KR102701243B1 - Silicon nitride substrate for system semiconductor inspection equipment and manufacturing method thereof - Google Patents
Silicon nitride substrate for system semiconductor inspection equipment and manufacturing method thereof Download PDFInfo
- Publication number
- KR102701243B1 KR102701243B1 KR1020230195228A KR20230195228A KR102701243B1 KR 102701243 B1 KR102701243 B1 KR 102701243B1 KR 1020230195228 A KR1020230195228 A KR 1020230195228A KR 20230195228 A KR20230195228 A KR 20230195228A KR 102701243 B1 KR102701243 B1 KR 102701243B1
- Authority
- KR
- South Korea
- Prior art keywords
- silicon nitride
- nitride substrate
- low
- sintering
- pressure
- Prior art date
Links
- 229910052581 Si3N4 Inorganic materials 0.000 title claims abstract description 99
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 title claims abstract description 98
- 239000000758 substrate Substances 0.000 title claims abstract description 80
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 18
- 239000004065 semiconductor Substances 0.000 title claims description 33
- 238000007689 inspection Methods 0.000 title claims description 20
- 238000005245 sintering Methods 0.000 claims abstract description 62
- 238000000034 method Methods 0.000 claims abstract description 43
- 238000002156 mixing Methods 0.000 claims abstract description 40
- 239000000843 powder Substances 0.000 claims abstract description 35
- 238000000465 moulding Methods 0.000 claims abstract description 31
- 239000000919 ceramic Substances 0.000 claims abstract description 28
- 238000012545 processing Methods 0.000 claims abstract description 19
- 239000012298 atmosphere Substances 0.000 claims abstract description 15
- 230000007547 defect Effects 0.000 claims description 28
- 239000000523 sample Substances 0.000 claims description 26
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 19
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 19
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 18
- 238000010438 heat treatment Methods 0.000 claims description 18
- 238000005452 bending Methods 0.000 claims description 17
- 239000011812 mixed powder Substances 0.000 claims description 16
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 15
- 239000011148 porous material Substances 0.000 claims description 15
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 15
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 13
- 239000000395 magnesium oxide Substances 0.000 claims description 13
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 13
- 239000012299 nitrogen atmosphere Substances 0.000 claims description 13
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 12
- 238000007494 plate polishing Methods 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 3
- 239000000203 mixture Substances 0.000 abstract description 25
- 239000000463 material Substances 0.000 abstract description 24
- 239000000654 additive Substances 0.000 abstract description 14
- 230000000996 additive effect Effects 0.000 abstract description 9
- 239000003795 chemical substances by application Substances 0.000 abstract description 7
- 238000013461 design Methods 0.000 abstract description 3
- 238000012360 testing method Methods 0.000 description 9
- 238000005259 measurement Methods 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 5
- 230000035939 shock Effects 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000001513 hot isostatic pressing Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000012795 verification Methods 0.000 description 2
- 229910020781 SixOy Inorganic materials 0.000 description 1
- 229910009043 WC-Co Inorganic materials 0.000 description 1
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 1
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 1
- 239000011195 cermet Substances 0.000 description 1
- 239000000306 component Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000009725 powder blending Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/584—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B3/00—Producing shaped articles from the material by using presses; Presses specially adapted therefor
- B28B3/02—Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein a ram exerts pressure on the material in a moulding space; Ram heads of special form
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/6261—Milling
- C04B35/62615—High energy or reactive ball milling
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/62605—Treating the starting powders individually or as mixtures
- C04B35/62625—Wet mixtures
- C04B35/6264—Mixing media, e.g. organic solvents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/0072—Heat treatment
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R1/00—Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
- G01R1/02—General constructional details
- G01R1/06—Measuring leads; Measuring probes
- G01R1/067—Measuring probes
- G01R1/073—Multiple probes
- G01R1/07307—Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
- G01R1/07314—Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card the body of the probe being perpendicular to test object, e.g. bed of nails or probe with bump contacts on a rigid support
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/604—Pressing at temperatures other than sintering temperatures
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- General Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Ceramic Products (AREA)
Abstract
본 발명에서는 상대적으로 낮은 온도에서 소결가능하고, 흑색이면서도 결함이 없는 조직을 가능케 하는 최적의 소결조제 및 첨가제 분말의 독자적 배합 조성과 혼합 방법을 고안하고, 일반적인 저비용 프레스 성형 장비를 개조한 진공 및 분위기하 정밀 압력 제어 성형 장비와 상대적 저온이면서 저압(상압 부근)에서 소결 가능한 진공 분위기 소결 장비를 이용하여 질화규소 세라믹 기판 소재가 균일하고 치밀한 미세조직을 갖게 하는 성형 및 소결 조건을 고안하여, 저비용 장비 및 생산 방법을 이용하면서도, 고밀도, 저결함(저기공), 초미세 사각 홀 레이저 가공에 최적인 고품질 질화규소 기판 소재를 제공한다.In the present invention, a unique blending composition and mixing method of an optimal sintering agent and additive powder that can be sintered at a relatively low temperature and enable a black, defect-free structure are designed, and a vacuum and atmosphere precision pressure control molding equipment that is a modified version of a general low-cost press molding equipment and a vacuum atmosphere sintering equipment that can be sintered at a relatively low temperature and low pressure (near atmospheric pressure) are used to design molding and sintering conditions that allow a silicon nitride ceramic substrate material to have a uniform and dense microstructure, thereby providing a high-quality silicon nitride substrate material that is optimal for high-density, low-defect (low-porosity), and ultra-fine square hole laser processing while utilizing low-cost equipment and production methods.
Description
본 발명은 시스템 반도체 검사 장비용 질화규소 기판 및 그 제조방법에 관한 것으로, 보다 구체적으로는 시스템 반도체 검사 장비의 핵심 부품인 초미세 사각홀 레이저 가공용 기판으로 사용되는 고품질의 흑색 치밀화 질화규소 기판 및 이를 저비용으로 제조하는 방법에 관한 것이다.The present invention relates to a silicon nitride substrate for system semiconductor inspection equipment and a method for manufacturing the same, and more specifically, to a high-quality black densified silicon nitride substrate used as a substrate for ultra-fine square hole laser processing, which is a core component of system semiconductor inspection equipment, and a method for manufacturing the same at low cost.
최근 반도체 회로의 집적 기술 개발로 인한 반도체의 크기가 계속 소형화가 진행됨에 따라 반도체 칩의 검사 장치도 높은 정밀도가 요구되고 있다. 웨이퍼 조립 공정(Wafer Fabrication Process)을 거쳐 반도체 웨이퍼에 형성된 집적회로 칩들은 웨이퍼 상태에서 진행되는 전기적 특성 검사(Electrical Die Sorting; EDS)에 의해 양품과 불량품으로 분류된다.As the size of semiconductors continues to shrink due to the recent development of semiconductor circuit integration technology, inspection devices for semiconductor chips are also required to have high precision. Integrated circuit chips formed on semiconductor wafers through the wafer fabrication process are classified into good and bad products through electrical characteristic inspection (Electrical Die Sorting; EDS) performed on the wafer.
전기적 특성 검사에는 일반적으로 검사 신호의 발생과 검사 결과의 판정을 담당하는 테스터(Tester)와, 반도체 웨이퍼의 로딩(Loading)과 언로딩(Unloading)을 담당하는 프로브 스테이션(Probe Station), 및 반도체 웨이퍼와 테스터의 전기적 연결을 담당하는 프로브 카드(Probe Card)로 구성된 검사 장치가 주로 사용되고 있다.Electrical characteristic testing generally uses a testing device consisting of a tester responsible for generating test signals and determining test results, a probe station responsible for loading and unloading semiconductor wafers, and a probe card responsible for electrically connecting the semiconductor wafer and the tester.
이 중, 프로브 카드는 일반적으로 세라믹 그린시트에 회로 패턴과 전극 패드, 비아 전극 등을 형성하여 적층한 후, 이를 소성시켜 제조한 세라믹 기판에 프로브 핀을 접합한 형태가 주로 이용된다.Among these, the probe card is mainly manufactured by bonding probe pins to a ceramic substrate formed by forming circuit patterns, electrode pads, via electrodes, etc. on a ceramic green sheet, laminating them, and then firing them.
기존의 반도체 검사 장비에서 원형 탐침을 사용할 때는 프로브 가이드로 머시너블 세라믹이 주로 사용되었으나, 최근 시스템 반도체 검사장비에서는 고집적, 초고속 반도체를 측정하기 위하여 MEMS 형 사각 탐침을 사용하는 방향으로 이동하고 있는데, 이때 이 사각 탐침을 지지할 프로브 가이드 기판의 수십 마이크로의 초미세 사각홀 가공은 레이저 가공만으로 가능하며, 이 레이저 가공을 견디려면, 고밀도, 저결함(저기공), 고 내열충격성이 좋은 질화규소 세라믹 기판만이 가장 적합한 소재이다. In conventional semiconductor inspection equipment, machinable ceramics were mainly used as probe guides when using circular probes, but recently, system semiconductor inspection equipment is moving toward using MEMS-type square probes to measure high-density, ultra-high-speed semiconductors. At this time, ultra-fine square hole processing of tens of microns in the probe guide substrate to support the square probe is possible only through laser processing, and the only material suitable for withstanding this laser processing is a silicon nitride ceramic substrate with high density, low defects (low porosity), and high thermal shock resistance.
그러나, 질화규소 분말 자체가 난 소결 물질이어서, 질화규소 세라믹 소결을 위해서는 기본적으로 알루미나, 이트리아, 세리아 등의 기본 소결조제와 카본이나 카바이드계 흑색 첨가제를 첨가하여 소결하고 있으나, 질화규소가 분해하지 않으면서도 첨가제들이 결함을 유발해서 치밀한 미세조직을 방해하지 않는 제조 공정 조건 확보가 매우 까다로우며, 특히 위와 같은 고밀도, 저기공, 고내열충격성 특성을 가진 질화규소 세라믹 기판을 만들기 위해서는, 분말공정 이후 성형 및 소결시 HP(Hot Press), GPS(Gas Press Sintering), HIP(Hot Iso-static Pressing) 등 고가의 장비를 사용하여 1800~1900℃ 이상의 고온과 수십 기압의 고압에서 만들어야 해서, 장비 구축비용은 물론 제조 공정시 고비용이 들어야만 했다. However, since silicon nitride powder itself is a difficult-to-sinter material, basic sintering aids such as alumina, yttria, and ceria and carbon or carbide-based black additives are basically added to sinter silicon nitride ceramics for sintering. However, it is very difficult to secure manufacturing process conditions in which the silicon nitride does not decompose and the additives do not cause defects and disrupt the dense microstructure. In particular, in order to create a silicon nitride ceramic substrate with the characteristics of high density, low porosity, and high thermal shock resistance as described above, expensive equipment such as HP (Hot Press), GPS (Gas Press Sintering), and HIP (Hot Iso-static Pressing) must be used for molding and sintering after the powder process, at high temperatures of 1800 to 1900℃ or higher and high pressures of tens of atmospheres. This requires high costs not only for the equipment construction costs but also for the manufacturing process.
질화규소 세라믹은 고강도, 고 파괴인성, 고 내열충격성 등 그 물리적 기계적 특성이 좋아 극한 환경에 적합한 세라믹 소재이나, 그에 사용되는 원재료 및 세라믹 소체를 만드는 방법이 까다롭고 비용이 많이 들어 그 응용 및 시장에 한계가 있어 왔다. Silicon nitride ceramics are ceramic materials suitable for extreme environments due to their excellent physical and mechanical properties, including high strength, high fracture toughness, and high thermal shock resistance. However, the raw materials and methods for producing ceramic bodies used in them are difficult and expensive, which has limited their application and market.
그러나 최근 산업이 발전함에 따라, 기존의 공구 영역은 물론 자동차, 태양광, 기계, 반도체 등의 영역에서도 가격이 비싸더라도 그 효과를 극대화하기 위해 질화규소 세라믹 사용이 대폭 늘어나고 있는 실정이다.However, with the recent development of industry, the use of silicon nitride ceramics is increasing significantly in areas such as automobiles, solar energy, machinery, and semiconductors, as well as in the existing tool field, in order to maximize its effectiveness even though it is expensive.
반도체 영역에서 보면, 반도체의 저장용량 및 반응속도의 획기적 증가를 필요로 하는 시장의 요구에 따라, 반도체 집적기술이 점점 더 발전되어 반도체 회로 선폭이 점점 더 나노화되었으며, 이를 검사하는 반도체 검사 장비나 검사 지그도, 이에 맞추어 검사 탐침(프로브) 사이즈가 나노화됨은 물론, 반응속도를 올리기 위한 검사 탐침의 형상 변화 등 진화를 할 필요가 생겼다. In the semiconductor field, semiconductor integration technology has been further developed in response to market demands for a dramatic increase in semiconductor storage capacity and response speed, leading to increasingly nano-sized semiconductor circuit line widths. Accordingly, semiconductor testing equipment and testing jigs that test these have also evolved to nano-size the test probe size and change the shape of the test probe to increase response speed.
반도체 검사 장비에서 이와 같은 목적을 달성하기 위해서는 MEMS type 탐침을 사용해야 하며, 기존의 원형 탐침을 사각으로 바꾸어 전류 밀도를 올려야 할 필요가 있는데, 이와 함께 초미세 사각 탐침이 삽입되어 지지되는 프로브 가이드에도, 초미세 사각홀이 수천개 가공되어져야 한다. 이때 기존에 사용되던 탐침을 지지하는 프로브 가이드용 머시너블 세라믹 소재로는 수십 마이크로의 초미세 사각 홀 가공에 있어 그 속도와 품질에 한계가 있어, 현재 초미세 사각 탐침용 프로브 가이드로는, 고밀도, 저기공, 내열충격성이 좋아 레이저 초미세 사각홀 가공에 적합한 질화규소 기판만이 유일한 대안으로 사용되고 있다. In order to achieve this purpose in semiconductor inspection equipment, a MEMS type probe must be used, and the existing circular probe needs to be changed to a square one to increase the current density. At the same time, thousands of ultra-fine square holes must be machined in the probe guide where the ultra-fine square probe is inserted and supported. At this time, the machinable ceramic material for the probe guide that supports the existing probe has limitations in speed and quality in machining ultra-fine square holes of tens of microns. Therefore, the only alternative currently used as a probe guide for an ultra-fine square probe is a silicon nitride substrate, which is suitable for laser ultra-fine square hole machining due to its high density, low porosity, and good thermal shock resistance.
이에 본 발명에서는 고온, 고압, 고가의 장비를 이용한 성형 소결방법을 이용하지 않고, 난소결 소재인 질화규소 분말에 최적의 소결조제 및 산화물계 첨가제 조성을 적용하여 질화규소 세라믹 기판 소재가 상대적으로 낮은 온도에서 소결가능하고, 흑색이면서도 결함이 적은 조직을 가능케 하는 최적의 소결조제 및 첨가제 분말 배합 조성과 혼합 방법을 고안하였으며, 이와 함께, 일반적인 저비용 프레스 성형 장비를 개조한 진공 분위기의 정밀 압력 제어 성형 장비와 상대적 저온이면서 저압(상압 부근)에서 소결 가능한 질소 분위기 소결 장비를 이용하여 질화규소 세라믹 기판 소재가 균일하고 치밀한 미세조직을 갖게 하는 성형 및 소결 조건을 고안함으로써, 저비용 장비 및 생산 방법을 이용하면서도 고밀도, 저결함(저기공), 초미세 사각 홀 레이저 가공에 최적인 고품질 질화규소 기판 소재를 개발하여 본 발명을 완성하였다.Accordingly, in the present invention, instead of using a molding and sintering method using high temperature, high pressure, and expensive equipment, the optimal sintering agent and oxide-based additive composition are applied to silicon nitride powder, which is a difficult-to-sinter material, to design an optimal sintering agent and additive powder mixing composition and mixing method that enable a silicon nitride ceramic substrate material to be sintered at a relatively low temperature and have a black structure with few defects. In addition, by designing molding and sintering conditions that allow the silicon nitride ceramic substrate material to have a uniform and dense microstructure using a precision pressure control molding equipment modified from a general low-cost press molding equipment and a nitrogen atmosphere sintering equipment capable of sintering at a relatively low temperature and low pressure (near normal pressure), the present invention was completed by developing a high-quality silicon nitride substrate material that is optimal for high-density, low-defect (low porosity), and ultra-fine square hole laser processing while using low-cost equipment and production methods.
본 발명에서 해결하고자 하는 기술적 과제는 프로브 가이드용 초미세 사각 홀 레이저 가공에 최적인 고품질의 흑색 치밀화 질화규소 세라믹 기판을 제공하기 위한 것이다.The technical problem to be solved in the present invention is to provide a high-quality black densified silicon nitride ceramic substrate that is optimal for ultra-fine square hole laser processing for a probe guide.
또한, 본 발명에서 해결하고자 하는 다른 기술적 과제는 상기 고품질의 질화규소 세라믹 기판을 종래의 고온, 고압 및 고비용이 아닌 저비용으로 제조하는 방법을 제공하기 위한 것이다.In addition, another technical problem to be solved in the present invention is to provide a method for manufacturing the high-quality silicon nitride ceramic substrate at low cost rather than at high temperature, high pressure and high cost as in the past.
상기한 기술적 과제를 해결하기 위하여, 본 발명에서는 질화규소분말 71~95중량%, 알루미나 1~5중량%, 이트리아 1~5중량%, 마그네슘산화물 1~5중량%, 실리콘산화물 1~7중량% 및 티타늄산화물 1~7중량%를 포함하는 배합분말 : 이소프로필알콜 : 질화규소볼을 1:4:2의 중량비로 첨가하여 볼밀 회전 속도 30~50 RPM으로 24~96시간 동안 혼합한 후 건조하여, 100~150μm 채로 걸러서 제조된 질화규소 세라믹 기판용 혼합분말을 제공한다.In order to solve the above technical problem, the present invention provides a mixed powder for a silicon nitride ceramic substrate, which is manufactured by adding a mixed powder comprising 71 to 95 wt% of silicon nitride powder, 1 to 5 wt% of alumina, 1 to 5 wt% of yttria, 1 to 5 wt% of magnesium oxide, 1 to 7 wt% of silicon oxide, and 1 to 7 wt% of titanium oxide: isopropyl alcohol: silicon nitride balls in a weight ratio of 1:4:2, mixing at a ball mill rotation speed of 30 to 50 RPM for 24 to 96 hours, drying, and then filtering through a 100 to 150 μm sieve.
상기한 다른 기술적 과제를 해결하기 위하여, 본 발명에서는 하기 단계를 포함하는 것을 특징으로 하는 질화규소 기판의 제조방법을 제공한다:In order to solve the other technical problems mentioned above, the present invention provides a method for manufacturing a silicon nitride substrate, characterized by including the following steps:
(S1) 질화규소분말 71~95중량%, 알루미나 1~5중량%, 이트리아 1~5중량%, 마그네슘산화물 1~5중량%, 실리콘산화물 1~7중량%, 티타늄산화물 1~7중량%를 배합하며, 더욱 바람직하게는 질화규소분말 79~91중량%, 알루미나 1.5~3.5중량%, 이트리아 1.5~3.5중량%, 마그네숨산화물 2~4중량%, 실리콘산화물 2~5중량% 및 티타늄산화물 2~5중량%를 배합하는 단계;(S1) A step of blending 71 to 95 wt% of silicon nitride powder, 1 to 5 wt% of alumina, 1 to 5 wt% of yttria, 1 to 5 wt% of magnesium oxide, 1 to 7 wt% of silicon oxide, and 1 to 7 wt% of titanium oxide, more preferably, a step of blending 79 to 91 wt% of silicon nitride powder, 1.5 to 3.5 wt% of alumina, 1.5 to 3.5 wt% of yttria, 2 to 4 wt% of magnesium oxide, 2 to 5 wt% of silicon oxide, and 2 to 5 wt% of titanium oxide;
(S2) 상기 배합분말 : 이소프로필알콜 : 질화규소볼 = 1:4:2의 중량비로 혼합한 후, 볼밀 회전 속도 30~50 RPM으로 24~96시간 혼합한 후 건조하여 균일한 혼합분말을 얻는 단계;(S2) A step of mixing the above mixed powder: isopropyl alcohol: silicon nitride balls in a weight ratio of 1:4:2, mixing at a ball mill rotation speed of 30 to 50 RPM for 24 to 96 hours, and then drying to obtain a uniform mixed powder;
(S3) 상기 혼합분말을 저비용 프레스 성형 장비를 개조한 진공 분위기 정밀 압력 제어 성형 장비를 이용하여, 단위면적당 최대 압력 50MPa ~ 125MPa의 압력으로, 승압 1~5분, 최고압 3~8분 유지하고, 감압 1~5분의 압력 사이클 조건으로 성형체를 성형하는 단계; 및(S3) A step of forming a molded body using a vacuum atmosphere precision pressure control molding equipment modified from a low-cost press molding equipment, with the above mixed powder, at a maximum pressure of 50 MPa to 125 MPa per unit area, with a pressure cycle of 1 to 5 minutes of pressure increase, 3 to 8 minutes of maximum pressure, and 1 to 5 minutes of pressure reduction; and
(S4) 상기 성형체를 800torr(1.1bar) 저압(상압 부근)의 질소 분위기 소결 노에서 1700 내지 1750℃에서 4 내지 7시간 동안 소결하여 질화규소 기판을 수득하는 단계.(S4) A step of sintering the above-mentioned molded body in a nitrogen atmosphere sintering furnace at a low pressure (near normal pressure) of 800 torr (1.1 bar) at 1700 to 1750°C for 4 to 7 hours to obtain a silicon nitride substrate.
또한, 본 발명에서는 상기 방법에 따라 제조된 시스템 반도체 검사 장비용 질화규소 기판을 제공한다.In addition, the present invention provides a silicon nitride substrate for system semiconductor inspection equipment manufactured according to the above method.
바람직하게, 상기 질화규소 기판은 3.2g/cm3 이상의 밀도를 가지며, 저결함 (저기공 : 직경 30μm 이상의 기공 결함이 1개 이하)인 것을 특징으로 한다.Preferably, the silicon nitride substrate has a density of 3.2 g/cm 3 or more and is characterized by low defects (low porosity: no more than one pore defect having a diameter of 30 μm or more).
또한, 본 발명에서는, 상기 질화규소 기판을 이용하여 시스템 반도체 검사 장비의 프로브 가이드로 사용되기 위한 최적의 질화규소 기판 평탄도를 얻기 위해, 박판 연마시 벤딩 불량률을 현저히 없애는, 질화규소 기판의 벤딩 제어 열처리 방법을 제공한다.In addition, the present invention provides a bending control heat treatment method of a silicon nitride substrate that significantly eliminates bending defect rate during thin plate polishing in order to obtain optimal silicon nitride substrate flatness for use as a probe guide for system semiconductor inspection equipment using the silicon nitride substrate.
바람직하게, 상기 방법은, 박판 연마 가공시 가공 스트레스로 벤딩이 발생한 질화규소 기판을 진공 후 질소 분위기하 열처리로에서, 평탄도 0.01mm 이하로 가공한 열처리 지그를 사용하여 3kg 이상의 하중을 가하면서 1400℃에서 4-6시간동안 열처리를 진행하는 것을 특징으로 한다.Preferably, the method is characterized in that the silicon nitride substrate, which has been subjected to bending due to processing stress during plate polishing, is heat treated at 1400°C for 4 to 6 hours while applying a load of 3 kg or more using a heat treatment jig that has been processed to a flatness of 0.01 mm or less in a vacuum nitrogen atmosphere heat treatment furnace.
이와 같이, 본 발명에서는 상대적으로 낮은 온도에서 소결가능하고, 흑색이면서도 결함이 적은 조직을 가능케 하는 최적의 소결조제 및 첨가제 분말의 독자적 배합 조성과 혼합 방법을 고안하였으며, 일반적인 저비용 프레스 성형 장비를 개조한 진공 분위기 정밀 압력 제어 성형 장비와 상대적 저온이면서 저압(상압 부근)에서 소결 가능한 질소 분위기 소결 장비를 이용하여 질화규소 세라믹 기판 소재가 균일하고 치밀한 미세조직을 갖게 하는 성형 및 소결 조건을 고안하여 저비용 장비 및 생산 방법을 이용하면서도, 고밀도, 저결함(저기공), 초미세 사각 홀 레이저 가공에 최적인 고품질 질화규소 기판 소재를 개발하였다. In this way, the present invention devised a unique mixing method and composition of an optimal sintering agent and additive powder that can be sintered at a relatively low temperature and enable a black structure with few defects, and by using a vacuum atmosphere precision pressure control molding equipment modified from a general low-cost press molding equipment and a nitrogen atmosphere sintering equipment that can be sintered at a relatively low temperature and low pressure (near normal pressure), the molding and sintering conditions that allow a silicon nitride ceramic substrate material to have a uniform and dense microstructure were devised, and a high-quality silicon nitride substrate material that is optimal for high-density, low-defect (low-porosity), and ultra-fine square hole laser processing was developed while using low-cost equipment and production methods.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 저비용 진공 분위기 제어 및 정밀 압력/속도 제어 프레스 성형 장치 모식도이다.
도 2는 배합 조성 및 소결 온도별 기판 표면의 미세조직 비교 사진이다.
도 3은 100*100 질화규소 기판 내 측정 위치 및 TTV(평탄도) 측정값 범위에 따른 기판 벤딩 정도의 일 례를 보여주는 것이다.
도 4는 본 발명에서 개발한 시스템 반도체 측정 장비용 저비용 고품질 흑색 치밀화 질화규소 기판의 초미세 레이저 사각홀 가공성 검증 사진이다. The following drawings attached to this specification illustrate preferred embodiments of the present invention and, together with the contents of the invention described above, serve to further understand the technical idea of the present invention; therefore, the present invention should not be interpreted as being limited to matters described in such drawings.
Figure 1 is a schematic diagram of a low-cost vacuum atmosphere control and precision pressure/speed control press forming device.
Figure 2 is a comparative photograph of the microstructure of the substrate surface according to the mixing composition and sintering temperature.
Figure 3 shows an example of the degree of substrate bending according to the measurement location and TTV (flatness) measurement range within a 100*100 silicon nitride substrate.
Figure 4 is a photograph of the verification of the ultrafine laser square hole machinability of a low-cost, high-quality black densified silicon nitride substrate for system semiconductor measuring equipment developed in the present invention.
이하에서는 본 발명을 좀 더 상세하게 설명한다.The present invention is described in more detail below.
본 발명에서는 기존의 고온, 고압, 고가의 장비를 이용한 성형 소결방법을 이용하지 않고, 난소결 소재인 질화규소 분말에 최적의 소결조제 및 산화물계 첨가제 조성을 적용하여, 질화규소 세라믹 기판 소재가 상대적으로 낮은 온도에서 소결 가능하고, 흑색이면서도 결함이 적은 조직을 가능케 하는 최적의 소결조제 및 첨가제 분말 배합 조성과 혼합 방법을 고안하였다.In the present invention, instead of using the conventional high-temperature, high-pressure, expensive equipment-based molding and sintering method, the optimal sintering agent and oxide-based additive composition are applied to silicon nitride powder, a difficult-to-sinter material, to devise an optimal sintering agent and additive powder blending composition and mixing method that enable a silicon nitride ceramic substrate material to be sintered at a relatively low temperature and to have a black structure with few defects.
또한, 본 발명에서는 일반적인 저비용 프레스 성형 장비를 개조한 진공 분위기 정밀 압력 제어 성형 장비와 상대적 저온이면서 저압(상압 부근)에서 소결 가능한 질소 분위기 소결 장비를 이용하여 질화규소 세라믹 기판 소재가 균일하고 치밀한 미세조직을 갖게 하는 성형 및 소결 조건을 고안하여 저비용 장비 및 생산 방법을 이용하면서도, 고밀도, 저결함(저기공), 초미세 사각 홀 레이저 가공에 최적인 고품질 질화규소 기판 소재를 제공한다.In addition, the present invention uses a vacuum atmosphere precision pressure control molding equipment modified from a general low-cost press molding equipment and a nitrogen atmosphere sintering equipment capable of sintering at a relatively low temperature and low pressure (near normal pressure) to design molding and sintering conditions that allow a silicon nitride ceramic substrate material to have a uniform and dense microstructure, thereby providing a high-quality silicon nitride substrate material that is optimal for high-density, low-defect (low-porosity), and ultra-fine square hole laser processing while utilizing low-cost equipment and production methods.
또한, 본 발명에서는 시스템 반도체 검사 장비에 최적인 질화규소 기판 스펙을 충족시키고자, 질화규소 기판 소재를 박판으로 연마 하는 공정에 있어서도, 박판 연마 전, 후 열처리하는 공정 조건을 고안함으로써, 박판 연마 가공시, 가공 스트레스에 의한 변형으로 발생할 수 있는 벤딩 불량률을 현저히 없앤, 안정적인 세라믹 기판 제조 방법을 개발하였다. In addition, in the present invention, in order to satisfy the silicon nitride substrate specifications optimal for system semiconductor inspection equipment, a process condition for heat treatment before and after thin plate polishing in a process of polishing a silicon nitride substrate material into a thin plate was devised, thereby significantly eliminating the bending defect rate that may occur due to deformation caused by processing stress during thin plate polishing, and developing a stable ceramic substrate manufacturing method.
일반적으로 질화규소 소결체는 Si3N4 입자가 비정질 유리상과 복합된 형태의 Cermet(WC-Co) 구조로, 고유의 색깔은 아이보리 내지 밝은 회색이므로, 약 10 vol% 이내의 부피 점유율을 가진 비정질 유리상에 가시광선 빛을 흡수할 수 있는 원소를 포함시키면 이론적으로 흑색화가 가능하다. 그러나 대표적인 흑색 첨가제로 알려져 있는 탄소 및 카바이드계 첨가제의 경우, 화학적으로 안정하여, 소결 온도 부근에서 상호 반응이 없으므로, 이들을 다량 첨가할 경우 소결을 방해하고, 경도가 높고 비중이 커서, 소결 후 응집된 상태로 존재하면 기판에 결함(defect)을 남길 가능성이 존재한다. In general, silicon nitride sintered bodies have a Cermet (WC-Co) structure in which Si3N4 particles are combined with an amorphous glass phase, and their inherent color is ivory to light gray. Therefore, if an element capable of absorbing visible light is included in the amorphous glass phase with a volume occupancy of less than about 10 vol%, blackening is theoretically possible. However, carbon and carbide additives, which are known as representative black additives, are chemically stable and do not react with each other near the sintering temperature. Therefore, if a large amount of these is added, sintering is hindered, and since they have high hardness and large specific gravity, if they exist in an agglomerated state after sintering, there is a possibility that defects may remain on the substrate.
본 발명에서는 세라믹 분말과 기본적인 알루미나, 이트리아 소결 조제와 함께 환원이 되면 가시광선을 효과적으로 흡수할 수 있으며, 동시에 질화규소의 소결조제들과 공융 액상을 원활하게 형성하여 소재 치밀화에 기여할 수 있는 첨가제로서, 경도 및 비중 또한 질화규소와 유사한 Ti계 산화물 형태 (TixOy) 흑색 첨가제를 첨가하였으며, 또한 상대적 더 낮은 온도에서 소결이 가능하게 하면서도, 소결조제, 흑색 첨가제와 분산 및 공융이 잘 되어 질화규소 세라믹의 특성과 치밀한 조직을 향상시키기 위하여, Mg계 산화물 (MgxOy) 및 Si계 산화물 (SixOy)을 첨가하여 배합 분말을 만들었다.In the present invention, a black additive in the form of Ti-based oxide (TixOy) having hardness and specific gravity similar to silicon nitride was added as an additive which can effectively absorb visible light when reduced with ceramic powder and basic alumina and yttria sintering aids, and at the same time smoothly form a eutectic liquid phase with sintering aids of silicon nitride to contribute to material densification. In addition, in order to enable sintering at a relatively lower temperature, while achieving good dispersion and eutectic with the sintering aid and black additive, Mg-based oxide (MgxOy) and Si-based oxide (SixOy) were added to create a compounding powder.
본 발명에서는 상기 3원계~6원계의 다원계 배합 분말을 성형 및 소결 후 원하는 특성이 나오도록 하기 위하여, 배합 분말들의 특성(99.9% 이상의 순도, 0.5~1μm 사이의 입도), 배합 비율(배합 조성), 그리고 이들을 균일하게 혼합하는 방법을 적용하는 것을 특징으로 한다.In the present invention, in order to obtain desired characteristics after molding and sintering of the ternary to hexameric multi-component powders, the characteristics of the powders (purity of 99.9% or higher, particle size between 0.5 and 1 μm), the mixing ratio (mixing composition), and the method of uniformly mixing them are applied.
본 발명의 하나의 구현 예에 따르면, 각 분말들을 4가지 종류의 배합 조성으로 혼합한 후, 저비용 진공 및 압력 정밀 제어 프레스 성형 장비로 기판을 성형하고, 상대적 저온 저압(상압 부근) 분위기 소결로에서 온도별 소결 실험을 진행하였다. According to one embodiment of the present invention, after mixing the respective powders in four types of mixing compositions, a substrate was formed using a low-cost vacuum and pressure precision control press forming equipment, and a sintering experiment was conducted at different temperatures in a relatively low-temperature, low-pressure (near normal pressure) atmosphere sintering furnace.
본 발명의 하나의 구현 예에 따르면, 질화규소분말 71~95중량%, 알루미나 1~5중량%, 이트리아 1~5중량%, 마그네슘산화물 1~5중량%, 실리콘산화물 1~7중량%, 티타늄산화물 1~7중량%를 배합한다. 더욱 바람직하게는 질화규소분말 79~91중량%, 알루미나 1.5~3.5중량%, 이트리아 1.5~3.5중량%, 마그네숨산화물 2~4중량%, 실리콘산화물 2~5중량%, 티타늄산화물 2~5중량%를 배합하여 배합분말을 만드는 것이다.According to one embodiment of the present invention, 71 to 95 wt% of silicon nitride powder, 1 to 5 wt% of alumina, 1 to 5 wt% of yttria, 1 to 5 wt% of magnesium oxide, 1 to 7 wt% of silicon oxide, and 1 to 7 wt% of titanium oxide are blended. More preferably, 79 to 91 wt% of silicon nitride powder, 1.5 to 3.5 wt% of alumina, 1.5 to 3.5 wt% of yttria, 2 to 4 wt% of magnesium oxide, 2 to 5 wt% of silicon oxide, and 2 to 5 wt% of titanium oxide are blended to make a blended powder.
본 발명의 하나의 구현 예에 따르면, 분말들의 균일한 분산을 위한 혼합 방법으로 상기 배합분말 : 이소프로필알콜 : 질화규소볼 = 1:4:2의 중량비로 혼합한 후, 볼밀 회전 속도 30~50 RPM으로 24~96시간, 바람직하게는 48~72시간 혼합한 후 건조하여 100~150㎛ 채로 걸러서 성형에 최적인 균일한 혼합분말을 얻을 수 있다.According to one embodiment of the present invention, a mixing method for uniformly dispersing powders is performed by mixing the mixed powder: isopropyl alcohol: silicon nitride balls in a weight ratio of 1:4:2, mixing at a ball mill rotation speed of 30 to 50 RPM for 24 to 96 hours, preferably 48 to 72 hours, and then drying and filtering through a 100 to 150 μm sieve to obtain a uniform mixed powder optimal for molding.
일반적으로 난 소결 소재인 질화규소 세라믹의 결함이 없는 미세조직을 얻기 위해, 기존의 성형 방법은 등방 수압 성형 장비(CIP), 열간 가압 성형 장비 (HP) 등의 고비용 장비를 이용하여 성형하였으나, 본 발명에서는 저비용 일반 프레스 성형 장비를 개선하여, 성형시 마이크로 포어 등의 결함을 없애고 성형 밀도를 올리기 위해 진공 분위기를 만든 챔버 안에서 가압 성형하였다.In order to obtain a defect-free microstructure of silicon nitride ceramics, which are generally difficult to sinter, the conventional forming method has been to form the mold using expensive equipment such as isostatic hydraulic pressing (CIP) equipment and hot pressing (HP) equipment. However, in the present invention, by improving low-cost general press forming equipment, the mold is formed by pressurizing in a chamber that creates a vacuum atmosphere to eliminate defects such as micropores during molding and to increase the molding density.
본 발명에서는 하기 단계를 포함하는 것을 특징으로 하는 질화규소 기판의 제조방법을 제공한다:The present invention provides a method for manufacturing a silicon nitride substrate, characterized by comprising the following steps:
(S1) 질화규소분말 71~95중량%, 알루미나 1~5중량%, 이트리아 1~5중량%, 마그네슘산화물 1~5중량%, 실리콘산화물 1~7중량%, 티타늄산화물 1~7중량%를 포함하는 배합분말을 제조하며, 더욱 바람직하게는 질화규소분말 79~91중량%, 알루미나 1.5~3.5중량%, 이트리아 1.5~3.5중량%, 마그네숨산화물 2~4중량%, 실리콘산화물 2~5중량%, 티타늄산화물 2~5중량%를 배합하는 단계;(S1) A step of producing a compound powder comprising 71 to 95 wt% of silicon nitride powder, 1 to 5 wt% of alumina, 1 to 5 wt% of yttria, 1 to 5 wt% of magnesium oxide, 1 to 7 wt% of silicon oxide, and 1 to 7 wt% of titanium oxide, more preferably, a step of mixing 79 to 91 wt% of silicon nitride powder, 1.5 to 3.5 wt% of alumina, 1.5 to 3.5 wt% of yttria, 2 to 4 wt% of magnesium oxide, 2 to 5 wt% of silicon oxide, and 2 to 5 wt% of titanium oxide;
(S2) 상기 배합분말 : 이소프로필알콜 : 질화규소볼 = 1:4:2의 중량비로 혼합한 후, 볼밀 회전 속도 30~50 RPM으로 24~96시간 혼합한 후 건조하여 균일한 혼합분말을 얻는 단계;(S2) A step of mixing the above mixed powder: isopropyl alcohol: silicon nitride balls in a weight ratio of 1:4:2, mixing at a ball mill rotation speed of 30 to 50 RPM for 24 to 96 hours, and then drying to obtain a uniform mixed powder;
(S3) 상기 혼합분말을 저비용 프레스 성형 장비를 개조한 진공 분위기 정밀 압력 제어 성형 장비를 이용하여, 단위면적당 최대 압력 50MPa ~ 125MPa의 압력으로, 승압 1~5분, 최고압 3~8분 유지하고, 감압 1~5분의 압력 사이클 조건으로 성형체를 성형하는 단계; 및(S3) A step of forming a molded body using a vacuum atmosphere precision pressure control molding equipment modified from a low-cost press molding equipment, with the above mixed powder, at a maximum pressure of 50 MPa to 125 MPa per unit area, with a pressure cycle of 1 to 5 minutes of pressure increase, 3 to 8 minutes of maximum pressure, and 1 to 5 minutes of pressure reduction; and
(S4) 상기 성형체를 800torr(1.1bar) 저압(상압 부근)의 질소 분위기 소결 노에서 1700 내지 1750℃에서 4 내지 7시간 동안 소결하여 질화규소 기판을 수득하는 단계.(S4) A step of sintering the above-mentioned molded body in a nitrogen atmosphere sintering furnace at a low pressure (near normal pressure) of 800 torr (1.1 bar) at 1700 to 1750°C for 4 to 7 hours to obtain a silicon nitride substrate.
본 발명에서는 얇은 기판을 성형해야 하므로 가압-유지-감압시 크랙이나 깨짐을 방지하기 위하여 정밀 분해능으로 가압 속도, 시간 등을 제어할 수 있는 정밀 압력 제어 장치를 적용하여, 단위면적당 최대 압력 50MPa~125MPa, 바람직하게는 75MPa~100MPa의 압력으로, 승압 1~5분, 최고압 3~8분유지, 감압 1~5분의 압력 사이클 조건으로 성형을 진행하였으며, 도 1은 저비용 진공 분위기 제어 및 정밀 압력/속도 제어 프레스 성형 장치 모식도이다.In the present invention, since a thin substrate must be formed, a precision pressure control device capable of controlling the pressurization speed, time, etc. with precise resolution is applied to prevent cracks or breakage during pressurization-maintenance-depressurization, and forming is performed under the pressure cycle conditions of pressurization for 1 to 5 minutes, maximum pressure maintenance for 3 to 8 minutes, and depressurization for 1 to 5 minutes at a maximum pressure of 50 to 125 MPa per unit area, preferably 75 to 100 MPa. FIG. 1 is a schematic diagram of a low-cost vacuum atmosphere control and precision pressure/speed control press forming device.
당 분야에서는 난소결 소재인 질화규소 세라믹의 결함이 적은 미세조직을 얻기 위해, 기존의 소결 방법은 소결로 내 질소 등의 가스를 주입하여 소결로 내 압력을 30~100bar 정도의 고압으로 만들고 소결온도도 1900℃ 이상의 고온에서 소결을 하는 GPS (Gas pressure sintering) 방법을 이용하거나, 1900℃ 이상의 고온으로 온도를 올리는 동시에 열간 가압을 하는 HP(Hot press) 방법을 이용하는 등 매우 고온, 고압, 고비용의 방법을 이용하고 있으나, 본 발명에서는 우선 상대적 낮은 온도에서 소결이 가능하게 하면서도, 소결조제, 흑색 첨가제와 분산 및 공융이 잘되어 질화규소 세라믹의 특성과 치밀한 조직을 얻을 수 있는 독자적 분말 배합 조성을 적용하고, 저비용 일반 프레스 성형 장비를 개선하여 성형시 마이크로 포어등의 결함을 없애고 성형 밀도를 올리기 위해 진공 분위기 제어 및 정밀 압력/속도 제어 프레스 성형 장치를 이용하여 이미 고밀도화 된 성형체를 소결하는 것이므로, 약 800torr(1.1bar) 정도의 저압(상압 부근)의 질소 분위기 소결 노에서, 상대적 저온인 1700~1750에서 4~7시간 정도 소결하여 3.2g/cm3이상의 밀도와, 저결함(저기공 : 직경 30μm 이상의 기공 결함이 1개 이하)의 질화규소 기판 소재를 얻을 수 있었다.In this field, in order to obtain a microstructure with fewer defects of silicon nitride ceramics, which are difficult-to-sinter materials, the existing sintering method uses a GPS (Gas pressure sintering) method in which gas such as nitrogen is injected into the sintering furnace to make the pressure inside the sintering furnace high-pressure about 30 to 100 bar and sinter at a high temperature of 1900°C or higher, or a HP (Hot press) method in which the temperature is raised to a high temperature of 1900°C or higher and hot pressurization is performed at the same time, which are very high temperature, high pressure, and high cost methods. However, the present invention first applies a unique powder mixing composition that enables sintering at a relatively low temperature while achieving good dispersion and eutectic with a sintering agent and black additives to obtain the characteristics of silicon nitride ceramics and a dense structure, and improves low-cost general press molding equipment to eliminate defects such as micro pores during molding and to increase the molding density by using a press molding device that controls the vacuum atmosphere and controls the precise pressure/speed to sinter an already densified molded body, so that about In a nitrogen atmosphere sintering furnace with a low pressure (near normal pressure) of approximately 800 torr (1.1 bar), a silicon nitride substrate material with a density of 3.2 g/cm 3 or higher and low defects (low pores: 1 or fewer pore defects with a diameter of 30 μm or more) was obtained by sintering at a relatively low temperature of 1700–1750 °C for approximately 4–7 hours.
본 발명의 하나의 구현예에 따르면, 상기 4가지 종류의 배합 조성에 대하여 각각 상대적 저온인 1650~1800 ℃에서 소결을 진행한 후 측정한 질화규소 세라믹 기판 소재의 밀도와 이후 100*100 기판 전면에 대하여 3차원 비젼 측정기로 측정한 결함 즉, 직경 30㎛ 이상의 기공 개수를 나타내었다.According to one embodiment of the present invention, the density of the silicon nitride ceramic substrate material was measured after sintering at a relatively low temperature of 1650 to 1800°C for each of the four types of compound compositions, and the number of defects, i.e., pores with a diameter of 30 μm or more, was measured using a three-dimensional vision measuring device for the entire surface of a 100*100 substrate.
본 발명에 따른 특징적인 배합 조성, 저비용 성형 및 소결 방법으로 제조한 치밀한 미세조직을 갖는 질화규소 기판 소재가 초미세 레이저 사각홀 가공 후 시스템 반도체 검사 장비에 적용하기 위해서는 0.2~0.3의 얇은 박판으로 연마 가공해야 하여 그 두께 공차 및 TTV(평탄도)는 각각 +/-0.005mm(10㎛)이하 및 +/-0.02mm(40㎛) 이하로 정밀해야 되는데, 이 박판 연마 가공시, 가공 스트레스에 의한 변형으로 벤딩이 일어나, 이 스펙을 맞출 수 없는 경우가 자주 발생하므로, 본 고안에서는 박판 연마 전, 후 최적의 열처리 공정 조건을 개발함으로써 벤딩 불량률을 현저히 없앤 안정적인 세라믹 기판 제조 방법을 제공할 수 있다. In order for a silicon nitride substrate material having a dense microstructure, manufactured by a low-cost molding and sintering method and having a characteristic mixing composition according to the present invention to be applied to a system semiconductor inspection equipment after ultra-fine laser square hole processing, it must be polished into a thin plate of 0.2 to 0.3, and its thickness tolerance and TTV (flatness) must be precise at +/-0.005 mm (10 ㎛) or less and +/-0.02 mm (40 ㎛) or less, respectively. However, when polishing this plate, bending occurs due to deformation caused by processing stress, and in many cases it is impossible to meet this specification. Therefore, the present invention provides a stable ceramic substrate manufacturing method that significantly eliminates the bending defect rate by developing optimal heat treatment process conditions before and after plate polishing.
본 발명의 하나의 구현 예에 따르면, 열처리 공정은 진공 후 질소 분위기하 열처리로에서 평탄도 0.01mm 이하로 가공한 열처리 지그를 사용하여 3kg 이상의 하중을 가하면서 1300~1500℃에서 2~5시간동안 열처리를 진행하였으며, 이후, 3차원 비젼 측정기로 바닥에서의 z축 단차를 100*100 기판에서 5군데씩 측정하여, 최대 최소값 차이가 40μm (+/-0.02mm) 이하인치 초과인지 측정하여 TTV(평탄도) 및 벤딩 불량 여부를 판단하였다. 본 발명에 따르면, 1400℃에서 4~6시간 열처리할 때가 30μm이하의 TTV(평탄도) 값 및 벤딩 불량 없음이 확인되었다.According to one embodiment of the present invention, the heat treatment process was performed at 1300 to 1500°C for 2 to 5 hours using a heat treatment jig processed to a flatness of 0.01 mm or less in a heat treatment furnace under a nitrogen atmosphere after vacuum, while applying a load of 3 kg or more, and then, using a 3D vision measuring device, the z-axis step from the bottom was measured at 5 points on a 100*100 substrate, and the TTV (flatness) and whether there was a bending defect were determined by measuring whether the maximum and minimum value differences were less than 40 μm (+/- 0.02 mm). According to the present invention, when heat treating was performed at 1400°C for 4 to 6 hours, it was confirmed that the TTV (flatness) value was 30 μm or less and there was no bending defect.
본 발명에서 개발한 저비용 고품질 흑색 치밀화 (고밀도, 저기공) 질화규소 기판은 초고속, 고집적 시스템 반도체의 검사 장비에서 MEMS형 초미세 사각 탐침을 지지하는 프로브 가이드로 적용되는 것이므로, 본 발명의 특징적인 배합 분말 조성 및 혼합 방법, 저비용 진공분위기 및 압력 정밀제어 성형 방법, 그리고 상대적 저온 저압(상압 부근) 질소 분위기 소결 방법을 적용하여 제조한 질화규소 기판 소재의 박판 래핑후 미세조직 관찰시, 역시 저결함(저기공 : 직경 30μm 이상의 기공 결함이 1개 이하)의 치밀한 미세조직이 확인되었으며, □32*32μm, pitch 8μm의 초미세 레이저 사각홀 가공시, 사각홀 공차 1μm이내, 모서리 R 4μm이내 사각홀 직진도 (사각홀의 울퉁불퉁한 정도) 1μm이내, 사각홀 Taper (입사, 출사 사각홀 차이) 2~3μm 이내로 깔끔하게 가공됨을 확인하였다.The low-cost, high-quality black densified (high-density, low-pore) silicon nitride substrate developed in the present invention is applied as a probe guide supporting a MEMS-type ultra-fine square probe in inspection equipment for ultra-high-speed, high-integration system semiconductors. Therefore, when the silicon nitride substrate material was manufactured by applying the characteristic powder composition and mixing method of the present invention, the low-cost vacuum atmosphere and pressure precision control molding method, and the relatively low-temperature, low-pressure (near normal pressure) nitrogen atmosphere sintering method, upon observation of the microstructure after thin-plate lapping, a dense microstructure with low defects (low pores: 1 or less pore defects with a diameter of 30 μm or more) was confirmed, and when processing an ultra-fine laser square hole of □32*32 μm, pitch 8 μm, the square hole tolerance was within 1 μm, the corner R was within 4 μm, the square hole straightness (the degree of unevenness of the square hole) was within 1 μm, and the square hole taper (the difference between the incident and exit square holes) was It was confirmed that it was neatly processed to within 2~3μm.
이하, 본 발명의 이해를 돕기 위하여 실시예 등을 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 하기 실시 예들에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시 예들은 당 업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다. Hereinafter, in order to help understand the present invention, examples and the like will be described in detail. However, the examples according to the present invention may be modified in various different forms, and the scope of the present invention should not be construed as being limited to the following examples. The examples of the present invention are provided to more completely explain the present invention to a person having average knowledge in the art.
<실시예 1><Example 1>
각 분말들을 4가지 종류의 배합 조성으로 혼합한 후, 저비용 진공 및 압력 정밀 제어 프레스 성형 장비로 기판을 성형하고, 상대적 저온 저압(상압 부근) 분위기 소결로에서 온도별 소결 실험을 진행하였다. After mixing each powder into four types of mixing compositions, the substrates were formed using low-cost vacuum and pressure precision control press forming equipment, and temperature-dependent sintering experiments were conducted in a relatively low-temperature, low-pressure (near normal pressure) atmosphere sintering furnace.
본 발명에 따른 4종류 분말의 배합조성 및 소결온도에 따른 질화규소 기판의 밀도(g/cm3)는 하기 표 1에 나타내었으며, 분말배합조성 및 소결온도에 따른 질화규소 기판의 결함(직경 30μm 이상의 기공) 개수(ea)는 하기 표 2에 나타낸 바와 같다.The density (g/cm3) of the silicon nitride substrate according to the mixing composition and sintering temperature of the four types of powders according to the present invention is shown in Table 1 below, and the number (ea) of defects (pores with a diameter of 30 μm or more) of the silicon nitride substrate according to the powder mixing composition and sintering temperature is as shown in Table 2 below.
/마그네슘산화물Silicon nitride/alumina/yttria/titanium oxide
/magnesium oxide
/마그네슘산화물/실리콘산화물Silicon nitride/alumina/yttria/titanium oxide
/Magnesium oxide/Silicon oxide
/마그네슘산화물Silicon nitride/alumina/yttria/titanium oxide
/magnesium oxide
/마그네슘산화물/실리콘산화물Silicon nitride/alumina/yttria/titanium oxide
/Magnesium oxide/Silicon oxide
<실시예 2><Example 2>
상기 4가지 종류의 배합 조성에 대하여 각각 상대적 저온인 1650~1800 ℃에서 소결을 진행한 후 측정한 질화규소 세라믹 기판 소재의 밀도와 이후 100*100 기판 전면에 대하여 3차원 비젼 측정기로 측정한 결함 즉, 직경 30μm 이상의 기공 개수를 나타내었으며, 도 2에 각 배합 조성 및 소결 온도별 기판 표면을 94.2배의 3차원 비젼 측정기로 검사한 미세조직 비교사진을 나타내었다. 여기서, 3번 조성이 소결온도인 1725℃에서 고밀도이면서 저결함인 질화규소 기판 제조를 가능하게 하는 최적의 분말 배합 조성임을 알 수 있다. 다만, 4번 조성은 통상적인 시스템 반도체 검사장비용 질화규소 밀도 및 미세조직 기준인 밀도 3.2g/cm3 이상인 동시에 저결함(저기공 : 직경 30μm 이상의 기공 개수 1개 이하)을 만족하며, 실리콘 산화물을 포함할 경우 소결 온도를 보다 낮출 수 있으므로 본 발명의 목적 중 하나인 공정 비용 저감의 효과를 제공할 수 있다.For the four types of mixing compositions mentioned above, the density of the silicon nitride ceramic substrate material was measured after sintering at relatively low temperatures of 1650 to 1800 ℃, and the number of defects, i.e., pores with a diameter of 30 μm or more, were measured using a three-dimensional vision measuring device on the entire surface of a 100*100 substrate. In addition, Fig. 2 shows comparative microstructure photographs of the substrate surface examined using a three-dimensional vision measuring device at a magnification of 94.2 times for each mixing composition and sintering temperature. Here, it can be seen that Composition 3 is the optimal powder mixing composition that enables the manufacture of a high-density, low-defect silicon nitride substrate at a sintering temperature of 1725 ℃. However, composition No. 4 satisfies the density and microstructure standards of silicon nitride for typical system semiconductor inspection equipment with a density of 3.2 g/cm3 or more and low defects (low pores: 1 or less with a diameter of 30 μm or more), and when it includes silicon oxide, the sintering temperature can be lowered, thereby providing the effect of reducing process costs, which is one of the purposes of the present invention.
도 2는 배합 조성 및 소결 온도별 기판 표면의 미세조직 비교 사진이다. Figure 2 is a comparative photograph of the microstructure of the substrate surface according to the mixing composition and sintering temperature.
<실시예 3><Example 3>
열처리 공정은 진공 후 질소 분위기하 열처리로에서 평탄도 0.01mm 이하로 가공한 열처리 지그를 사용하여 3kg 이상의 하중을 가하면서 1300~1500℃에서 2~5시간동안 열처리를 진행하였으며, 이후, 3차원 비젼 측정기로 바닥에서의 z축 단차를 100*100 기판에서 5군데씩 측정하여, 최대 최소값 차이가 40μm (+/-0.02mm) 이하인치 초과인지 측정하여 TTV(평탄도) 및 벤딩 불량 여부를 판단하였다. 표 3에 열처리 온도 및 시간 조건에 따른 TTV(평탄도) 측정값을 나타내었다.The heat treatment process was performed at 1300 to 1500°C for 2 to 5 hours using a heat treatment jig processed to a flatness of 0.01 mm or less in a nitrogen atmosphere after vacuum heat treatment, while applying a load of 3 kg or more. After that, a 3D vision measuring device was used to measure the z-axis step from the floor at 5 points on a 100*100 substrate, and the TTV (flatness) and the presence of bending defects were determined by measuring whether the maximum and minimum difference was less than 40 μm (+/- 0.02 mm). Table 3 shows the TTV (flatness) measurement values according to the heat treatment temperature and time conditions.
도 3에 100*100 질화규소 기판 내 측정 위치 및 TTV(평탄도) 측정값 범위에 따른 기판 벤딩 정도를 사진으로 나타내었는데, 1400℃에서 4~6시간 열처리할 때가 30μm이하의 TTV(평탄도) 값 및 벤딩 불량 없음이 확인되었다. 도 3은 100*100 질화규소 기판 내 측정 위치 및 TTV(평탄도) 측정값 범위에 따른 기판 벤딩 정도의 일 례를 보여주는 것이다.Fig. 3 shows a photograph of the degree of substrate bending according to the measurement position and the range of TTV (flatness) measurement values in a 100*100 silicon nitride substrate. It was confirmed that the TTV (flatness) value was less than 30μm and there was no bending defect when heat-treated at 1400℃ for 4 to 6 hours. Fig. 3 shows an example of the degree of substrate bending according to the measurement position and the range of TTV (flatness) measurement values in a 100*100 silicon nitride substrate.
조건Heat treatment
condition
최고
온도(°C)Heat treatment
best
Temperature (°C)
유지
시간
(hr)Heat treatment
maintain
hour
(hr)
(평탄도)TTV
(flatness)
<실시예 4><Example 4>
본 발명에서 개발한 저비용 고품질 흑색 치밀화 (고밀도, 저기공) 질화규소 기판은 초고속, 고집적 시스템 반도체의 검사 장비에서 MEMS형 초미세 사각 탐침을 지지하는 프로브 가이드로 적용되는 것이므로, 마지막으로 질화규소 기판의 초미세 레이저 사각홀 가공에 최적인 레이저 드릴링 장비를 이용하여 초미세 레이저 사각홀 가공성을 검증하였다. The low-cost, high-quality black densified (high-density, low-pore) silicon nitride substrate developed in the present invention is applied as a probe guide supporting a MEMS-type ultra-fine square probe in inspection equipment for ultra-high-speed, high-integration system semiconductors. Therefore, finally, the ultra-fine laser square hole machinability was verified using laser drilling equipment that is optimal for ultra-fine laser square hole machining of the silicon nitride substrate.
도 4에는 본 발명에서 개발한 시스템 반도체 측정 장비용 저비용 고품질 흑색 치밀화 질화규소 기판 소재의 박판 래핑 가공 (100*100*0.25mm)후 미세조직 및 초미세 레이저 사각홀 (□0.032mm (32μm), pitch 0.008mm (8μm)) 가공성 검증 사진을 나타내었다. 여기에서 보듯이, 본 발명의 특징적인 배합 분말 조성 및 혼합 방법, 저비용 진공분위기 및 압력 정밀제어 성형 방법, 그리고 상대적 저온 저압(상압 부근) 질소 분위기 소결 방법을 적용하여 제조한 질화규소 기판 소재의 박판 래핑 후 미세조직 관찰시, 역시 저결함(저기공 : 직경 30μm 이상의 기공 개수 1개 이하)의 치밀한 미세조직이 확인되었으며, □32*32μm, pitch 8μm의 초미세 레이저 사각홀 가공시, 사각홀 공차 1μm이내, 모서리 R 4μm이내 사각홀 직진도 (사각홀의 울퉁불퉁한 정도) 1μm이내, 사각홀 Taper (입사, 출사 사각홀 차이) 2~3μm 이내로 깔끔하게 가공됨을 확인하였다.Figure 4 shows a photo of the microstructure and ultrafine laser square hole (□0.032 mm (32 μm), pitch 0.008 mm (8 μm)) processing verification after thin-plate lapping processing (100*100*0.25 mm) of a low-cost, high-quality black densified silicon nitride substrate material for system semiconductor measuring equipment developed in the present invention. As can be seen here, when observing the microstructure after thin-plate lapping of the silicon nitride substrate material manufactured by applying the characteristic compounded powder composition and mixing method of the present invention, the low-cost vacuum atmosphere and pressure precision control molding method, and the relatively low-temperature and low-pressure (near normal pressure) nitrogen atmosphere sintering method, a dense microstructure with low defects (low pores: 1 or less pores with a diameter of 30 μm or more) was confirmed, and when processing an ultra-fine laser square hole of □32*32 μm, pitch 8 μm, it was confirmed that the square hole tolerance was within 1 μm, the corner R was within 4 μm, the square hole straightness (the degree of unevenness of the square hole) was within 1 μm, and the square hole Taper (the difference between the incident and exit square holes) was within 2 to 3 μm, so that it was cleanly processed.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.While the specific parts of the present invention have been described in detail above, it is obvious to those skilled in the art that such specific descriptions are merely preferred embodiments and that the scope of the present invention is not limited thereto. Accordingly, the actual scope of the present invention will be defined by the appended claims and their equivalents.
Claims (8)
A mixed powder for a silicon nitride ceramic substrate manufactured by adding 71 to 95 wt% of silicon nitride powder, 1 to 5 wt% of alumina, 1 to 5 wt% of yttria, 1 to 5 wt% of magnesium oxide, and 1 to 7 wt% of titanium oxide in a weight ratio of 1:4:2 to isopropyl alcohol and mixing silicon nitride balls for 24 to 96 hours at a ball mill rotation speed of 30 to 50 RPM, drying, and then filtering through a 100 to 150 μm sieve.
상기 배합 분말은 실리콘산화물 1~7중량%을 더 포함하는 질화규소 세라믹 기판용 혼합분말.
In the first paragraph,
The above-mentioned mixed powder is a mixed powder for a silicon nitride ceramic substrate further containing 1 to 7 wt% of silicon oxide.
(S2) 상기 배합분말 : 이소프로필알콜 : 질화규소볼 = 1:4:2의 중량비로 혼합한 후, 볼밀 회전 속도 30~50 RPM으로 24~96시간 혼합한 후 건조하여 균일한 혼합분말을 얻는 단계;
(S3) 상기 혼합분말을, 진공 분위기 정밀 압력 제어 성형 장비를 이용하여, 단위면적당 최대 압력 50MPa ~ 125MPa의 압력으로, 승압 1~5분, 최고압 3~8분 유지하고, 감압 1~5분의 압력 사이클 조건으로 성형체를 성형하는 단계; 및
(S4) 상기 성형체를 800torr(1.1bar) 저압의 질소 분위기 소결 노에서 1700 내지 1750℃에서 4 내지 7시간 동안 소결하여 질화규소 기판을 수득하는 단계;
를 포함하는 시스템 반도체 검사 장비용 질화규소 기판의 제조방법.
(S1) A step for producing a compound powder containing 71 to 95 wt% of silicon nitride powder, 1 to 5 wt% of alumina, 1 to 5 wt% of yttria, 1 to 5 wt% of magnesium oxide, and 1 to 7 wt% of titanium oxide;
(S2) A step of mixing the above mixed powder: isopropyl alcohol: silicon nitride balls in a weight ratio of 1:4:2, mixing at a ball mill rotation speed of 30 to 50 RPM for 24 to 96 hours, and then drying to obtain a uniform mixed powder;
(S3) A step of forming a molded body using the above mixed powder using a vacuum atmosphere precision pressure control molding equipment under the conditions of a pressure cycle of 50 MPa to 125 MPa per unit area, increasing the pressure for 1 to 5 minutes, maintaining the highest pressure for 3 to 8 minutes, and reducing the pressure for 1 to 5 minutes; and
(S4) A step of sintering the above-mentioned molded body in a nitrogen atmosphere sintering furnace at a low pressure of 800 torr (1.1 bar) at 1700 to 1750°C for 4 to 7 hours to obtain a silicon nitride substrate;
A method for manufacturing a silicon nitride substrate for a system semiconductor inspection equipment including a .
상기 배합 분말은 실리콘산화물 1~7중량%을 더 포함하는 시스템 반도체 검사 장비용 질화규소 기판의 제조방법.
In the third paragraph,
A method for manufacturing a silicon nitride substrate for system semiconductor inspection equipment, wherein the above-mentioned compounded powder further contains 1 to 7 wt% of silicon oxide.
A silicon nitride substrate for a system semiconductor inspection device manufactured by the method of claim 3 or 4.
상기 질화규소 기판은 3.2g/cm3 이상의 밀도를 가지며, 직경 30μm 이상의 기공 개수가 1개 이하인 것을 특징으로 하는 시스템 반도체 검사 장비용 질화규소 기판.
In paragraph 5,
A silicon nitride substrate for system semiconductor inspection equipment, characterized in that the silicon nitride substrate has a density of 3.2 g/cm 3 or more and has 1 or less pores having a diameter of 30 μm or more.
A method for controlling bending of a silicon nitride substrate, which significantly eliminates bending defects during thin plate polishing, to obtain flatness of a silicon nitride substrate for use as a probe guide for system semiconductor inspection equipment using a silicon nitride substrate according to Article 5.
상기 열처리 방법이 박판 연마 가공시 가공 스트레스로 벤딩이 발생한 질화규소 기판을 진공 후 질소 분위기하 열처리로에서, 평탄도 0.01mm 이하로 가공한 열처리 지그를 사용하여 3kg 이상의 하중을 가하면서 1400℃에서 4-6시간 동안 열처리를 진행하는 것을 특징으로 하는 질화규소 기판의 벤딩 제어 열처리 방법.In Article 7,
A method for controlling bending of a silicon nitride substrate, characterized in that the heat treatment method comprises heat treating a silicon nitride substrate that has undergone bending due to processing stress during thin plate polishing at 1400°C for 4 to 6 hours using a heat treatment jig that has been processed to a flatness of 0.01 mm or less in a heat treatment furnace under a vacuum and nitrogen atmosphere, while applying a load of 3 kg or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230195228A KR102701243B1 (en) | 2023-12-28 | 2023-12-28 | Silicon nitride substrate for system semiconductor inspection equipment and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020230195228A KR102701243B1 (en) | 2023-12-28 | 2023-12-28 | Silicon nitride substrate for system semiconductor inspection equipment and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
KR102701243B1 true KR102701243B1 (en) | 2024-09-02 |
Family
ID=92757731
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020230195228A KR102701243B1 (en) | 2023-12-28 | 2023-12-28 | Silicon nitride substrate for system semiconductor inspection equipment and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102701243B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014073944A (en) * | 2012-10-05 | 2014-04-24 | Hitachi Metals Ltd | Method of producing silicon nitride sintered body |
CN104446495A (en) * | 2014-09-30 | 2015-03-25 | 苏州博利迈新材料科技有限公司 | Silicon nitride ceramic material and preparation method thereof |
CN105541341A (en) * | 2016-01-12 | 2016-05-04 | 河北高富氮化硅材料有限公司 | Method for preparing high-compactness silicon nitride ceramic by adding composite additives |
KR20190052067A (en) * | 2016-10-31 | 2019-05-15 | 쿄세라 코포레이션 | Board for probe card, probe card and inspection apparatus |
-
2023
- 2023-12-28 KR KR1020230195228A patent/KR102701243B1/en active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014073944A (en) * | 2012-10-05 | 2014-04-24 | Hitachi Metals Ltd | Method of producing silicon nitride sintered body |
CN104446495A (en) * | 2014-09-30 | 2015-03-25 | 苏州博利迈新材料科技有限公司 | Silicon nitride ceramic material and preparation method thereof |
CN105541341A (en) * | 2016-01-12 | 2016-05-04 | 河北高富氮化硅材料有限公司 | Method for preparing high-compactness silicon nitride ceramic by adding composite additives |
KR20190052067A (en) * | 2016-10-31 | 2019-05-15 | 쿄세라 코포레이션 | Board for probe card, probe card and inspection apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6423400B1 (en) | Susceptor for semiconductor manufacturing equipment and process for producing the same | |
JP5972630B2 (en) | Manufacturing method of electrostatic chuck | |
US20040224125A1 (en) | Ceramic members, a method of producing the same and corrosion resistant members | |
CN112407936B (en) | Porous vacuum chuck and preparation method thereof | |
TWI687391B (en) | Method for manufacturing alumina sintered body and alumina sintered body | |
CN110128117A (en) | High-purity aluminum oxide ceramic material and preparation method thereof | |
CN107117946B (en) | 99.6%Al2O3Ceramic substrate thinning method | |
KR102701243B1 (en) | Silicon nitride substrate for system semiconductor inspection equipment and manufacturing method thereof | |
KR101567311B1 (en) | Seramic material component and manufacturing method thereof | |
JPH11209171A (en) | Dense low thermal expansion ceramics, its production and member for semiconductor producing device | |
JP5368052B2 (en) | Multilayer ceramic substrate and manufacturing method thereof | |
JP2015030629A (en) | Alumina ceramic joined body and method for producing the same | |
KR101852040B1 (en) | Machinable ceramic composite material and manufacturing method of the same | |
TWI759081B (en) | Machinable ceramic composite and method for preparing the same | |
CA2024383C (en) | Hermetic package for an electronic device and method of manufacturing same | |
JP2009107880A (en) | Joined body, adsorption member, adsorption device, and working apparatus | |
JP4089261B2 (en) | Free-cutting ceramics, manufacturing method thereof, and probe guide parts | |
KR20190043631A (en) | Ceramic parts and method for forming them | |
US6733822B2 (en) | Process for producing sintered aluminum nitride furnished with via hole | |
CN113233903A (en) | Silicon nitride ceramic substrate and preparation method thereof | |
KR102723466B1 (en) | Highly processable ceramic composite and its manufacturing method | |
JP4062059B2 (en) | Low thermal expansion ceramic member, method for manufacturing the same, and member for semiconductor manufacturing apparatus | |
JP2005123556A (en) | Wafer polishing suction plate | |
KR102464543B1 (en) | Conductive Titanium Dioxide Sintered Body And It’s Manufacturing Method Using Sol-Gel Casting Molding Method | |
KR102464544B1 (en) | Conductive Titanium Dioxide Sintered Body And It’s Manufacturing Method Using Pressure Casting Molding Method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |