니켈-수소 전지용 음극 활물질 조성물을 제공하는 것이고, 둘째, 이를 이용하여 고용량의 니켈-수소 전지용 음극을 제조할 수 있는 니켈-수소 전지용 음극의 제조 방법을 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention is first, by using a binder having excellent binding effect by attaching a hydrogen storage alloy to a two-dimensional porous substrate nickel that can increase the energy density of the entire battery It is to provide a negative electrode active material composition for a hydrogen battery, and second, to provide a method for producing a negative electrode for a nickel-hydrogen battery that can produce a high capacity nickel-hydrogen battery negative electrode using the same.

[과제를 해결하기 위한 수단][Means for solving the problem]

상기한 목적을 달성하기 위하여 본 발명은 니켈-수소 전지용 음극 활물질; 충격흡수제; 발수제; 증점제와 아크릴로니트릴-러버(acrylonitrile-rubber), 스티렌-부타디엔 러버(styrene-butadiene rubber), 부타디엔 러버(butadiene rubber), 아크릴레이트 부타디엔 러버(acrylate butadiene rubber) 클로로프렌(chloroprene), 아크릴 에멀젼(acrylic emersion) 및 이들의 혼합물 이루어진 그룹 중에서 선택되는 결착제를 포함하는 니켈-수소 전지용 음극 활물질을 제공한다.The present invention to achieve the above object is a negative electrode active material for nickel-hydrogen battery; Shock absorbers; Water repellents; Thickeners and acrylonitrile-rubbers, styrene-butadiene rubbers, butadiene rubbers, acrylate butadiene rubbers chloroprene, acrylic emulsions It provides a negative electrode active material for a nickel-hydrogen battery comprising a binder selected from the group consisting of) and mixtures thereof.

상기한 본 발명에 있어서, 상기 결착제의 사용량은 상기 음극 활물질에 대해 0.2∼∼3 중량%인 것이 바람직하다.In the present invention described above, the amount of the binder is preferably 0.2 to 3% by weight based on the negative electrode active material.

본 발명에 있어서, 상기 발수제는 표면 에너지가 10∼20dyne/㎝인 불소 수지이거나, 무정형의 형태를 갖는 불소 수지 이거나, 또는 분산 용매가 C3F8, C4F10, C5F12, C5F11NO, C6F14, C7F16, C8F18, CCl3F, CCl2F2, C2F3Cl3, C2Cl3F4, C2ClF5로 이루어진 그룹 중에서 선택되는 불소 카본 용액인 불소 수지인 것이 바람직하다.In the present invention, the water repellent is a fluorine resin having a surface energy of 10 to 20 dyne / cm, or a fluorine resin having an amorphous form, or the dispersion solvent is C 3 F 8 , C 4 F 10 , C 5 F 12 , C 5 F 11 NO, C 6 F 14 , C 7 F 16 , C 8 F 18 , CCl 3 F, CCl 2 F 2 , C 2 F 3 Cl 3 , C 2 Cl 3 F 4 , C 2 ClF 5 It is preferable that it is a fluororesin which is a fluorocarbon solution chosen from.

상기한 본 발명에 있어서, 상기 충격흡수제는 1.3g/㎤의 탭 밀도(tapped density)를 갖는 니켈 분말을 상기한 합금 중량 대비 3∼5 중량%의 양으로 사용하거나, 또는 카본 블랙을 상기한 합금 중량 대비 0.05∼0.4 중량%의 양으로 사용하는 것이 바람직하다.In the present invention described above, the shock absorbing agent uses nickel powder having a tapped density of 1.3 g / cm 3 in an amount of 3 to 5 wt% based on the weight of the alloy, or carbon black as described above. It is preferable to use in an amount of 0.05 to 0.4% by weight based on the weight.

상기한 본 조성물에 있어서, 상기 니켈-수소 전지용 음극 활물질은 CeO2, Y2O3, Ca(OH)2, Yb2O3으로 이루어진 그룹 중에서 선택되는 산화 방지 합금이 상기 수소저장합금 중량 대비 1∼5 중량%의 양으로 코팅된 것이 바람직하다.In the present composition, the nickel-hydrogen battery negative electrode active material is selected from the group consisting of CeO 2 , Y 2 O 3 , Ca (OH) 2 , Yb 2 O 3 The antioxidant alloy is 1 to the weight of the hydrogen storage alloy It is preferable to coat in an amount of -5% by weight.

또한 본 발명에 있어서, 상기 증점제는 메틸셀룰로즈, 카르복시메틸셀룰로즈, 하이드록시프로필 메틸셀룰로즈로 이루어진 그룹 중에서 선택되는 것이 바람직하다.In the present invention, the thickener is preferably selected from the group consisting of methyl cellulose, carboxymethyl cellulose, hydroxypropyl methyl cellulose.

아크릴로니트릴-러버, 스티렌-부타디엔 러버, 부타디엔 러버, 아크릴레이트 부타디엔 러버, 클로로프렌 및 아크릴 에멀젼으로 이루어진 그룹 중에서 선택되는 화합물 또는 이들의 혼합물을 포함하는 니켈-수소 전지의 음극 활물질 조성물용 결착제를 또한 제공한다.A binder for the negative electrode active material composition of a nickel-hydrogen battery comprising a compound selected from the group consisting of acrylonitrile-rubber, styrene-butadiene rubber, butadiene rubber, acrylate butadiene rubber, chloroprene and acrylic emulsion or a mixture thereof. to provide.

또한, 집전체를 상기한 니켈-수소 전지용 음극 활물질 조성물로 코팅하는 공정을 포함하는 니켈-수소 전지용 음극의 제조 방법을 제공한다.The present invention also provides a method for producing a negative electrode for a nickel-hydrogen battery, including a step of coating a current collector with the negative electrode active material composition for a nickel-hydrogen battery.

상기한 본 발명에 있어서, 상기 집전체는 규칙적인 구멍이 파여져 있는 전기적 전도성을 지닌 2차원 구조의 금속판을 이용하는 것이 바람직하다.In the present invention described above, it is preferable that the current collector uses a metal plate having a two-dimensional structure with electrical conductivity in which regular holes are dug.

[작용][Action]

밀폐형 니켈-수소 2차 전지는 충전시 음극판에 흡수되지 못한 수소 가스와 과충전시 양극에서 발생하는 산소로 인한 내압의 증가를 억제하기 위해, 또한 과충, 과방전시 전지를 보호하기 위해 충방전리저브를 음극에 별도로 부여해 주어야 한다. 이로 인하여 음극의 용량이 양극의 용량보다 크도록 설계되고 있다. 따라서 전지 전체의 에너지 밀도를 높이기 위해서는 음극판의 에너지 밀도가 높은 것이 유리하고 이 조건을 만족시킬 수 있는 극판의 제조 방법이 전기적 전도성이 있는 2차원 구조의 다공성 금속판에 음극의 활물질을 입히는 방법이다.The sealed nickel-hydrogen secondary battery has a negative electrode charge / discharge reservoir to suppress an increase in internal pressure due to hydrogen gas not absorbed in the negative electrode plate during charging and oxygen generated from the positive electrode during overcharge, and also to protect the battery during overcharge and overdischarge. Must be given separately. For this reason, the capacity of the cathode is designed to be larger than that of the anode. Therefore, in order to increase the energy density of the entire battery, it is advantageous to have a high energy density of the negative electrode plate, and a method of manufacturing the electrode plate capable of satisfying this condition is a method of coating the active material of the negative electrode on a porous metal plate having an electrically conductive two-dimensional structure.

수산화니켈을 사용하는 양극 활물질 조성물과는 달리 수소저장합금을 사용하는 음극 활물질 조성물은 전도성이 아주 좋으므로 별도의 도전제는 필요없다. 하지만 2차원의 얇은 판 위에 혼합물의 반죽을 입혀 고정시켜야 하므로 인해 별도의 강력한 결착제가 필요하게 되었다.Unlike the positive electrode active material composition using nickel hydroxide, the negative electrode active material composition using the hydrogen storage alloy does not need a separate conductive agent because the conductivity is very good. However, a separate strong binder was needed because the mixture was kneaded and fixed on a two-dimensional thin plate.

본 발명자들은 전기적 전도성이 있는 2차원 다공성 금속 기판에 수소저장합금을 부착시키기 위한 결착제로 여러 가지의 폴리머를 연구한 결과 다음과 같은 물성을 갖는 폴리머가 결착제로 유용하다는 것을 알게 되었다. 우선 전지의 전해액인 알칼리 수용액에 대해 안정해야 하고 어느 정도의 온도에 대해서도 안정해야 하며 화학적 및 물리적으로 다루기가 용이하여야 한다. 또한 결착제를 많이 사용하는 경우 전지의 내압이 증가하고 고율충방전 특성의 저하 등의 문제점이 발생하므로 소량으로도 결착력을 지닐 수 있어야 한다. 또한 이 극판 군이 밀폐전지의 내부에 삽입이 될 때에는 실린더 형태로 휘어지므로 극판에 어느 정도의 물리적인 충격을 견딜 수 있는 유연성 및 탄성이 요구된다. 또한 극판이 되기 위한 혼합물이 반죽 상태로 집전체에 도포되어야 하므로 수성의 액체에 분산시킬 수 있어야 한다. 본 발명자들은 SBR(스티렌-부타디엔-러버: styrene-butadiene-rubber), BR(부타디엔-러버: butadiene-rubber), NBR(아크릴로니트릴-부타디엔-러버: acrylonitrile-butadiene-rubber), CR(클로로프렌: chloroprene) 등의 수성 분산액(dispersion or emersion) 및 아크릴계의 수성에멀젼 등을 2차원 구조를 갖는 집전체에 수소저장합금을 결착시키는 결착제로 사용하여 본 결과 상기한 물성을 만족시킨다는 것을 발견하였다.The inventors have studied various polymers as binders for attaching hydrogen storage alloys to electrically conductive two-dimensional porous metal substrates and found that polymers having the following physical properties are useful as binders. First of all, it should be stable to alkaline aqueous solution of battery, stable to some temperature, and easy to handle chemically and physically. In addition, when a large number of binders are used, the internal pressure of the battery increases and problems such as deterioration of high rate charge / discharge characteristics occur. In addition, when the pole plate group is inserted into the sealed battery, it is bent in the form of a cylinder, so the flexibility and elasticity that can withstand a certain physical impact on the pole plate are required. In addition, since the mixture to be the electrode plate must be applied to the current collector in a dough state, it must be able to be dispersed in an aqueous liquid. The inventors have found that SBR (styrene-butadiene-rubber), BR (butadiene-rubber: butadiene-rubber), NBR (acrylonitrile-butadiene-rubber), CR (chloroprene: As a result of using aqueous dispersions such as chloroprene) and acrylic aqueous emulsions as binders to bind hydrogen storage alloys to current collectors having a two-dimensional structure, the present inventors have found that the above properties are satisfied.

상기의 물질들은 모두 비슷한 효과를 지니고 있었으나 특히 SBR과 NBR 및 아크릴 에멀젼 등이 우수한 특성을 보여주었다. 그리고 첨가량은 그 고형분의 양이 합금에 대해 중량비로 0.2에서 3%가 바람직하였다. 이보다 많은 양이 첨가되면 그에 비례하여 극판의 전도도가 낮아져 방전 전압이 낮아지고, 결착제 피막이 두꺼워 짐으로 인해 합금의 내외부로의 수소 가스 흡방출이 어려워져 결과적으로 수소평형압을 높이고 반응속도를 낮춤으로 인해 전지내압의 증가 및 고율충방전 특성의 저하를 가져온다. 반대로 부족한 경우는 합금이 집전체 기판에 대한 결착력이 떨어져 극판이 물리적, 화학적 충격에 상당히 약하게 된다.All of the above materials had similar effects, but especially SBR, NBR, and acrylic emulsions showed excellent characteristics. In addition, the amount of the solid content is preferably 0.2 to 3% by weight relative to the alloy. If a larger amount is added, the conductivity of the electrode plate is lowered in proportion to the discharge voltage, and the thickness of the binder film becomes thicker, which makes it difficult to absorb and release hydrogen gas into and out of the alloy. As a result, the hydrogen balance pressure is increased and the reaction rate is lowered. This results in an increase in battery pressure and a decrease in high rate charge / discharge characteristics. On the contrary, when the alloy is insufficient, the alloy has a poor binding force on the current collector substrate, and the electrode plate is extremely weak to physical and chemical impacts.

또한 수소저장합금은 전극반응 반복으로 인한 미분화 현상과 표면의 산화반응이 일어나 전지열화의 원인이 되므로 합금의 내구성을 높이는 것이 필요하고 양극의 산소과전압을 높이는 것이 필요하다. 이를 위하여 금속의 표면에 도포되어 고온에서 산화반응을 억제하는 효과가 있는 CeO2를 합금 주위에 코팅하여 사용하였다.In addition, the hydrogen storage alloy is required to increase the durability of the alloy and to increase the oxygen overvoltage of the anode because it causes micro-degradation and surface oxidation due to repeated electrode reactions. To this end, CeO 2 was coated on the surface of the metal and had an effect of inhibiting oxidation at high temperatures.

아울러 합금과 결착제의 혼합물이 극판에 도포되기 위해서는 일정 점도 이상의 점도가 요구되므로 일반적으로 이용되는 CMC(카르복시 메틸 셀룰로즈 소디움 설트: carboxy methyl cellulose sodium salt)를 증점제로 사용하였다.In addition, since a viscosity of a certain viscosity or more is required to apply the mixture of the alloy and the binder to the electrode plate, CMC (carboxy methyl cellulose sodium salt: carboxy methyl cellulose sodium salt), which is generally used, was used as a thickener.

또한 슬러리(혼합물의 반죽)의 점도가 낮을수록, 유동성이 클수록 슬러리를 다루기는 쉬우나, 합금의 비중이 커서 전체적으로 슬러리의 비중이 커짐에 따라 집전체 기판에 도포시 흘러내리는 것을 방지하기 위하여 필요이상으로 슬러리의 점도를 높여야 하는 문제점이 있다. 또한 주로 합금으로 구성된 슬러리의 비중이 상대적으로 높음으로 인해 집전체에 슬러리가 도포되기 위해서는 슬러리의 점도가 높아야 하는 문제점이 있었다. 슬러리의 점도를 높이기 위해서는 첨가되는 증점제인 CMC의 양을 증가시키고 물의 양을 감소시켜야 하나 슬러리의 점도가 높으면 혼합물의 분산이 잘 이루어지지가 않으며 공정 중에 슬러리 자체를 다루는데 많은 주의와 설비가 필요해진다. 예를 들어 점도가 높으면 기포가 많이 발생하므로 기포를 제거해주는 방법이 추가로 필요해진다. 또한 전극 반응이 계속됨으로 인해 수소저장합금의 내외부로 수소의 흡방출이 지속적으로 이루어지게 되고 이로 인한 합금의 수축, 팽창의 누적은 합금의 미분화도 가져옴과 동시에 합금이 극판으로부터 탈락하는 현상도 발생하게 된다. 특히 합금 주위에 충격흡수제로서의 완충제가 없을 경우에는 하나의 합금충격파가 극판 전체로 퍼져 활물질의 탈락현상이 가속화된다. 이 현상을 개선하기 위해서는 밀도가 아주 낮으면서도 전지의 도전성을 해치지 않는 물질이 필요하여 니켈 분말, 흑연분말, 카본 블랙 등을 검토하여 니켈 분말과 카본 블랙을 상기한 용도의 충격흡수제로 적합함을 발견하였다.In addition, the lower the viscosity of the slurry (mixture of the mixture), the greater the fluidity, the easier it is to handle the slurry, but the greater the specific gravity of the alloy, the greater the specific gravity of the slurry as a whole, the greater the need to prevent flow down when applied to the current collector substrate There is a problem to increase the viscosity of the slurry. In addition, there is a problem that the viscosity of the slurry must be high in order for the slurry to be applied to the current collector due to the relatively high specific gravity of the slurry mainly composed of an alloy. In order to increase the viscosity of the slurry, it is necessary to increase the amount of CMC, which is added thickener, and to reduce the amount of water. However, when the viscosity of the slurry is high, the mixture is not dispersed well and much care and equipment are required to handle the slurry itself during the process. For example, if the viscosity is high, many bubbles are generated, and thus a method of removing bubbles is additionally required. In addition, as the electrode reaction continues, the absorption and release of hydrogen into and out of the hydrogen storage alloy is continuously performed. As a result, the shrinkage and expansion of the alloy lead to the micronization of the alloy and the phenomenon of the alloy falling off from the electrode plate. do. In particular, in the absence of a buffer as a shock absorber around the alloy, one alloy shock wave spreads over the entire electrode plate to accelerate the dropping of the active material. In order to improve this phenomenon, a material having a very low density but not impairing the conductivity of the battery is required. Nickel powder, graphite powder, and carbon black are examined to find that nickel powder and carbon black are suitable as shock absorbers for the above-mentioned applications. It was.

또한 충전시 발생하는 수소 가스 및 산소 가스는 기본적으로 음극에서 효율적으로 흡수되어야 전지의 내압이 증가하지 않게 되고 비로소 전지의 밀폐화가 가능해진다. 이를 위해서는 음극의 표면에 합금과 전해액과 기체의 3상 계면을 늘림으로 가능해지므로, 발수 효과를 주는 발수제를 음극의 표면에 코팅하는 방법을 검토하였다. 발수제로는 표면장력이 낮은 불소 수지는 모두 효과가 있었으나 그 중에서도 3M사의 제품인 FC722와 같이 무정형(amorphous) 형태의 불소 수지를 PF5060 등과 같이 표면장력이 낮은 퍼플루오로카본(perfluorocarbon) 용매에 분산시켜 극판을 침적 코팅하는 것이 코팅 두께를 얇게 하면서도 극판 전체에 균일한 막을 형성하는데 가장 유리하여 전지의 내압감소효과도 가장 크며 부도체인 막이 음극표면에 한층 더 생김으로 인한 부작용은 최소화할 수 있는 것으로 나타났다.In addition, the hydrogen gas and the oxygen gas generated during charging basically need to be efficiently absorbed from the negative electrode so that the internal pressure of the battery does not increase and the battery can be sealed. To this end, it is possible to increase the three-phase interface of the alloy, the electrolyte and the gas on the surface of the negative electrode, so that a method of coating the surface of the negative electrode with a water repellent having a water repellent effect was examined. Fluorine resins with low surface tension were effective as water repellents. Among them, morphologically fluorine resins such as FC722, 3M's product, were dispersed in a low surface tension perfluorocarbon solvent such as PF5060. It was found that immersion coating of CVD was most advantageous in forming a uniform film over the entire electrode plate while reducing the thickness of the coating, and the effect of reducing the pressure resistance of the battery was also the greatest, and side effects due to the formation of an insulator film on the negative electrode surface were minimized.

[실시예]EXAMPLE

이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.

(실시예 1)(Example 1)

수소저장합금(ce rich Mm과의 합금으로 조성식은 MmNi3.55Al0.3Mn0.4Co0.75) 100g에 결착제로 48% 고형분 농도를 지니는 SBR 현탁액을 고형분의 양이 1g이 되도록 조절하여 첨가하였다. 이어서, 증점제로 CMC를 0.2g, 슬러리의 비중을 낮추고 극판의 물리적 전기 화학적인 충격을 흡수시키는 목적으로 충격흡수제인 케첸 블랙(Ketjen Black) 0.6g을 첨가하였으며, 발수제로는 3M사의 FC722(용매 PF5060) 0.2 중량%를 첨가하여 니켈-수소 전지용 음극 활물질 조성물을 제조하였다. 압연된 극판을 이 조성물에 침적 도포하여 니켈-수소 전지용 음극을 제조하였다. 이를 니켈 양극과 세퍼레이터와 전해액과 함께 전지 캔에 삽입하여 4/5A 사이즈 1800mAh의 전지를 제조하였다. 이 때의 N/P 비율은 1.6이었다.An SBR suspension having 48% solids concentration as a binder was added to 100 g of hydrogen storage alloy (ce rich Mm as a composition formula of MmNi 3.55 Al 0.3 Mn 0.4 Co 0.75 ) to adjust the amount of solids to 1 g. Subsequently, 0.2 g of CMC was added as a thickener, and 0.6 g of Ketjen Black, a shock absorber, was added for the purpose of lowering the specific gravity of the slurry and absorbing the physical electrochemical impact of the plates. ) 0.2 wt% was added to prepare a negative electrode active material composition for a nickel-hydrogen battery. The rolled electrode plate was immersed in this composition to prepare a negative electrode for a nickel-hydrogen battery. This was inserted into a battery can together with a nickel anode, a separator, and an electrolyte to prepare a 4 / 5A size 1800mAh battery. The N / P ratio at this time was 1.6.

(실시예 2)(Example 2)

결착제로 아크릴 에멀젼을 고형분의 양이 1g이 되도록 첨가한 것을 제외하고 상기 실시예 1과 동일한 방법으로 제조하였다.An acrylic emulsion was added in the same manner as in Example 1, except that the amount of the solid emulsion was 1 g.

(실시예 3)(Example 3)

수소저장합금에 3 중량%의 CeO2를 첨가하여 볼 밀(ball mill)에서 24시간 교반한 것을 수소저장합금으로 사용한 것을 제외하고 상기 실시예 1과 동일한 방법으로 제조하였다.3% by weight of CeO 2 was added to the hydrogen storage alloy, and the mixture was stirred in a ball mill (ball mill) for 24 hours, except that the hydrogen storage alloy was used in the same manner as in Example 1.

(실시예 4)(Example 4)

슬러리의 비중을 낮추고 극판의 물리적 전기 화학적인 충격을 흡수시키는 목적으로 케첸 블랙대신 저비중의 섬유형태를 지닌 니켈 분말을 3g 첨가한 것을 제외하고 상기한 실시예 1과 동일한 방법으로 제조하였다.For the purpose of lowering the specific gravity of the slurry and absorbing the physical electrochemical impact of the electrode plate, it was prepared in the same manner as in Example 1 except that 3g of nickel powder having a low specific gravity fiber form was added instead of Ketjen Black.

(비교예 1)(Comparative Example 1)

발수제로서 PTFE(폴리테트라플루오로에틸렌: polytetrafluoroethylene)를 사용한 것을 제외하고 상기한 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except that PTFE (polytetrafluoroethylene) was used as the water repellent.

(비교예 2)(Comparative Example 2)

결착제로서 PTFE 2g을 첨가한 것을 제외하고 상기한 실시예 1과 동일한 방법으로 제조하였다.It was prepared in the same manner as in Example 1 except that 2 g of PTFE was added as a binder.

(비교예 3)(Comparative Example 3)

캐첸 블랙을 첨가하지 않는 것을 제외하면 상기한 실시예 1과 동일한 방법으로 전지를 제조하였다. 단 합금 이외의 첨가제는 캐첸 블랙이 빠진 비율만큼 부피비를 계산하여 일정양씩 감소시켰다.A battery was manufactured in the same manner as in Example 1, except that Catchen Black was not added. However, additives other than the alloy were reduced by a certain amount by calculating the volume ratio by the ratio of the loss of Caten Black.

상기한 실시예 및 비교예의 방법에 따라 제조한 전지의 이용율, 수명, 내압을 측정하여 그 결과를 하기한 표 1에 나타내었다.The utilization rate, lifespan, and internal pressure of the batteries prepared according to the methods of Examples and Comparative Examples described above were measured, and the results are shown in Table 1 below.

[표 1]TABLE 1

이용율[%]Utilization [%] 수명(cycle life)Cycle life 내압[㎏f/㎠]Internal pressure [kgf / ㎠] 실시예 1Example 1 105105 552552 55 실시예 2Example 2 105105 531531 66 실시예 3Example 3 108108 632632 55 비교예 1Comparative Example 1 105105 411411 1616 비교예 2Comparative Example 2 8080 252252 1414 비교예 3Comparative Example 3 110110 352352 77

(이용율: 반쪽 전지로 음극 합금의 단위 무게당 용량을 측정하여 270mAh/g을 기준으로 백분율로 표시함(Utilization: Measured capacity per unit weight of the negative electrode alloy with half cell, expressed as a percentage based on 270mAh / g)

수명: 1C 충방전으로 초기 용량의 90% 정도까지 떨어지는데 까지의 cycle수)Lifespan: Cycles from 1C charge / discharge to 90% of initial capacity)

상기한 바와 같이, 본 발명의 니켈-수소 전지용 음극 활물질 조성물을 2차원 전도성 기판에 도포하면 고밀도 수소저장합금 전극을 제조할 수 있다. 따라서, 합금의 안정적인 부착상태를 유지하여 극판의 수명이 증가하여 결착제 양의 최소화로 방전전압이 높으며 극판 표면의 3상계면의 충분한 확보로 인해 전지의 내압이 감소되머 밀폐화를 가능하게 하는 효과가 있다.As described above, when the negative electrode active material composition for nickel-hydrogen battery of the present invention is applied to a two-dimensional conductive substrate, a high density hydrogen storage alloy electrode can be manufactured. Therefore, the stable life of the alloy increases the life span of the pole plate, the discharge voltage is high by minimizing the amount of binder, and the internal pressure of the battery is reduced due to the sufficient securing of three-phase interface on the surface of the pole plate, enabling the sealing. There is.

Claims (16)

니켈-수소 전지용 음극 활물질;Negative electrode active materials for nickel-hydrogen batteries; 충격흡수제;Shock absorbers; 발수제;Water repellents; 증점제와;Thickeners; 아크릴로니트릴-러버, 스티렌-부타디엔 러버, 부타디엔 러버, 아크릴레이트 부타디엔 러버, 클로로프렌 및 아크릴 에멀젼 및 이들의 혼합물로이루어진 그룹 중에서 선택되는 결착제를;A binder selected from the group consisting of acrylonitrile-rubber, styrene-butadiene rubber, butadiene rubber, acrylate butadiene rubber, chloroprene and acrylic emulsion and mixtures thereof; 포함하는 니켈-수소 전지용 음극 활물질 조성물.A negative electrode active material composition for a nickel-hydrogen battery containing. 제 1 항에 있어서, 상기 결착제의 사용량은 상기 음극 활물질에 대해 0.2∼∼3 중량%인 조성물.The composition of claim 1, wherein the amount of the binder is 0.2 to 3% by weight based on the negative electrode active material. 제 1 항에 있어서, 상기 발수제는 표면 에너지가 10∼20dyne/㎝인 불소 수지인 조성물.The composition according to claim 1, wherein the water repellent is a fluorine resin having a surface energy of 10 to 20 dyne / cm. 제 1 항에 있어서, 상기 발수제는 무정형 형태의 불소 수지인 조성물.The composition of claim 1 wherein the water repellent is a fluororesin in amorphous form. 제 1 항에 있어서, 상기 발수제는 분산 용매가 불소 카본 용액인 불소 수지인 조성물.The composition of claim 1, wherein the water repellent is a fluororesin in which the dispersing solvent is a fluorocarbon solution. 제 5 항에 있어서, 상기 불소 카본은 C3F8, C4F10, C5F12, C5F11NO, C6F14, C7F16, C8F18, CCl3F, CCl2F2, C2F3Cl3, C2Cl3F4, C2ClF5로 이루어진 그룹 중에서 선택되는 것인 조성물.The method of claim 5, wherein the fluorine carbon is C 3 F 8 , C 4 F 10 , C 5 F 12 , C 5 F 11 NO, C 6 F 14 , C 7 F 16 , C 8 F 18 , CCl 3 F, CCl 2 F 2 , C 2 F 3 Cl 3 , C 2 Cl 3 F 4 , C 2 ClF 5 The composition is selected from the group consisting of. 제 1 항에 있어서, 상기 충격흡수제는 니켈 분말 또는 카본 블랙인 니켈-수소 전지용 음극 활물질 조성물.The negative electrode active material composition of claim 1, wherein the shock absorber is nickel powder or carbon black. 제 7 항에 있어서, 상기 니켈 분말은 1.3g/㎤의 밀도를 갖으며, 상기한 합금 중량대비 3∼5 중량%를 사용하는 것인 조성물.The composition of claim 7, wherein the nickel powder has a density of 1.3 g / cm 3 and uses 3 to 5 wt% based on the weight of the alloy. 제 7 항에 있어서, 상기 카본 블랙은 상기한 합금 중량 대비 0.05∼0.4 중량%을 사용하는 것인 조성물.8. The composition of claim 7, wherein the carbon black uses 0.05 to 0.4 wt% based on the weight of the alloy. 제 1 항에 있어서, 상기 니켈-수소 전지용 음극 활물질은 수소저장합금인 것인 조성물.The composition of claim 1, wherein the negative active material for the nickel-hydrogen battery is a hydrogen storage alloy. 제 10 항에 있어서, 상기 수소저장합금은 CeO2, Y2O3, Ca(OH)2, Yb2O3으로 이루어진 그룹 중에서 선택되는 산화 방지 합금으로 코팅된 것인 조성물.The composition of claim 10, wherein the hydrogen storage alloy is coated with an antioxidant alloy selected from the group consisting of CeO 2 , Y 2 O 3 , Ca (OH) 2 , Yb 2 O 3 . 제 11 항에 있어서, 상기 산화 방지 합금의 코팅량은 상기 수소저장합금 중량 대비 1∼5 중량%인 조성물.The composition of claim 11, wherein the coating amount of the antioxidant alloy is 1 to 5% by weight based on the weight of the hydrogen storage alloy. 제 1 항에 있어서, 상기 증점제는 메틸셀룰로즈, 카르복시메틸셀룰로즈, 하이드록시프로필 메틸셀룰로즈로 이루어진 그룹 중에서 선택되는 것인 조성물.The composition of claim 1 wherein the thickener is selected from the group consisting of methylcellulose, carboxymethylcellulose, hydroxypropyl methylcellulose. 아크릴로니트릴-러버, 스틸렌-부타디엔 러버, 부타디엔 러버, 아크릴레이트 부타디엔 러버, 클로로프렌, 아크릴 에멀젼으로 이루어진 그룹 중에서 선택되는 화합물 또는 이들의 혼합물을 포함하는 니켈-수소 전지의 음극 활물질용 결착제.A binder for the negative electrode active material of a nickel-hydrogen battery comprising a compound selected from the group consisting of acrylonitrile-rubber, styrene-butadiene rubber, butadiene rubber, acrylate butadiene rubber, chloroprene and acrylic emulsion or a mixture thereof. 집전체를 제 1 항의 니켈-수소 전지용 음극 활물질 조성물로 코팅하는;Coating the current collector with the negative electrode active material composition for a nickel-hydrogen battery of claim 1; 공정을 포함하는 니켈-수소 전지용 음극의 제조 방법.The manufacturing method of the negative electrode for nickel-hydrogen batteries containing a process. 제 15 항에 있어서, 상기 집전체는 규칙적인 구멍이 파여져 있는 전기적 전도성을 지닌 2차원 구조의 금속판인 것인 제조 방법.The manufacturing method according to claim 15, wherein the current collector is a metal plate having a two-dimensional structure having electrical conductivity with regular holes.
KR1019970023440A 1997-06-05 1997-06-05 Anode active material composition for nickel-hydrogen battery and manufacturing method of anode for nickel-hydrogen battery using same KR19990000506A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1019970023440A KR19990000506A (en) 1997-06-05 1997-06-05 Anode active material composition for nickel-hydrogen battery and manufacturing method of anode for nickel-hydrogen battery using same
JP10086496A JPH117948A (en) 1997-06-05 1998-03-31 Nickel-hydrogen battery anode and manufacture thereof
CN98107763A CN1202015A (en) 1997-06-05 1998-04-29 Negative electrode for nickel-hydrogen cell and method of preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970023440A KR19990000506A (en) 1997-06-05 1997-06-05 Anode active material composition for nickel-hydrogen battery and manufacturing method of anode for nickel-hydrogen battery using same

Publications (1)

Publication Number Publication Date
KR19990000506A true KR19990000506A (en) 1999-01-15

Family

ID=19508815

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970023440A KR19990000506A (en) 1997-06-05 1997-06-05 Anode active material composition for nickel-hydrogen battery and manufacturing method of anode for nickel-hydrogen battery using same

Country Status (3)

Country Link
JP (1) JPH117948A (en)
KR (1) KR19990000506A (en)
CN (1) CN1202015A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025480A (en) * 2000-09-29 2002-04-04 김순택 A composition for anodic-active materials and lithium secondary battery manufactured using the same
KR100467455B1 (en) * 2002-07-10 2005-01-24 삼성에스디아이 주식회사 Positive active material composition for lithium sulfur battery and lithium sulfur battery fabricated using binder
KR100738057B1 (en) * 2005-09-13 2007-07-10 삼성에스디아이 주식회사 Anode electride and lithium battery containing the material

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI424608B (en) 2005-12-22 2014-01-21 Jsr Corp Binder composition for secondary battery electrode, slurry for secondary battery electrode, and secondary battery electrode
CN100375759C (en) * 2006-07-14 2008-03-19 清华大学 Process for preparing polyacrylonitrile low temperature pyrolyzed composite metal negative pole material
CN101563741B (en) * 2006-10-23 2011-11-30 阿克逊动力国际公司 Hybrid energy storage device and method of making same
JP5127369B2 (en) * 2007-08-31 2013-01-23 三洋電機株式会社 Alkaline storage battery
JP5598821B2 (en) 2009-03-06 2014-10-01 株式会社アイ.エス.テイ Negative electrode binder composition and negative electrode mixture slurry
WO2011001892A1 (en) * 2009-07-01 2011-01-06 ダイキン工業株式会社 Hydrogen storage alloy electrode and nickel hydrogen battery
US9780374B2 (en) 2012-02-02 2017-10-03 Dai-Ichi Kogyo Seiyaku Co., Ltd. Binder for electrodes of lithium secondary batteries, and lithium secondary battery which uses electrode produced using binder for electrodes of lithium secondary batteries
JP5721151B2 (en) 2013-07-18 2015-05-20 第一工業製薬株式会社 Binder for electrode of lithium secondary battery
WO2015019598A1 (en) 2013-08-06 2015-02-12 第一工業製薬株式会社 Binder for electrode in lithium secondary cell, electrode manufactured using said binder, and lithium secondary cell in which said electrode is used
CN103794798B (en) * 2014-01-27 2016-04-20 中南大学 A kind of battery cathode slurry and preparation method
JP7068881B2 (en) * 2017-03-24 2022-05-17 日産自動車株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using this
JP7261059B2 (en) 2019-03-29 2023-04-19 Fdk株式会社 Negative electrode for nickel-metal hydride secondary battery, method for manufacturing this negative electrode, nickel-hydrogen secondary battery using this negative electrode, and hydrogen-absorbing alloy powder
JP6916363B1 (en) 2020-10-21 2021-08-11 第一工業製薬株式会社 Polyurethane resin aqueous dispersion for binders used in lithium secondary batteries, binders for electrodes, and lithium secondary batteries
JP6856812B1 (en) 2020-10-21 2021-04-14 第一工業製薬株式会社 Binder composition for electrodes, coating liquid composition for electrodes, electrodes for power storage devices and power storage devices

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020025480A (en) * 2000-09-29 2002-04-04 김순택 A composition for anodic-active materials and lithium secondary battery manufactured using the same
KR100467455B1 (en) * 2002-07-10 2005-01-24 삼성에스디아이 주식회사 Positive active material composition for lithium sulfur battery and lithium sulfur battery fabricated using binder
KR100738057B1 (en) * 2005-09-13 2007-07-10 삼성에스디아이 주식회사 Anode electride and lithium battery containing the material
US8455138B2 (en) 2005-09-13 2013-06-04 Samsung Sdi Co., Ltd. Anode and lithium battery including the anode

Also Published As

Publication number Publication date
CN1202015A (en) 1998-12-16
JPH117948A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
JP3097347B2 (en) Nickel-metal hydride battery
CN1148826C (en) Non-aqueous electrolyte accumulator
KR19990000506A (en) Anode active material composition for nickel-hydrogen battery and manufacturing method of anode for nickel-hydrogen battery using same
CN109904447B (en) Lithium ion battery and electric vehicle
Niu et al. Improvement of usable capacity and cyclability of silicon-based anode materials for lithium batteries by sol-gel graphite matrix
CN110085829A (en) A kind of MXene@C@Co9S8Compound and preparation method thereof
CN109817894B (en) Negative electrode for lithium metal battery and preparation method and application thereof
CN114464897A (en) Method for improving high-temperature floating charge performance of lithium ion battery and lithium ion battery
JP4161437B2 (en) Lithium battery
JPH07105935A (en) Non-aqueous electrolyte secondary battery
JP2006156228A (en) Non-aqueous electrolyte secondary battery
JPS61208755A (en) Pasted negative cadmium plate for sealed alkaline storage battery
CN216563206U (en) Lithium ion battery silicon carbon negative pole piece
JP4054925B2 (en) Lithium battery
JP2004235007A (en) Nonaqueous electrolyte secondary battery
CN115092935B (en) Silicon-based composite material, preparation method thereof and application of silicon-based composite material in secondary battery
JP4379966B2 (en) Lithium battery
JP3501378B2 (en) Hydrogen storage alloy electrode and method for producing the same
KR19980059340A (en) Battery active material coating method
KR100420045B1 (en) Anode active material composition for lithium battery and preparation thereof
KR19980059088A (en) Manufacturing method of active material composition for battery electrode plate
JP3150546B2 (en) Hydrogen storage alloy electrode and method for producing the same
WO2024065582A1 (en) Electrochemical device and electronic device
JP3785242B2 (en) Anode material for lithium secondary battery
KR100300327B1 (en) A composition for a positive electrode of a nickel-metal hydride battery, a positive electrode using the same and a nickel-metal hydride battery using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application