KR19980061904A - Determination device of aqueous solution of absorption chiller - Google Patents

Determination device of aqueous solution of absorption chiller Download PDF

Info

Publication number
KR19980061904A
KR19980061904A KR1019960081282A KR19960081282A KR19980061904A KR 19980061904 A KR19980061904 A KR 19980061904A KR 1019960081282 A KR1019960081282 A KR 1019960081282A KR 19960081282 A KR19960081282 A KR 19960081282A KR 19980061904 A KR19980061904 A KR 19980061904A
Authority
KR
South Korea
Prior art keywords
aqueous solution
heat exchanger
concentration
low temperature
temperature heat
Prior art date
Application number
KR1019960081282A
Other languages
Korean (ko)
Other versions
KR100261544B1 (en
Inventor
라종래
Original Assignee
오상수
만도기계 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오상수, 만도기계 주식회사 filed Critical 오상수
Priority to KR1019960081282A priority Critical patent/KR100261544B1/en
Publication of KR19980061904A publication Critical patent/KR19980061904A/en
Application granted granted Critical
Publication of KR100261544B1 publication Critical patent/KR100261544B1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B15/00Sorption machines, plants or systems, operating continuously, e.g. absorption type
    • F25B15/02Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas
    • F25B15/06Sorption machines, plants or systems, operating continuously, e.g. absorption type without inert gas the refrigerant being water vapour evaporated from a salt solution, e.g. lithium bromide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/04Arrangement or mounting of control or safety devices for sorption type machines, plants or systems
    • F25B49/043Operating continuously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2315/00Sorption refrigeration cycles or details thereof
    • F25B2315/001Crystallization prevention
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2103Temperatures near a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Abstract

본 발명은 흡수식 냉동기(Absorption Refrigerating machine)의 수용액(absorbent) 결정(結晶) 방지 장치에 관한 것으로, 응축기(condenser), 증발기(evaporator), 흡수기(absorber), 저온 열교환기, 고온 열교환기, 고온 재생기(regenerator), 저온 재생기로 구성된 흡수식 냉동기에서 수용액으로 쓰이는 브롬화리듐(LiBr)의 결정을 방지하기 위해, 결정이 발생하기 위한 저온 열교환기 내부에 온도센서와 압력센서를 장착하여, 수용액의 온도와 압력의 변화로 농도를 계산하고, 계산된 수용액 농도와 수용액의 절대온도에 다른 결정농도를 비교하여 수용액 농도가 결정 농도보다 크거나 같을 때 수용액의 희석제어를 수행하므로써, 흡수식 냉동기의 가장 큰 문제점인 수용액의 결정화를 사전에 방지하여, 냉동기의 수명을 연장시키고, 결정화 방지를 위한 수용액의 과다 사용에 따른 낭비를 없애며, 고효율 운전이 가능하도록 한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to an apparatus for preventing the determination of an aqueous solution of an absorption refrigeration machine, including a condenser, an evaporator, an absorber, a low temperature heat exchanger, a high temperature heat exchanger, and a high temperature regenerator. (regenerator), in order to prevent crystallization of lithium bromide (LiBr) used as an aqueous solution in an absorption chiller composed of a low temperature regenerator, a temperature sensor and a pressure sensor are mounted inside a low temperature heat exchanger for crystallization. Calculate the concentration by the change of, and compare the calculated solution concentration with other crystal concentration to the absolute temperature of the aqueous solution to perform the dilution control of the aqueous solution when the aqueous solution concentration is greater than or equal to the crystal concentration, the aqueous solution which is the biggest problem of the absorption refrigerator To prevent crystallization, prolong the life of the freezer, and overuse of the aqueous solution to prevent crystallization Eliminates the ratio, it is a highly efficient operation is possible.

Description

흡수식 냉동기의 수용액 결정 방지 장치Determination device of aqueous solution of absorption chiller

본 발명은 흡수식 냉동기에 관한 것으로서, 더욱 상세하게는 흡수식 냉동기에서 사용하는 수용액의 결정화를 방지하기 위한 제어 장치에 관한 것이다.The present invention relates to an absorption chiller, and more particularly, to a control device for preventing crystallization of an aqueous solution used in an absorption chiller.

일반적으로, 흡수식 냉동기는 수용액인 브롬화리듐(LiBr)과 냉매인 물(H2O)의 이원 혼합물, 즉 희석용액을 매체로 사용한다.Generally, an absorption chiller uses a binary mixture of an aqueous solution of lithium bromide (LiBr) and a refrigerant of water (H 2 O), that is, a diluent solution as a medium.

이러한 흡수식 냉동기의 냉매는 증기로 바뀌어 응축기(condenser)에 의해 응축되며, 냉매 증기는 증발기(evaporator)로 흘러들어가 흡수기(absorber)에서 수용액의 작용에 의해 증발 또는 흡수된다. 또한, 재생기(regenerator)는 희석 용액으로부터 수용액과 냉매를 분리시켜 증발기와 흡수기로 공급시킨다.The refrigerant in the absorption refrigerator is converted into steam and condensed by a condenser, and the refrigerant vapor flows into the evaporator and is evaporated or absorbed by the action of an aqueous solution in the absorber. In addition, a regenerator separates the aqueous solution and the refrigerant from the dilute solution and supplies the evaporator and the absorber.

이와 같은 흡수식 냉동기에 대한 하나의 종래기술의 예를 도 3을 참조하여 상세히 설명한다.An example of one prior art for such an absorption chiller will be described in detail with reference to FIG. 3.

도 3에 나타난 바와 같이, 흡수식 냉동기는 증발기(10)와 흡수기(12)에서 냉매 증기가 수용액에 흡수될 때, 증기 상태에서 냉매로 변화하면서 응축잠열과 수용액이 수분을 흡수하여 농도가 낮아지면서 희석열이 발생한다. 이렇게 발생한 희석열은 흡수기의 튜브(tube)(13)로 공급되는 냉각수에 의해 제거되고, 냉각수는 다시 차가운 상태로 냉각된다.As shown in FIG. 3, when the refrigerant vapor is absorbed into the aqueous solution in the evaporator 10 and the absorber 12, the absorption heat is changed into the refrigerant in the vapor state while the latent heat of condensation and the aqueous solution absorb moisture and the concentration of the dilution heat decreases. This happens. The dilution heat thus generated is removed by the cooling water supplied to the tube 13 of the absorber, and the cooling water is cooled again in a cold state.

한편, 수분을 흡수한 묽어진 수용액, 즉 희석 용액은 용액 펌프(16)의 구동에 의해 저온 열교환기(18)와 고온 열교환기(20)를 경유하여 고온 재생기(22)로 공급된다.On the other hand, the diluted aqueous solution, that is, the diluted solution, which absorbs moisture is supplied to the high temperature regenerator 22 via the low temperature heat exchanger 18 and the high temperature heat exchanger 20 by driving the solution pump 16.

고온 재생기(22)는 고온 열교환기(20)를 경유하여 유입된 희석용액을 버너(23)에 의해 재가열하여 고온 증기와 농축된 수용액으로 분리시킨다.The high temperature regenerator 22 reheats the dilution solution introduced via the high temperature heat exchanger 20 by the burner 23 to separate the hot steam and the concentrated aqueous solution.

고온 증기는 저온 재생기의 튜브(25) 내부로 보내지고, 농축 수용액은 고온 열교환기(20)에서 열교환된 후에 저온 재생기(24)로 보내지며 고온 재생기(22)와 연결된 튜브(25)를 통과하여 증기에 의해 재가열된다.The hot steam is sent into the tube 25 of the cold regenerator, the concentrated aqueous solution is heat exchanged in the hot heat exchanger 20 and then sent to the cold regenerator 24 and passes through the tube 25 connected to the hot regenerator 22 Reheated by steam

재가열된 농축 수용액은 흡수기(12)로 공급되어 다시 냉매 증기를 흡수하는 과정을 반복하며, 고온 재생기(22)에서 증발된 냉매증기는 응축기(26)로 공급되고, 냉각수에 의해 냉각 응축된다. 응축된 냉매는 압력차와 중력에 의해 액화상태로 증발기(10)에 공급된다.The reheated concentrated aqueous solution is supplied to the absorber 12 to repeat the process of absorbing the refrigerant vapor again, and the refrigerant vapor evaporated in the high temperature regenerator 22 is supplied to the condenser 26 and cooled and condensed by the cooling water. The condensed refrigerant is supplied to the evaporator 10 in a liquefied state by the pressure difference and gravity.

이때, 흡수식 냉동기에서 수용액으로 사용되는 브롬화리듐은 고농축 상태에서 희석되지 않고 방치될 경우, 액이 굳어버리는 현상을 보이게 된다. 특히, 저온 재생기(24)의 용액 토출측과 흡수기(12)의 입구 구간(저온 재생기(24) → 저온 열교환기(18) → 흡수기(12)에 이르는 경로)이 결정이 가장 발생되기 쉬운 부분으로, 이러한 부분에 결정이 형성되면, 이 결정에 의해 경로가 막히어 더 이상 수용액이 흐르지 못하게 된다.At this time, the lithium bromide used as an aqueous solution in the absorption refrigerator shows a phenomenon that the liquid hardens when left undiluted in a high concentration state. In particular, the solution discharge side of the low temperature regenerator 24 and the inlet section of the absorber 12 (the path from the low temperature regenerator 24 to the low temperature heat exchanger 18 to the absorber 12) are the parts where crystals are most likely to occur. If a crystal is formed in this part, the path is blocked by the crystal, and the aqueous solution no longer flows.

이러한 수용액의 결정을 제거하기 위해, 종래의 흡수식 냉동기에는 저온 재생기(24)에서 저온 열교환기(18)를 거치지 않고, 직접 흡수기(12)로 수용액을 흘려보내는 관(44)이 설치되어 있다.In order to remove the crystal of such an aqueous solution, the conventional absorption chiller is provided with a pipe 44 for flowing the aqueous solution directly to the absorber 12 without passing through the low temperature heat exchanger 18 from the low temperature regenerator 24.

즉, 저온 열교환기(18) 내부에 결정이 발생하여 저온 재생기(24)에 있던 수용액이 더 이상 흐르지 못하면, 오버 플로우(over-flow)되어, 상단에 설치되어 있는 관(44)을 통해 직접 흡수기(12)로 유입되게 된다. 흡수기(12)에 유입된 수용액은 냉매와 희석되고, 수분 흡수과정에서 발생하는 희석열에 의해 흡수기 내의 온도를 상승시키고, 저온 열교환기(18)를 가열하게 되므로써, 수용액 결정을 제거하게 된다.That is, when a crystal is generated inside the low temperature heat exchanger 18 and the aqueous solution in the low temperature regenerator 24 no longer flows, it is overflowed and directly absorbed through the pipe 44 installed at the upper end. Inflow to (12). The aqueous solution introduced into the absorber 12 is diluted with the refrigerant, and the temperature in the absorber is raised by the dilution heat generated during the water absorption process, thereby heating the low temperature heat exchanger 18, thereby removing the aqueous solution crystals.

그러나, 상술한 종래의 수용액 결정 제거장치는 몇가지 문제점들을 안고 있다.However, the conventional aqueous solution crystal removal apparatus described above has some problems.

첫째, 수용액의 결정을 제거할 뿐, 사전에 방지하지는 못한다. 즉, 일단 결정이 발생된 후에 동작하는 장치이므로 배관 및 열교환기의 부식 속도가 가속화하여 장치의 수명이 급격히 감소된다.First, it only removes the crystals of the aqueous solution, but does not prevent it in advance. That is, since the device operates once the crystal is generated, the corrosion rate of the pipe and the heat exchanger is accelerated, and the life of the device is drastically reduced.

둘째, 수용액의 결정이 완전히 제거되지 않으므로 배관 및 열교환기 외부에서 토치나 그외 다른 방법으로 가열을 해야만한다. 따라서, 많은 시간과 인력이 소요된다.Secondly, the crystals in the aqueous solution are not completely removed and must be heated by a torch or other method outside the pipe and heat exchanger. Therefore, it takes a lot of time and manpower.

이러한 문제점들로 인해, 결정 발생시 흡수식 냉동기의 원활한 구동이 이루어지지 못하게 된다.These problems prevent the smooth operation of the absorption chiller when crystals are generated.

따라서, 본 발명은 상술한 문제점을 해결하기 위하여 안출한 것으로, 흡수식 냉동기의 수용액 결정 방지 장치를 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide an apparatus for preventing the determination of an aqueous solution of an absorption chiller.

상기 목적을 달성하기 위한 본 발명에 따르면, 유입되는 수용액을 열교환시키는 저온 열교환기가 구비되는 흡수식 냉동기의 수용액 결정 방지 장치는, 저온 열교환기에 장착되어 저온 열교환기로 유입되는 수용액의 온도를 감지하는 온도센서와, 수용액의 압력을 감지하는 압력센서와, 온도센서와 압력센서로 각각 입력되는 수용액의 온도와 압력을 연산하여 수용액의 농도를 계산하고 수용액 농도와 절대온도에 따른 결정 농도를 비교하여 수용액 농도가 결정 농도보다 크거나 같을 때 수용액의 희석제어를 수행하는 마이크로컴퓨터로 구성되는 것을 특징으로 하는 흡수식 냉동기의 수용액 결정 방지 장치를 제공한다.According to the present invention for achieving the above object, the aqueous solution determination prevention device of the absorption chiller is provided with a low temperature heat exchanger for heat exchange the incoming aqueous solution, the temperature sensor for detecting the temperature of the aqueous solution is introduced into the low temperature heat exchanger and the low temperature heat exchanger; The solution concentration is determined by calculating the concentration of the aqueous solution by calculating the temperature and pressure of the aqueous solution input to the pressure sensor and the temperature sensor and the pressure sensor, respectively, and comparing the crystal concentration according to the aqueous solution concentration and the absolute temperature. Provided is an aqueous solution determination prevention device of an absorption chiller, characterized in that it comprises a microcomputer that performs dilution control of the aqueous solution when it is greater than or equal to the concentration.

도 1은 본 발명의 바람직한 실시예에 따른 흡수식 냉동기의 수용액 결정 방지 장치의 블록도1 is a block diagram of an aqueous solution determination prevention device of an absorption type refrigerator according to a preferred embodiment of the present invention.

도 2는 도 1에 도시된 온도센서와 압력센서를 구비한 흡수식 냉동기의 계통도FIG. 2 is a system diagram of an absorption type refrigerator having a temperature sensor and a pressure sensor shown in FIG. 1.

도 3은 종래의 흡수식 냉동기의 계통도3 is a system diagram of a conventional absorption chiller.

* 도면의 주요 부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

10 : 증발기11 : 증발기튜브10 evaporator 11: evaporator tube

12 : 흡수기13 : 흡수기튜브12 Absorber 13 Absorber Tube

14 : 냉매펌프16 : 용액펌프14: refrigerant pump 16: solution pump

18 : 저온열교환기20 : 고온열교환기18: low temperature heat exchanger 20: high temperature heat exchanger

22 : 고온재생기23 : 버너22: high temperature regenerator 23: burner

24 : 저온재생기25 : 저온재생기튜브24: low temperature regenerator 25: low temperature regenerator tube

26 : 응축기27 : 응축기튜브26 condenser 27 condenser tube

28 : 온도센서30 : 압력센서28: temperature sensor 30: pressure sensor

32 : 마이크로컴퓨터34 : 표시기32: microcomputer 34: indicator

36 : 부저38 : 노즐36: buzzer 38: nozzle

40 : 하부셀42 : 상부셀40: lower cell 42: upper cell

44 : 결정제거용 관44: crystal removal tube

본 발명의 상기 및 기타 목적과 여러 가지 장점은 이 기술분야에 숙련된 사람들에 의해 첨부된 도면을 참조하여 하기에 기술되는 본 발명의 바람직한 실시예로부터 더욱 명확하게 될 것이다.The above and other objects and various advantages of the present invention will become more apparent from the preferred embodiments of the present invention described below with reference to the accompanying drawings by those skilled in the art.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대하여 상세하게 설명한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 1을 참조하면, 본 발명에 따른 흡수식 냉동기의 수용액 결정 방지 장치의 블록도가 도시된다.1, a block diagram of an apparatus for preventing the determination of an aqueous solution of an absorption chiller according to the present invention is shown.

저온 열교환기(18)에 흐르는 농축된 수용액의 상태변화가 이루어지기 시작하면, 수용액의 온도와 압력차가 발생하고 온도센서(28)와 압력센서(30)는 변화된 온도와 압력을 마이크로컴퓨터(32)로 출력한다. 마이크로컴퓨터(32)에서는 이러한 온도와 압력을 연산하여 수용액의 농도를 계산하고 수용액 농도와 절대온도에 따른 결정 농도를 비교하여 수용액 농도가 결정 농도보다 크거나 같을 때 수용액을 희석제어하는 것을 말한다.When the state change of the concentrated aqueous solution flowing in the low temperature heat exchanger 18 starts to occur, the temperature and pressure difference of the aqueous solution occurs and the temperature sensor 28 and the pressure sensor 30 change the temperature and pressure of the microcomputer 32. Will output The microcomputer 32 calculates the concentration of the aqueous solution by calculating the temperature and the pressure, and compares the concentration of the aqueous solution with the crystal concentration according to the absolute temperature to control the dilution of the aqueous solution when the aqueous solution concentration is greater than or equal to the crystal concentration.

수용액의 희석제어는 고온 재생기(22)에서 더 이상 가열 농축시키지 않으면서 각열교환기 수용액의 농도를 균일하게 만들어주는 제어과정을 의미한다. 이러한 희석제어는 수용액의 결정화가 이루어지기 전에 수용액의 상태를 감지하여, 저온 열교환기(18)의 가열에 따른 농도저하로, 수용액의 원활한 흐름이 이루어지도록 한다.Dilution control of the aqueous solution refers to a control process that makes the concentration of each heat exchanger aqueous solution uniform without further heating and concentration in the high temperature regenerator 22. This dilution control senses the state of the aqueous solution before the crystallization of the aqueous solution is made, so that the concentration of the lower temperature heat exchanger 18, the smooth flow of the aqueous solution is achieved.

한편, 온도센서(28)와 압력센서(30)에서 감지된 수용액 상태변화에 대응하여 마이크로컴퓨터(32)는 콘트롤 패널(도시안됨)상에 위치한 표시기(34), 예로 LED를 통해 저온 열교환기(18) 내부에 수용액 결정화가 이루어졌다는 것을 표시할 수 있다. 또한, 부저(buzzer)(36)를 별도로 장착하여 수용액 결정화를 알리는 경보음을 울리게 하므로써, 사용자가 이를 인지할 수 있도록 할수도 있다.Meanwhile, in response to the state change of the aqueous solution sensed by the temperature sensor 28 and the pressure sensor 30, the microcomputer 32 displays a low-temperature heat exchanger through an indicator 34 located on a control panel (not shown), for example, an LED. 18) It can be shown that the aqueous solution crystallization is done inside. In addition, a buzzer 36 may be separately installed so that an alarm sound notifying the crystallization of the aqueous solution may be sounded, so that the user may recognize it.

본 발명에 따라, 온도센서와 압력센서를 구비한 흡수식 냉동기의 계통도를 도시하는 도 2를 참조하여, 그 작동이 상세히 설명된다.According to the invention, with reference to FIG. 2, which shows a schematic diagram of an absorption chiller having a temperature sensor and a pressure sensor, the operation thereof is described in detail.

사용자의 운전 신호 입력에 따라 냉매펌프(14)와 용액펌프(16)가 구동되고, 대략 20~30분 정도의 예비운전시간을 가진 후에 정상 사이클이 형성된다. 흡수식 냉동기가 구동되면, 냉매펌프(14)와 배관으로 연결되는 하부 쉘(shell)(40)은 대략 6mmHg 정도의 고진공을 유지한다. 이러한 하부 쉘(40)에는 배관을 흐르는 냉매인 물이 노즐(38)을 통해 분무되는 증발기(10)가 설치되고, 증발기(10) 내부에는 냉수가 흐르는 증발기 튜브(11)가 설치되어 냉매 펌프(14)에 의해 분무되는 냉매가 그 압력에 대응하는 포화온도에서 끓어 냉수에서 열을 빼앗아 증발할 수 있도록 한다. 따라서, 냉수는 차가운 상태로 냉각된다.The refrigerant pump 14 and the solution pump 16 are driven according to a user's operation signal input, and a normal cycle is formed after a preliminary operation time of about 20 to 30 minutes. When the absorption chiller is driven, the lower shell 40, which is connected to the refrigerant pump 14 and the pipe, maintains a high vacuum of about 6 mmHg. The lower shell 40 is provided with an evaporator 10 through which water, which is a refrigerant flowing through a pipe, is sprayed through the nozzle 38, and an evaporator tube 11 through which cold water flows is installed inside the evaporator 10 to provide a refrigerant pump ( The refrigerant sprayed by 14) boils at the saturation temperature corresponding to the pressure to take heat from the cold water and allow it to evaporate. Thus, cold water is cooled in a cold state.

또한, 흡수기(12)에서는 증발된 증기가 수용액인 브롬화리듐에 의해 흡수되면서 응축잠열이 발생하고, 수용액이 수분을 흡수하여 농도가 낮아짐과 동시에 희석열이 발생한다. 이러한 희석열을 제거하기 위해서 흡수기(12)내에 냉각수가 흐르는 흡수기튜브(13)를 설치한다.In addition, in the absorber 12, the latent heat of condensation is generated while the vaporized vapor is absorbed by the aqueous solution of lithium bromide, and the aqueous solution absorbs moisture to lower the concentration and at the same time, the dilution heat is generated. In order to remove such dilution heat, an absorber tube 13 through which cooling water flows is installed in the absorber 12.

한편, 수분을 흡수한 묽어진 수용액, 즉 희석용액은 흡수기(12) 하부에 설치되는 용액펌프(16)에 의해 저온 열교환기(18)와 고온 열교환기(20)를 경유하여 고온 재생기(22)로 공급된다.On the other hand, the diluted aqueous solution that absorbed the water, that is, the dilution solution is the high temperature regenerator 22 via the low temperature heat exchanger 18 and the high temperature heat exchanger 20 by the solution pump 16 installed under the absorber 12. Is supplied.

이러한 희석용액은 고온 재생기(22)의 하부에 위치한 버너(23)에 의해 재가열되고, 고온 증기와 농축된 수용액으로 분리시키며, 대략 그 진공압력이 60mmHg인 응축기(26)와 저온 재생기(24)로 구성된 상부 쉘(42)로 보내어진다. 이중에서 고온 증기는 저온 재생기(24)의 저온 재생기 튜브(25) 내부로 보내진다.This dilution solution is reheated by the burner 23 located below the hot regenerator 22, separated into hot steam and concentrated aqueous solution, and the condenser 26 and the low temperature regenerator 24 having a vacuum pressure of about 60 mmHg. It is sent to the configured upper shell 42. The hot steam is sent inside the cold regenerator tube 25 of the cold regenerator 24.

이어서, 농축된 수용액은 고온 열교환기(20)에서 열교환된 후에 저온 재생기(24)로 보내지고, 고온 재생기(22)에서 연결된 저온 재생기 튜브(25)를 통과하는 증기에 의해 가열된다. 또한, 증발된 냉매증기는 응축기(26)로 공급되어 흡수기(12)에서 희석열을 흡수한 냉각수에 의해 냉각 응축되어 액화 상태로 증발기(10)에 공급된다. 또한, 농축된 수용액은 저온 열교환기(18)를 거쳐 흡수기(12)에 분무되면서 흡수된다. 이처럼 농축용액은 흡수기(12)로 공급되어 다시 냉매증기를 흡수하는 과정을 반복한다.The concentrated aqueous solution is then heat exchanged in the hot heat exchanger 20 and then sent to the cold regenerator 24 and heated by steam passing through the cold regenerator tube 25 connected in the hot regenerator 22. In addition, the evaporated refrigerant vapor is supplied to the condenser 26, cooled and condensed by the cooling water absorbed dilution heat in the absorber 12, and is supplied to the evaporator 10 in a liquefied state. In addition, the concentrated aqueous solution is absorbed while being sprayed into the absorber 12 via the low temperature heat exchanger 18. As such, the concentrated solution is supplied to the absorber 12 to repeat the process of absorbing the refrigerant vapor again.

그리고, 증발기(10)의 노즐(38)에 뿌려진 냉매는 냉매 박스(도시안됨)에 모여지고 냉매 펌프(14)에 의해 증발기(10)의 증발기 튜브(11)로 분사되는 과정을 반복하게 된다.In addition, the refrigerant sprayed on the nozzle 38 of the evaporator 10 is collected in a refrigerant box (not shown), and the process of being injected into the evaporator tube 11 of the evaporator 10 by the refrigerant pump 14 is repeated.

이때, 저온 열교환기(18) 내부에 장착된 수용액 결정화 방지를 위한 온도센서(28)와 압력센서(30)에 의해, 농축된 수용액이 저온 재생기(24)로부터 흡수기(12)로 분무되는 과정에서, 수용액 정체에 따른 수용액 상태변화가 이루어지기 시작할 때, 이러한 변화를 감지하게 된다.At this time, in the process of spraying the concentrated aqueous solution from the low temperature regenerator 24 to the absorber 12 by the temperature sensor 28 and the pressure sensor 30 for preventing the crystallization of the aqueous solution mounted inside the low temperature heat exchanger 18. When the state of the aqueous solution changes due to the stagnation of the aqueous solution, the change is detected.

이상 설명한 바와 같이, 본 발명은 흡수식 냉동기의 수용액 결정 방지를 위해 냉동기 내부에 온도센서와 압력센서를 장착하고 수용액의 농도를 사전에 감지하여 희석 운전시키므로써, 결정화에 따른 냉동기 수명단축과 인력낭비를 방지하며 수용액 결정을 제거하기 위한 관을 삭제하여 원가를 절감하는 효과가 있다.As described above, the present invention is equipped with a temperature sensor and a pressure sensor inside the freezer to prevent the determination of the aqueous solution of the absorption chiller, by detecting the concentration of the aqueous solution in advance to dilute the operation, shortening the freezer life and manpower waste due to crystallization It is effective to reduce the cost by eliminating the tube for removing the aqueous solution crystals.

Claims (4)

유입되는 수용액을 열교환시키는 저온 열교환기가 구비되는 흡수식 냉동기의 수용액 결정 방지 장치는,The aqueous solution determination prevention device of the absorption chiller is provided with a low temperature heat exchanger for heat-exchanging the incoming aqueous solution, 상기 저온 열교환기에 장착되어 상기 저온 열교환기로 유입되는 상기 수용액의 온도를 감지하는 온도센서 ;A temperature sensor mounted on the low temperature heat exchanger and sensing a temperature of the aqueous solution flowing into the low temperature heat exchanger; 상기 저온 열교환기에 장착되어 상기 저온 열교환기로 유입되는 상기 수용액의 압력을 감지하는 압력센서 ;A pressure sensor mounted on the low temperature heat exchanger and detecting a pressure of the aqueous solution flowing into the low temperature heat exchanger; 상기 온도센서와 압력센서로 각각 입력되는 상기 수용액의 온도와 압력을 연산하여 상기 수용액의 농도를 계산하고 상기 수용액 농도와 기설정 농도를 비교하여 상기 수용액 농도가 상기 기설정 농도보다 크거나 같을 때 상기 수용액의 희석제어를 수행하는 마이크로컴퓨터로 구성되는 것을 특징으로 하는 흡수식 냉동기의 수용액 결정 방지 장치.The concentration of the aqueous solution is calculated by calculating the temperature and pressure of the aqueous solution input to the temperature sensor and the pressure sensor, respectively, and when the aqueous solution concentration is greater than or equal to the predetermined concentration by comparing the aqueous solution concentration with the predetermined concentration. A device for preventing the determination of an aqueous solution of an absorption chiller, characterized by comprising a microcomputer for performing dilution control of the aqueous solution. 제 1 항에 있어서,The method of claim 1, 상기 기설정 농도는 상기 저온 열교환기로 유입될 때의 상기 수용액의 절대온도에 대응하는 결정 농도값인 것을 특징으로 하는 흡수식 냉동기의 수용액 결정 방지 장치.And said predetermined concentration is a crystal concentration value corresponding to an absolute temperature of said aqueous solution when it flows into said low temperature heat exchanger. 제 1 항에 있어서,The method of claim 1, 상기 희석제어에 대응하여 경보음을 울리는 부저를 포함하는 것을 특징으로 하는 흡수식 냉동기의 수용액 결정 방지 장치.And a buzzer for sounding an alarm sound in response to the dilution control. 제 3 항에 있어서,The method of claim 3, wherein 상기 경보음에 대응하여 상기 희석제어를 알리는 표시기를 더 포함하는 것을 특징으로 하는 흡수식 냉동기의 수용액 결정 방지 장치.And an indicator for notifying the dilution control in response to the alarm sound.
KR1019960081282A 1996-12-31 1996-12-31 Controller for diluting an absorbent in an absorption refrigerating machine KR100261544B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960081282A KR100261544B1 (en) 1996-12-31 1996-12-31 Controller for diluting an absorbent in an absorption refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960081282A KR100261544B1 (en) 1996-12-31 1996-12-31 Controller for diluting an absorbent in an absorption refrigerating machine

Publications (2)

Publication Number Publication Date
KR19980061904A true KR19980061904A (en) 1998-10-07
KR100261544B1 KR100261544B1 (en) 2000-07-15

Family

ID=19493903

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960081282A KR100261544B1 (en) 1996-12-31 1996-12-31 Controller for diluting an absorbent in an absorption refrigerating machine

Country Status (1)

Country Link
KR (1) KR100261544B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402086B1 (en) * 2001-04-02 2003-10-17 주식회사 센추리 Automatic Control System and Method for preventing the Crystallization of a Solution in Absorption Refrigerator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101012051B1 (en) 2008-03-28 2011-01-31 산요덴키가부시키가이샤 Absorption heat pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402086B1 (en) * 2001-04-02 2003-10-17 주식회사 센추리 Automatic Control System and Method for preventing the Crystallization of a Solution in Absorption Refrigerator

Also Published As

Publication number Publication date
KR100261544B1 (en) 2000-07-15

Similar Documents

Publication Publication Date Title
KR100261544B1 (en) Controller for diluting an absorbent in an absorption refrigerating machine
KR20020077117A (en) Control method for absorption refrigerator
JP4922872B2 (en) Absorption type water heater
JP2708900B2 (en) Absorption refrigerator
JPH07174433A (en) Method for controlling absorption water cooler/heater
KR0183567B1 (en) Variable load control apparatus of absorptive refrigerator
KR100208218B1 (en) Absorption type cool and water supply
KR0180599B1 (en) Absorptive type refrigerator
KR0124786B1 (en) Diluting operation apparatus for air-cooling absorptive type refrigerator and heater
JP4090135B2 (en) Control method of absorption refrigerator
JP2664436B2 (en) Control method of absorption refrigerator
JP3942303B2 (en) Absorption refrigerator
JP2940787B2 (en) Double effect absorption refrigerator
JP2000018759A (en) Absorption refrigerating machine
JP3831425B2 (en) Control method of absorption chiller / heater
KR100214171B1 (en) Absorption type cooler
JP3021474B2 (en) Non-condensable gas discharge device of absorption refrigerator
KR100241623B1 (en) Absorbent way of refrigerator
KR19980037106A (en) Absorption chiller
JP3331678B2 (en) Absorption refrigerator
JPH09257331A (en) Method for preventing deposition of absorbing freezer
JP3831432B2 (en) Absorption refrigeration system
JP2696576B2 (en) Absorption refrigeration equipment
KR980010251A (en) Direct-burn adsorption-type air-conditioning system using adsorber with each burner
JPH04295558A (en) Absorption refrigerator

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120319

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20130318

Year of fee payment: 14

LAPS Lapse due to unpaid annual fee