KR19980072305A - Preparation and Forming Method of Titanium / Titanium Carbide Composite Powder by Reaction Milling - Google Patents

Preparation and Forming Method of Titanium / Titanium Carbide Composite Powder by Reaction Milling Download PDF

Info

Publication number
KR19980072305A
KR19980072305A KR1019970007047A KR19970007047A KR19980072305A KR 19980072305 A KR19980072305 A KR 19980072305A KR 1019970007047 A KR1019970007047 A KR 1019970007047A KR 19970007047 A KR19970007047 A KR 19970007047A KR 19980072305 A KR19980072305 A KR 19980072305A
Authority
KR
South Korea
Prior art keywords
titanium
titanium carbide
powder
milling
composite powder
Prior art date
Application number
KR1019970007047A
Other languages
Korean (ko)
Other versions
KR100202005B1 (en
Inventor
최철진
진상복
Original Assignee
서상기
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서상기, 한국기계연구원 filed Critical 서상기
Priority to KR1019970007047A priority Critical patent/KR100202005B1/en
Publication of KR19980072305A publication Critical patent/KR19980072305A/en
Application granted granted Critical
Publication of KR100202005B1 publication Critical patent/KR100202005B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/043Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by ball milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals
    • B22F2301/205Titanium, zirconium or hafnium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/10Carbide

Landscapes

  • Powder Metallurgy (AREA)

Abstract

1. 청구범위에 기재된 발명이 속한 기술분야1. TECHNICAL FIELD OF THE INVENTION

본 발명은 티타늄과 활성탄소를 원료분말로 하여 반응밀링법에 의해 티타늄 카바이드를 생성시켜 티타늄/티타늄 카바이드 복합분말을 제조하고, 열간압축성형을 이용하여 분말을 성형하는 방법에 관한 것이다.The present invention relates to a method of producing titanium carbide by the reaction milling method using titanium and activated carbon as a raw powder to produce a titanium / titanium carbide composite powder, and molding the powder using hot compression molding.

2. 발명이 해결하려고 하는 기술적 과제2. The technical problem to be solved by the invention

고가의 티타늄 카바이드를 사용하는 점과, 복잡한 제조공정에 의한 높은 제조원가의 문제와 우수한 기계적 특성을 얻을 수 없는 점을 개선하고자 함.To improve the use of expensive titanium carbide, the problem of high manufacturing cost due to complicated manufacturing process and the inability to obtain excellent mechanical properties.

3. 발명의 해결방법의 요지3. Summary of Solution to Invention

반응밀링법에 의해 원료분말로부터 티타늄 카바이드를 합성하는 공정과, 밀링한 분말을 진공 열간압축성형법으로 성형체를 제조함으로써 해결됨.It is solved by the process of synthesizing titanium carbide from the raw powder by the reaction milling method, and by producing the molded body by the vacuum hot compression molding method of the milled powder.

4. 발명의 중요한 용도4. Important uses of the invention

공정 축소로 제조단가를 크게 낮추고, 티타늄 카바이드가 미세하고 균일하게 분산되어 우수한 기계적 성질을 가진 성형체를 제조할 수 있음.Reduced manufacturing cost significantly lowered, and titanium carbide is finely and uniformly dispersed to produce a molded article having excellent mechanical properties.

Description

반응 밀링에 의한 티타늄/티타늄 카바이드 복합분말의 제조 및 성형방법Preparation and Forming Method of Titanium / Titanium Carbide Composite Powder by Reaction Milling

본 발명은 티타늄(Titanium; 이하 'T'로 표시함)과 활성탄소(activated carbon)를 원료분말로 하여 반응밀링법(Reaction Milling)에 의해 티타늄 카바이드(Titanium Carbide; 이하 'TiC'로 표시함)를 생성시켜 티타늄/티타늄 카바이드 복합분말을 제조하고, 진공 열간압축성형을 이용하여 분말을 성형하는 방법에 관한 것이다.The present invention is titanium carbide (represented as 'T') and activated carbon (activated carbon) as a raw material by titanium carbide (Reaction Milling) by titanium carbide (hereinafter referred to as 'TiC') The present invention relates to a method of preparing a titanium / titanium carbide composite powder and molding a powder using vacuum hot compression molding.

티타늄 복합재료는 비강도가 높고 내식성이 우수하며, 고온 특성이 다른 금속에 비해 상대적으로 우수하여 제트엔진, 항공기, 기계부품 및 의료기구 또는 화학공장 및 발전소 등 사용범위가 매우 넓다.Titanium composites have high specific strength, excellent corrosion resistance and relatively high temperature characteristics compared to other metals, making them very suitable for use in jet engines, aircraft, machine parts, medical devices, chemical plants and power plants.

티타늄 복합재료의 제조방법으로는 복합가공법 및 분말야금법 등의 방법이 있다. 그 중, 복합가공법은 모재 중에 복합재를 삽입한 후 압출하고 이 압출재를 수십개 묶어 일정한 형태의 다이스(dies)로 인발하여 세선이 될 때까지 반복하여 가공하는 방법으로서 제조방법이 복잡한 단점이 있다.As a method of manufacturing the titanium composite material, there are methods such as a composite processing method and a powder metallurgy method. Among them, the composite processing method has a disadvantage in that the manufacturing method is complicated as a method of inserting a composite material into a base material, extruding the bundle, and pulling dozens of the extruded materials into a predetermined form of dies and repeatedly processing them until fine wires are formed.

한편, 분말야금법은 제 1 도의 (가)도에 나타낸 바와 같이 티타늄 합금분말과 분산강화원소인 티타늄 카바이드 입자를 혼합하여 냉간 성형에 의해 일정한 형상을 만든 후 소결에 의해 복합체를 제조하는 방법으로, 고가의 티타늄 카바이드를 사용해야 하며 티타늄 카바이드 양이 증가하면 티타늄 합금분말과의 균일한 혼합이 어렵고, 성형성이 급격히 저하되기 때문에 많은 양의 티타늄 카바이드를 첨가한 복합 소재의 제조는 사실상 불가능하다.On the other hand, powder metallurgy is a method of producing a composite by sintering after mixing a titanium alloy powder and titanium carbide particles as a dispersion strengthening element to form a constant shape by cold forming, as shown in Figure 1 (a) Expensive titanium carbide should be used, and as the amount of titanium carbide increases, it is difficult to uniformly mix with the titanium alloy powder, and the formability is sharply degraded. Therefore, it is virtually impossible to manufacture a composite material containing a large amount of titanium carbide.

본 발명은 상기 문제점을 해결하기 위해 안출된 것으로써, 원료분말로부터 티타늄 카바이드가 합성되므로 고가의 티타늄 카바이드를 사용하지 않아도 되며, 종래의 최종 제품까지의 복잡한 제조공정에 의한 높은 제조원가의 문제를 해결할 수 있으며, 또한, 티타늄 카바이드가 직경 2~4㎛로 균일하고 미세하게 분산되어 우수한 기계적 특성을 가진 티타늄/티타늄 카바이드 복합분말 및 그 성형체의 제조방법을 제공하는 것을 목적으로 한다.In order to solve the above problems, the present invention does not require the use of expensive titanium carbide since titanium carbide is synthesized from the raw powder, and solves the problem of high manufacturing cost due to the complicated manufacturing process up to the conventional final product. In addition, an object of the present invention is to provide a titanium / titanium carbide composite powder having excellent mechanical properties by uniformly and finely dispersing titanium carbide having a diameter of 2 to 4 μm and a method of manufacturing the molded article thereof.

이와 같은 목적은, 반응밀링법에 의해 티타늄과 활성탄소를 원료분말로 하여 티타늄 카바이드를 인사이튜(In-situ) 합성하는 공정과, 밀링한 분말을 진공 열간압축성형법(Vacuum Hot Pressing)에 의해 성형체를 제조하는 단계로 구성된 본 발명에 의해 달성될 수 있는 바, 아래에 도면을 참조하여 상세히 설명한다.This object is a process for synthesizing titanium carbide in-situ using titanium and activated carbon as a raw powder by reaction milling, and molding the milled powder by vacuum hot pressing. It can be achieved by the present invention configured in the step of preparing a bar, will be described in detail with reference to the drawings below.

제 1 도는 티타늄/티타늄 카바이드 분말복합체의 제조 공정도이며,1 is a manufacturing process of the titanium / titanium carbide powder composite,

(가)도는 종래의 분말야금법의 제조 공정도이고,(A) is a manufacturing process diagram of the conventional powder metallurgy method,

(나)도는 본 발명의 제조 공정도.(B) is a manufacturing process drawing of this invention.

제 2 도는 밀링시간에 따른 Ti-20vol%TiC 복합분말의 상변화에 대한 X선 측정 결과를 나타내는 그래프.2 is a graph showing the results of X-ray measurement on the phase change of Ti-20vol% TiC composite powder with milling time.

제 3 도는 밀링시간에 따른 Ti-10vol%TiC, Ti-20vol%TiC 및 Ti-30vol%TiC 복합분말의 입도 변화를 나타내는 그래프.Figure 3 is a graph showing the particle size change of Ti-10vol% TiC, Ti-20vol% TiC and Ti-30vol% TiC composite powder with milling time.

제 4 도는 밀링시간에 따른 Ti-20vol%TiC 복합분말의 형상 변화를 (가) 20시간, (나) 50시간, (다) 100시간, (라) 200시간, (마) 300시간 그리고, (바) 400시간의 순으로 촬영한 사진.4 shows the shape change of Ti-20vol% TiC composite powder according to milling time: (a) 20 hours, (b) 50 hours, (c) 100 hours, (d) 200 hours, (e) 300 hours, and ( F) Pictures taken in order of 400 hours.

제 5 도는 성형온도에 따른 Ti-20vol%TiC 복합체의 미세조직 변화를 (가) 1000℃, (나) 1200℃ 그리고 (다) 1400℃의 순으로 촬영한 사진.5 is a photograph taken in the order of (A) 1000 ℃, (B) 1200 ℃ and (C) 1400 ℃ of the microstructure change of Ti-20vol% TiC composite according to the molding temperature.

제 6 도는 성형온도와 티타늄 카바이드 부피분율의 변화에 따른 복합체의 상대밀도 변화를 나타내는 그래프.6 is a graph showing the change in relative density of the composite according to the change in the forming temperature and the titanium carbide volume fraction.

제 7 도는 700℃에서의 고온압축 시험시 티타늄 카바이드 부피분율의 변화에 따른 복합체의 항복강도 변화를 나타내는 그래프.7 is a graph showing the change in yield strength of the composite according to the change of the titanium carbide volume fraction in the high temperature compression test at 700 ℃.

본 발명의 제조방법을 구성하는 각 공정에 대하여 이하에 상세히 설명한다. 제 1 도의 (나)도는 본 발명의 반응 밀링에 의한 티타늄/티타늄 카바이드 복합분말의 제조 및 성형방법에 있어서의 공정을 순서별로 도시한 것이다.Each process which comprises the manufacturing method of this invention is demonstrated in detail below. FIG. 1 (b) shows the steps in the method for producing and forming a titanium / titanium carbide composite powder by reaction milling according to the present invention.

아래의 표는, 밀링 전 티타늄 분말 및 활성탄소분말의 첨가량과 밀링 후 복합분말의 화학조성을 나타내는 것으로, 화학양론적으로 계산하여 밀링 후 생성된 티타늄 카바이드의 부피분율이 10, 20, 30vol%가 되도록 하였다.The table below shows the addition amount of titanium powder and activated carbon powder before milling and the chemical composition of the composite powder after milling, so that the volume fraction of titanium carbide produced after milling by stoichiometric calculation is 10, 20, 30 vol%. It was.

[표 1] 밀링 전후의 Ti-TiC 복합분말의 화학조성(wt%)[Table 1] Chemical composition of Ti-TiC composite powder before and after milling (wt%)

먼저, 준비된 티타늄 및 활성탄소의 원료분말을 볼과 1 : 60의 중량비로 볼 밀 용기 내에 장입하고 2×10-3Torr 이상의 진공도까지 배기한 후, 아르곤가스로 두 차례 퍼징(purging)하였으며, 용기 내부의 가스압력을 2×10-3이상의 상태로 유지된 분위기에서 80rpm으로 밀링하였다.First, the prepared powders of titanium and activated carbon were loaded into a ball mill vessel at a weight ratio of 1:60 in a ball, and evacuated to a vacuum degree of 2 × 10 -3 Torr or more, and then purged twice with argon gas. The gas pressure of was milled at 80 rpm in an atmosphere maintained at 2 × 10 −3 or more.

제 2 도에서 알 수 있듯이 밀링시간이 증가함에 따라 티타늄 카바이드가 생성되었고 밀링시간이 200시간 이상일 때, 티타늄 카바이드의 생성반응이 거의 종결되며 제 3 도에서 보듯이 상기의 시간 이후 분말입도나 형상의 차이가 거의 없는 미세한 혼합분말이 생성되는 것으로 보아, 200시간 이상 볼 밀링하여 티타늄/티타늄 카바이드 복합분말을 제조할 수 있다.As can be seen in FIG. 2, the titanium carbide is formed as the milling time is increased, and when the milling time is 200 hours or more, the reaction of the formation of titanium carbide is almost terminated. As shown in FIG. It is possible to produce a titanium / titanium carbide composite powder by ball milling for 200 hours or more, as a fine mixed powder having little difference is produced.

제조된 복합분말은 진공 열간압축성형장치(Vaccum Hot Press)를 이용하여 1000℃ 이상의 온도에서 약 1시간 동안 배기 후 각 온도에서 1시간 동안 20MPa 이상의 압력을 가하여 성형한 결과, 제 5 도에서 나타나듯이 2~4㎛의 티타늄 카바이드가 티타늄 기지 내에 미세하게 분산되어 있고, 제 6 도에서 보듯이 98% 이상의 높은 상대밀도를 나타내는 티타늄/티타늄 카바이드 복합체를 제조할 수 있다. 또한, 제 7 도와 같이 TiC가 20vol% 이상인 합금의 경우 상용으로 사용되고 있는 Ti-6Al-4V 합금에 비해 항복강도가 높음을 알 수 있다.The manufactured composite powder was evacuated for about 1 hour at a temperature of 1000 ° C. or higher using a vacuum hot press molding machine, and then molded by applying a pressure of 20 MPa or more for 1 hour at each temperature, as shown in FIG. 5. Titanium carbide of 2-4 μm is finely dispersed in the titanium matrix, and as shown in FIG. 6, a titanium / titanium carbide composite having a high relative density of 98% or more can be produced. In addition, as shown in FIG. 7, it can be seen that the alloy having TiC of 20 vol% or more has a higher yield strength than the Ti-6Al-4V alloy which is used commercially.

이하, 본 발명의 반응 밀링에 의한 티타늄/티타늄 카바이드 복합분말의 제조 및 성형방법에 의해서 제조된 티타늄/티타늄 카바이드 복합분말 및 성형체의 기계적 특성에 관한 실험 결과와 티타늄/티타늄 카바이드 복합체의 단면을 확대 촬영한 사진을 게재한 도면에 대하여 상세히 설명한다.Hereinafter, experimental results on the mechanical properties of the titanium / titanium carbide composite powder and the molded body prepared by the method of manufacturing and forming the titanium / titanium carbide composite powder by the reaction milling according to the present invention, and an enlarged cross section of the titanium / titanium carbide composite. The drawing which posted one photograph is explained in full detail.

제 2 도는, 티타늄과 활성탄소를 원료분말로 하여 Ti-20vol%TiC 복합분말을 제조한 경우에 있어서, 500시간까지 밀링하였을 때 밀링시간이 증가함에 따라 생성되는 상의 변화를 X선 회절분석에 의해 나타내는 것으로 밀링에 의해 티타늄 카바이드가 생성됨을 알 수 있고, 약 200시간 이후부터는 밀링시간이 증가하여도 티타늄 카바이드의 회절 피크가 변하지 않는 것으로 보아 티타늄 카바이드의 생성이 완료되었음을 알 수 있다.FIG. 2 shows the change of phase produced by increasing milling time when milling up to 500 hours in the case of producing Ti-20vol% TiC composite powder using titanium and activated carbon as a raw material powder by X-ray diffraction analysis. It can be seen that the titanium carbide is produced by milling, and since about 200 hours, the diffraction peak of titanium carbide does not change even if the milling time is increased, indicating that the production of titanium carbide is completed.

제 3 도는, Ti-10vol%TiC, Ti-20vol%TiC 및 Ti-30vol%TiC 복합분말의 밀링시간에 따른 평균 분말입도의 변화를 나타내는 것으로, 밀링시간이 증가함에 따라 분말입도가 미세해지며, 약 200시간 이후 3~5㎛의 균일한 크기를 갖는 분말을 얻을 수 있음을 알 수 있다.3 shows the change of the average particle size of the Ti-10vol% TiC, Ti-20vol% TiC and Ti-30vol% TiC composite powder with milling time, and the grain size becomes fine with increasing milling time. It can be seen that after about 200 hours, a powder having a uniform size of 3 to 5 μm can be obtained.

제 4 도는, Ti-20vol%TiC 복합분말의 밀링시간에 따른 형상 변화를 나타내는 것으로 밀링시간이 증가함에 따라 불규칙한 형태의 분말이 구형의 분말로 되며 약 200시간 이후 거의 모든 분말들이 균일한 입도를 가짐을 알 수 있다.4 shows the shape change of the Ti-20vol% TiC composite powder according to the milling time. As the milling time increases, the irregular powder becomes a spherical powder and almost all powders have a uniform particle size after about 200 hours. It can be seen.

제 5 도는, 반응밀링에 의해 형성된 Ti-20vol%TiC 복합분말을 진공열간압축성형법으로 성형하였을 때 성형온도에 따른 미세조직의 변화를 나타내는 것으로 균일하게 분산된 구형의 티타늄 카바이드를 볼 수 있고 성형온도가 증가함에 따라 티타늄 카바이드의 크기가 증가함을 알 수 있다.5 shows the change of microstructure according to molding temperature when Ti-20vol% TiC composite powder formed by reaction milling is formed by vacuum hot compression molding method. It can be seen that as the size of titanium carbide increases.

제 6 도는, 성형온도와 티타늄 카바이드의 부피분율의 변화에 따른 상대밀도의 변화를 나타내는 것으로 1200℃까지는 성형온도가 증가함에 따라 상대밀도는 점차 증가하며 1200℃ 이후로는 거의 일정한 상대밀도를 나타내고, 티타늄 카바이드의 부피분율이 증가할수록 상대밀도가 약간 감소하는 경향을 보이지만, 모든 시험편들은 거의 상대밀도 98% 이상의 우수한 성형성을 나타냄을 알 수 있다.6 shows the change in relative density according to the change in the molding temperature and the volume fraction of titanium carbide, and the relative density gradually increases with increasing molding temperature up to 1200 ° C, and shows a relatively constant relative density after 1200 ° C. Relative density tends to decrease slightly as the volume fraction of titanium carbide increases, but it can be seen that all specimens show excellent moldability of almost 98% relative density.

제 7 도는, 티타늄/티타늄 카바이드 복합체의 고온에서의 기계적 성질을 조사하기 위해 700℃에서 5×10-3의 초기 변형율로 1시간 동안 고온압축시험을 한 후의 항복강도(Yield Stress; MPa)의 변화를 나타내는 것으로, 티타늄 카바이드의 부피분율(vol%)이 증가할수록 항복강도가 증가함을 알 수 있고, Ti-6Al-4V 합금의 고온압축시험 측정 결과와 비교했을 때, 티타늄 카바이드가 20vol% 이상의 부피분율일 경우에는 Ti-6Al-4V 합금보다 높은 항복강도를 나타냄을 알 수 있다.7 shows the change in yield stress (MPa) after a high temperature compression test for 1 hour at an initial strain of 5 × 10 −3 at 700 ° C. to investigate the mechanical properties of the titanium / titanium carbide composite at high temperatures. It can be seen that the yield strength increases as the volume fraction (vol%) of the titanium carbide increases, and the volume of the titanium carbide is 20 vol% or more when compared with the measurement result of the high temperature compression test of the Ti-6Al-4V alloy. In the case of fractions, it can be seen that the yield strength is higher than that of Ti-6Al-4V alloy.

종래의 분말야금법을 이용한 티타늄/티타늄 카바이드 복합재료의 제조방법은 티타늄 분말과 분산강화입자인 티타늄 카바이드를 혼합하여 냉간 성형한 후 소결 및 고온등압성형에 의해 최종 제품을 만드는 등의 여러 단계를 거치지만, 본 발명은 반응밀링과 진공열간압축성형의 두 단계만 거치므로 제조공정이 현저히 줄었으며, 고가의 티타늄 카바이드를 사용하지 않으므로 제조단가를 크게 낮출 수 있다. 또한, 진공열간압축성형에 의해서 티타늄 카바이드가 미세하고 균일하게 분산된 성형체를 제조할 수 있다.In the conventional method of manufacturing titanium / titanium carbide composite material using powder metallurgy, various steps such as cold forming by mixing titanium powder and titanium carbide, which are dispersed reinforcement particles, and forming final products by sintering and high temperature isostatic molding are performed. However, the present invention, the manufacturing process is significantly reduced because only two steps of the reaction milling and vacuum hot compression molding, it is possible to significantly reduce the manufacturing cost because it does not use expensive titanium carbide. In addition, it is possible to produce a molded article in which titanium carbide is finely and uniformly dispersed by vacuum hot compression molding.

또한, 본 발명의 제조방법에 의하여 제조된 성형체는 높은 항복강도와 우수한 성형성 등의 탁월한 기계적 성질을 지니고 있어, 고온용 Ti 합금 개발의 효과적인 수단을 제공한다.In addition, the molded article produced by the manufacturing method of the present invention has excellent mechanical properties such as high yield strength and excellent moldability, thereby providing an effective means of development of high temperature Ti alloy.

Claims (2)

티타늄과 활성탄소를 원료분말로 하여, 상기 원료분말을 볼과 1 : 60의 중량비로 볼 밀 용기 내에 장입하고 2×10-3Torr 이상의 진공도까지 배기한 후, 아르곤가스로 두 차례 퍼징하고, 용기 내부의 가스압력을 2×10-3이상의 상태로 유지된 분위기에서 80rpm으로 밀링하여 티타늄 카바이드를 인사이튜 합성하는 것을 특징으로 하는 반응밀링에 의한 티타늄/티타늄 카바이드 복합분말의 제조방법.Using titanium and activated carbon as the raw material powder, the raw material powder is charged into a ball mill container at a weight ratio of 1:60 and discharged to a vacuum degree of 2 × 10 -3 Torr or more, and then purged twice with argon gas. A method for producing a titanium / titanium carbide composite powder by reaction milling, characterized in that it synthesizes titanium carbide by milling at 80 rpm in an atmosphere in which the internal gas pressure is maintained at 2 × 10 −3 or more. 티타늄과 활성탄소를 원료분말로 하여, 상기 원료분말을 볼과 1 : 60의 중량비로 볼 밀 용기 내에 장입하고 2×10-3Torr 이상의 진공도까지 배기한 후, 아르곤가스로 두 차례 퍼징하고, 용기 내부의 가스압력을 2×10-3이상의 상태로 유지된 분위기에서 80rpm으로 밀링하여 티타늄/티타늄 카바이드 복합분말을 제조하고, 상기 제조된 티타늄/티타늄 카바이드 복합분말을 진공열간압축성형장치를 이용하여 1000℃의 온도에서 1시간 동안 배기 후, 각 온도에서 1시간 동안 20MPa의 압력을 가하여 성형함으로써 상대밀도 98% 이상의 티타늄/티타늄 카바이드 복합성형체를 제조하는 공정으로 구성된 것을 특징으로 하는 반응밀링에 의한 티타늄/티타늄 카바이드 복합분말의 성형방법.Using titanium and activated carbon as the raw material powder, the raw material powder is charged into a ball mill container at a weight ratio of 1:60 and discharged to a vacuum degree of 2 × 10 -3 Torr or more, and then purged twice with argon gas. Titanium / titanium carbide composite powder was prepared by milling the internal gas pressure at 80 rpm in an atmosphere maintained at 2 × 10 −3 or more, and the titanium / titanium carbide composite powder was manufactured by using a vacuum hot compression molding apparatus. After exhausting for 1 hour at a temperature of ℃, by applying a pressure of 20MPa for 1 hour at each temperature to form a titanium / titanium carbide composite molded body having a relative density of 98% or more titanium / by reaction milling, characterized in that Forming method of titanium carbide composite powder.
KR1019970007047A 1997-03-04 1997-03-04 Method for manufacturing and forming composite powder KR100202005B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970007047A KR100202005B1 (en) 1997-03-04 1997-03-04 Method for manufacturing and forming composite powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970007047A KR100202005B1 (en) 1997-03-04 1997-03-04 Method for manufacturing and forming composite powder

Publications (2)

Publication Number Publication Date
KR19980072305A true KR19980072305A (en) 1998-11-05
KR100202005B1 KR100202005B1 (en) 1999-06-15

Family

ID=19498646

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970007047A KR100202005B1 (en) 1997-03-04 1997-03-04 Method for manufacturing and forming composite powder

Country Status (1)

Country Link
KR (1) KR100202005B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115807179A (en) * 2021-09-14 2023-03-17 中国石油天然气股份有限公司 Titanium graphene composite material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100456797B1 (en) * 2002-05-01 2004-11-10 한국과학기술연구원 FABRICATION METHOD OF NANOCRYSTALLINE TiN/Ti-M COMPOSITE POWDER VIA REACTION MILLING

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115807179A (en) * 2021-09-14 2023-03-17 中国石油天然气股份有限公司 Titanium graphene composite material and preparation method and application thereof
CN115807179B (en) * 2021-09-14 2024-04-26 中国石油天然气股份有限公司 Titanium graphene composite material and preparation method and application thereof

Also Published As

Publication number Publication date
KR100202005B1 (en) 1999-06-15

Similar Documents

Publication Publication Date Title
EP3093085B1 (en) Method for producing oxygen solid solution titanium powder material
US6630008B1 (en) Nanocrystalline aluminum metal matrix composites, and production methods
US5778301A (en) Cemented carbide
KR900006613B1 (en) Process for manufacturing copper base spinodal alloy articles
EP0203197B1 (en) Process for producing super-heat-resistant alloy material
KR100638479B1 (en) Fabrication method of bulk amorphous alloy and bulk amorphous composite by spark plasma sintering
JPH08120445A (en) Production of titanium-aluminum alloy target material
SE511102C2 (en) Process for producing diamond impregnated carbide via in-situ conversion of dispersed graphite
US4432795A (en) Sintered powdered titanium alloy and method of producing same
CN109763047A (en) A kind of Mo-Ti-Zr-CNT molybdenum alloy composite material and preparation method of high intensity
JPH0692603B2 (en) METAL POWDER FOR PRODUCTION OF METAL SINTERED BODY AND METHOD FOR PRODUCING METAL SINTERED BODY PRODUCT USING THE SAME
KR100202005B1 (en) Method for manufacturing and forming composite powder
CN113798488B (en) Aluminum-based powder metallurgy material and preparation method thereof
JP2898475B2 (en) Manufacturing method of oxide dispersion strengthened heat-resistant alloy sintered body
RU2701228C1 (en) Thermoplastic granulated material (feedstock) and method of its production
KR102012442B1 (en) The noble process for preparation of sintered oxide having high toughness
JPH02259029A (en) Manufacture of aluminide
KR101153859B1 (en) Metal matrix composite containing carbon nanotubes and the method thereof
Dugauguez et al. Field assisted hot pressing of sintering Inconel 718 MIM samples
JP4165850B2 (en) Plate-like tungsten carbide-containing powder and method for producing the same
JP4706980B2 (en) Manufacturing method of Mo target material
JPS59182944A (en) Hard carbide composite sintered high speed steel and its production
JPS624804A (en) Production of titanium alloy by element powder mixing method
JP2745889B2 (en) Method of manufacturing high-strength steel member by injection molding method
JPH05171214A (en) Production of reinforced titanium

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020208

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee