KR19980043943A - Manufacturing method of blue light emitting diode - Google Patents

Manufacturing method of blue light emitting diode Download PDF

Info

Publication number
KR19980043943A
KR19980043943A KR1019960061924A KR19960061924A KR19980043943A KR 19980043943 A KR19980043943 A KR 19980043943A KR 1019960061924 A KR1019960061924 A KR 1019960061924A KR 19960061924 A KR19960061924 A KR 19960061924A KR 19980043943 A KR19980043943 A KR 19980043943A
Authority
KR
South Korea
Prior art keywords
type
gallium nitride
nitride layer
light emitting
blue light
Prior art date
Application number
KR1019960061924A
Other languages
Korean (ko)
Other versions
KR100404170B1 (en
Inventor
김성우
Original Assignee
구자홍
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 구자홍, 엘지전자 주식회사 filed Critical 구자홍
Priority to KR1019960061924A priority Critical patent/KR100404170B1/en
Publication of KR19980043943A publication Critical patent/KR19980043943A/en
Application granted granted Critical
Publication of KR100404170B1 publication Critical patent/KR100404170B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

N형 전극의 표면을 평탄하게 할 수 있도록 한 청색 발광 다이오드의 제조방법에 관한 것으로 N형 전극의 표면이 거칠게 되어 리드 와이어를 형성하기 위한 와이어 본딩이 잘 되지 않는 문제점을 해결하기 위하여 기판 전면에 N형 질화 갈륨층, P형 질화 갈륨층의 순서로 적층하고 N형 질화 갈륨층이 노출되도록 일부 영역을 식각하여 일정 온동서 1차 열처리 하고 P형 질화 갈륨층상의 일정영역에 P형 금속물질을 적층하여 P형 전극을 먼저 형성하고 일정 온도에서 2차 열처리한 다음 N형 질화 갈륨층상의 일정 영역에 N형 금속물질을 적층하여 N형 전극을 형성하고 고온의 열처리를 추가로 수행하지 않으므로 청색 발광 다이오드의 동작 특성 및 신뢰성을 향상시킬 수 있다.The present invention relates to a method of manufacturing a blue light emitting diode that makes the surface of an N-type electrode flat. To solve the problem that the surface of the N-type electrode becomes rough and wire bonding for forming lead wires is not easy, Laminate in order of the gallium nitride layer and the p-type gallium nitride layer, and etching a portion of the region to expose the N-type gallium nitride layer by heat treatment for a predetermined temperature, and then depositing a P-type metal material on a predetermined region on the P-type gallium nitride layer. P-type electrode is formed first, and second heat treatment is performed at a predetermined temperature, and then an N-type metal material is formed by laminating an N-type metal material in a predetermined region on the N-type gallium nitride layer. It can improve the operation characteristics and reliability.

Description

청색 발광 다이오드의 제조방법Manufacturing method of blue light emitting diode

본 발명은 N형 전극의 표면을 평탄하게 할 수 있도록 한 청색 발광 다이오드의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a blue light emitting diode in which the surface of an N-type electrode can be made flat.

일반적으로 발광 다이오드(Light Emitting Diode)는 주입된 전자와 정공이 재결합할 때 과잉 에너지를 빛으로 방출하는 다이오드이고 GaAsP등을 이용한 적색 발광 다이오드, GaP를 이용한 녹색 발광 다이오드 등이 있으며 모두 저전압 소전력으로 동작하는 장점을 지닌 소자로써 소형의 숫자 문자 표시소자, 광결합 소자용광원으로 사용된다. 이러한 발광 다이오드는 전류 전압간에 선형적 특성을 갖도록 하기 위하여 전극을 이루는 금속과 반도체간에 비 정류성 접촉인 저항성 접촉(Ohmic Contact)을 이룬다. 이때 금속과 반도체가 저항성 접촉을 이루기 위해서는 고온의 열처리 공정이 필요하고 이 열처리 공정이 전극의 표면에 영향을 미칠 수 있다.Generally, light emitting diodes are diodes that emit excess energy as light when the injected electrons and holes recombine, and there are red light emitting diodes using GaAsP and green light emitting diodes using GaP. This device has the advantage of being used as a light source for small number character display device and optical coupling device. Such light emitting diodes form ohmic contacts, which are non-rective contacts, between the metal constituting the electrode and the semiconductor so as to have a linear characteristic between current and voltage. In this case, a high temperature heat treatment process is required for the metal and the semiconductor to make an ohmic contact, and the heat treatment process may affect the surface of the electrode.

이하 종래의 기술에 따른 청색 발광 다이오드의 제조 방법을 첨부한 도면을 참조하여 설명하면 다음과 같다.Hereinafter, a method of manufacturing a blue light emitting diode according to the related art will be described with reference to the accompanying drawings.

도 1a 내지 도 1d는 종래의 기술에 따른 청색 발광 다이오드의 제조공정을 보여주는 공정단면도이다.1A to 1D are cross-sectional views illustrating a manufacturing process of a blue light emitting diode according to the related art.

종래의 기술에 따른 청색 발광 다이오드의 제조 방법은 도 1a와 같이 사파이어 기판(11)의 전면에 유기금속 기상증착법(MOCVD)(Metal Organic Chemical Vapor Deposition)으로 N형 질화 갈륨(GaN)층(12)을 형성하고 N형 질화 갈륨층(12)의 전면에 유기금속 기상증착법으로 P형 질화 갈륨층(13)을 형성한다. 이때, N형 질화 갈륨층(12)은 질화 갈륨에 실리콘(Si)을 도핑(Doping)한 것이고 P형 질화 갈륨층(13)은 질화 갈륨에 마그네슘(Mg)을 도핑한 것이다. 이어서 도 1b와 같이 N형 질화 갈륨층(12)의 일부 영역이 노출되도록 N형 질화 갈륨층(12) 및 P형 질화 갈륨층(13)의 일정 영역을 반응성 이온 식각(RIE)(Reactive Ion Etching) 방법으로 제거한다. 그리고 도 1c와 같이 노출된 N형 질화 갈륨층(12)상의 일부 영역에 Ti(14), Al(15), Ni(16), Au(17)을 차례로 적층하여 N형 전극을 형성하고, 850℃~950℃의 온도에서 열처리한다. 이때 N형 전극과 N형 질화 갈륨층(12)이 저항성 접촉을 이루게 된다. 이어서 도 1d와 같이 P형 질화 갈륨층(13)상의 일정영역에 Cr(18), Ni(19), Au(20)을 차례로 적층하여 P형 전극을 형성하고, 500℃~600℃의 온도에서 열처리하여 청색 발광 다이오드의 제조를 완료한다. 이때 P형 전극과 P형 질화 갈륨층(13)이 저항성 접촉을 이루게 된다.The conventional method of manufacturing a blue light emitting diode according to the related art is an N-type gallium nitride (GaN) layer 12 by metal organic chemical vapor deposition (MOCVD) on the front surface of the sapphire substrate 11 as shown in FIG. 1A. The P-type gallium nitride layer 13 is formed on the entire surface of the N-type gallium nitride layer 12 by an organometallic vapor deposition method. In this case, the N-type gallium nitride layer 12 is doped with silicon (Si) in the gallium nitride (P) gallium nitride layer 13 is doped with magnesium (Mg) in gallium nitride. Subsequently, a portion of the N-type gallium nitride layer 12 and the P-type gallium nitride layer 13 is exposed to reactive ion etching (RIE) so that a portion of the N-type gallium nitride layer 12 is exposed as shown in FIG. 1B. ) To remove it. 1C, Ti (14), Al (15), Ni (16), and Au (17) are sequentially stacked on a portion of the exposed N-type gallium nitride layer 12 to form an N-type electrode, as shown in FIG. 1C. Heat treatment at a temperature of ℃ ~ 950 ℃. At this time, the N-type electrode and the N-type gallium nitride layer 12 are in ohmic contact. Subsequently, Cr (18), Ni (19), and Au (20) are sequentially stacked in a predetermined region on the P-type gallium nitride layer 13 to form a P-type electrode, as shown in FIG. 1D. Heat treatment is completed to manufacture the blue light emitting diode. At this time, the P-type electrode and the P-type gallium nitride layer 13 are in ohmic contact.

종래의 기술에 따른 청색 발광 다이오드의 제조방법은 N형 전극을 형성한 다음 약 900℃의 고온 열처리를 수행하므로 N형 전극의 표면이 거칠어지는 볼 업(Ball Up) 현상이 발생하여 N형 전극 표면에 리드 와이어(Lead Wire)를 형성하기 위한 와이어 본딩(Wire Bonding)이 잘되지 않는 문제점이 있다.In the manufacturing method of the blue light emitting diode according to the prior art, since the N-type electrode is formed and then a high temperature heat treatment is performed at about 900 ° C., the surface of the N-type electrode becomes rough, a ball up phenomenon occurs, and thus the surface of the N-type electrode There is a problem in that wire bonding for forming lead wires is poor.

따라서 본 발명은 이러한 종래의 문제점을 해결하기 위하여 안출한 것으로서 N형 전극의 표면을 평탄하게 할 수 있도록 한 청색 발광 다이오드의 제조 방법을 제공함에 그 목적이 있다.Accordingly, an object of the present invention is to provide a method of manufacturing a blue light emitting diode, which is designed to solve such a conventional problem and to flatten the surface of an N-type electrode.

도 1a 내지 도 1d는 종래의 기술에 따른 청색 다이오드의 제조공정을 보여주는 공정단면도이고,1A to 1D are cross-sectional views illustrating a manufacturing process of a blue diode according to the related art.

도 2a 내지 도 2d는 본 발명에 따른 청색 발광 다이오드의 제조공정을 보여주는 공정단면도이다.2A through 2D are cross-sectional views illustrating a manufacturing process of a blue light emitting diode according to the present invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

21:기판22:N형 질화 갈륨층21: Substrate 22: N-type gallium nitride layer

23:P형 질화 갈륨층24:Ti(타이타늄)23: P type gallium nitride layer 24: Ti (titanium)

25:Al(알루미늄)26:Ni(니켈)25: Al (aluminum) 26: Ni (nickel)

27:Au(금)28:Cr(크롬)27: Au (Fri) 28: Cr (Chrome)

29:Ni30:Au29: Ni30: Au

본 발명은 기판 전면에 N형 및 P형 에피층을 형성하고 N형 에피층의 일부 영역이 노출되도록 N형 및 P형 에피층을 일정 깊이로 제거하여 노출된 N형 에피층에 1차 열처리를 먼저 수행하고, P형 에피층의 일정영역에 P형 전극을 형성하여 기판 전면에 2차 열처리한 다음 노출된 N형 에피층의 일정 영역에 N형 전극을 형성하고 별도의 열처리 공정을 수행하지 않으므로 N형 전극의 표면이 평탄화됨을 특징으로 한다.The present invention forms the N-type and P-type epitaxial layers on the entire surface of the substrate, and removes the N-type and P-type epitaxial layers to a predetermined depth so that a portion of the N-type epitaxial layer is exposed to the first heat treatment. First, the P-type electrode is formed in a predetermined region of the P-type epi layer, and the second heat treatment is performed on the entire surface of the substrate. Then, the N-type electrode is formed in the predetermined region of the exposed N-type epi layer, and a separate heat treatment process is not performed. The surface of the N-type electrode is characterized in that the planarization.

이하 본 발명에 따른 청색 발광 다이오드의 제조방법을 첨부한 도면을 참조하여 설명하면 다음과 같다.Hereinafter, a method of manufacturing a blue light emitting diode according to the present invention will be described with reference to the accompanying drawings.

도 2a 내지 도 2d는 본 발명에 따른 청색 발광 다이오드의 제조 공정을 보여주는 공정 단면도이다.2A to 2D are cross-sectional views illustrating a manufacturing process of a blue light emitting diode according to the present invention.

본 발명에 따른 청색 발광 다이오드의 제조 공정은 도 2a와 같이 사파이어 기판(21)의 전면에 유기금속 기상증착법(MOCVD)(Metal Orgaic Chemical Vapor Deposition)으로 N형 질화 갈륨(GaN) 층(22)을 형성하고 N형 질화 갈륨층(22)의 전면에 동일한 방법으로 P형 질화 갈륨층(23)을 형성한다. 이어서 도 2b와 같이 N형 질화 갈륨층(22)의 일부 영역이 노출되도록 N형 질화 갈륨층(22) 및 P형 질화 갈륨층(23)의 일정 영역을 반응성 이온 식각(RIE)(Reactive Ion Etching)하여 제거하고 850℃~950℃의 온도에서 열처리한다. 그리고 도 2c와 같이 P형 질화 갈륨층(13)상의 일정영역에 Cr(28), Ni(29), Au(30)을 차례로 적층하여 P형 전극을 형성하고 500℃~600℃의 온도에서 열처리한다. 이때 500℃~600℃ 온도의 열처리에 의해 P형 제1 금속층(28)을 이루는 크롬(Cr)이 용융(Melting)되어 일종의 전자층을 형성하게 되고 이로 인하여 P형 전극과 P형 질화 갈륨층은 저항성 접촉을 이루게 된다. 이어서 도 2d와 같이 노출된 N형 질화 갈륨층(22)상의 일부 영역에 Ti(24), Al(25), Ni(26), Au(27)을 차례로 적층하여 N형 전극을 형성하고 청색 발광 다이오드의 제조를 완료한다. 이때 도 2b에서 실시한 고온(850℃~950℃)의 열처리로 인해 N형 질화 갈륨층(GaN)(22)의 원자간 결합이 해제되면서 질소(N+)가 기화되어 N형 질화 갈륨층(22)의 표면에는 전자(Ga-)가 다수 존재하게 되고 전자층이 형성되어 N형 질화 갈륨층(22)과 N형 전극이 저항성 접촉을 이루기 위한 조건은 이미 갖추어져 있으므로 N형 질화 갈륨층(22)상에 N형 전극을 형성후 별도의 열처리 공정을 수행하지 않아도 N형 질화 갈륨층(22)과 N형 전극은 저항성 접촉을 이루게 된다.In the manufacturing process of the blue light emitting diode according to the present invention, an N-type gallium nitride (GaN) layer 22 is formed on the entire surface of the sapphire substrate 21 by MOCVD (Metal Orgaic Chemical Vapor Deposition). The P-type gallium nitride layer 23 is formed on the entire surface of the N-type gallium nitride layer 22 in the same manner. Next, as shown in FIG. 2B, certain regions of the N-type gallium nitride layer 22 and the P-type gallium nitride layer 23 are exposed to a portion of the N-type gallium nitride layer 22 to be reactive ion etching (RIE). ) To remove and heat treatment at a temperature of 850 ℃ ~ 950 ℃. As shown in FIG. 2C, Cr (28), Ni (29), and Au (30) are sequentially stacked in a predetermined region on the P-type gallium nitride layer 13 to form a P-type electrode, and then heat-treated at a temperature of 500 ° C. to 600 ° C. do. At this time, chromium (Cr) forming the P-type first metal layer 28 is melted by heat treatment at a temperature of 500 ° C. to 600 ° C. to form a kind of electronic layer. Thus, the P-type electrode and the P-type gallium nitride layer are An ohmic contact is made. Subsequently, Ti (24), Al (25), Ni (26), and Au (27) are sequentially stacked on a portion of the exposed N-type gallium nitride layer 22 as shown in FIG. 2D to form an N-type electrode, and emit blue light. Complete the manufacture of the diode. At this time, due to the high temperature (850 ° C. to 950 ° C.) heat treatment performed in FIG. 2B, the atomic bonding of the N-type gallium nitride layer (GaN) 22 is released, and nitrogen (N + ) is vaporized to form the N-type gallium nitride layer 22. ), A large number of electrons (Ga ) exist on the surface of the N-type gallium nitride layer, and an electron layer is formed so that the N-type gallium nitride layer 22 and the N-type electrode have ohmic contact. After the N-type electrode is formed on the N-type gallium nitride layer 22 and the N-type electrode are in ohmic contact even without a separate heat treatment process.

본 발명에 따른 청색 발광 다이오드의 제조방법은 N형 전극의 표면을 평탄하게 형성할 수 있고 N형 전극의 표면상에 리드 와이어를 형성하기 위한 와이어 본딩이 잘 되게 하므로 청색 발광 다이오드의 신뢰성 및 동작 특성을 향상시킬 수 있는 효과가 있다.The method of manufacturing a blue light emitting diode according to the present invention can form the surface of the N-type electrode flat and the wire bonding for forming the lead wire on the surface of the N-type electrode is well, so the reliability and operation characteristics of the blue light emitting diode There is an effect to improve.

Claims (3)

기판 전면에 N형 에피층을 형성하고 상기 N형 에피층 전면에 P형 에피층을 형성하는 단계;Forming an N-type epitaxial layer on the entire surface of the substrate and forming a P-type epitaxial layer on the entire N-type epilayer; 상기 N형 에피층의 일부 영역이 노출되도록 상기 N형 및 P형 에피층을 일정 깊이로 제거하고 노출된 N형 에피층에 1차 열처리 하는 단계;Removing the N-type and P-type epi layers to a predetermined depth so that a portion of the N-type epi layer is exposed, and performing a first heat treatment on the exposed N-type epi layer; 상기 P형 에피층의 일정영역에 P형 전극을 형성하고 기판 전면에 2차 열처리하는 단계;Forming a P-type electrode in a predetermined region of the P-type epitaxial layer and performing a second heat treatment on the entire surface of the substrate; 상기 노출된 N형 에피층의 일정 영역에 N형 전극을 형성하는 단계를 포함하여 이루어짐을 특징으로 하는 청색 발광 다이오드의 제조방법.And forming an N-type electrode in a predetermined region of the exposed N-type epitaxial layer. 제1항에 있어서,The method of claim 1, 상기 1차 열처리의 온도는 850℃~950℃임을 특징으로 하는 청색 발광 다이오드의 제조방법.The temperature of the first heat treatment is a manufacturing method of a blue light emitting diode, characterized in that 850 ℃ ~ 950 ℃. 제1항에 있어서,The method of claim 1, 상기 2차 열처리의 온도는 500℃~600℃임을 특징으로 하는 청색 발광 다이오드의 제조방법.The temperature of the second heat treatment is a manufacturing method of a blue light emitting diode, characterized in that 500 ℃ ~ 600 ℃.
KR1019960061924A 1996-12-05 1996-12-05 Method for manufacturing blue light emitting diode(led) KR100404170B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960061924A KR100404170B1 (en) 1996-12-05 1996-12-05 Method for manufacturing blue light emitting diode(led)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960061924A KR100404170B1 (en) 1996-12-05 1996-12-05 Method for manufacturing blue light emitting diode(led)

Publications (2)

Publication Number Publication Date
KR19980043943A true KR19980043943A (en) 1998-09-05
KR100404170B1 KR100404170B1 (en) 2004-02-14

Family

ID=37422587

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960061924A KR100404170B1 (en) 1996-12-05 1996-12-05 Method for manufacturing blue light emitting diode(led)

Country Status (1)

Country Link
KR (1) KR100404170B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020065948A (en) * 2001-02-08 2002-08-14 (주)나리지* 온 p-type Ohmic contact of GaN Semiconductor Device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102188494B1 (en) 2014-07-21 2020-12-09 삼성전자주식회사 Semiconductor light emitting device, manufacturing method of the semiconductor light emitting device and manufacturing method of semiconductor light emitting device package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020065948A (en) * 2001-02-08 2002-08-14 (주)나리지* 온 p-type Ohmic contact of GaN Semiconductor Device

Also Published As

Publication number Publication date
KR100404170B1 (en) 2004-02-14

Similar Documents

Publication Publication Date Title
US9142718B2 (en) Light emitting device
US20110147704A1 (en) Semiconductor light-emitting device with passivation layer
US7196348B2 (en) GaN system semiconductor light emitting device excellent in light emission efficiency and light extracting efficiency
US20030209723A1 (en) Gallium nitride-based compound semiconductor device
JP2013034010A (en) Vertical light-emitting device
US8193536B2 (en) Light emitting device
JP2022516669A (en) Vertical structure blue light emitting diode and its manufacturing method
USRE43426E1 (en) Fabrication method of transparent electrode on visible light-emitting diode
KR101203137B1 (en) GaN compound semiconductor light emitting element and method of manufacturing the same
CN107452861B (en) Ultraviolet LED chip and preparation method thereof
JP2006294697A (en) Light emitting element and its fabrication process
KR101025948B1 (en) Nitride Semiconductor Light Emitting Device and Menufacturing Method of the Same
US7012284B2 (en) Nitride semiconductor light emitting device and method of manufacturing the same
KR100404170B1 (en) Method for manufacturing blue light emitting diode(led)
KR100387099B1 (en) GaN-Based Light Emitting Diode and Fabrication Method thereof
KR20120081042A (en) Gan compound semiconductor light emitting element
CN112768576B (en) Light-emitting diode and preparation method thereof
KR100348280B1 (en) method for fabricating blue emitting device
JP2011138836A (en) Manufacturing method for light-emitting element
KR101411375B1 (en) Vertical Light Emitting Diode and Method of Manufacturing for the Same
US20230006091A1 (en) Semiconductor structures and methods of manufacturing the same
KR101026059B1 (en) Nitride Semiconductor Light Emitting Device and Menufacturing Method of the Same
KR20000001665A (en) Blue light emitting element and the manufacturing method
TWI740418B (en) Light-emitting device and the manufacturing method thereof
KR20030089574A (en) Gallium Nitride-Based Compound Semiconductor

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20120926

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20130924

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee