KR19980017623A - Resin External Organic Semiconductor Solid Electrolytic Capacitor and Manufacturing Method Thereof - Google Patents

Resin External Organic Semiconductor Solid Electrolytic Capacitor and Manufacturing Method Thereof Download PDF

Info

Publication number
KR19980017623A
KR19980017623A KR1019960037416A KR19960037416A KR19980017623A KR 19980017623 A KR19980017623 A KR 19980017623A KR 1019960037416 A KR1019960037416 A KR 1019960037416A KR 19960037416 A KR19960037416 A KR 19960037416A KR 19980017623 A KR19980017623 A KR 19980017623A
Authority
KR
South Korea
Prior art keywords
organic semiconductor
solid electrolytic
semiconductor solid
capacitor
electrolytic capacitor
Prior art date
Application number
KR1019960037416A
Other languages
Korean (ko)
Other versions
KR100227213B1 (en
Inventor
조연식
Original Assignee
서갑수
삼화전기 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서갑수, 삼화전기 주식회사 filed Critical 서갑수
Priority to KR1019960037416A priority Critical patent/KR100227213B1/en
Publication of KR19980017623A publication Critical patent/KR19980017623A/en
Application granted granted Critical
Publication of KR100227213B1 publication Critical patent/KR100227213B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/008Terminals
    • H01G9/012Terminals specially adapted for solid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/92Capacitors with potential-jump barrier or surface barrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

본 발명은 알루미늄박의 표면에 산화알루미늄 피막이 형성된 화성박을 양극(2)으로, 화성처리되지 않은 알루미늄박을 음극(3)으로 해서 이들 사이에 스페이서 종이를 끼워서 감은 커패시터 소자를 슬림형으로 압착하여 제작한 후, 이어서 일정한 틀에 TCNQ 착염(6)을 넣고 융해시킨 용액에 예열한 상기 소자를 함침시키고, 함침된 소자(1)를 상기 틀에서 분리하여 급냉시킨 커패시터 소자(9)에 에폭시 수지(7)를 도포함으로서 양산성(量産性)을 향상시키고, 제품을 슬림화하여 SET 적용시 자동 삽입 능력을 향상시킨 수지 외장형 유기 반도체 고체 전해 커패시터 및 그의 제조방법에 관한 것이다.According to the present invention, a thin film of a capacitor formed by forming an aluminum oxide film on the surface of an aluminum foil is used as an anode (2), and an unoxidized aluminum foil is used as a cathode (3). Subsequently, a TCNQ complex salt (6) is added to a predetermined mold, and then the preheated element is impregnated in the melted solution, and the impregnated element (1) is separated from the mold and quenched in an epoxy resin (7). The present invention relates to a resin exterior organic-semiconductor solid electrolytic capacitor and a method for manufacturing the same, which have improved mass productivity, slimming the product, and improved the automatic insertion capability when the SET is applied.

Description

수지 외장형 유기 반도체 고체 전해 커패시터 및 그의 제조방법Resin External Organic Semiconductor Solid Electrolytic Capacitor and Manufacturing Method Thereof

본 발명은 수지 외장형 유기 반도체 고체 전해 커패시터 및 그의 제조 방법에 관한 것이다. 더욱 구체적으로, 본 발명은 전해질로서 일본 카리트에서 제조한 N-n-부틸-이소퀴놀리늄(TCNQ)2(상품명 COS:이하 TCNQ 착염이라 한다)을 사용하는 수지 외장형 유기 반도체 고체 전해 커패시터 및 그의 제조 방법에 관한 것이다.The present invention relates to a resin exterior organic semiconductor solid electrolytic capacitor and a manufacturing method thereof. More specifically, the present invention relates to a resin external type organic semiconductor solid electrolytic capacitor using Nn-butyl-isoquinolinium (TCNQ) 2 (trade name COS: hereinafter referred to as TCNQ complex salt) manufactured by Carit, Japan, and its preparation as an electrolyte. It is about a method.

최근에 온도 및 주파수 특성이 양호하며, 수명이 긴 고신뢰성의 전원부품이 음향기기, 통신기기 및 산업용 기기와 같은 전자기기 등에 적용되고 있다. 이와 같은 우수한 특성을 갖는 부품들 중 특히 커패시터는 전해질이 고형화 되어가고 있으며, 또한 그의 사용 영역이 가속적으로 확대되어 가고 있다.Recently, high reliability power components having good temperature and frequency characteristics and long lifespans have been applied to electronic devices such as acoustic devices, communication devices, and industrial devices. Among the components having such excellent properties, especially capacitors, the electrolyte is becoming solid, and its use area is rapidly expanding.

(종래의 기술)(Conventional technology)

종래의 고체 전해 커패시터의 전해질로서는 유기 반도체, 특히 7, 7, 8, 8-테트라시아노키노디메탄의 착염을 이용하는 것이 제안되어 있다(일본국 특허공개 (소)62-52939호). 이와 같은 종래의 기술에 있어서는, 제2도에 나타난 바와 같이, TCNQ의 착염으로 이루어지는 유기 반도체 분말을 적당량 열전도성 케이스(알루미늄 케이스)에 가압해선 충전(充塡)하고, 이것을 250~300℃의 온도에서 융해시켜서 액화하고, 여기서 예열시킨 커패시터 소자를 넣고 합침시킨다. 이어서, 케이스내에 함침된 커패시터 소자를 급냉시킨 후, 케이스의 개구부에 열경화성 에폭시 수지를 충전하고, 85~105℃의 온도에서 장시간 동안 방치하여 경화시킨다.As an electrolyte of a conventional solid electrolytic capacitor, it is proposed to use a complex salt of an organic semiconductor, especially 7, 7, 8, and 8-tetracyanokinomidimethane (Japanese Patent Laid-Open No. 62-52939). In such a conventional technique, as shown in FIG. 2, an organic semiconductor powder made of a complex salt of TCNQ is pressed into an appropriate amount of a thermally conductive case (aluminum case), and charged to a temperature of 250 to 300 ° C. It is melted at and liquefied, and the preheated capacitor element is put here and combined. Subsequently, after the capacitor element impregnated in the case is quenched, a thermosetting epoxy resin is filled in the opening of the case, and left to cure at a temperature of 85 to 105 占 폚 for a long time.

이와 같은 방법으로 제조된 유기 반도체 고체 전해 커패시터는 함침시 사용된 열전도성 케이스가 제거되지 아니한 형태로 시판되고 있다. 이와같은 종래의 고체 전해 커패시터는 열전도성 케이스 각각에 수지를 주입해야 하는 불편한 결점이 있고, 또한 외장 작업을 동시에 다량으로 실시할 수 없으므로 생산성을 저하시키는 결점을 가지고 있다.Organic semiconductor solid electrolytic capacitors manufactured in this manner are commercially available in a form in which the thermally conductive case used during impregnation is not removed. Such conventional solid electrolytic capacitors have the disadvantage of injecting resin into each of the thermally conductive cases, and also have the disadvantage of lowering productivity since a large amount of exterior work cannot be performed at the same time.

본 발명자는 위와 같은 결점을 갖는 종래의 유기반도체 고체 전해 커패시터가 갖고 있는 열전도성 케이스를 제거시키기 위하여 예의 연구한 결과, 전기적 특성이 거의 동일하고, SET에의 적용성이 유리한 슬림형의 수지 외장형 유기 반도체 고체 전해 커패시터를 발견하고, 본 발명을 완성하기에 이르렀다. 본 발명에 의하여 제작된 커패시터는 종래의 원통형에 비하여 SET에의 자동 삽입 능력을 향상시킬 수 있다.MEANS TO SOLVE THE PROBLEM As a result of earnestly researching in order to remove the thermally conductive case which the conventional organic-semiconductor solid electrolytic capacitor which has the above drawbacks has, the present invention has a slim resin exterior type organic semiconductor solid with almost the same electrical characteristics and advantageous to SET. An electrolytic capacitor has been found and the present invention has been completed. The capacitor manufactured according to the present invention can improve the automatic insertion capability into the SET compared to the conventional cylindrical.

(과제를 해결하기 위한 수단)(Means to solve the task)

본 발명은 상기의 수지 외장형 유기 반도체 고체 전해 커패시터를 슬림화시키기 위해 알루미늄박의 표면에 산화알루미늄 피막이 형성된 화성박을 양극으로, 화성처리되지 않은 알루미늄박을 음극으로 해서 이들 사이에 스페이서 종이를 끼워서 감은 소자를 제3도와 같이 압착하여 커패시터 소자를 제작하였다.The present invention is a device in which an aluminum foil film is formed on an aluminum foil surface as an anode and an untreated aluminum foil as a cathode in order to slim down the resin external organic semiconductor solid electrolytic capacitor. Was compressed as in FIG. 3 to produce a capacitor device.

상기의 소자는 알루미늄박의 재단 및 압착시 손상된 산화피막이 존재하기 때문에 파손된 산화피막을 수복시키기 위해서 소자 화성을 실시하였다. 이어서, TCNQ 착염(6)을 일정한 틀에 충전하여 용융시킨 후, TCNQ착염의 용융물에 예열시킨 압착 커패시터 소자를 함침시킨 후, 틀에서 함침된 커패시터 소자(1)를 분리시켜 저온에서 급냉시킨다. TCNQ 착염(6)이 함침된 커패시터 소자(1)를 120~150℃에서 0.5~5분 동안 방치시킨 후, 분말형상의 에폭시 수지(7)에 침지하여 커패시터 소자에 에폭시 수지(7)를 부착시키고, 이어서 120~130℃에서 열경화를 실시한다. 위와 같이, 분말 수지의 도포를 2~5회 실시한다. 또한, 커패시터의 크기를 조절하기 위해 액상의 에폭시 수지에 1~2회의 도포를 추가로 실시함으로서 커패시터를 완성하였다.The device described above was subjected to device formation in order to repair the damaged oxide film because the damaged oxide film is present during cutting and pressing of the aluminum foil. Subsequently, the TCNQ complex salt 6 is filled into a predetermined mold and melted, and after impregnating the compressed capacitor element preheated to the melt of the TCNQ complex salt, the capacitor element 1 impregnated in the mold is separated and quenched at low temperature. After the capacitor element 1 impregnated with TCNQ complex salt 6 is left at 120 to 150 ° C. for 0.5 to 5 minutes, the epoxy element 7 is attached to the capacitor element by immersing it in powder-type epoxy resin 7. Then, thermosetting is performed at 120 to 130 ° C. As above, application of the powdered resin is performed 2 to 5 times. In addition, in order to control the size of the capacitor, the capacitor was completed by additionally applying 1 to 2 times to the liquid epoxy resin.

이와 같은 방법으로, 커패시터 제조시 알루미늄 케이스(5) 적용시의 제조공정에서 알루미늄 케이스(5) 개개에 수지를 주입하는 불편을 없애고, 외장 작업을 동시에 다량 실시할 수 있으므로 생산성을 향상시킬 수 있다.In this way, it is possible to eliminate the inconvenience of injecting resin into the aluminum case 5 in the manufacturing process at the time of applying the aluminum case 5 at the time of capacitor manufacture, and to carry out a large amount of exterior work at the same time, thereby improving productivity.

이하, 본 발명을 하기 비제한 실시예에 의하여 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to the following non-limiting examples.

비교예Comparative example

제1도에 나타낸 바와 같이, 알루미늄박의 표면에 산화알루미늄 피막이 형성된 화성박을 양극(2)으로, 화성처리되지 않은 알루미늄박을 음극(3)으로 해서 이들 사이에 스페이서 종이를 끼워서 감아 커패시터 소자를 제작하였다. 이어서, TCNQ 착염(6)을 적당량 알루미늄 케이스(5)에 넣고, 가압해서 용융시킨 후, 여기에 예열시킨 커패시터 소자를 함침시켰다. 함침된 커패시터 소자(1)를 알루미늄 케이스(5)내에서 급냉시킨 후, 케이스의 개구부에 에폭시 수지(7)를 넣고, 열경화하여 밀봉시킴으로서 제2도에 나타낸 바와 같은 형상의 유기 반도체 고체 전해 커패시터를 제작하였다.As shown in FIG. 1, the capacitor foil is wound by sandwiching a spacer sheet between them, with the anode foil having the aluminum oxide film formed thereon on the surface of the aluminum foil as the anode 2, and the aluminum foil being untreated with the cathode 3 being sandwiched therebetween. Produced. Subsequently, TCNQ complex salt 6 was put in an appropriate amount of aluminum case 5, pressurized and melted, and then the preheated capacitor element was impregnated. After the impregnated capacitor element 1 is quenched in the aluminum case 5, the epoxy resin 7 is put into the opening of the case, and the organic semiconductor solid electrolytic capacitor of the shape as shown in FIG. 2 is sealed by heat curing. Was produced.

실시예 1Example 1

비교예의 방법으로 제1도와 같은 커패시터 소자를 제작하고, 일정한 틀에 TCNQ 착염(6)을 넣고, 융해시킨 후, 예열시킨 상기 소자를 함침시켰다. 함침된 소자91)를 틀에서 분리하여 급냉시켰다. TCNQ 착염(6)이 함침된 커패시터 소자(1)를 120~150℃에서 수분 동안 방치시킨 후, 분말형상의 에폭시 수지(5)에 침지하여 커패시터 소자에 수지를 부착시키고, 120~130℃에서 열경화를 실시했다. 위와 같은 분말 수지의 도포를 2~5회 실시했다. 또한, 커패시터의 크기를 조절하기 위해 액상의 에폭시 수지에 1~2회의 도포를 추가로 실시함으로서 제4도에 나타낸 바와 같은 형상의 수지 외장형 유기 반도체 고체 전해 커패시터를 제작하였다.By the method of the comparative example, the capacitor element like FIG. 1 was produced, TCNQ complex salt 6 was put in a fixed frame, it melt | dissolved, and the said preheated element was impregnated. The impregnated element 91 was removed from the mold and quenched. After the capacitor element 1 impregnated with the TCNQ complex salt 6 is left to stand at 120 to 150 ° C. for several minutes, the resin element is attached to the capacitor element by immersion in a powder-type epoxy resin 5 and heated at 120 to 130 ° C. Curing was performed. Application of the above-mentioned powdered resin was performed 2 to 5 times. In addition, in order to control the size of the capacitor, a resin exterior type organic semiconductor solid electrolytic capacitor having a shape as shown in FIG. 4 was manufactured by further applying one or two coatings to the liquid epoxy resin.

실시예 2Example 2

비교예의 방법으로 제1도와 같은 커패시터 소자를 제작한 후, 이 커패시터 소자를 제3도와 같이 압착하여 슬림형의 커패시터 소자를 제작하고, 일정한 틀에 TCNQ 착염(6)을 넣고, 융해시킨 후, 예열시킨 상기 소자를 함침시켰다. 함침된 소자(1)를 틀에서 분리하여 급냉시켰다. TCNQ 착염이 함침된 커패시터 소자(1)를 120~150℃에서 수분 동안 방치한 후, 분말형상의 에폭시 수지(7)에 침지하여 커패시터 소자에 수지를 부착시키고, 120~130℃에서 열경화를 실시했다.After the capacitor device as shown in FIG. 1 was manufactured by the comparative example method, the capacitor device was pressed as shown in FIG. 3 to form a slim capacitor device, TCNQ complex salt 6 was put into a predetermined mold, melted, and then preheated. The device was impregnated. The impregnated element 1 was removed from the mold and quenched. After leaving the capacitor element 1 impregnated with TCNQ complex salt at 120 to 150 ° C. for several minutes, the resin element is attached to the capacitor element by immersing it in a powder-type epoxy resin 7 and thermally curing at 120 to 130 ° C. did.

위와 같은 분말수지의 도포를 2~5회 실시했다. 또한, 커패시터 크기를 조절하기 위해 액상의 에폭시 수지에 1~2회의 도포를 추가로 실시함으로서 제5도에 나타낸 바와 같은 형상의 수지 외장형 유기 반도체 고체 전해 커패시터를 제작하였다.Application of the above-mentioned powdered resin was performed 2 to 5 times. Further, in order to adjust the size of the capacitor, a resin-external organic semiconductor solid electrolytic capacitor having a shape as shown in FIG. 5 was manufactured by further applying one or two coatings to the liquid epoxy resin.

종래의 방법(비교예)과 본 발명의 방법(실시예 1 및 2)에 의하여 제조된 커패시터의 특성결과를 하기 표 1에 나타냈다.Table 1 shows the characteristics of the capacitors prepared by the conventional method (comparative example) and the method of the present invention (Examples 1 and 2).

[표 1]TABLE 1

상기 표에 나타낸 바와 같이, 본 발명에 의하여 종래의 유기 반도체 고체 전해 커패시터와 거의 동일한 전기적 특성으로 원통형 및 슬림형의 수지 외장형 유기 반도체 고체 전해 커패시터를 제조함으로서, 기존의 커패시터에 적용되는 케이스 및 튜브(상표, 제품형식표시 및 절연용) 등의 부품을 줄이고, 직접 외장 수지에 마킹(Marking)을 할 수 있는 장점이 있다. 또한, 압착된 소자를 적용하고, 케이스를 제거시키므로 함침된 소자가 1회에 다량으로 외장용 수지조에 침지될 수 있으므로 외장작업의 생산성을 향상시킬 수 있다.As shown in the above table, by manufacturing the cylindrical and slim resin external type organic semiconductor solid electrolytic capacitors with almost the same electrical properties as the conventional organic semiconductor solid electrolytic capacitor according to the present invention, the case and tube applied to the conventional capacitor ( , Product type marking and insulation), and has the advantage of directly marking the exterior resin (Marking). In addition, by applying a crimped device and removing the case, the impregnated device can be immersed in the exterior resin tank in a large amount, thereby improving productivity of the exterior work.

제1도는 종래의 커패시터 소자의 사시도이고,1 is a perspective view of a conventional capacitor device,

제2도는 종래의 유기 반도체 고체 전해 커패시터의 종단면도이고,2 is a longitudinal sectional view of a conventional organic semiconductor solid electrolytic capacitor,

제3도는 슬림형 커패시터 소자의 사시도이고,3 is a perspective view of a slim capacitor device,

제4도는 본 발명의 수지 외장형 유기 반도체 고체 전해 커패시터의 종단면도이고,4 is a longitudinal sectional view of the resin-packed organic semiconductor solid electrolytic capacitor of the present invention,

제5도는 본 발명의 슬림형 수지 외장형 유기 반도체 고체 전해 커패시터의 종단면도이다.5 is a longitudinal sectional view of the slim resin external organic semiconductor solid electrolytic capacitor of the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

1. 유기 반도체 함침 소자2. 양극 리드1.Organic Semiconductor Impregnation Element 2. Anode lead

3. 음극 리드4. 리드 봉Cathode lead 4. Reed rods

5. 알루미늄 케이스6. 유기 반도체Aluminum case 6. Organic semiconductor

7. 에폭시 수지8. 외장 수지Epoxy Resin 8. Exterior resin

9. 분리 냉각된 유기 반도체 함침 소자9. Separation cooled organic semiconductor impregnation element

Claims (6)

알루미늄박의 표면에 산화알루미늄 피막이 형성된 화성박을 양극(2)으로, 화성처리되지 않은 알루미늄박을 음극(3)으로 해서 이들 사이에 스페이서 종이를 끼워서 감아 커패시터 소자를 제작한 후, 이어서 일정한 틀에 TCNQ 착염(6)을 넣고 융해시킨 용액에 예열한 상기 소자를 함침시키고, 함침된 소자(1)를 상기 틀에서 분리하여 급냉시킨 커패시터 소자(9)를 에폭시 수지(7)로 도포하여 제조한 수지 외장형 유기 반도체 고체 전해 커패시터.After forming the capacitor element by winding spacer foil between them with anode film (2) as an anode (2) and forming an aluminum oxide film on the surface of the aluminum foil, and then forming a capacitor element therebetween, Resin prepared by impregnating the preheated device in the solution melted with the TCNQ complex salt (6), and applying the epoxy resin (7) to the capacitor device (9) in which the impregnated device (1) was separated from the mold and quenched. External organic semiconductor solid electrolytic capacitors. 제1항에 있어서, 커패시터 소자는 원통형 또는 슬림형인 것을 특징으로 하는 유기 반도체 고체 전해 커패시터.The organic semiconductor solid electrolytic capacitor according to claim 1, wherein the capacitor element is cylindrical or slim. 1) 알루미늄박의 표면에 산화알루미늄 피막이 형성된 화성박을 양극(2)으로, 화성처리되지 않은 알루미늄박을 음극(3)으로 해서 이들 사이에 스페이서 종이를 끼워서 감아 커패시터 소자를 제작하는 단계, 2) 일정한 틀에 TCNQ 착염(6)을 넣고, 융해시키는 단계, 3) 예열시킨 상기 커패시터 소자를 상기 TCNQ 착염의 용액에 함침시키는 단계, 4) 함침된 소자(1)를 상기 틀에서 분리하여 급냉시키는 단계, 및 5) 급냉시킨 커패시터 소자(9)를 에폭시 수지(7)로 도포처리하여 되는 수지 외장형 유기 반도체 고체 전해 커패시터의 제조방법.1) manufacturing a capacitor element by winding a spacer foil having an aluminum oxide film on the surface of an aluminum foil as an anode (2) and an unoxidized aluminum foil as a cathode (3) by sandwiching spacer paper between them; Putting and melting the TCNQ complex salt 6 in a predetermined mold; 3) impregnating the preheated capacitor element into the solution of the TCNQ complex salt; and 4) quenching the impregnated element 1 from the mold. And 5) A method for producing a resin exterior organic semiconductor solid electrolytic capacitor, wherein the quenched capacitor element 9 is coated with an epoxy resin 7. 제3항에 있어서, 외장은 분말상 및 액상의 에폭시 수지(7)를 순차적으로 도포하여서 되는 것을 특징으로 하는 유기 반도체 고체 전해 커패시터의 제조방법.The method for manufacturing an organic semiconductor solid electrolytic capacitor according to claim 3, wherein the sheath is applied by sequentially applying powder and liquid epoxy resins (7). 제3항 또는 4항에 있어서, 분말상 에폭시 수지의 도포를 2~5회 반복해서 실시함을 특징으로 하는 유기 반도체 고체 전해 커패시터의 제조방법.The method for producing an organic semiconductor solid electrolytic capacitor according to claim 3 or 4, wherein the application of the powdery epoxy resin is repeated 2 to 5 times. 제3항 또는 제4항에 있어서, 액상 에폭시 수지의 도포를 1~2회 실시함을 특징으로 하는 유기 반도체 고체 전해 커패시터의 제조방법.The method for producing an organic semiconductor solid electrolytic capacitor according to claim 3 or 4, wherein the coating of the liquid epoxy resin is performed once or twice.
KR1019960037416A 1996-08-31 1996-08-31 Resin encapsulation type organic semiconductor solid electrolytic capacitor and process for preparing the same KR100227213B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019960037416A KR100227213B1 (en) 1996-08-31 1996-08-31 Resin encapsulation type organic semiconductor solid electrolytic capacitor and process for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019960037416A KR100227213B1 (en) 1996-08-31 1996-08-31 Resin encapsulation type organic semiconductor solid electrolytic capacitor and process for preparing the same

Publications (2)

Publication Number Publication Date
KR19980017623A true KR19980017623A (en) 1998-06-05
KR100227213B1 KR100227213B1 (en) 1999-10-15

Family

ID=19472169

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960037416A KR100227213B1 (en) 1996-08-31 1996-08-31 Resin encapsulation type organic semiconductor solid electrolytic capacitor and process for preparing the same

Country Status (1)

Country Link
KR (1) KR100227213B1 (en)

Also Published As

Publication number Publication date
KR100227213B1 (en) 1999-10-15

Similar Documents

Publication Publication Date Title
US5707407A (en) Method of forming chip-formed solid electrolytic capacitor without an anode lead projecting from anode member
KR100199321B1 (en) Solid electrolytic capacitor with organic semiconductor and method of manufacturing the same
KR19980017623A (en) Resin External Organic Semiconductor Solid Electrolytic Capacitor and Manufacturing Method Thereof
JP3339511B2 (en) Method for manufacturing solid electrolytic capacitor
EP0285728B1 (en) Solid electrolytic capacitor, and method of manufacturing same
US5031077A (en) Solid electrolyte capacitor and manufacturing method therefor
JP3481011B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP4066473B2 (en) Solid electrolytic capacitor and manufacturing method thereof
KR970004277B1 (en) Method of manufacturing solid electrolytic capacitor
KR19980017624A (en) Chip type organic semiconductor solid electrolytic capacitor
JP3481012B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JP3474986B2 (en) Solid electrolytic capacitor and method of manufacturing the same
JPH04324612A (en) Manufacture of organic semiconductor solid electrolytic capacitor
KR970006432B1 (en) Solid electrolytic capacitor
JP2950898B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
JP3152572B2 (en) Method for manufacturing solid electrolytic capacitor
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JPH09260215A (en) Manufacture of solid electrolytic capacitor
JP2726009B2 (en) Solid electrolytic capacitors
JP2957630B2 (en) Manufacturing method of organic semiconductor solid electrolytic capacitor
KR940005995B1 (en) Capacitor
JPH0321007A (en) Manufacture of solid electrolytic capacitor
KR0154126B1 (en) Solid electrolyte capacitor and manufacturing method therefor
EP0187595A2 (en) Protective coating for electrolytic capacitor
JPH0821516B2 (en) Method for manufacturing solid electrolytic capacitor

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20020731

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee