KR19980046612A - Method for forming metal thin film using multi-direction collimator and its multi-direction collimator - Google Patents

Method for forming metal thin film using multi-direction collimator and its multi-direction collimator Download PDF

Info

Publication number
KR19980046612A
KR19980046612A KR1019960064993A KR19960064993A KR19980046612A KR 19980046612 A KR19980046612 A KR 19980046612A KR 1019960064993 A KR1019960064993 A KR 1019960064993A KR 19960064993 A KR19960064993 A KR 19960064993A KR 19980046612 A KR19980046612 A KR 19980046612A
Authority
KR
South Korea
Prior art keywords
metal
collimator
thin film
direction collimator
plate
Prior art date
Application number
KR1019960064993A
Other languages
Korean (ko)
Other versions
KR100246315B1 (en
Inventor
박석원
Original Assignee
문정환
엘지반도체 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 문정환, 엘지반도체 주식회사 filed Critical 문정환
Priority to KR1019960064993A priority Critical patent/KR100246315B1/en
Publication of KR19980046612A publication Critical patent/KR19980046612A/en
Application granted granted Critical
Publication of KR100246315B1 publication Critical patent/KR100246315B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3447Collimators, shutters, apertures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/548Controlling the composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3476Testing and control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Analytical Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

본 발명은 멀티-디렉션 콜리메이터(Multi-Direction Collimator) 및 그 멀티-디렉션 콜리메이터를 이용함으로써 균일한 박막을 형성할 수 있도록 한 금속박막 형성방법에 관한 것으로, 멀티-디렉션 콜리메이터(M-D Collimator)는, 다수의 플레이트가 그들의 평면이 수직하게 된 상태에서 가로(X) 및 세로(Y) 방향으로 배치됨에 따라 서로 수직하게 교차함으로써 그 플레이트에 의해서 형성된 다수의 수직 관통영역이 매트릭스(MATRIX) 구조를 이루고, 소정의 구동제어신호를 인가받아 동작하는 플레이트 구동부가 상기와 같이 서로 연결된 플레이트를 구동시켜 그 플레이트의 경사각을 다양하게 변경할 수 있도록 구성되고, 그 멀티-디렉션 콜리메이터(MDC)를 이용한 금속박막 형성방법은, 소정이 전도층 위에 층간절연층을 형성한 후, 그 층간절연층을 패터닝하여 콘택홀을 형성하는 단계와, 그 결과물 위에 금속을 증착하는 단계와, 그 금속막을 패터닝하는 단계로 이루어지는 금속배선 형성공정에 있어서, 금속을 증착하는 단계가 웨이퍼와 금속타겟 사이에 장착된 멀티-디렉션 콜리메이터의 경사각이 다양하게 변화되도록 하면서 이루어지는 것을 특징으로 한다, 이와 같은 금속박막 형성방법은, 금속박막이 콘택홀의 하면 뿐만 아니라 측면에서 균일하게 증착되는 효과가 있다.The present invention relates to a method for forming a metal thin film that enables the formation of a uniform thin film by using a multi-direction collimator and the multi-direction collimator, and the multi-direction collimator (MD collimator) Are arranged in the horizontal (X) and vertical (Y) directions with their planes perpendicular to each other, so that a plurality of vertical through areas formed by the plate form a matrix structure. The plate driving unit which is operated by receiving the drive control signal of is configured to drive a plate connected to each other as described above to vary the inclination angle of the plate, the metal thin film forming method using the multi-direction collimator (MDC), After a predetermined interlayer insulating layer is formed over the conductive layer, the interlayer insulating layer is patterned to form a contact hole. In the metallization forming process, which includes forming, depositing a metal on the resultant, and patterning the metal film, depositing the metal includes an inclination angle of the multi-direction collimator mounted between the wafer and the metal target. The metal thin film forming method has the effect that the metal thin film is uniformly deposited not only on the lower surface of the contact hole but also on the side surface thereof.

Description

멀티-디렉션 콜리메이터(Multi-Direction Collimator) 및 그 멀티-디렉션 콜리메이터를 이용한 금속박막 형성방법Method for forming metal thin film using multi-direction collimator and its multi-direction collimator

본 발명은 반도체소자 제조장치 및 그 제조장치를 이용한 반도체소자 제조방법에 관한 것으로, 특히 플레이트(Plate)가 다양한 경사각을 갖도록 구동됨으로써 그를 관통하는 스퍼터입자가 다양한 방향성을 갖도록 한 멀티-디렉션 콜리메이터(Multi-Direction Collimator) 및 그 멀티-디렉션 콜리메이터를 이용함으로써 균일한 박막을 형성할 수 있도록 한 금속박막 형성방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device manufacturing apparatus and a semiconductor device manufacturing method using the manufacturing apparatus. In particular, the plate is driven to have various inclination angles, so that the multi-direction collimator having the sputter particles penetrating therethrough has various directions The present invention relates to a metal thin film forming method that enables a uniform thin film to be formed by using a -direction collimator and a multi-direction collimator.

반도체소자 제조공정에 있어서, 층간절연층을 사이에 두고 하부의 전도층과 상부의 금속층을 접속시키기 위한 배선공정은, 상기 층간절연층을 부분 식각하여 콘택홀(CONTACT HOLE, VIA HOLE)을 형성하는 공정과, 그 콘택홀이 형성된 층간절연층 위에 금속을 증착하는 공정을 포함하여 구성된다. 이하, 첨부된 도면을 참조하여 종래 기술에 따른 상기 금속증착공정에 대해서 설명하면 다음과 같다.In the semiconductor device manufacturing process, a wiring process for connecting a lower conductive layer and an upper metal layer with an interlayer insulating layer interposed therebetween, wherein the interlayer insulating layer is partially etched to form contact holes (CONTACT HOLE, VIA HOLE). And depositing a metal on the interlayer insulating layer in which the contact hole is formed. Hereinafter, the metal deposition process according to the prior art will be described with reference to the accompanying drawings.

도 1은 종래의 통상적인 금속증착공정에 따라 형성된 금속층의 단면구조를 보여주는 단면도로서, 통상적인 스퍼터법으로 금속(21)을 증착하면, 콘택홀 내부에서 상기 금속막(21)의 스텝-커버리지가 불량하게 됨을 보여주고 있다. 즉, 콘택홀의 측면 상부 및 하면 중심부에서는 금속(21)이 많이 증착되지만, 그 콜리메이터의 측면 하부 및 하면의 둘레영역에서는 적게 증착됨으로써, 콘택홀 내부에서의 전체적인 스텝-커버리지가 불량하게 되었다.FIG. 1 is a cross-sectional view illustrating a cross-sectional structure of a metal layer formed by a conventional metal deposition process. When the metal 21 is deposited by a conventional sputtering method, step-coverage of the metal film 21 in a contact hole is increased. It is showing badness. That is, a large amount of metal 21 is deposited on the upper side of the contact hole and the lower surface of the contact hole, but less is deposited on the peripheral area of the lower side and the lower surface of the collimator, so that the overall step-coverage inside the contact hole is poor.

그리고, 도 2a와 도 2b 및 도 3은 상기 통상적인 금속증착공정의 문제점을 개선하기 위하여 제안된 종래 기술의 다른 실시예를 나타낸 도면으로서, 도 2a와 도 2b는 스퍼터입자에 방향성을 주기 위한 콜리메이터의 평면도 및 단면도이며, 도 3은 상기 콜리메이터를 사용하는 금속증착공장을 나타낸 금속증착공정 단면도이다. 이에 대해서 설명하면 다음과 같다.2A, 2B, and 3 are views showing another embodiment of the related art proposed to improve the problems of the conventional metal deposition process, and FIGS. 2A and 2B are collimators for giving directivity to sputter particles. 3 is a plan view and a cross-sectional view of the metal deposition process cross-sectional view showing a metal deposition plant using the collimator. This is described below.

스퍼터입자에 방향성을 주기 위한 콜리메이터(30)는 도 2a와 도 2b에 도시된 바와 같이 다수의 플레이트(31-34)가 그들의 평면이 수직하게 된 상태에서 가로(X) 및 세로(Y) 방향으로 배치됨에 따라 수직하게 교차함으로써, 그 플레이트들(31-34)에 의해서 형성된 수직 관통하는 다수의 영역이 매트릭스(MATRIX) 구조를 이루게 된다.The collimator 30 for directing the sputter particles has a plurality of plates 31-34 in the horizontal (X) and longitudinal (Y) directions with their planes perpendicular to each other, as shown in FIGS. 2A and 2B. By vertically intersecting as arranged, a plurality of vertically penetrating regions formed by the plates 31-34 form a matrix structure.

이와 같이 구성된 콜리메이터(30)를 이용한 금속증착공정은, 도 3에 도시된 바와 같이 타겟(TARGET)(40)과 웨이퍼(실리콘기판)(10) 사이에 콜리메이터(30)를 삽입한 상태에서 스퍼터 증착공정을 수행하였다. 이때, 타겟(40)으로부터 떨어져 나오는 스퍼터입자는 콜리메이터(30)를 통과한 경우에만 웨이퍼(10) 위에 증착되었다. 즉, 타겟(40)에서 떨어져 나온 스퍼터입자가 소정의 입사각 범위내에 있을 때에만 그 스퍼터입자가 웨이퍼(10) 위에 증착되고, 그 스퍼터입자의 입사각이 상기 소정의 입사각 범위를 벗어난 경우에는 콜리메이터(30)의 플레이트(31-34)에 증착되거나 그곳에서 반사되는 새로운 입사각으로 웨이퍼(10)에 증착되었다. 이에 따라, 그의 최상층에 콘택홀패턴(12)이 형성되어 있는 웨이퍼(10) 위에 상기와 같은 금속증착방법으로 금속(22)을 증착하게 되면, 콘택홀의 하면 뿐만 아니라 측면에 형성된 금속막(22)이 각 영역에서 균일한 두께로 형성되었다.In the metal deposition process using the collimator 30 configured as described above, as shown in FIG. 3, the sputter deposition is performed while the collimator 30 is inserted between the target TARGET 40 and the wafer (silicon substrate) 10. The process was carried out. At this time, the sputtered particles falling off the target 40 were deposited on the wafer 10 only when passing through the collimator 30. That is, the sputter particles are deposited on the wafer 10 only when the sputter particles separated from the target 40 are within the predetermined incidence angle range, and when the incident angle of the sputter particles is out of the predetermined incidence angle range, the collimator 30 ) Onto the wafer 10 at a new angle of incidence that is deposited on or reflected from the plates 31-34 of the < RTI ID = 0.0 > Accordingly, when the metal 22 is deposited on the wafer 10 having the contact hole pattern 12 formed on the uppermost layer by the metal deposition method as described above, the metal film 22 formed on the side surface as well as the bottom surface of the contact hole is formed. In each of these areas, a uniform thickness was formed.

그러나, 상기와 같이 콜리메이터가 고정된 상태에서만 스퍼터입자의 입사각을 조절하도록 구성된 종래 기술은, 콘택홀의 측면에 쌓이는 스퍼터입자의 수가 감소하게 됨으로써, 그 영역의 금속막이 얇게 형성되는 문제점이 있었다.However, the conventional technique configured to adjust the angle of incidence of the sputter particles only in the state where the collimator is fixed as described above has a problem in that the number of sputter particles accumulated on the side of the contact hole is reduced, whereby the metal film in the region is formed thin.

이에 본 발명은 상기와 같은 문제점을 해결하기 위하여 창안한 것으로, 스퍼터입자에 대해서 다양한 입사각으로 방향성을 줄 수 있는 멀티-디렉션 콜리메이터(Multi-Direction Collimator)를 제공함과 아울러 그 멀티-디렉션 콜리메이터를 이용함으로써 균일한 박막을 형성할 수 있도록 한 금속박막 형성방법을 제공함에 목적이 있다.Accordingly, the present invention has been made to solve the above problems, by providing a multi-direction collimator that can give a direction at various angles of incidence to the sputter particles and by using the multi-direction collimator It is an object of the present invention to provide a method for forming a metal thin film to form a uniform thin film.

도 1은 종래의 통상적인 스퍼터법으로 증착된 금속박막의 구조를 나타낸 단면도.1 is a cross-sectional view showing the structure of a metal thin film deposited by a conventional conventional sputtering method.

도 2a와 도 2b는 종래 콜리메이터(Collimator)의 구조를 나타낸 평면도 및 측단면도.Figure 2a and Figure 2b is a plan view and side cross-sectional view showing the structure of a conventional collimator (Collimator).

도 3은 상기 도 2a 및 도 2b에 도시된 종래 콜리메이터를 이용한 종래 기술에 따른 금속박막 형성방법을 나타낸 단면도.Figure 3 is a cross-sectional view showing a metal thin film forming method according to the prior art using the conventional collimator shown in Figures 2a and 2b.

도 4a-도 4c는 본 발명에 따른 멀티-디렉션 콜리메이터 및 그를 이용한 금속박막 형성방법을 나타낸 단면도.4A to 4C are cross-sectional views illustrating a multi-direction collimator and a method of forming a metal thin film using the same according to the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10 : 웨이퍼(실리콘기판)12 : 층간절연층(콘택홀패턴)10: wafer (silicon substrate) 12: interlayer insulating layer (contact hole pattern)

23a,23b,23c : 금속박막50 : 멀티-디렉션 콜리메이터23a, 23b, 23c: metal thin film 50: multi-direction collimator

51,52 : 플레이트51,52: Plate

상기 목적을 달성하기 위한 본 발명 멀티-디렉션 콜리메이터(M-D Collimator)는, 다수의 플레이트가 그들의 평면이 수직하게 된 상태에서 가로(X) 및 세로(Y) 방향으로 배치됨에 따라 서로 수직하게 교차함으로써 그 플레이트에 의해서 형성된 다수의 수직 관통영역이 매트릭스(MATRIX) 구조를 이루고, 소정의 구동제어신호를 인가받아 동작하는 플레이트 구동부가 상기와 같이 서로 연결된 플레이트를 구동시켜 그 플레이트의 경사각을 다양하게 변경할 수 있도록 구성되는 것을 특징으로 한다.The present invention the multi-direction collimator (MD Collimator) to achieve the above object, by crossing the perpendicular to each other as the plurality of plates are arranged in the horizontal (X) and vertical (Y) direction with their planes vertically A plurality of vertical through areas formed by the plate form a matrix structure, and the plate driving unit operated by receiving a predetermined driving control signal drives the plates connected to each other as described above so that the inclination angle of the plate can be changed in various ways. It is characterized in that the configuration.

그리고, 상기 목적을 달성하기 위한 본 발명 금속박막 형성방법은, 소정의 전도층 위에 층간절연층을 형성한 후, 그 층간절연층을 패터닝하여 콘택홀을 형성하는 단계와, 그 결과물 위에 금속을 증착하는 단계와, 그 금속막을 패터닝하는 단계로 이루어지는 금속배선 형성공정에 있어서, 금속을 증착하는 단계가 웨이퍼와 금속타겟 사이에 장착된 멀티-디렉션 콜리메이터의 경사각이 다양하게 변화되도록 하면서 이루어지는 것을 특징으로 한다,In addition, the metal thin film forming method of the present invention for achieving the above object is formed by forming an interlayer insulating layer on a predetermined conductive layer, and then patterning the interlayer insulating layer to form a contact hole, and depositing a metal on the resultant And forming a metal film, wherein depositing the metal is performed while varying the inclination angle of the multi-direction collimator mounted between the wafer and the metal target. ,

이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 대해서 상세히 설명하면 다음과 같다. 여기서, 첨부한 도면 도 4a -도 4c는 본 발명에 따른 금속박막 형성방법을 나타낸 공정단면도로서, 타겟과 웨이퍼 사이에서 그 타겟으로부터 떨어져 나온 금속입자에 다양한 방향성을 주도록 동작하는 멀티-디렉션 콜리메이터의 동작상태도 도시되었다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. 4A to 4C are cross-sectional views illustrating a method of forming a metal thin film according to the present invention, and an operation of a multi-direction collimator operating between the target and the wafer to give various directions to the metal particles separated from the target. The state is also shown.

우선, 본 발명의 바람직한 실시예에 따른 멀티-디렉션 콜리메이터의 구성 및 동작에 대해서 도 4a-도 4b를 참조하여 설명한다.First, the configuration and operation of the multi-direction collimator according to the preferred embodiment of the present invention will be described with reference to Figs. 4A to 4B.

다수의 플레이트(51,52)가 그들의 평면이 수직하게 된 상태에서 가로(X) 및 세로(Y) 방향 배치됨에 따라 수직하게 교차함으로써, 그 플레이트들(51,52)에 의해서 형성된 수직 관통영역이 매트릭스(MATRIX) 구조를 이룸과 아울러 그 각 플레이트(51,52)의 연결부에 가로(X) 및 세로(Y) 방향으로 움직일 수 있도록 하는 소정의 이동수단이 구비되고, 소정의 구동제어신호를 인가받아 동작하는 플레이트 구동부가 상기와 같이 서로 연결된 플레이트(51,52)의 상단부와 하단부에 힘을 가하여 그 플레이트(51,52)가 소정의 방향으로 기울어지도록 함으로써, 그 플레이트(51,52)의 경사각을 다양하게 변경할 수 있도록 구성된다.The plurality of plates 51, 52 intersect vertically as they are arranged in the horizontal (X) and vertical (Y) directions with their planes vertical, so that the vertical through area formed by the plates 51, 52 is In addition to the matrix structure, predetermined moving means for moving in the horizontal (X) and vertical (Y) directions are provided at the connection portions of the plates 51 and 52, and a predetermined drive control signal is applied. The inclined angles of the plates 51 and 52 are applied to the plate driving unit by applying a force to the upper and lower ends of the plates 51 and 52 connected to each other as described above to incline the plates 51 and 52 in a predetermined direction. It is configured to change variously.

이와 같이 구성된 멀티-디렉션 콜리메이터의 동작에 대한 일례로서, 도 4a와 같이 플레이트(51,52)가 수직하게 하거나, 도 4b와 같이 플레이트 구동부로부터 상단부는 우측으로 향하는 힘(→)을 인가받는 반면에 하단부는 좌측으로 향하는 힘(←)을 인가받아 플레이트(51,52)가 양(+)의 가로(X) 방향[양의 세로(Y) 방향]으로 기울어지도록 하거나, 도 4c와 같이 상단부는 좌측으로 향하는 힘(←)을 인가받는 반면에 하단부는 우측으로 향하는 힘(→)을 인가받아 플레이트(51,52)가 음(-)의 가로(X) 방향[음의 세로(Y) 방향]으로 기울어지도록 할 수 있다.As an example of the operation of the multi-direction collimator configured as described above, while the plates 51 and 52 are perpendicular to each other as shown in FIG. 4A, or the upper end is applied to the right side from the plate driver as shown in FIG. The lower part is applied with a force (←) directed to the left side so that the plates 51 and 52 are inclined in the positive (X) direction (positive longitudinal (Y) direction), or the upper part is left as shown in FIG. 4C. While the lower force is applied to the right (→) while the plates 51 and 52 are applied in the negative (-) horizontal (X) direction (negative (Y) direction). It can be tilted.

이하, 상기와 같은 멀티-디렉션 콜리메이터를 이용하여 금속박막을 형성하는 방법에 대해서 도 4a -도 4c를 참조하여 설명하면 다음과 같다.Hereinafter, a method of forming a metal thin film using the multi-direction collimator as described above will be described with reference to FIGS. 4A to 4C.

콘택홀패턴(12)이 형성된 웨이퍼(10)에 금속을 증착하기 위한 스퍼터링이 시작되면, 도 4a에 도시된 바와 같이 웨이퍼(20) 위쪽에 장착된 멀티-디렉션 콜리메이터(50)의 각 플레이트(51,52)를 수직하게 한 상태에서 소정의 제 1 시간(t1) 동안 스퍼터링을 수행한다. 이때, 웨이퍼(10) 위에 증착되는 스퍼터입자는 수직면(콘택홀의 측면) 보다 수평면(콘택홀의 하면)에 더 많이 쌓이게 된다(23a).When the sputtering for depositing the metal on the wafer 10 on which the contact hole pattern 12 is formed starts, each plate 51 of the multi-direction collimator 50 mounted on the wafer 20 as shown in FIG. 4A. Sputtering is carried out for a predetermined first time t1 with the vertical direction 52. At this time, the sputtered particles deposited on the wafer 10 are more stacked on the horizontal surface (the lower surface of the contact hole) than the vertical surface (the side of the contact hole) (23a).

이후, 상기 제 1 시간이 경과하면, 도 4b에 도시된 바와 같이 상기 멀티-디렉션 콜리메이터(50)의 플레이트(51,52)를 양(+)의 가로(X) 방향[양의 세로(Y) 방향]으로 기울인 상태에서 소정의 제 2 시간(t2) 동안 상기와 동일한 스퍼터링을 지속한다. 이때, 웨이퍼(10)위에 증착되는 스퍼터입자는 콘택홀의 우측면(하면의 우측영역 포함) 보다 좌측면(하면의 좌측영역 포함)에 더 많이 쌓인다(23b).Subsequently, when the first time elapses, as illustrated in FIG. 4B, the plates 51 and 52 of the multi-direction collimator 50 are moved in the positive (X) direction (the positive length (Y)). Direction], the same sputtering as above is continued for a predetermined second time t2. At this time, the sputtered particles deposited on the wafer 10 are more accumulated on the left side (including the left region of the lower surface) than the right side (including the right region of the lower surface) of the contact hole (23b).

이어서, 상기 제 2 시간이 경과하면, 도 4c에 도시된 바와 같이 상기 멀티-디렉션 콜리메이터(50)의 플레이트(51,52)를 음(-)의 가로(X) 방향[음의 세로(Y) 방향]으로 기울인 상태에서 소정의 제 3 시간(t3) 동안 상기와 동일한 스퍼터링을 지속한다. 이때, 웨이퍼(10)위에 증착되는 스퍼터입자는 콘택홀의 좌측면(하면의 좌측영역 포함) 보다 우측면(하면의 우측영역 포함)에 더 많이 쌓인다(23c).Subsequently, when the second time elapses, as shown in FIG. 4C, the plates 51 and 52 of the multi-direction collimator 50 are moved in the negative (X) horizontal (negative (Y) direction). Direction], the same sputtering as above is continued for a predetermined third time t3. At this time, the sputtered particles deposited on the wafer 10 are more accumulated on the right side (including the right side of the bottom) than the left side (including the left side of the bottom) of the contact hole (23c).

이와 같은 3단계 공정을 통해 증착된 금속막(23c)은 콘택홀의 하면 뿐만 아니라 측면에서 균일하게 증착된다. 이때, 상기와 같이 가로(X) 방향에 따라 좌우로 경사지게 멀티-디렉션 콜리메이터(50)를 구동하는 방법은, 이후의 패터닝공정을 통해 완성되는 금속배선이 가로(X) 방향으로 형성되는 경우에 적용하면 바람직하다.The metal film 23c deposited through such a three-step process is uniformly deposited on the side surface as well as the bottom surface of the contact hole. At this time, the method of driving the multi-direction collimator 50 to be inclined left and right according to the horizontal (X) direction as described above, is applied when the metal wiring is completed in the horizontal (X) direction through the subsequent patterning process Is preferable.

상술한 바와 같이, 금속박막 증착공정이 웨이퍼와 금속타겟 사이에 장착된 멀티-디렉션 콜리메이터의 경사각을 다양하게 변화시키면서 이루어지는 본 발명은, 금속박막이 콘택홀의 하면 뿐만 아니라 측면에서 균일하게 증착되는 효과가 있다.As described above, the present invention is achieved by varying the inclination angle of the multi-direction collimator mounted between the wafer and the metal target, the metal thin film deposition process has the effect that the metal thin film is uniformly deposited on the side as well as the bottom of the contact hole. have.

Claims (4)

다수의 플레이트가 그들의 평면이 수직하게 된 상태에서 가로(X) 및 세로(Y) 방향으로 배치됨에 따라 서로 수직하게 교차함으로써 그 플레이트에 의해서 형성된 다수의 수직 관통영역이 매트릭스(MATRIX) 구조를 이루고, 소정의 구동제어신호를 인가받아 동작하는 플레이트 구동부가 상기와 같이 서로 연결된 플레이트를 구동시켜 그 플레이트의 경사각을 다양하게 변경할 수 있도록 구성되는 것을 특징으로 하는 멀티-디렉션 콜리메이터(Multi-Direction Collimator).As the plurality of plates are arranged in the horizontal (X) and vertical (Y) directions with their planes perpendicular to each other, the plurality of vertical through regions formed by the plates form a matrix structure, Multi-Direction Collimator, characterized in that the plate driving unit operating by receiving a predetermined drive control signal is configured to drive a plate connected to each other as described above to vary the inclination angle of the plate. 제 1 항에 있어서, 상기 다수의 플레이트는 그들이 연결부에 가로(X) 및 세로(Y) 방향으로 움직일 수 있도록 하는 소정의 이동수단이 구비된 것을 특징으로 하는 멀티-디렉션 콜리메이터(Multi-Direction Collimator)The multi-direction collimator according to claim 1, wherein the plurality of plates are provided with a predetermined moving means for allowing them to move in the horizontal (X) and vertical (Y) directions at the connection part. 소정의 전도층 위에 층간절연층을 형성한 후, 그 층간절연층을 패터닝하여 콘택홀을 형성하는 단계와, 그 결과물 위에 금속을 증착하는 단계와, 그 금속막을 패터닝하는 단계로 이루어지는 금속배선 형성공정에 있어서, 금속을 증착하는 단계가 웨이퍼와 금속타겟 사이에 장착된 멀티-디렉션 콜리메이터의 경사각이 다양하게 변화되도록 하면서 이루어지는 것을 특징으로 하는 금속박막 형성방법.Forming an interlayer insulating layer on a predetermined conductive layer, patterning the interlayer insulating layer, forming a contact hole, depositing a metal on the resultant, and patterning the metal film; The method of claim 9, wherein the depositing the metal is performed while varying the inclination angle of the multi-direction collimator mounted between the wafer and the metal target. 제 3 항에 있어서, 금속을 증착하는 단계는 웨이퍼 위쪽에 장착된 멀티-디렉션 콜리메이터의 각 플레이트를 수직하게 한 상태에서 소정의 제 1 시간(t1) 동안 스퍼터링을 수행하는 단계와, 그 제 1 시간이 경과하면 상기 멀티-디렉션 콜리메이터의 플레이트를 양(+)의 가로(X) 방향[양이 세로(Y) 방향]으로 기울인 상태에서 소정의 제 2 시간(t2) 동안 상기와 동일한 스퍼터링을 지속하는 단계와, 그 제 2 시간이 경과하면 상기 멀티-디렉션 콜리메이터의 플레이트를 음(-)의 가로(X) 방향[음의 세로(Y) 방향]으로 기울인 상태에서 소정의 제 3 시간(t3) 동안 상기와 동일한 스퍼터링을 지속하는 단계로 이루어지는 것을 특징으로 하는 금속박막 형성방법.4. The method of claim 3, wherein depositing the metal comprises performing sputtering for a predetermined first time t1 with each plate of the multi-direction collimator mounted above the wafer perpendicular to each other; After this elapses, the same sputtering is continued for a predetermined second time t2 in a state in which the plate of the multi-direction collimator is tilted in the positive (+) horizontal (X) direction (the positive (Y) direction). Step, and when the second time has elapsed, the plate of the multi-direction collimator is tilted in the negative (X) horizontal (negative (Y) direction) for a predetermined third time t3. The metal thin film forming method comprising the step of continuing the same sputtering as described above.
KR1019960064993A 1996-12-13 1996-12-13 Forming method of metal layer using multi-direction collimator KR100246315B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960064993A KR100246315B1 (en) 1996-12-13 1996-12-13 Forming method of metal layer using multi-direction collimator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960064993A KR100246315B1 (en) 1996-12-13 1996-12-13 Forming method of metal layer using multi-direction collimator

Publications (2)

Publication Number Publication Date
KR19980046612A true KR19980046612A (en) 1998-09-15
KR100246315B1 KR100246315B1 (en) 2000-03-15

Family

ID=19487536

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960064993A KR100246315B1 (en) 1996-12-13 1996-12-13 Forming method of metal layer using multi-direction collimator

Country Status (1)

Country Link
KR (1) KR100246315B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288307B1 (en) * 2011-05-31 2013-07-22 주성엔지니어링(주) Evaporation deposition apparatus and evaporation deposition method using the smae

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07335553A (en) * 1994-06-08 1995-12-22 Tel Varian Ltd Treatment device and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101288307B1 (en) * 2011-05-31 2013-07-22 주성엔지니어링(주) Evaporation deposition apparatus and evaporation deposition method using the smae

Also Published As

Publication number Publication date
KR100246315B1 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
KR100488256B1 (en) Vertical electrical interconnections in a stack
US4389429A (en) Method of forming integrated circuit chip transmission line
JP3924466B2 (en) Array of capacitive micromachined ultrasonic transducer elements with through-wafer via connections
DE4490400C2 (en) A method of forming deep conductive vias and a connection layer containing vias formed by this method
US5034091A (en) Method of forming an electrical via structure
US4379307A (en) Integrated circuit chip transmission line
US4663529A (en) Thermal imaging device and a method of manufacturing a thermal imaging device
US5025303A (en) Product of pillar alignment and formation process
US5774960A (en) Process for manufacturing a multi-element acoustic probe, especially an echograph probe
AU562641B2 (en) Electronic matrix array
JP2001053100A5 (en)
US5741404A (en) Multi-planar angulated sputtering target and method of use for filling openings
KR100246315B1 (en) Forming method of metal layer using multi-direction collimator
US5937493A (en) Method of manufacturing an electronic multilayer component
JPH0728131B2 (en) Method for forming multi-layer wiring network of connection board having high-density integrated circuit
US4745332A (en) Control plate for picture-reproducing devices
CA2403693A1 (en) Liquid crystal device and manufacturing method
US5869893A (en) Semiconductor device having a trapezoidal joint chip
JPH10330940A (en) Vapor deposition apparatus for multilayered metallic wiring
JPS63186457A (en) Semiconductor device and its manufacture
JPH06104206A (en) Method and apparatus for manufacturing semiconductor device
JPH0741943A (en) Sputtering device
KR100190079B1 (en) Metal line of semiconductor device & forming method thereof
JPH11163129A (en) Manufacture of semiconductor device
KR0147716B1 (en) Formation method of elf alignment contact

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20071120

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee