KR19980072815A - Semiconductor Oxide Formation Method - Google Patents
Semiconductor Oxide Formation Method Download PDFInfo
- Publication number
- KR19980072815A KR19980072815A KR1019970007779A KR19970007779A KR19980072815A KR 19980072815 A KR19980072815 A KR 19980072815A KR 1019970007779 A KR1019970007779 A KR 1019970007779A KR 19970007779 A KR19970007779 A KR 19970007779A KR 19980072815 A KR19980072815 A KR 19980072815A
- Authority
- KR
- South Korea
- Prior art keywords
- oxide film
- process chamber
- wafer
- forming
- temperature
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/02255—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by thermal treatment
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/02227—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process
- H01L21/0223—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate
- H01L21/02233—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer
- H01L21/02236—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor
- H01L21/02238—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a process other than a deposition process formation by oxidation, e.g. oxidation of the substrate of the semiconductor substrate or a semiconductor layer group IV semiconductor silicon in uncombined form, i.e. pure silicon
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Non-Volatile Memory (AREA)
Abstract
본 발명은 산화막이 하부 웨이퍼의 뒤틀림(Dislocation)에 의하여 불균일하게 형성되고, 그로 인하여 브레이크 다운을 일으키는 것을 방지하는 반도체 산화막 형성방법에 관한 것이다.The present invention relates to a method of forming a semiconductor oxide film in which an oxide film is formed unevenly by dislocation of a lower wafer, thereby preventing breakdown.
본 발명은, 산화막 형성을 위한 공정챔버 내부에서 제 1 안정화단계, 온도상승단계, 선열처리단계, 산화막형성단계, 후열처리단계, 온도하강단계, 제 2 안정화단계를 순차적으로 수행하여 웨이퍼 상에 산화막을 형성하는 반도체 산화막 형성방법에 있어서, 상기 선열처리단계 이전에 상기 웨이퍼의 구성물질을 재정렬하는 재결정화단계를 수행함을 특징으로 한다.In the present invention, an oxide film is formed on a wafer by sequentially performing a first stabilization step, a temperature rising step, a preheating step, an oxide film forming step, a post heat treatment step, a temperature dropping step, and a second stabilizing step in a process chamber for forming an oxide film. In the method of forming a semiconductor oxide film to form a, characterized in that for performing the recrystallization step of rearranging the material of the wafer prior to the linear heat treatment step.
따라서, 웨이퍼 상에 형성되는 산화막이 브레이크 다운을 일으키는 것을 방지할 수 있는 효과가 있다.Therefore, there is an effect that the oxide film formed on the wafer can be prevented from causing breakdown.
Description
본 발명은 반도체 산화막 형성방법에 관한 것으로서, 보다 상세하게는 박형의 산화막이 하부 웨이퍼의 뒤틀림(Dislocation)에 의하여 불균일하게 형성되고, 그로 인하여 브레이크 다운(Break down)을 일으키는 것을 방지하는 반도체 산화막 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming a semiconductor oxide film, and more particularly, a method of forming a semiconductor oxide film in which a thin oxide film is unevenly formed by dislocation of a lower wafer, thereby preventing breakdown. It is about.
통상, 전기적인 신호로 정보를 지우거나 기억시킬 수 있는 EEPROM(Electrical Erasable Program Read Only Memory), 상기 EEPROM의 집적도 한계를 극복하기 위해서 일괄 소거방식을 채택한 플래시 메모리(Flash Memory) 등의 비휘발성 메모리장치의 제조에서는 신호응답시간을 단축시키기 위하여 100Å 미만의 극히 얇은 터널링(Tunneling) 산화막을 실리콘(Si) 재질의 웨이퍼 상에 형성하여야 하고, 또한 데이터(Data) 저장시간의 장기화나 프로그래밍 사이클 횟수의 증가에 따라 균질한 양질의 막질특성을 가져야 하는 등 박막성과 균질성이 모두 요구된다.Generally, non-volatile memory devices such as an EEPROM (Electric Erasable Program Read Only Memory) capable of erasing or storing information by an electric signal, and a flash memory employing a batch erase method to overcome the limitation of the integration density of the EEPROM. In order to shorten the signal response time, an ultra-thin tunneling oxide of less than 100 μs must be formed on a silicon (Si) wafer, and the data storage time and the number of programming cycles are increased. Therefore, both the thin film and the homogeneity are required, such as having to have a homogeneous quality film quality.
상기 산화막의 박막성과 균질성은 그 하부 웨이퍼의 표면상태에 따라 달라질 수 있으며, 특히 100Å 미만의 극히 얇은 상기 터널링 산화막은 하부 웨이퍼의 표면상태에 크게 영향을 받는다.The thin film and homogeneity of the oxide film may vary depending on the surface state of the lower wafer. In particular, the extremely thin tunneling oxide film of less than 100 kHz is greatly influenced by the surface state of the lower wafer.
통상, 반도체 산화막은, 도 1에 도시한 그래프에 따라 반도체 웨이퍼 상에 형성된다.Usually, a semiconductor oxide film is formed on a semiconductor wafer according to the graph shown in FIG.
도 1을 참조하면, 상기 이온주입공정이 진행된 웨이퍼를 약 650℃ 정도의 공정챔버 내부에 투입한 후, 상기 공정챔버 내부로 질소(N2)가스가 공급되는 상태에서 약 30분동안 대기하는 제 1 안정화단계 공정을 진행한다.Referring to FIG. 1, after the wafer in which the ion implantation process has been performed is introduced into a process chamber of about 650 ° C., the agent waits for about 30 minutes in a state where nitrogen (N 2 ) gas is supplied into the process chamber. 1 Proceed with stabilization step process.
다음으로, 공정챔버 내부로 공급되던 질소가스의 공급을 중단하고 산소(O2)가스를 공급하며 공정챔버의 온도를 분(Minute)당 약 10℃ 정도 상승시키는 온도상승시간을 약 25분동안 수행하여 공정챔버의 온도를 800℃ 내지 1,000℃로 상승시키는 온도상승단계 공정을 수행한다.Next, stop the supply of nitrogen gas supplied to the process chamber, supply oxygen (O 2 ) gas and perform the temperature rise time for about 25 minutes to raise the process chamber temperature by about 10 minutes per minute (Minute) By performing the temperature rise step of raising the temperature of the process chamber to 800 ℃ to 1,000 ℃.
계속해서, 산소가스가 공급되는 공정챔버 내부의 온도를 약 800℃ 내지 1,000℃ 정도 유지하며 약 10분동안 웨이퍼를 열처리하는 선열처리단계 공정을 수행한다.Subsequently, a heat treatment step process of heat treating the wafer for about 10 minutes is performed while maintaining the temperature inside the process chamber to which oxygen gas is supplied at about 800 ° C to 1,000 ° C.
이어서, 산소가스 및 염화수소(HCl)가스가 혼합된 가스를 약 800℃ 내지 1,000℃ 정도의 공정챔버 내부에 공급하여 웨이퍼 상에 100Å 정도의 얇은 산화막을 형성하는 산화막형성단계 공정을 수행한다.Subsequently, an oxide film forming step process of supplying a gas mixed with oxygen gas and hydrogen chloride (HCl) gas into a process chamber of about 800 ° C. to 1,000 ° C. to form a thin oxide film of about 100 GPa on a wafer is performed.
다음으로, 공정챔버 내부로 공급되던 산소가스 및 염화수소가스가 혼합된 가스의 공급을 중단한 후, 질소가스를 약 15분동안 800℃ 내지 1,000℃ 정도의 공정챔버 내부에 공급하여 상기 산화막이 형성된 웨이퍼를 가공하는 후열처리단계 공정을 수행한다.Next, after the supply of the gas mixed with oxygen gas and hydrogen chloride gas supplied into the process chamber is stopped, nitrogen gas is supplied into the process chamber at 800 ° C. to 1,000 ° C. for about 15 minutes to form the wafer on which the oxide film is formed. To perform a post-heat treatment step process.
계속해서, 상기 공정챔버로 질소가스가 공급되는 상태에서 분당 3.3℃ 정도로 공정챔버의 온도를 하강시켜 공정챔버의 온도를 약 650℃ 로 하강시키는 온도하강단계 공정을 수행한다.Subsequently, in a state in which nitrogen gas is supplied to the process chamber, the temperature of the process chamber is lowered by about 3.3 ° C. per minute to thereby lower the temperature of the process chamber to about 650 ° C.
마지막으로, 약 60분동안 공정챔버의 온도를 약 650℃ 정도 유지하는 제 2 안정화단계 공정을 수행함으로써 웨이퍼 상에 산화막을 형성하는 공정이 완료되고, 산화막이 형성된다.Finally, the process of forming the oxide film on the wafer is completed by performing the second stabilization step process of maintaining the temperature of the process chamber at about 650 ° C. for about 60 minutes, and the oxide film is formed.
그러나, 상기 산화막 형성공정 이전에 상기 하부 웨이퍼는 그 표면 상에 얇은 게이트(Gate) 산화막 및 포토레지스트막이 순차적으로 형성된 후, 마스크 및 빛을 이용하는 노광공정 및 케미컬을 이용하는 현상공정이 수행되어 일정영역의 포토레지스트를 제거하는 공정이 진행되고, 이어서, 포토레지스트가 제거된 특정영역에 붕소, 갈륨, 인듐 등의 P형 불순물 또는 질소, 인 등의 N형 불순물을 내부에 주입하는 이온주입공정이 선행된다.However, before the oxide film forming process, a thin gate oxide film and a photoresist film are sequentially formed on the surface of the lower wafer, and then an exposure process using a mask and light and a developing process using chemicals are performed. The process of removing the photoresist proceeds, followed by an ion implantation process in which P-type impurities such as boron, gallium and indium or N-type impurities such as nitrogen and phosphorus are injected into a specific region from which the photoresist is removed. .
따라서, 산화막 형성공정 이전에 선행되는 현상공정 및 이온주입공정 등의 선행공정들에서 현상액 즉, 케미컬에 의한 웨이퍼의 충격, 웨이퍼 내부로 주입되는 이온들에 의한 충격 및 에칭어택(Etching attack) 등의 여러 가지 원인에 의해서 웨이퍼가 뒤틀리게 되고, 그에 따라 뒤틀린 웨이퍼 상에 형성되는 산화막은 특히 그 두께가 얇아질수록 하부의 뒤틀린 웨이퍼에 의해서 막질의 균질성이 저하되어 브레이크 다운을 일으키는 등의 문제점이 있었다.Therefore, in the preceding processes such as the development process and ion implantation process prior to the oxide film formation process, the impact of the developer, that is, the wafer by the chemical, the impact by the ions injected into the wafer, and the etching attack, etc. The wafer is warped due to various reasons, and thus the oxide film formed on the warped wafer has a problem in that, as the thickness thereof becomes thinner, the homogeneity of the film quality is lowered by the lower warped wafer, causing breakdown.
본 발명의 목적은, 터널링 산화막 형성공정 이전에 수행된 반도체장치 제조공정의 영향으로 뒤틀려진 웨이퍼를 재결정화 시킴으로써, 그 위에 형성되는 산화막의 균질성을 증대시키고, 브레이크 다운을 일으키는 것을 방지하는 반도체 산화막 형성방법을 제공하는 데 있다.SUMMARY OF THE INVENTION An object of the present invention is to form a semiconductor oxide film that increases the homogeneity of an oxide film formed thereon and prevents breakdown by recrystallizing a warped wafer under the influence of a semiconductor device manufacturing process performed before the tunneling oxide film forming step. To provide a way.
도 1은 종래의 반도체 산화막 형성방법을 설명하기 위한 그래프이다.1 is a graph illustrating a conventional method for forming a semiconductor oxide film.
도 2는 본 발명에 따른 반도체 산화막 형성방법의 일 실시예를 설명하기 위한 그래프이다.2 is a graph illustrating an embodiment of a method for forming a semiconductor oxide film according to the present invention.
상기 목적을 달성하기 위한 본 발명에 따른 반도체 산화막 형성방법은, 산화막 형성을 위한 공정챔버 내부에서 제 1 안정화단계, 온도상승단계, 선열처리단계, 산화막형성단계, 후열처리단계, 온도하강단계, 제 2 안정화단계를 순차적으로 수행하여 웨이퍼 상에 산화막을 형성하는 반도체 산화막 형성방법에 있어서, 상기 선열처리단계 이전에 상기 웨이퍼의 구성물질을 재정렬하는 재결정화단계를 수행함을 특징으로 한다.The semiconductor oxide film forming method according to the present invention for achieving the above object, the first stabilizing step, the temperature rising step, the heat treatment step, the oxide film forming step, the post-heat treatment step, the temperature drop step, A method of forming a semiconductor oxide film in which an oxide film is formed on a wafer by sequentially performing two stabilization steps, characterized in that a recrystallization step of rearranging material of the wafer is performed before the line heat treatment step.
상기 재결정화단계는 상기 제 1 안정화단계와 상기 온도상승단계 사이에 이루어질 수 있으며, 상기 재결정화단계는 500℃ 내지 600℃ 정도의 상기 공정챔버 내부에서 50 분 내지 70분동안 산소가스가 공급되는 상태에서 이루어짐이 바람직하다.The recrystallization step may be performed between the first stabilization step and the temperature rise step, the recrystallization step is a state in which oxygen gas is supplied for 50 to 70 minutes in the process chamber of 500 ℃ to 600 ℃ degree It is preferred to
이하, 본 발명의 구체적인 실시예를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 2는 본 발명에 따른 반도체 산화막 형성방법의 일 실시예를 설명하기 위한 그래프이다.2 is a graph illustrating an embodiment of a method for forming a semiconductor oxide film according to the present invention.
도 2를 참조하면, 600℃ 내지 700℃ 바람직하게는 약 650℃ 정도의 온도를 유지하며, 일정량의 질소가스가 공급되는 공정챔버에 이온주입공정이 진행된 웨이퍼를 투입한 후, 약 30분동안 유지하는 제 1 안정화단계 공정을 진행한다.Referring to FIG. 2, the temperature is maintained at 600 ° C. to 700 ° C., preferably about 650 ° C., and the wafer is placed in a process chamber in which a predetermined amount of nitrogen gas is supplied. To proceed to the first stabilization step process.
다음으로, 공정챔버의 내부온도를 분당 3.0℃ 내지 3.6℃ 정도 바람직하게는 3.3℃ 정도 하강하여 500℃ 내지 600℃ 정도 바람직하게는 550℃ 정도로 하강시키는 제 1 온도하강단계 공정을 수행한다.Next, a first temperature lowering step is performed to lower the internal temperature of the process chamber to about 3.0 ° C. to 3.6 ° C., preferably about 3.3 ° C., to about 500 ° C. to 600 ° C., preferably about 550 ° C. per minute.
이어서, 500℃ 내지 600℃ 정도 바람직하게는 550℃ 정도의 공정챔버 내부에서 상기 이온주입공정 등의 선행된 반도체장치 제조공정에 의해서 웨이퍼의 격자에 이상이 발생하여 뒤틀림현상이 발생된 웨이퍼의 격자를 재정렬하는 재결정화단계 공정을 수행한다. 상기 재결정화단계 공정은 상기 공정챔버 내부로 산소가스가 공급되는 상태에서 50 분 내지 70분동안 바람직하게는 60분동안 진행된다. 이 재결정화단계 동안에도 웨이퍼는 산소분위기 하에 있으므로 부분적인 산화가 일어날 수 있다.Subsequently, in the process chamber at about 500 ° C to 600 ° C, and preferably at about 550 ° C, the lattice of the wafer in which an abnormality occurs in the lattice of the wafer by the preceding semiconductor device manufacturing process such as the ion implantation process is generated. Perform a recrystallization step process. The recrystallization step process is carried out for 50 to 70 minutes, preferably 60 minutes while the oxygen gas is supplied into the process chamber. During this recrystallization step, the wafer is in an oxygen atmosphere, so partial oxidation can occur.
다음으로, 산소가스를 계속 공급하며 공정챔버의 온도를 분(Minute)당 약 10℃ 정도 상승시키는 온도상승시간을 약 25분동안 수행하여 공정챔버의 온도를 800℃ 내지 1,000℃로 상승시키는 온도상승단계 공정을 수행한다.Next, the temperature rise time increases the temperature of the process chamber from 800 ℃ to 1,000 ℃ by continuously supplying the oxygen gas and performing the temperature rise time for about 25 minutes to increase the temperature of the process chamber by about 10 ℃ per minute (Minute) Perform the step process.
계속해서, 산소가스가 공급되는 공정챔버 내부의 온도를 약 800℃ 내지 1,000℃ 정도 유지하며 약 10분동안 웨이퍼를 열처리하는 선열처리단계 공정을 수행한다.Subsequently, a heat treatment step process of heat treating the wafer for about 10 minutes is performed while maintaining the temperature inside the process chamber to which oxygen gas is supplied at about 800 ° C to 1,000 ° C.
이어서, 산소가스 및 염화수소가스가 혼합된 가스를 약 800℃ 내지 1,000℃ 정도의 공정챔버 내부에 공급하여 웨이퍼 상에 100Å 정도의 얇은 산화막을 형성하는 산화막형성단계 공정을 수행한다.Subsequently, an oxide film forming step process of supplying a gas mixed with oxygen gas and hydrogen chloride gas into a process chamber of about 800 ° C. to 1,000 ° C. to form a thin oxide film of about 100 GPa on a wafer is performed.
다음으로, 공정챔버 내부로 공급되던 산소가스 및 염화수소가스가 혼합된 가스의 공급을 중단한 후, 질소가스를 약 15분동안 800℃ 내지 1,000℃ 정도의 공정챔버 내부에 공급하여 상기 산화막이 형성된 웨이퍼를 가공하는 후열처리단계 공정을 수행한다.Next, after the supply of the gas mixed with oxygen gas and hydrogen chloride gas supplied into the process chamber is stopped, nitrogen gas is supplied into the process chamber at 800 ° C. to 1,000 ° C. for about 15 minutes to form the wafer on which the oxide film is formed. To perform a post-heat treatment step process.
계속해서, 상기 공정챔버로 질소가스가 공급되는 상태에서 분당 3.3℃ 정도로 공정챔버의 온도를 하강시켜 공정챔버의 온도를 약 650℃ 로 하강시키는 제 2 온도하강단계 공정을 수행한다.Subsequently, in the state where nitrogen gas is supplied to the process chamber, the temperature of the process chamber is lowered by about 3.3 ° C. per minute to perform a second temperature lowering step of lowering the temperature of the process chamber to about 650 ° C.
마지막으로, 약 60분동안 공정챔버의 온도를 약 650℃ 정도 유지하는 제 2 안정화단계 공정을 수행함으로써 웨이퍼 상에 터널링 산화막을 형성하는 공정이 완료된다.Finally, the process of forming the tunneling oxide film on the wafer is completed by performing the second stabilization step process of maintaining the temperature of the process chamber at about 650 ° C. for about 60 minutes.
따라서, 본 발명에 의하면 산화막 형성공정 이전에 선행된 포토공정, 이온주입공정 등의 진행에 의하여 발생된 웨이퍼의 격자결함 또는 뒤틀림을 제거하기 위하여 선열처리공정 진행 이전에 재결정화공정을 진행하므로써 상기 격자결함 및 뒤틀림 등을 제거하여 웨이퍼 상에 형성되는 산화막이 균질하게 형성되도록 하여 브레이크 다운을 일으키는 것을 방지할 수 있는 효과가 있다.Therefore, according to the present invention, in order to remove lattice defects or distortions caused by the photo process, ion implantation process, etc., which are preceded by the oxide film forming process, the recrystallization process is performed before the line heat treatment process. By removing defects and distortions, the oxide film formed on the wafer is uniformly formed, thereby preventing breakdown from occurring.
이상에서 본 발명은 기재된 구체예에 대해서만 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.Although the present invention has been described in detail only with respect to the described embodiments, it will be apparent to those skilled in the art that various modifications and variations are possible within the technical scope of the present invention, and such modifications and modifications are within the scope of the appended claims.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970007779A KR100236714B1 (en) | 1997-03-07 | 1997-03-07 | Method for manufacturing oxide film of semiconductor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019970007779A KR100236714B1 (en) | 1997-03-07 | 1997-03-07 | Method for manufacturing oxide film of semiconductor |
Publications (2)
Publication Number | Publication Date |
---|---|
KR19980072815A true KR19980072815A (en) | 1998-11-05 |
KR100236714B1 KR100236714B1 (en) | 2000-01-15 |
Family
ID=19499125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019970007779A KR100236714B1 (en) | 1997-03-07 | 1997-03-07 | Method for manufacturing oxide film of semiconductor |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100236714B1 (en) |
-
1997
- 1997-03-07 KR KR1019970007779A patent/KR100236714B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR100236714B1 (en) | 2000-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100557995B1 (en) | semiconductor device with floating trap type nonvolatile memory cell and fabricating method thereof | |
EP1556887B1 (en) | Nitrogen oxidation of etched mos gate structure | |
US5811334A (en) | Wafer cleaning procedure useful in the manufacture of a non-volatile memory device | |
KR100537554B1 (en) | Method of manufacturing oxide film for semiconductor device | |
KR100236714B1 (en) | Method for manufacturing oxide film of semiconductor | |
KR100785107B1 (en) | Method for forming high quality multiple thickness oxide layers by reducing descum induced defects | |
US5279981A (en) | Method of reducing the trap density of an oxide film for application to fabricating a nonvolatile memory cell | |
KR100737984B1 (en) | Method for forming high quality multiple thickness oxide layers by using high temperature descum | |
KR100542395B1 (en) | Method of manufacturing a NAND flash device | |
KR100647002B1 (en) | Method of oxidation for polycide in a flash EEPROM | |
KR100398505B1 (en) | Method of removing COP of single crystal silicon wafer | |
US6900111B2 (en) | Method of forming a thin oxide layer having improved reliability on a semiconductor surface | |
KR100545990B1 (en) | How to remove metal impurities in silicon wafer | |
JP2550561B2 (en) | Method for manufacturing insulator thin film | |
KR100246776B1 (en) | Method for forming oxidation film of semiconductor device | |
KR100367396B1 (en) | Gate electrode formation method of flash memory device | |
KR100293819B1 (en) | Manufacturing method of semiconductor device | |
KR100290478B1 (en) | Polysilicon Film Formation Method of Semiconductor Device | |
KR100232232B1 (en) | Fabrication method of flash memory device | |
US6939766B1 (en) | Method for fabricating a flash memory device | |
JP2006135011A (en) | Semiconductor storage device | |
KR20000044899A (en) | Method for preventing blowing-up phenomenon of tungsten silicide | |
KR20040051668A (en) | Method of manufacturing in semiconductor devices | |
KR19990005877A (en) | Manufacturing method of high load resistor of semiconductor device | |
JP2000294663A (en) | Method for forming oxide film and semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20071001 Year of fee payment: 9 |
|
LAPS | Lapse due to unpaid annual fee |