KR102659292B1 - 5'-UTR for improving conversion of glucose to glycerol and uses thereof - Google Patents

5'-UTR for improving conversion of glucose to glycerol and uses thereof Download PDF

Info

Publication number
KR102659292B1
KR102659292B1 KR1020180121272A KR20180121272A KR102659292B1 KR 102659292 B1 KR102659292 B1 KR 102659292B1 KR 1020180121272 A KR1020180121272 A KR 1020180121272A KR 20180121272 A KR20180121272 A KR 20180121272A KR 102659292 B1 KR102659292 B1 KR 102659292B1
Authority
KR
South Korea
Prior art keywords
glycerol
utr
seq
gpd
synthetic
Prior art date
Application number
KR1020180121272A
Other languages
Korean (ko)
Other versions
KR20200041168A (en
Inventor
박혜권
성민경
강혜옥
강동균
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020180121272A priority Critical patent/KR102659292B1/en
Publication of KR20200041168A publication Critical patent/KR20200041168A/en
Application granted granted Critical
Publication of KR102659292B1 publication Critical patent/KR102659292B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/67General methods for enhancing the expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/18Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
    • C12P7/20Glycerol
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01008Glycerol-3-phosphate dehydrogenase (NAD+) (1.1.1.8)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/03021Glycerol-1-phosphatase (3.1.3.21)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

5'-UTR (untranslated region) 폴리뉴클레오티드 서열 변형을 통해 유전자의 전사 또는 단백질 발현량을 조절하여 포도당으로부터 글리세롤로의 전환속도를 높임으로써, 종국적으로 글리세롤의 생산량이 증가된 균주 및 이를 이용한 글리세롤 생산 방법에 관한 것이다.A strain with ultimately increased glycerol production by controlling the transcription or protein expression level of a gene through modification of the 5'-UTR (untranslated region) polynucleotide sequence to increase the conversion rate from glucose to glycerol, and a method for producing glycerol using the same It's about.

Description

포도당으로부터 글리세롤로의 전환률 향상을 위한 5'-UTR 및 이의 이용 {5'-UTR for improving conversion of glucose to glycerol and uses thereof}5'-UTR for improving conversion of glucose to glycerol and uses thereof {5'-UTR for improving conversion of glucose to glycerol and uses thereof}

5'-UTR (untranslated region) 폴리뉴클레오티드 서열 변형을 통해 유전자의 전사 또는 단백질 발현량을 조절하여 포도당으로부터 글리세롤로의 전환속도를 높임으로써, 종국적으로 글리세롤의 생산량이 증가된 균주 및 이를 이용한 글리세롤 생산 방법에 관한 것이다.A strain with ultimately increased glycerol production by controlling the transcription or protein expression level of a gene through modification of the 5'-UTR (untranslated region) polynucleotide sequence to increase the conversion rate from glucose to glycerol, and a method for producing glycerol using the same It's about.

글리세롤은 의약품, 화장품, 개인용품 또는 식품 등의 원료로 사용되거나, 도료, 인쇄 잉크, 분석 시약 등으로 다양한 산업 분야에서 널리 사용된다. 또한, 글리세롤은 석유화학적으로 생산한 탄화수소에 비하여 매우 기능화 된 분자이므로 다양한 종류의 화학반응을 통하여 많은 고부부가치의 화학 제품을 생산할 수 있다.Glycerol is used as a raw material for pharmaceuticals, cosmetics, personal care products, or food, or is widely used in various industrial fields as paint, printing ink, and analytical reagents. In addition, glycerol is a highly functionalized molecule compared to hydrocarbons produced petrochemically, so many high-value chemical products can be produced through various types of chemical reactions.

글리세롤은 동물지방 및 유사 원료로부터 가수분해 반응을 통해 분리되거나, 비누 제조 시의 비누화 반응, 또는 바이오디젤 생산 시의 에스테르전환 반응 등 여러 방법으로 생산되지만, 대규모 생산은 주로 에스테르전환 방법에 의하고 있다. 그러나 이 때 생성된 글리세롤에는 촉매, 물, 비누, 염 및 에스테르 등의 불순물이 포함되어 있어 순도가 낮기 때문에 별도의 정제 과정이 필요하다. Glycerol is produced through various methods, such as separation from animal fat and similar raw materials through hydrolysis reaction, saponification reaction in soap production, or transesterification reaction in biodiesel production, but large-scale production is mainly through transesterification method. However, the glycerol produced at this time contains impurities such as catalysts, water, soap, salts, and esters and has low purity, so a separate purification process is required.

글리세롤은 또한 미생물 발효를 통해 생산될 수 있다. 그러나, 모든 미생물이 천연적으로 글리세롤을 합성할 수 있는 능력을 가지는 것은 아니다. 예를 들어, 바실러스 리체니포르미스 (Bacillus licheniformis) 또는 락토바실러스 리코페리시카 (Lactobacillus lycopersica) 등의 세균이 글리세롤을 합성하며, 두날리엘라 속 (Dunaliella sp.) 또는 아스테로모나스 그라실리스 (Asteromonas gracilis) 등의 조류, 또는 사카로마이세스 (Saccharomyces) 속의 효모 등이 외부의 높은 염 농도 또는 삼투압에 따른 보호 수단으로서 글리세롤을 합성할 수 있는 것으로 알려져 있다. 그러나 이들 균주로부터의 글리세롤을 산업적 수준으로 이용하기에는 그 생산량이 부족하다.Glycerol can also be produced through microbial fermentation. However, not all microorganisms have the ability to naturally synthesize glycerol. For example, bacteria such as Bacillus licheniformis or Lactobacillus lycopersica synthesize glycerol, and Dunaliella sp. or Asteromonas gracilis It is known that algae such as gracilis or yeast of the genus Saccharomyces can synthesize glycerol as a means of protection against high external salt concentration or osmotic pressure. However, the production volume of glycerol from these strains is insufficient to utilize it at an industrial level.

대장균의 경우 포도당으로부터 글리세롤로의 전환이 불가능하므로, 대장균으로부터 글리세롤을 생산하기 위하여 포도당을 글리세롤로 전환하는데 관여하는 이종의 효소 유전자를 도입하여 글리세롤을 생산하는 공정이 연구되었다. 그러나 생산성, 수율, 배지의 경제성 등의 측면에서 아직 상업적 수준에 이르지 못하고 있다.In the case of E. coli, conversion from glucose to glycerol is impossible, so in order to produce glycerol from E. coli, a process for producing glycerol was studied by introducing a heterogeneous enzyme gene involved in converting glucose into glycerol. However, it has not yet reached a commercial level in terms of productivity, yield, and economic feasibility of the medium.

천연적으로 글리세롤을 합성하거나 글리세롤을 합성하도록 유전적으로 조작된 균주에서 포도당으로부터 글리세롤 전환률을 증가시키기 위해서는 글리세롤 생합성 경로를 매개하는 효소의 활성을 높이거나 발현량을 조절하기 위한 기술의 개발이 요구된다.In order to increase the conversion rate of glycerol from glucose in strains that naturally synthesize glycerol or are genetically engineered to synthesize glycerol, the development of technology to increase the activity or control the expression level of enzymes that mediate the glycerol biosynthetic pathway is required.

국내특허공개 제10-2004-0104165호 (2004.12.10.)Domestic Patent Publication No. 10-2004-0104165 (2004.12.10.)

본 발명에서는 5'-UTR (untranslated region) 폴리뉴클레오티드 서열 변형을 통해 유전자의 전사 또는 단백질 발현량을 조절하여 포도당과 같은 탄소원으로부터 글리세롤로의 전환속도를 높임으로써, 종국적으로 글리세롤의 생산량이 증가된 균주 및 이를 이용한 글리세롤 생산 방법이 제공된다. In the present invention, the 5'-UTR (untranslated region) polynucleotide sequence modification is used to regulate gene transcription or protein expression to increase the conversion rate from carbon sources such as glucose to glycerol, ultimately producing a strain with increased glycerol production. And a method for producing glycerol using the same is provided.

일 예로, 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 디하이드로게나제(glycerol-3-phosphate dehydrogenase: GPD) 를 코딩하는 유전자, 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 포스파타제(glycerol-3-phosphate phosphatase: GPP)를 코딩하는 유전자, 또는 둘 다로 형질전환된, 글리세롤을 생산하는 미생물을 제공한다.As an example, a gene encoding glycerol-3-phosphate dehydrogenase (GPD) into which a synthetic 5'-UTR was introduced, glycerol-3-phosphate phosphatase into which a synthetic 5'-UTR was introduced ( Provided is a microorganism that produces glycerol, transformed with a gene encoding glycerol-3-phosphate phosphatase (GPP), or both.

다른 예로, 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 디하이드로게나제를 코딩하는 유전자, 합성 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 포스파타제를 코딩하는 유전자, 또는 둘 다로 미생물을 형질전환하는 단계; 및 상기 형질전환된 미생물을 탄소원 함유 배지에서 배양하여 글리세롤을 생산하는 단계를 포함하는, 글리세롤의 생산 방법을 제공한다.As another example, a microorganism may be cloned with a gene encoding glycerol-3-phosphate dehydrogenase with an introduced synthetic 5'-UTR, a gene encoding glycerol-3-phosphate phosphatase with an introduced synthetic 5'-UTR, or both. Transforming; and culturing the transformed microorganism in a medium containing a carbon source to produce glycerol.

다른 예로, 글리세롤-3-포스페이트 디하이드로게나제를 코딩하는 유전자의 전사량을 증가시키는, 단리된 5'-UTR 폴리뉴클레오티드를 제공한다. In another example, an isolated 5'-UTR polynucleotide is provided that increases the transcription amount of the gene encoding glycerol-3-phosphate dehydrogenase.

다른 예로, 글리세롤-3-포스페이트 포스파타제를 코딩하는 유전자의 전사량을 증가시키는, 단리된 5'-UTR 폴리뉴클레오티드를 제공한다.In another example, an isolated 5'-UTR polynucleotide is provided that increases the amount of transcription of a gene encoding glycerol-3-phosphate phosphatase.

본 발명은 미생물을 이용한 포도당을 글리세롤로 전환하는 효소인 글리세롤-3-포스페이트 디하이드로게나제(glycerol-3-phosphate dehydrogenase: GPD)와 글리세롤-3-포스페이트 포스파타제(glycerol-3-phosphate phosphatase: GPP)에 무작위로 생성된 합성 5'-UTR 서열 도입을 통해 최적의 발현량을 찾고 이에 해당하는 5'-UTR 서열 조합을 도출하였다.The present invention relates to glycerol-3-phosphate dehydrogenase (GPD) and glycerol-3-phosphate phosphatase (GPP), which are enzymes that convert glucose into glycerol using microorganisms. By introducing a randomly generated synthetic 5'-UTR sequence, the optimal expression level was found and the corresponding 5'-UTR sequence combination was derived.

본 발명의 한 측면에 따라, 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 디하이드로게나제를 코딩하는 유전자, 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 포스파타제를 코딩하는 유전자, 또는 둘 다로 형질전환된, 글리세롤을 생산하는 미생물이 제공된다.According to one aspect of the invention, a gene encoding glycerol-3-phosphate dehydrogenase into which a synthetic 5'-UTR has been introduced, a gene encoding glycerol-3-phosphate phosphatase into which a synthetic 5'-UTR has been introduced, or Microorganisms producing glycerol, transformed with both, are provided.

일 구체예로, 서열번호 3의 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 디하이드로게나제를 코딩하는 유전자 및 서열번호 11의 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 포스파타제를 코딩하는 유전자로 형질전환된, 글리세롤을 생산하는 미생물이 제공된다.In one embodiment, a gene encoding glycerol-3-phosphate dehydrogenase into which the synthetic 5'-UTR of SEQ ID NO: 3 was introduced and glycerol-3-phosphate phosphatase into which the synthetic 5'-UTR of SEQ ID NO: 11 was introduced. A glycerol-producing microorganism transformed with the encoding gene is provided.

본 발명의 다른 측면에 따라, 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 디하이드로게나제를 코딩하는 유전자, 합성 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 포스파타제를 코딩하는 유전자, 또는 둘 다로 미생물을 형질전환하는 단계; 및 상기 형질전환된 미생물을 탄소원 함유 배지에서 배양하여 글리세롤을 생산하는 단계를 포함하는, 글리세롤의 생산 방법이 제공된다.According to another aspect of the present invention, a gene encoding glycerol-3-phosphate dehydrogenase into which a synthetic 5'-UTR has been introduced, a gene encoding glycerol-3-phosphate phosphatase into which a synthetic 5'-UTR has been introduced, or transforming the microorganism with both; And a method for producing glycerol is provided, including the step of producing glycerol by culturing the transformed microorganism in a medium containing a carbon source.

일 구체예로, 서열번호 3의 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 디하이드로게나제를 코딩하는 유전자 및 서열번호 11의 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 포스파타제를 코딩하는 유전자로 형질전환된 미생물을 이용한, 글리세롤의 생산 방법이 제공된다.In one embodiment, a gene encoding glycerol-3-phosphate dehydrogenase into which the synthetic 5'-UTR of SEQ ID NO: 3 was introduced and glycerol-3-phosphate phosphatase into which the synthetic 5'-UTR of SEQ ID NO: 11 was introduced. A method for producing glycerol using a microorganism transformed with a coding gene is provided.

본 발명의 다른 측면에 따라, 글리세롤-3-포스페이트 디하이드로게나제를 코딩하는 유전자의 전사량을 증가시키는, 서열번호 1 내지 서열번호 6으로 이루어진 군에서 선택되는 서열번호로 표시되는 염기 서열로 이루어진, 단리된 5'-UTR 폴리뉴클레오티드가 제공된다. 구체예로, 글리세롤-3-포스페이트 디하이드로게나제를 코딩하는 유전자의 전사량을 증가시키는, 서열번호 3으로 표시되는 염기 서열로 이루어진, 단리된 5’UTR 폴리뉴클레오티드가 제공된다.According to another aspect of the present invention, it consists of a base sequence represented by SEQ ID NO: selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 6, which increases the transcription amount of the gene encoding glycerol-3-phosphate dehydrogenase. , an isolated 5'-UTR polynucleotide is provided. As a specific example, an isolated 5'UTR polynucleotide consisting of the base sequence shown in SEQ ID NO: 3, which increases the transcription amount of the gene encoding glycerol-3-phosphate dehydrogenase, is provided.

본 발명의 다른 측면에 따라, 글리세롤-3-포스페이트 포스파타제를 코딩하는 유전자의 전사량을 증가시키는, 서열번호 7 내지 서열번호 11로 이루어진 군에서 선택되는 서열번호로 표시되는 염기 서열로 이루어진, 단리된 5'-UTR 폴리뉴클레오티드가 제공된다. 구체예로, 글리세롤-3-포스페이트 포스파타제를 코딩하는 유전자의 전사량을 증가시키는, 서열번호 11로 표시되는 염기 서열로 이루어진, 단리된 5’UTR 폴리뉴클레오티드가 제공된다.According to another aspect of the present invention, an isolated product consisting of a base sequence represented by SEQ ID NO: 7 to SEQ ID NO: 11 increases the transcription amount of the gene encoding glycerol-3-phosphate phosphatase. 5'-UTR polynucleotides are provided. As a specific example, an isolated 5'UTR polynucleotide consisting of the base sequence shown in SEQ ID NO: 11, which increases the transcription amount of the gene encoding glycerol-3-phosphate phosphatase, is provided.

용어, "5'-UTR (untranslated region)" 또는 "5'-비번역영역" 이란, mRNA 전사체의 5'-말단에 존재하지만 아미노산으로 번역되지 않는 영역을 말한다. 게놈 서열에서, 5'-UTR 은 전사 시작 부위와 개시 코돈 사이에 있는 영역으로 일반적으로 정의된다. 척추동물 mRNA의 5'-UTR 은 수 십 개의 염기에서 수 백개의 염기 길이에 이를 수 있다. mRNA 가 단백질로 번역되는 과정은, 리보솜의 30S 서브유닛이 5'-UTR 에 결합하는 것으로 시작된다. 구체적으로, 리보솜의 30S 서브유닛 내의 16S rRNA(16S ribosomal RNA)가 5'-UTR의 리보솜 결합 부위(ribosome binding site, RBS)에 결합하고, tRNA 가 mRNA 의 개시코돈(AUG)을 인식하여 결합하면 단백질로의 번역이 시작된다. 5'-UTR 의 리보솜 결합 부위와 개시 코돈은 대략 6 내지 8 뉴클레오티드 거리에 존재하고, 리보솜 결합 부위 안에는 16S rRNA 의 3' 말단의 서열과 상보적인 서열이 존재하는데, 이를 샤인-달가노(Shine-Dalgarno) 서열이라 한다.The term "5'-UTR (untranslated region)" or "5'-untranslated region" refers to a region that is present at the 5'-end of an mRNA transcript but is not translated into amino acids. In genomic sequences, the 5'-UTR is generally defined as the region between the transcription start site and the start codon. The 5'-UTR of vertebrate mRNA can range from tens to hundreds of bases in length. The process of translating mRNA into protein begins with the binding of the 30S subunit of the ribosome to the 5'-UTR. Specifically, when the 16S rRNA (16S ribosomal RNA) in the 30S subunit of the ribosome binds to the ribosome binding site (RBS) of the 5'-UTR, and the tRNA recognizes and binds to the start codon (AUG) of the mRNA Translation into protein begins. The ribosome binding site of the 5'-UTR and the start codon are approximately 6 to 8 nucleotides apart, and within the ribosome binding site, there is a sequence complementary to the sequence of the 3' end of 16S rRNA, which is called Shine-Dalgarno (Shine-Dalgarno). Dalgarno) is called the hierarchy.

따라서, 일 예로, 본 발명에서 5'-UTR 은 16S rRNA 의 3' 말단의 서열과 상보적인 서열, 즉 샤인-달가노 서열이 보존되어 있으며 그 앞뒤의 서열이 조절된 서열을 포함할 수 있다.Therefore, as an example, in the present invention, the 5'-UTR may include a sequence complementary to the sequence of the 3' end of 16S rRNA, that is, a sequence in which the Shine-Dalgarno sequence is conserved and the sequences before and after it are regulated.

용어, "합성 5'-UTR (untranslated region)"은 천연(야생형) 5'-UTR 폴리뉴클레오티드 서열과는 다른 비-천연 5'-UTR 이다. 합성 5'-UTR 은 천연 5'-UTR을 구성하는 염기서열 중 하나 이상의 염기가 변형된 것을 말하며, 이러한 변형에는 염기의 치환, 부가, 결실 또는 역위를 포함한다. 대표적인 예시로, 5'-비번역영역에서 샤인-달가노 서열은 보존되어 있으며, 그 앞뒤에 존재하는 염기서열에서 하나 이상의 염기가 치환, 부가, 결실 또는 역위 등으로 변형된 서열을 포함할 수 있다.The term "synthetic 5'-UTR (untranslated region)" refers to a non-natural 5'-UTR that differs from the native (wild type) 5'-UTR polynucleotide sequence. Synthetic 5'-UTR refers to a modification of one or more bases in the base sequence constituting the natural 5'-UTR, and such modifications include substitution, addition, deletion, or inversion of bases. As a representative example, the Shine-Dalgarno sequence is conserved in the 5'-untranslated region, and may include sequences in which one or more bases are modified by substitution, addition, deletion, or inversion in the base sequences preceding and following it. .

일 예로, 합성 5'-UTR은 5'-NNNNNNNNNN-AAAGGAGCATC-NNNN-3' 또는 5'- NNN-AAAGGAGCATC-NNNNNNNNNNN -3' 의 염기서열로 이루어진 것일 수 있다. 이 때, 상기 N 은 A, T, G 또는 C 를 의미한다.As an example, the synthetic 5'-UTR may be composed of the base sequence 5'-NNNNNNNNNN-AAAGGAGCATC-NNNN-3' or 5'- NNN-AAAGGAGCATC-NNNNNNNNNNNN -3'. At this time, N means A, T, G or C.

일 예로, 합성 5'-UTR은, 글리세롤-3-포스페이트 디하이드로게나제를 코딩하는 유전자의 전사량을 증가시켜, 종국적으로 균주의 포도당으로부터 글리세롤로의 전환률을 높임으로써, 글리세롤의 생산량 증대에 기여한다. 상기 합성 5'-UTR은, 서열번호 1 내지 서열번호 6으로 이루어진 군에서 선택되는 서열번호로 표시되는 염기 서열로 이루어진, 단리된 5'-UTR 폴리뉴클레오티드일 수 있다. 구체예로, 상기 합성 5'-UTR은, 서열번호 3으로 표시되는 염기 서열로 이루어진, 단리된 5'-UTR 폴리뉴클레오티드일 수 있다.As an example, the synthetic 5'-UTR increases the transcription amount of the gene encoding glycerol-3-phosphate dehydrogenase, ultimately contributing to increased glycerol production by increasing the conversion rate of the strain from glucose to glycerol. do. The synthetic 5'-UTR may be an isolated 5'-UTR polynucleotide consisting of a base sequence represented by a sequence number selected from the group consisting of SEQ ID NO: 1 to SEQ ID NO: 6. As a specific example, the synthetic 5'-UTR may be an isolated 5'-UTR polynucleotide consisting of the base sequence shown in SEQ ID NO: 3.

일 예로, 합성 5'-UTR은, 글리세롤-3-포스페이트 포스파타제를 코딩하는 유전자의 전사량을 증가시켜, 종국적으로 균주의 포도당으로부터 글리세롤로의 전환률을 높임으로써, 글리세롤의 생산량 증대에 기여한다. 상기 합성 5'-UTR은, 서열번호 7 내지 서열번호 11로 이루어진 군에서 선택되는 서열번호로 표시되는 염기 서열로 이루어진, 단리된 5'-UTR 폴리뉴클레오티드일 수 있다. 구체예로, 상기 합성 5'-UTR은, 서열번호 11로 표시되는 염기 서열로 이루어진, 단리된 5'-UTR 폴리뉴클레오티드일 수 있다.As an example, the synthetic 5'-UTR increases the transcription amount of the gene encoding glycerol-3-phosphate phosphatase, ultimately increasing the conversion rate of the strain from glucose to glycerol, thereby contributing to increased glycerol production. The synthetic 5'-UTR may be an isolated 5'-UTR polynucleotide consisting of a base sequence represented by a sequence number selected from the group consisting of SEQ ID NO: 7 to SEQ ID NO: 11. As a specific example, the synthetic 5'-UTR may be an isolated 5'-UTR polynucleotide consisting of the base sequence shown in SEQ ID NO: 11.

일 예로, 합성 5'-UTR은, 서열번호 1 내지 11 중 어느 하나의 폴리뉴클레오티드의 염기 서열과 80%, 85%, 90%, 95%, 96%, 97%, 98% 또는 99% 이상 동일성이 있으며, 서열번호 1 내지 11 중 어느 하나의 폴리뉴클레오티드와 실질적으로 동일한 5'-UTR 활성을 가지는 것일 수 있다.As an example, the synthetic 5'-UTR is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical to the base sequence of any one of the polynucleotides in SEQ ID NOs: 1 to 11. and may have substantially the same 5'-UTR activity as any one of the polynucleotides of SEQ ID NOs: 1 to 11.

서열의 "% 동일성"은 둘 이상의 폴리뉴클레오티드 서열이 최대한 일치되도록을 정렬한 후 서열을 비교하였을 때 염기가 동일한 정도를 의미한다. 서열 동일성 백분율은 예를 들면, 비교 영역 전체에서 두 개의 최적으로 정렬된 서열을 비교하고, 두 서열 모두에서 동일한 아미노산 또는 핵산이 나타나는 위치의 갯수를 결정하여 일치된 (matched) 위치의 갯수를 수득하고, 상기 일치된 위치의 갯수를 비교 범위 내의 위치의 총 갯수 (즉, 범위 크기)로 나누고, 및 상기 결과에 100을 곱하여 서열 동일성의 백분율을 수득함으로써 계산될 수 있다. 상기 서열 동일성의 퍼센트는 공지의 서열 비교 프로그램을 사용하여 결정될 수 있으며, 상기 프로그램의 일례로 BLASTN(NCBI), CLC Main Workbench (CLC bio), MegAlignTM (DNASTAR Inc) 등을 들 수 있다.“% identity” of a sequence refers to the degree to which bases are identical when two or more polynucleotide sequences are aligned to match each other as much as possible and then the sequences are compared. Percent sequence identity is obtained by, for example, comparing two optimally aligned sequences across a comparison region and determining the number of positions where the same amino acid or nucleic acid appears in both sequences to obtain the number of matched positions. , can be calculated by dividing the number of matched positions by the total number of positions within the comparison range (i.e., range size), and multiplying the result by 100 to obtain the percentage of sequence identity. The percent sequence identity can be determined using a known sequence comparison program, examples of which include BLASTN (NCBI), CLC Main Workbench (CLC bio), MegAlignTM (DNASTAR Inc), etc.

본 발명의 다른 측면에 따라, 본원에 기재된 합성 5'-UTR을 포함하는 벡터가 제공된다. 벡터는 본원에 기재된 합성 5'-UTR 폴리뉴클레오티드 서열의 임의의 구체예를 포함하도록 고려될 수 있다.According to another aspect of the invention, vectors comprising the synthetic 5'-UTR described herein are provided. Vectors are contemplated to include any embodiment of the synthetic 5'-UTR polynucleotide sequence described herein.

합성 5'-UTR을 도입하여 포도당과 같은 탄소원으로부터 글리세롤로의 전환을 향상시켜 종국적으로 글리세롤의 생산량을 증가시키기 위한 구체예는, 합성 5'-UTR을 글리세롤-3-포스페이트 디하이드로게나제를 코딩하는 유전자, 글리세롤-3-포스페이트 포스파타제 를 코딩하는 유전자, 또는 둘 다에 각각 연결하는 단계, 및 상기 합성 5'-UTR과 연결한 유전자를 균주에 도입하는 단계를 포함할 수 있다.An embodiment for introducing a synthetic 5'-UTR to enhance the conversion from a carbon source such as glucose to glycerol and ultimately increase the production of glycerol, is to introduce a synthetic 5'-UTR encoding glycerol-3-phosphate dehydrogenase. It may include steps of linking to a gene, a gene encoding glycerol-3-phosphate phosphatase, or both, respectively, and introducing the gene linked to the synthetic 5'-UTR into the strain.

포도당과 같은 탄소 기질로부터 글리세롤을 생합성하는 경로로는 여러 경로가 알려져 있지만, 대표적인 예시는 다음과 같다. 우선, 포도당이 ATP의 존재하의 헥소키나제에 의하여 글루코즈-6-포스페이트로 전환된다. 글루코즈-6-포스페이트는 글루코즈-포스페이트 이소머라제에 의하여 프럭토즈-6-포스페이트로 전환되고, 다시 6-포스포프럭토키나제의 작용에 의하여 프럭토즈-1,6-디포스페이트로 전환된다. 상기 디포스페이트는 알돌레이즈에 의하여 디히드록시아세톤 포스페이트(DHAP)로 된다. 최종적으로 NADH-의존성 글리세롤-3-포스페이트 디히드로게나제(GPD)가 DHAP를 글리세롤-3-포스페이트(G3P)로 전환시키고, G3P는 다시 글리세롤-3-포스페이트 포스파타제에 의하여 탈인산화되어 글리세롤로 된다.Several pathways are known to biosynthesize glycerol from carbon substrates such as glucose, but representative examples are as follows. First, glucose is converted to glucose-6-phosphate by hexokinase in the presence of ATP. Glucose-6-phosphate is converted to fructose-6-phosphate by glucose-phosphate isomerase, and then converted to fructose-1,6-diphosphate by the action of 6-phosphofructokinase. The diphosphate is converted to dihydroxyacetone phosphate (DHAP) by aldolase. Finally, NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) converts DHAP into glycerol-3-phosphate (G3P), and G3P is then dephosphorylated by glycerol-3-phosphate phosphatase to become glycerol.

용어, "글리세롤-3-포스페이트 디하이드로게나제(glycerol-3-phosphate dehydrogenase: GPD)"는 디히드록시아세톤 포스페이트 (DHAP)에서 글리세롤-3-포스페이트 (G3P)로의 전환을 촉매화하는 효소 활성을 갖는 폴리펩티드를 말한다. 글리세롤-3-포스페이트 디하이드로게나제는 NADH, NADPH 또는 FAD- 의존성일 수 있다. 글리세롤-3-포스페이트 디하이드로게나제는 그 유래에 관계없이, DHAP 에서 G3P 로의 전환을 촉매하는 효소 활성을 가지는 효소라면 본원의 범주에 포함되며, 이를 코딩하는 유전자로는 GPD1 또는 GPD2 를 예시할 수 있다. 본원의 일 실시예에서는 사카로미세스 세레비지에(Saccharomyces cerevisiae) 유래의 GPD1 유전자를 사용하였고, 그 서열정보는 서열번호 27 에서 확인할 수 있다. 그러나, 이는 본원의 대표적인 구현예에 해당할 뿐, 본원 발명이 이에 제한되는 것은 아니다. The term “glycerol-3-phosphate dehydrogenase (GPD)” refers to the enzyme activity that catalyzes the conversion of dihydroxyacetone phosphate (DHAP) to glycerol-3-phosphate (G3P). refers to a polypeptide that has Glycerol-3-phosphate dehydrogenase is known as NADH, NADPH or FAD- It may be a dependency. Regardless of its origin, glycerol-3-phosphate dehydrogenase is included in the scope of the present application as long as it is an enzyme that has the enzymatic activity of catalyzing the conversion of DHAP to G3P, and examples of genes encoding it include GPD1 or GPD2. there is. In one example of the present application, the GPD1 gene derived from Saccharomyces cerevisiae was used, and its sequence information can be found in SEQ ID NO: 27. However, this only corresponds to a representative embodiment of the present application, and the present invention is not limited thereto.

용어, "글리세롤-3-포스페이트 포스파타제(glycerol-3-phosphate phosphatase: GPP)"는 글리세롤-3-포스페이트 (G3P)에서 글리세롤로의 전환을 촉매화하는 효소 활성을 갖는 폴리펩티드를 말한다. 글리세롤-3-포스페이트 포스파타제는 그 유래에 관계없이, G3P 에서 글리세롤로의 전환을 촉매하는 효소 활성을 가지는 효소라면 본원의 범주에 포함되며, 이를 코딩하는 유전자로는 GPP1 또는 GPP2 를 예시할 수 있다. 본원의 일 실시예에서는 사카로미세스 세레비지에 유래의 GPP2 유전자를 사용하였고, 그 서열정보는 서열번호 28 에서 확인할 수 있다. 그러나, 이는 본원의 대표적인 구현예에 해당할 뿐, 본원 발명이 이에 제한되는 것은 아니다.The term “glycerol-3-phosphate phosphatase (GPP)” refers to a polypeptide with enzymatic activity that catalyzes the conversion of glycerol-3-phosphate (G3P) to glycerol. Regardless of its origin, glycerol-3-phosphate phosphatase is included in the scope of the present application as long as it has an enzymatic activity that catalyzes the conversion of G3P to glycerol, and examples of genes encoding it include GPP1 or GPP2. In one example of the present application, the GPP2 gene derived from Saccharomyces cerevisiae was used, and its sequence information can be found in SEQ ID NO: 28. However, this only corresponds to a representative embodiment of the present application, and the present invention is not limited thereto.

합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 디하이드로게나제를 코딩하는 유전자와, 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 포스파타제를 코딩하는 유전자는, 각각 벡터 내에 클로닝되어 세포에 도입될 수 있다. 또는, 상기 두 유전자가 하나의 벡터 내에 클로닝되어 세포에 도입될 수 있다. 여기에서, 벡터는 개체의 세포 내에서 목적 단백질을 코딩하는 유전자 삽입물이 발현되도록 작동가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말하며, 플라스미드, 바이러스 벡터, 박테리오파지 벡터, 코즈미드 벡터 등 다양한 형태의 벡터를 사용할 수 있다.The gene encoding glycerol-3-phosphate dehydrogenase into which a synthetic 5'-UTR was introduced and the gene encoding glycerol-3-phosphate phosphatase into which a synthetic 5'-UTR was introduced are each cloned into a vector and injected into the cell. can be introduced. Alternatively, the two genes can be cloned into one vector and introduced into cells. Here, the vector refers to a genetic construct containing essential regulatory elements operably linked to express the gene insert encoding the target protein in the cells of the individual, and can be used in various forms such as plasmids, viral vectors, bacteriophage vectors, cosmid vectors, etc. A vector of can be used.

벡터 내로 삽입되어 전달된 유전자가 숙주세포의 게놈 내로 비가역적으로 융합되어 세포 내에서 유전자 발현이 장기간 안정적으로 지속되도록 하는 벡터가 바람직하다. 이러한 벡터는, 해당 유전자가 선택된 숙주 내에서 발현될 수 있도록 하는 전사 및 해독 발현 조절 서열을 포함한다. 발현 조절 서열로는, 전사를 실시하기 위한 프로모터, 그러한 전사를 조절하기 위한 임의의 오퍼레이터 서열, 및/또는 전사 및 해독의 종결을 조절하는 서열을 포함할 수 있다. 개시 코돈 및 종결 코돈은 일반적으로 목적 단백질을 코딩하는 핵산 서열의 일부로 간주되며, 유전자 작제물이 투여되었을 때 개체에서 작용을 나타내야 하며 코딩 서열과 인프레임(in frame)에 있어야 한다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한 복제 가능한 발현벡터인 경우 복제 기원을 포함할 수 있다. 그 외에, 인핸서, 목적하는 유전자의 3' 말단의 비번역영역, 선별 마커(예컨대, 항생제 내성 마커), 또는 복제가능단위 등을 적절하게 포함할 수도 있다. 벡터는 자가 복제하거나 숙주 게놈 DNA에 통합될 수 있다.A vector is preferred in which the gene inserted into the vector is irreversibly fused into the genome of the host cell, allowing gene expression to continue stably for a long period of time within the cell. These vectors contain transcriptional and translational expression control sequences that allow the gene of interest to be expressed in the selected host. Expression control sequences may include promoters to effect transcription, optional operator sequences to regulate such transcription, and/or sequences to regulate termination of transcription and translation. Initiation codons and stop codons are generally considered to be part of the nucleic acid sequence encoding the protein of interest, must be functional in the subject when the genetic construct is administered, and must be in frame with the coding sequence. The promoter of the vector may be constitutive or inducible. Additionally, in the case of an expression vector capable of replication, an origin of replication may be included. In addition, it may appropriately include an enhancer, an untranslated region at the 3' end of the gene of interest, a selection marker (eg, antibiotic resistance marker), or a replicable unit. Vectors can self-replicate or integrate into host genomic DNA.

벡터 내의 각 구성요소는 서로 작동 가능하게 연결되어야 하며, 이들 구성요소 서열의 연결은 편리한 제한 효소 부위에서 라이게이션(연결)에 의해 수행될 수 있고, 그러한 부위가 존재하지 않는 경우, 통상의 방법에 따른 합성 올리고뉴클레오티드 어댑터(oligonucleotide adaptor) 또는 링커(linker)를 사용하여 수행될 수 있다.Each component within the vector must be operably linked to each other, and linking of these component sequences can be accomplished by ligation at convenient restriction enzyme sites, or, if such sites do not exist, by conventional methods. It can be performed using a synthetic oligonucleotide adapter or linker.

유용한 발현 조절 서열의 예로는, 아데노바이러스의 초기 및 후기 프로모터들, 원숭이 바이러스 40(SV40), 마우스 유방 종양 바이러스(MMTV) 프로모터, HIV의 긴 말단 반복부(LTR) 프로모터, 몰로니 바이러스, 시토메갈로바이러스(CMV) 프로모터, 엡스타인 바이러스(EBV) 프로모터, 로우스 사코마 바이러스(RSV) 프로모터, RNA 폴리머라제 Ⅱ 프로모터, T3 및 T7 프로모터들, 파지 람다의 주요 오퍼레이터 및 프로모터 영역, 및 원핵세포 또는 진핵 세포 또는 이들의 바이러스의 유전자의 발현을 조절하는 것으로 알려진 구성과 유도의 기타 다른 서열 및 이들의 여러 조합을 포함할 수 있다.Examples of useful expression control sequences include the early and late promoters of adenovirus, simian virus 40 (SV40), mouse mammary tumor virus (MMTV) promoter, long terminal repeat (LTR) promoter of HIV, Moloney virus, cytomegalo. Viral (CMV) promoter, Epstein virus (EBV) promoter, Roux Sarcoma virus (RSV) promoter, RNA polymerase II promoter, T3 and T7 promoters, major operator and promoter region of phage lambda, and prokaryotic or eukaryotic cells. or other sequences whose composition and induction are known to regulate the expression of viral genes and various combinations thereof.

본 발명의 한 측면에 따라, 본원에 기재된 합성 5'-UTR가 도입된 균주 또는 세포가 제공된다. According to one aspect of the invention, a strain or cell is provided into which the synthetic 5'-UTR described herein has been introduced.

상기 균주는 글리세롤 생성능을 가지고 있거나 글리세롤 생산능을 가지도록수 유전적으로 조작된 균주일 수 있다. 상기 균주는 합성 5'-UTR 이 도입되지 않은 미생물에 비하여 더 높은 수준의 글리세롤을 생산하도록 하는 것일 수 있다. 상기 글리세롤의 생산은 균주 내에서 생산되는 것, 세포 내에서 생산되어 세포 외부로 분비되는 것, 또는 그 조합을 포함한다. 균주 내에서 생산된 글리세롤은 3-히드록시프로피온산 (3-HP)과 같은 다른 대사 산물로부터 전환될 수 있다. 상기 글리세롤 생산은 합성 5'-UTR 이 도입되지 않은 미생물에 비하여 약 5% 이상, 약 10% 이상, 약 15% 이상, 약 20% 이상, 약 30% 이상, 약 50% 이상, 약 60% 이상, 약 70% 이상, 약 100% 이상, 200% 이상, 또는 300% 이상 증가된 것일 수 있다.The strain may have the ability to produce glycerol or may be a strain that has been genetically engineered to have the ability to produce glycerol. The strain may be capable of producing a higher level of glycerol than a microorganism in which a synthetic 5'-UTR is not introduced. The production of glycerol includes production within the strain, production within the cell and secretion outside the cell, or a combination thereof. Glycerol produced within the strain can be converted from other metabolites such as 3-hydroxypropionic acid (3-HP). The glycerol production is about 5% or more, about 10% or more, about 15% or more, about 20% or more, about 30% or more, about 50% or more, about 60% or more compared to microorganisms in which synthetic 5'-UTR is not introduced. , it may be increased by about 70% or more, about 100% or more, 200% or more, or 300% or more.

균주에의 도입은 상기 합성 5'-UTR 과 연결한 GPD 코딩 유전자, 합성 5'-UTR 과 연결한 GPP 코딩 유전자, 또는 둘 다를 숙주 세포로 도입하여 상기 핵산이 염색체외 인자로서 또는 염색체 통합완성에 의해 복제가능하게 되는 것을 의미한다. 예를 들어, 합성 5'-UTR 은, 균주에서 교체될 야생형 5'-UTR 의 인접한 서열에 상동인 서열 및 합성 5'-UTR 을 포함하는 벡터를 직접 도입함으로써 야생형 5'-UTR 을 교체하기 위하여, 숙주 생물체 안으로 도입될 수 있다. 다른 예로, 합성 5'-UTR 을 포함하는 통합 벡터가 균주에 도입됨으로써 균주의 게놈 안으로 삽입될 수 있다. 삽입의 조직-특이성은, 예를 들어 벡터 투여 경로에 의하여 조절될 수 있다. 다른 예로, 합성 5'-UTR 을 포함하는 비-통합 벡터가 숙주 생물체에 도입됨으로써 숙주 생물체에 도입될 수 있다.Introduction into the strain involves introducing the GPD coding gene linked to the synthetic 5'-UTR, the GPP coding gene linked to the synthetic 5'-UTR, or both into the host cell so that the nucleic acid acts as an extrachromosomal factor or to complete chromosomal integration. This means that it can be copied. For example, a synthetic 5'-UTR can be used to replace a wild-type 5'-UTR by directly introducing a vector containing the synthetic 5'-UTR and a sequence homologous to the adjacent sequence of the wild-type 5'-UTR to be replaced in the strain. , can be introduced into the host organism. As another example, an integration vector containing a synthetic 5'-UTR can be introduced into the strain and thus inserted into the genome of the strain. Tissue-specificity of insertion can be controlled, for example, by the route of vector administration. As another example, a non-integrating vector containing a synthetic 5'-UTR can be introduced into the host organism by introducing it into the host organism.

상기 균주는 원핵 균주일 수 있고, 예를 들어, 대장균(예를 들어, E. coli DH5a, E. coli JM101, E. coli K12, E. coli W3110, E. coli X1776, E. coli B 및 E.coli XL1-Blue)을 포함하는 에스케리키아 속일 수 있다. 그러나 이에 제한 되는 것은 아니며, 슈도모나스 속, 바실러스 속, 스트렙토마이세스 속, 어위니아 속, 세라티아 속, 프로비덴시아 속, 코리네박테리움 속, 렙토스피라 속, 살모넬라 속, 브레비박테리아 속, 하이포모나스 속, 크로모박테리움 속, 노카디아 속 등 다양한 균주에 적용할 수 있다. 적당한 균주에 도입되면, 벡터는 숙주 게놈과 무관하게 복제하고 기능할 수 있거나, 또는 일부 경우에 게놈 그 자체에 통합될 수 있다.The strain may be a prokaryotic strain, for example, E. coli (e.g., E. coli DH5a, E. coli JM101 , E. coli K12, E. coli W3110 , E. coli It may be the Escherichia genus, which includes .coli XL1-Blue). However, it is not limited to this, and includes Pseudomonas, Bacillus, Streptomyces, Erwinia, Serratia, Providencia, Corynebacterium, Leptospira, Salmonella, Brevibacteria, and Hypomonas. It can be applied to a variety of strains, including the genus Chromobacterium and Nocadia. Once introduced into an appropriate strain, the vector can replicate and function independently of the host genome, or in some cases can be integrated into the genome itself.

합성 5'-UTR 과 연결한 효소 유전자를 균주로 도입하는 것은, 당 분야에서 공지된 바와 같이 적합한 표준 기술, 예들 들어, 전기천공법(electroporation), 전기주입법(electroinjection), 미세주입법(microinjection), 인산칼슘공동-침전법(calcium phosphate co-precipitation), 염화캄슘/염화루비듐법, 레트로바이러스 감염(retroviral infection), DEAE-덱스트란(DEAE-dextran), 양이온 리포좀(cationic liposome)법, 폴리에틸렌 글리콜 침전법(polyethylene glycol-mediated uptake), 유전자총(gene gun) 등을 이용할 수 있으나, 이에 제한되는 것은 아니다. 이 때 원형의 벡터를 적절한 제한효소로 절단하여 선형의 벡터 형태로 도입할 수 있다. 균주의 배양에 사용되는 배지는 특정한 균주의 요구조건을 적절하게 만족시켜야 한다. 상기 배지는 다양한 탄소원, 질소원, 인원 및 미량원소 성분을 포함할 수 있다. Introducing an enzyme gene linked to a synthetic 5'-UTR into a strain can be accomplished using suitable standard techniques, such as electroporation, electroinjection, microinjection, etc., as known in the art. Calcium phosphate co-precipitation, calcium chloride/rubidium chloride method, retroviral infection, DEAE-dextran, cationic liposome method, polyethylene glycol precipitation Methods such as polyethylene glycol-mediated uptake and gene guns may be used, but are not limited thereto. At this time, the circular vector can be cut with an appropriate restriction enzyme and introduced in the form of a linear vector. The medium used for cultivating a strain must appropriately meet the requirements of the specific strain. The medium may contain various carbon sources, nitrogen sources, phosphorus and trace element components.

배지 내 탄소원으로는 포도당을 포함할 수 있다. 그 외에, 단당류, 올리고당류, 다당류, 단일탄소기질, 또는 그의 혼합물을 예시할 수 있다. 예를 들어 프럭토즈와 같은 단당류; 수크로즈, 말토즈 또는 락토즈와 같은 올리고당류; 녹말 또는 셀룰로오스와 같은 다당류; 메탄올, 포름알데히드 또는 포르메이트와 같은 단일탄소기질을 예시할 수 있다. 또한, 에탄올, 프로판올, 부탄올 등의 저급알콜류; 글리세롤 등의 다가알콜류; 아세트산, 시트르산, 숙신산, 타르타르산, 락트산, 글루콘산 등의 유기산; 프로피온산, 부탄산, 펜탄산, 헥산산, 헵탄산, 옥탄산, 노난산, 데칸산, 운데칸산, 도데칸산 등의 지방산 등을 예시할 수 있으나, 이에 제한되는 것은 아니다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다. The carbon source in the medium may include glucose. In addition, monosaccharides, oligosaccharides, polysaccharides, single carbon substrates, or mixtures thereof may be used. Monosaccharides, for example fructose; Oligosaccharides such as sucrose, maltose or lactose; polysaccharides such as starch or cellulose; Examples include single-carbon substrates such as methanol, formaldehyde, or formate. Additionally, lower alcohols such as ethanol, propanol, and butanol; polyhydric alcohols such as glycerol; Organic acids such as acetic acid, citric acid, succinic acid, tartaric acid, lactic acid, and gluconic acid; Fatty acids such as propionic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, nonanoic acid, decanoic acid, undecanoic acid, and dodecanoic acid may be included, but are not limited thereto. These substances can be used individually or as mixtures.

배지 내 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄을 예시할 수 있으나, 이에 제한되는 것은 아니다. 질소원 또한 개별적으로 또는 혼합물로서 사용할 수 있다. Nitrogen sources in the medium include peptone, yeast extract, broth, malt extract, corn steep liquor, soybean wheat, and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate, and ammonium nitrate. It is not limited to this. Nitrogen sources can also be used individually or in mixtures.

배지 내 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염을 예시할 수 있으나, 이에 제한되는 것은 아니다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 포함하거나, 아미노산 및 비타민과 같은 필수 성장 물질을 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기된 원료들은 배양 과정에서 배양물에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있다.Persons in the medium include, but are not limited to, potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salt. Additionally, the culture medium may contain metal salts such as magnesium sulfate or iron sulfate necessary for growth, or may contain essential growth substances such as amino acids and vitamins, but is not limited thereto. The above-mentioned raw materials can be added to the culture in an appropriate manner, batchwise or continuously, during the cultivation process.

또한, 필요에 따라, 수산화나트륨, 수산화칼륨, 암모니아와 같은 기초 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다. 또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체 (예, 공기)를 주입할 수 있으며, 배양물의 온도는 보통 20℃ 내지 45℃, 바람직하게는 25℃ 내지 40℃ 일 수 있다. 배양은 원하는 글리세롤의 생산량이 최대로 얻어질 때까지 계속될 수 있다.Additionally, if necessary, the pH of the culture can be adjusted by using basic compounds such as sodium hydroxide, potassium hydroxide, ammonia, or acid compounds such as phosphoric acid or sulfuric acid in an appropriate manner. Additionally, foam generation can be suppressed by using an antifoaming agent such as fatty acid polyglycol ester. Oxygen or oxygen-containing gas (e.g., air) can be injected into the culture to maintain aerobic conditions, and the temperature of the culture is usually 20°C to 45°C, preferably 25°C to 40°C. Cultivation can be continued until the maximum desired production of glycerol is obtained.

발효 배지로부터 글리세롤을 회수하는 방법은 당업계에 공지되어 있다. 예를 들어, 글리세롤은 원심분리, 크로마토그래피, 추출, 여과, 침전, 또는 이들의 조합을 수행함으로써 세포 배지로부터 얻을 수 있다.Methods for recovering glycerol from fermentation media are known in the art. For example, glycerol can be obtained from cell media by centrifugation, chromatography, extraction, filtration, precipitation, or combinations thereof.

합성 5'-UTR 사용을 통해 GPD 또는 GPP 유전자의 전사 또는 단백질 발현량을 조절하여 포도당으로부터 글리세롤로의 전환속도를 높임으로써, 종국적으로 글리세롤의 생산량이 증가될 수 있다.By increasing the conversion rate from glucose to glycerol by controlling the transcription or protein expression level of the GPD or GPP gene through the use of synthetic 5'-UTR, the production of glycerol can ultimately be increased.

이하 본 발명을 다음의 실시예에 의하여 보다 구체적으로 설명하고자 한다. 그러나 이들은 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이들 실시예에 의하여 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail through the following examples. However, these are only for illustrating the present invention, and the scope of the present invention is not limited by these examples.

실시예 1. 5'-UTR 서열의 합성Example 1. Synthesis of 5'-UTR sequence

표 1의 5'-UTR 서열을 바이오니어(대한민국)에 의뢰하여 합성하였다. UTR Designer (Seo et al., Metabolic Engineering 15 (2013) 67-74) 로 계산시 사카로미세스 세레비지에(Saccharomyces cerevisiae)의 천연 GPD 및 GPP 의 5'-UTR 서열 또는 합성 5'-UTR 서열에 따른 GPD 및 GPP의 발현 수준은 각각 다음과 같이 예측되었다.The 5'-UTR sequence in Table 1 was synthesized by Bioneer (Korea). When calculated using UTR Designer (Seo et al., Metabolic Engineering 15 (2013) 67-74), the 5'-UTR sequence or synthetic 5'-UTR sequence of natural GPD and GPP of Saccharomyces cerevisiae The expression levels of GPD and GPP were predicted as follows, respectively.

합성 5'-UTR 변이체Synthetic 5'-UTR variants 발현예상값Expected expression value 5'-UTR 서열 (5'->3')5'-UTR sequence (5'->3') GPD-1GPD-1 2921.252921.25 GTTAAAGGAGCATCTGACACCATGG (서열번호 1)GTTAAAGGAGCATCTGACACCATGG (SEQ ID NO: 1) GPD-2GPD-2 115863.62115863.62 ACCGAGCGAAAAAGGAGCATCAAAT (서열번호 2)ACCGAGCGAAAAAGGAGCATCAAAT (SEQ ID NO: 2) GPD-3GPD-3 157595.06157595.06 TAGCAGTAAGAAAGGAGCATCCATC (서열번호 3)TAGCAGTAAGAAAGGAGCATCCATC (SEQ ID NO: 3) GPD-4GPD-4 202697.32202697.32 GCACTATCCAAAAGGAGCATCCTAA (서열번호 4)GCACTATCCAAAAGGAGCATCCTAA (SEQ ID NO: 4) GPD-5GPD-5 208445.75208445.75 TTGTGGCAAGAAAGGAGCATCCATC (서열번호 5)TTGTGGCAAGAAAGGAGCATCCATC (SEQ ID NO: 5) GPD-6GPD-6 268101.01268101.01 AGACAATTGTAAAGGAGCATCCCAA (서열번호 6)AGACAATTGTAAAGGAGCATCCCAA (SEQ ID NO: 6) GPP-1GPP-1 20416.5720416.57 GTTAAAGGAGCATCTGACCATATGA (서열번호 7)GTTAAAGGAGCATCTGACCATATGA (SEQ ID NO: 7) GPP-2GPP-2 51492.1251492.12 GAGCGATTCAAAAGGAGCATCCCAG (서열번호 8)GAGCGATTCAAAAGGAGCATCCCAG (SEQ ID NO: 8) GPP-3GPP-3 103601.71103601.71 CAGTTGTAGTAAAGGAGCATCAAAA (서열번호 9)CAGTTGTAGTAAAGGAGCATCAAAA (SEQ ID NO: 9) GPP-4GPP-4 186385.82186385.82 CGTTTCAACAAAAGGAGCATCTCTT (서열번호 10)CGTTTCAACAAAAGGAGCATCTCTT (SEQ ID NO: 10) GPP-5GPP-5 268101.01268101.01 CAGTTTTAGTAAAGGAGCATCAAAA (서열번호 11)CAGTTTTAGTAAAGGAGCATCAAAA (SEQ ID NO: 11) Original UTR-GPDOriginal UTR-GPD 3646.263646.26 AAACACAAATATTGATAATATAAAG (서열번호 12)AAACACAAATATTGATAATATAAAG (SEQ ID NO: 12) Original UTR-GPPOriginal UTR-GPP 4519.834519.83 TAAAACAATAAAAACAATATTCGGA (서열번호 13)TAAAACAATAAAAACAATATTCGGA (SEQ ID NO: 13)

실시예 2. 합성 5' UTR 서열을 이용한 글리세롤의 생산Example 2. Production of glycerol using synthetic 5' UTR sequences

2-1. 벡터의 제작2-1. Creation of vectors

사카로미세스 세레비지에 유래의 GPD1 및 GPP2 유전자는 합성 UTR 서열을 포함하는 Forward primer (표 2) 를 이용하여 PCR (95도에서 2분 예비변성; 95도에서 1분 변성, 55도에서 30초 어닐링, 및 72도에서 2분 신장을 28회 반복; 72도에서 5분 최종신장; 4도로 유지하여 보관) 하였고, 각각 BamHI/SacI 과 KpnI/XhoI 제한효소 처리하여 pRSFDuet-1 벡터(Novagen, 71341-3)에 클로닝 하였다. 이 때 GPD, GPP 는 각각 합성 프로모터 J23101 (tttacagctagctcagtcctaggtattatgctagc: 서열번호 25), J23108 (ctgacagctagctcagtcctaggtataatgctagc: 서열번호 26) 하에 발현시켰다. GPD1 and GPP2 genes from Saccharomyces cerevisiae were PCR (pre-denaturation at 95 degrees for 2 minutes; denaturation at 95 degrees for 1 minute, denaturation at 55 degrees for 30 seconds) using a forward primer containing a synthetic UTR sequence (Table 2). Annealing was repeated 28 times for 2 minutes at 72 degrees; final extension was maintained at 4 degrees for 5 minutes at 72 degrees, and the pRSFDuet-1 vector (Novagen, 71341) was treated with BamHI/SacI and KpnI/XhoI restriction enzymes, respectively. -3) was cloned. At this time, GPD and GPP were expressed under the synthetic promoters J23101 (tttacagctagctcagtcctaggtattatgctagc: SEQ ID NO: 25) and J23108 (ctgacagctagctcagtcctaggtataatgctagc: SEQ ID NO: 26), respectively.

프라이머primer 서열 (5'->3')Sequence (5'->3') GPD_1_BamH1_FGPD_1_BamH1_F CATCATCATGGATCCA GTTAAAGGAGCATCTGACACCATGGAtgagcgctgcggctg (서열번호 14)CATCATCATGGATCCA GTTAAAGGAGCATCTGACACCATGGAtgagcgctgcggctg (SEQ ID NO: 14) GPD_2_BamH1_FGPD_2_BamH1_F CATCATCATGGATCCA ACCGAGCGAAAAAGGAGCATCAAATAtgagcgctgcggctg (서열번호 15)CATCATCATGGATCCA ACCGAGCGAAAAAGGAGCATCAAATAtgagcgctgcggctg (SEQ ID NO: 15) GPD_3_BamH1_FGPD_3_BamH1_F CATCATCATGGATCCA TAGCAGTAAGAAAGGAGCATCCATCatgagcgctgcggctg (서열번호 16)CATCATCATGGATCCA TAGCAGTAAGAAAGGAGCATCCATCatgagcgctgcggctg (SEQ ID NO: 16) GPD_4_BamH1_FGPD_4_BamH1_F CATCATCAT GGATCCAGCACTATCCAAAAGGAGCATCCTAA atgagcgctgcggctg (서열번호 17)CATCATCAT GGATCCAGCACTATCCAAAAGGAGCATCCTAA atgagcgctgcggctg (SEQ ID NO: 17) GPD_5_BamH1_FGPD_5_BamH1_F CATCATCATGGATCCA TTGTGGCAAGAAAGGAGCATCCATCatgagcgctgcggctg (서열번호 18)CATCATCATGGATCCA TTGTGGCAAGAAAGGAGCATCCATCatgagcgctgcggctg (SEQ ID NO: 18) GPD_6_BamH1_FGPD_6_BamH1_F CATCATCATGGATCCA AGACAATTGTAAAGGAGCATCCCAA atgagcgctgcggctg (서열번호 19)CATCATCATGGATCCA AGACAATTGTAAAGGAGCATCCCAA atgagcgctgcggctg (SEQ ID NO: 19) GPP_1_Kpn1_FGPP_1_Kpn1_F CATCATCATGGTACCAGTTAAAGGAGCATCTGACCATATGAatgggactcactacgaaaccg (서열번호 20)CATCATCATGGTACCAGTTAAAGGAGCATCTGACCATATGAatgggactcactacgaaaccg (SEQ ID NO: 20) GPP_2_Kpn1_FGPP_2_Kpn1_F CATCATCATGGTACCAGAGCGATTCAAAAGGAGCATCCCAGatgggactcactacgaaaccg (서열번호 21)CATCATCATGGTACCAGAGCGATTCAAAAGGAGCATCCCAGatgggactcactacgaaaccg (SEQ ID NO: 21) GPP_3_Kpn1_FGPP_3_Kpn1_F CATCATCATGGTACCACAGTTGTAGTAAAGGAGCATCAAAA atgggactcactacgaaaccg (서열번호 22)CATCATCATGGTACCACAGTTGTAGTAAAGGAGCATCAAAA atgggactcactacgaaaccg (SEQ ID NO: 22) GPP_4_Kpn1_FGPP_4_Kpn1_F CATCATCATGGTACCACGTTTCAACAAAAGGAGCATCTCTTatgggactcactacgaaaccg (서열번호 23)CATCATCATGGTACCACGTTTCAACAAAAGGAGCATCTCTTatgggactcactacgaaaccg (SEQ ID NO: 23) GPP_5_Kpn1_FGPP_5_Kpn1_F CATCATCATGGTACCACAGTTTTAGTAAAGGAGCATCAAAA atgggactcactacgaaaccg (서열번호 24)CATCATCATGGTACCACAGTTTTAGTAAAGGAGCATCAAAA atgggactcactacgaaaccg (SEQ ID NO: 24)

2-2. 형질전환 균주의 제작2-2. Construction of transformed strains

균주는 Escherichia coli W3110 (Alcohol Dehydrogenase, Glycerol Kinase, Acetate Kinase 및 Lactate Dehydrogenase 결실 균주, Gene bridges 사의 Quick&easy e. coli gene deletion kit 사용)을 사용하였다. W3110 균주를 LB 플레이트 (1 리터당 10g tryptone, 5g yeast extract, 10g NaCl, 15g agar 포함)상에 평판도말하고 37℃ 에서 밤새 배양하였다. 배양한 단일 콜로니를 3-5ml LB 액체배지 (배지조성은 위와 동일하되 agar 를 포함하지 않음)에 접종하고 교반하면서 37℃ 에서 밤새 배양하였다. 다음날 아침 배양액을 LB 액체배지 0.05 리터에 1:100 으로 희석하고 OD ~0.5 가 될 때까지 3-6시간 배양하였다. 10-15분간 얼음 위에서 식힌 후 4℃에서 4000rpm 으로 10분간 원심분리하여 세포를 수집하였다. 세포를 얼음으로 식힌 멸균 DI water 1 부피에 재현탁하여 세척하고 다시 4℃에서 4000rpm 으로 10분간 원심분리하여 세포를 수집하였다. 수집한 세포는 다시 DI water 0.5 부피에 재현탁하여 세척하고 다시 4℃에서 4000rpm 으로 10분간 원심분리하여 세포를 수집하였다. 수집한 세포는 얼음으로 식힌 멸균 10% 글리세롤 1ml 에 재현탁하고, 개별 pre-chilled microfuge tube에 세포 분취량(aliquots)을 넣었다(90 ul per transformation in a 0.1 cm gap electroporation cuvette). salt-free DNA (1-5 ul)를 피펫팅하여 첨가한 후 혼합물을 전처리된 전기천공용 큐벳(pre-chilled electroporation cuvette)에 옮겼다. 1.8kV 에서 전기천공하고 펄스 직후 상온의 LB 액체배지 1ml 를 세포에 첨가하고 37℃에서 1시간 배양하였다. 배양액은 카나마이신이 포함된 LB 플레이트 상에 도말하고 과량의 액체가 건조/플레이트 내로 흡수되게 하였다. 플레이트를 거꾸로 하여 37℃에서 배양하였다. Escherichia coli W3110 (Alcohol Dehydrogenase, Glycerol Kinase, Acetate Kinase and Lactate Dehydrogenase deletion strain, Quick&easy E. coli gene deletion kit from Gene bridges) was used as the strain. The W3110 strain was plated on an LB plate (containing 10 g tryptone, 5 g yeast extract, 10 g NaCl, and 15 g agar per liter) and cultured at 37°C overnight. The cultured single colony was inoculated into 3-5ml LB liquid medium (medium composition was the same as above but did not contain agar) and cultured overnight at 37°C with agitation. The next morning, the culture was diluted 1:100 in 0.05 liters of LB liquid medium and cultured for 3-6 hours until the OD reached ~0.5. After cooling on ice for 10-15 minutes, cells were collected by centrifugation at 4000 rpm for 10 minutes at 4°C. The cells were resuspended in 1 volume of ice-cold sterile DI water, washed, and centrifuged at 4000 rpm for 10 minutes at 4°C to collect the cells. The collected cells were resuspended in 0.5 volumes of DI water, washed, and centrifuged at 4000 rpm for 10 minutes at 4°C to collect the cells. The collected cells were resuspended in 1 ml of ice-chilled sterile 10% glycerol, and cell aliquots were placed in individual pre-chilled microfuge tubes (90 ul per transformation in a 0.1 cm gap electroporation cuvette). After adding salt-free DNA (1-5 ul) by pipetting, the mixture was transferred to a pre-chilled electroporation cuvette. Electroporation was performed at 1.8 kV, and immediately after the pulse, 1 ml of room temperature LB liquid medium was added to the cells and incubated at 37°C for 1 hour. The culture was plated on LB plates containing kanamycin and excess liquid was allowed to dry/absorb into the plate. The plate was inverted and cultured at 37°C.

2-3. 플라스크 배양2-3. flask culture

플라스크 배양을 위해 단일 콜로니를 LB (Luria Bertani; peptone 10 g/L, yeast extract 5 g/L, NaCl 5 g/L, pH 7.0) 배지 3 mL에 접종하고, 37℃, 250 rpm 조건에서 20시간 전배양 (seed culture) 하였다. 그 후 M9 배지 100mL에 1% 접종하고, 카나마이신 및 2 %의 글루코스와 함께 37℃ 및 250 rpm에서 2일 배양하였다. M9 배지는 1L당 Na2HPO4 60 g, KH2PO4 30 g, NaCl 5 g, NH4Cl 10 g로 조성된 10X M9 salts (pH 7.4)와 1 M MgSO4, 1 M CaCl2 용액을 따로 멸균하여 준비하고, 본 배양 시에 배지 1L 당 10X M9 salts 100mL, 1 M MgSO4 2 mL, 1 M CaCl2 0.1 mL로 조성되도록 하였다.For flask culture, a single colony was inoculated into 3 mL of LB (Luria Bertani; peptone 10 g/L, yeast extract 5 g/L, NaCl 5 g/L, pH 7.0) medium and incubated at 37°C and 250 rpm for 20 hours. Pre-culture (seed culture) was performed. Afterwards, 1% was inoculated into 100 mL of M9 medium and cultured for 2 days at 37°C and 250 rpm with kanamycin and 2% glucose. The M9 medium contains 10 It was prepared by sterilizing it separately, and during main culture, it was composed of 100 mL of 10X M9 salts, 2 mL of 1 M MgSO 4 , and 0.1 mL of 1 M CaCl 2 per 1 L of medium.

2-4. 글리세롤의 생산량 확인2-4. Check the production of glycerol

배양액은 1 mL을 원심분리 (4000rpm, 10분) 후, 상등액을 0.45 ㎛ 크기의 필터를 사용하여 준비하였다. 그 후 High-Performance Liquid Chromatography (HPLC)를 이용하여 배양액 내 글리세롤을 분석하였다. HPLC는 Aminex HPX-87H ion exclusion column (7.8 * 300 mm, 9㎛)을 사용하여 0.5 mM sulfuric acid (H2SO4)를 flow rate 0.4 mL/min 속도로 흘려주었고, column의 온도는 50℃로 맞추었다. Glycerol은 RI 상에서 19.8 분에 검출하였다. 총 16개의 변이체 조합의 배양 결과, Glycerol 생산량은 0.1 g/L 부터 2.9 g/L 까지 나타났으며, GPD-3 과 GPP-5 의 조합에서 월등히 높은 글리세롤 생산량이 얻어졌다 (표 3).1 mL of the culture medium was centrifuged (4000 rpm, 10 minutes), and the supernatant was prepared using a filter with a size of 0.45 ㎛. Afterwards, glycerol in the culture medium was analyzed using High-Performance Liquid Chromatography (HPLC). For HPLC, 0.5 mM sulfuric acid (H 2 SO 4 ) was flowed at a flow rate of 0.4 mL/min using an Aminex HPX-87H ion exclusion column (7.8 * 300 mm, 9㎛), and the temperature of the column was 50°C. Correct. Glycerol was detected at 19.8 minutes on RI. As a result of culturing a total of 16 mutant combinations, glycerol production ranged from 0.1 g/L to 2.9 g/L, and significantly higher glycerol production was obtained in the combination of GPD-3 and GPP-5 (Table 3).

합성 5'-UTR 이 도입된 균주에서 글리세롤의 생합성 결과Results of glycerol biosynthesis in strains introduced with synthetic 5'-UTR 번호number GPD 에 대한 합성 5'-UTR 변이체Synthetic 5'-UTR variants for GPD GPP 에 대한 합성 5'-UTR 변이체Synthetic 5'-UTR variants for GPP 글리세롤 생산량
(g/L)
Glycerol production
(g/L)
1One GPD-1GPD-1 GPP-1GPP-1 0.7 ± 0.20.7 ± 0.2 22 GPD-2GPD-2 GPP-2GPP-2 1.5 ± 11.5 ± 1 33 GPD-2GPD-2 GPP-3GPP-3 1.0 ± 0.21.0 ± 0.2 44 GPD-2GPD-2 GPP-4GPP-4 0.5 ± 0.20.5 ± 0.2 55 GPD-3GPD-3 GPP-2GPP-2 0.1 ± 0.70.1 ± 0.7 66 GPD-3GPD-3 GPP-3GPP-3 0.7 ± 0.60.7 ± 0.6 77 GPD-3GPD-3 GPP-5GPP-5 2.9 ± 0.22.9 ± 0.2 88 GPD-4GPD-4 GPP-2GPP-2 1.0 ± 0.11.0 ± 0.1 99 GPD-4GPD-4 GPP-3GPP-3 0.6 ± 0.10.6 ± 0.1 1010 GPD-4GPD-4 GPP-5GPP-5 0.7 ± 0.10.7 ± 0.1 1111 GPD-5GPD-5 GPP-2GPP-2 0.9 ± 0.10.9 ± 0.1 1212 GPD-5GPD-5 GPP-3GPP-3 0.1 ± 0.10.1 ± 0.1 1313 GPD-5GPD-5 GPP-5GPP-5 0.1 ± 00.1 ± 0 1414 GPD-6GPD-6 GPP-2GPP-2 0.8 ± 00.8 ± 0 1515 GPD-6GPD-6 GPP-3GPP-3 0.6 ± 0.70.6 ± 0.7 1616 GPD-6GPD-6 GPP-5GPP-5 2.5 ± 2.72.5 ± 2.7

이상의 설명으로부터, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.From the above description, those skilled in the art will understand that the present invention can be implemented in other specific forms without changing its technical idea or essential features. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. The scope of the present invention should be construed as including the meaning and scope of the patent claims described below rather than the detailed description above, and all changes or modified forms derived from the equivalent concept thereof are included in the scope of the present invention.

<110> LG CHEM, LTD. <120> 5'-UTR for improving conversion of glucose to glycerol and uses thereof <130> DPP20181918KR <160> 28 <170> KopatentIn 1.71 <210> 1 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-1) <400> 1 gttaaaggag catctgacac catgg 25 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-2) <400> 2 accgagcgaa aaaggagcat caaat 25 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-3) <400> 3 tagcagtaag aaaggagcat ccatc 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-4) <400> 4 gcactatcca aaaggagcat cctaa 25 <210> 5 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-5) <400> 5 ttgtggcaag aaaggagcat ccatc 25 <210> 6 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-6) <400> 6 agacaattgt aaaggagcat cccaa 25 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPP-1) <400> 7 gttaaaggag catctgacca tatga 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPP-2) <400> 8 gagcgattca aaaggagcat cccag 25 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPP-3) <400> 9 cagttgtagt aaaggagcat caaaa 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPP-4) <400> 10 cgtttcaaca aaaggagcat ctctt 25 <210> 11 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPP-5) <400> 11 cagttttagt aaaggagcat caaaa 25 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Original UTR-GPD <400> 12 aaacacaaat attgataata taaag 25 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Original UTR-GPP <400> 13 taaaacaata aaaacaatat tcgga 25 <210> 14 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_1_BamH1_F <400> 14 catcatcatg gatccagtta aaggagcatc tgacaccatg gatgagcgct gcggctg 57 <210> 15 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_2_BamH1_F <400> 15 catcatcatg gatccaaccg agcgaaaaag gagcatcaaa tatgagcgct gcggctg 57 <210> 16 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_3_BamH1_F <400> 16 catcatcatg gatccatagc agtaagaaag gagcatccat catgagcgct gcggctg 57 <210> 17 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_4_BamH1_F <400> 17 catcatcatg gatccagcac tatccaaaag gagcatccta aatgagcgct gcggctg 57 <210> 18 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_5_BamH1_F <400> 18 catcatcatg gatccattgt ggcaagaaag gagcatccat catgagcgct gcggctg 57 <210> 19 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_6_BamH1_F <400> 19 catcatcatg gatccaagac aattgtaaag gagcatccca aatgagcgct gcggctg 57 <210> 20 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> GPP_1_Kpn1_F <400> 20 catcatcatg gtaccagtta aaggagcatc tgaccatatg aatgggactc actacgaaac 60 cg 62 <210> 21 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> GPP_2_Kpn1_F <400> 21 catcatcatg gtaccagagc gattcaaaag gagcatccca gatgggactc actacgaaac 60 cg 62 <210> 22 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> GPP_3_Kpn1_F <400> 22 catcatcatg gtaccacagt tgtagtaaag gagcatcaaa aatgggactc actacgaaac 60 cg 62 <210> 23 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> GPP_4_Kpn1_F <400> 23 catcatcatg gtaccacgtt tcaacaaaag gagcatctct tatgggactc actacgaaac 60 cg 62 <210> 24 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> GPP_5_Kpn1_F <400> 24 catcatcatg gtaccacagt tttagtaaag gagcatcaaa aatgggactc actacgaaac 60 cg 62 <210> 25 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> promoter J23101 <400> 25 tttacagcta gctcagtcct aggtattatg ctagc 35 <210> 26 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> promoter J23108 <400> 26 ctgacagcta gctcagtcct aggtataatg ctagc 35 <210> 27 <211> 1176 <212> DNA <213> Saccharomyces cerevisiae <220> <221> gene <222> (1)..(1176) <223> GPD1 <400> 27 atgagcgctg cggctgatcg tcttaacctg acttccggcc atctgaatgc cggccgtaaa 60 cgcagtagca gttctgtgtc attgaaagct gcagaaaaac ctttcaaggt tacggtgatt 120 ggaagtggga actggggtac tacgatcgcc aaagtggtgg ccgagaattg taagggatac 180 ccggaagttt ttgcgcctat agttcagatg tgggtgttcg aggaagagat taatggtgag 240 aaactgaccg aaatcataaa tactagacat cagaatgtga aatatttgcc tggcataact 300 ctgcccgaca atctggttgc caatccagac ttgattgatt cagtcaaaga tgtcgacatc 360 atcgttttca acattccaca ccagtttttg ccgcgtattt gcagccagtt gaaagggcat 420 gtagattcac acgtccgtgc gatctcctgt ttgaagggtt ttgaagtggg tgcgaaaggc 480 gtgcaattgc tctcctcgta cataaccgaa gagctgggta ttcagtgtgg tgctctgtct 540 ggggcgaaca ttgccaccga agtcgcgcag gagcactgga gcgaaacaac agttgcttat 600 catattccga aagatttccg cggtgagggc aaggacgtcg accacaaggt gcttaaggcc 660 ctcttccaca gaccttattt ccacgtcagt gtgatcgagg atgtcgctgg catttcaatc 720 tgtggtgcgt tgaagaacgt tgttgcctta ggttgcggct tcgttgaggg tctaggctgg 780 gggaataacg cttctgctgc gatccagcga gtcggtttgg gcgagatcat ccggttcggc 840 caaatgtttt tcccagagtc tcgggaagag acctactacc aagaatctgc tggtgttgcg 900 gatttgatca ccacctgcgc tgggggccgc aacgtaaagg ttgctaggct gatggctact 960 tctggtaagg atgcctggga atgcgagaag gagttgttga atggccaatc cgctcagggt 1020 ttaattacct gcaaggaagt tcatgaatgg ttggaaacat gtgggtctgt agaagacttc 1080 ccactctttg aggccgtata ccagatcgta tataacaatt acccgatgaa gaacctgccg 1140 gacatgattg aagaattaga ccttcatgaa gattga 1176 <210> 28 <211> 753 <212> DNA <213> Saccharomyces cerevisiae <220> <221> gene <222> (1)..(753) <223> GPP2 <400> 28 atgggactca ctacgaaacc gctgagcttg aaagttaatg ctgcgctgtt tgacgtcgat 60 ggcaccatta tcatcagcca gcccgccatt gccgcatttt ggcgcgattt cggtaaggac 120 aaaccttatt ttgatgctga gcacgttatt caagtgagtc atgggtggag aacgtttgat 180 gcaattgcga aattcgcgcc ggatttcgcc aatgaagagt acgtgaataa actggaggct 240 gaaattccgg ttaaatatgg tgaaaaaagc atagaagtgc caggtgcagt taagctgtgc 300 aacgctctta acgcccttcc caaggaaaaa tgggcagtgg cgacgtcagg gacccgtgac 360 atggcacaga agtggttcga acatctgggc atacggcgtc caaagtattt tattaccgct 420 aatgatgtca agcagggtaa gcctcatcca gaaccgtatc tgaagggccg caatggctta 480 ggatatccga tcaacgagca agacccttcg aaatctaaag tggtagtatt tgaggatgct 540 ccggcaggaa ttgccgccgg taaagcggcg gggtgtaaaa tcataggtat tgcaactaca 600 tttgatttgg acttcctgaa ggagaaaggc tgtgatatca ttgtcaagaa ccacgaatcc 660 atccgcgtag gcggatacaa tgcggaaaca gatgaagttg agtttatatt tgatgactac 720 ttatatgcca aagacgatct gctgaaatgg taa 753 <110> LG CHEM, LTD. <120> 5'-UTR for improving conversion of glucose to glycerol and uses of that <130> DPP20181918KR <160> 28 <170>CopatentIn 1.71 <210> 1 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-1) <400> 1 gttaaaggag catctgacac catgg 25 <210> 2 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-2) <400> 2 accgagcgaa aaaggagcat caaat 25 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-3) <400> 3 tagcagtaag aaaggagcat ccatc 25 <210> 4 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-4) <400> 4 gcactatcca aaaggagcat cctaa 25 <210> 5 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-5) <400> 5 ttgtggcaag aaaggagcat ccatc 25 <210> 6 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPD-6) <400> 6 agacaattgt aaaggagcat cccaa 25 <210> 7 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPP-1) <400> 7 gttaaaggag catctgacca tatga 25 <210> 8 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPP-2) <400> 8 gagcgattca aaaggagcat cccag 25 <210> 9 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPP-3) <400> 9 cagttgtagt aaaggagcat caaaa 25 <210> 10 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPP-4) <400> 10 cgtttcaaca aaaggagcat ctctt 25 <210> 11 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> 5'-UTR (GPP-5) <400> 11 cagttttagt aaaggagcat caaaa 25 <210> 12 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Original UTR-GPD <400> 12 aaaacacaaat attgataata taaag 25 <210> 13 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> Original UTR-GPP <400> 13 taaaacaata aaaacaatat tcgga 25 <210> 14 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_1_BamH1_F <400> 14 catcatcatg gatccagtta aaggagcatc tgacaccatg gatgagcgct gcggctg 57 <210> 15 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_2_BamH1_F <400> 15 catcatcatg gatccaaccg agcgaaaaag gagcatcaaa tatgagcgct gcggctg 57 <210> 16 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_3_BamH1_F <400> 16 catcatcatg gatccatagc agtaagaaag gagcatccat catgagcgct gcggctg 57 <210> 17 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_4_BamH1_F <400> 17 catcatcatg gatccagcac tatccaaaag gagcatccta aatgagcgct gcggctg 57 <210> 18 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_5_BamH1_F <400> 18 catcatcatg gatccattgt ggcaagaaag gagcatccat catgagcgct gcggctg 57 <210> 19 <211> 57 <212> DNA <213> Artificial Sequence <220> <223> GPD_6_BamH1_F <400> 19 catcatcatg gatccaagac aattgtaaag gagcatccca aatgagcgct gcggctg 57 <210> 20 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> GPP_1_Kpn1_F <400> 20 catcatcatg gtaccagtta aaggagcatc tgaccatatg aatgggactc actacgaaac 60 cg 62 <210> 21 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> GPP_2_Kpn1_F <400> 21 catcatcatg gtaccagagc gattcaaaag gagcatccca gatgggactc actacgaaac 60 cg 62 <210> 22 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> GPP_3_Kpn1_F <400> 22 catcatcatg gtaccacagt tgtagtaaag gagcatcaaa aatgggactc actacgaaac 60 cg 62 <210> 23 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> GPP_4_Kpn1_F <400> 23 catcatcatg gtaccacgtt tcaacaaaag gagcatctct tatgggactc actacgaaac 60 cg 62 <210> 24 <211> 62 <212> DNA <213> Artificial Sequence <220> <223> GPP_5_Kpn1_F <400> 24 catcatcatg gtaccacagt tttagtaaag gagcatcaaa aatgggactc actacgaaac 60 cg 62 <210> 25 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> promoter J23101 <400> 25 tttacagcta gctcagtcct aggtattatg ctagc 35 <210> 26 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> promoter J23108 <400> 26 ctgacagcta gctcagtcct aggtataatg ctagc 35 <210> 27 <211> 1176 <212> DNA <213> Saccharomyces cerevisiae <220> <221> gene <222> (1)..(1176) <223>GPD1 <400> 27 atgagcgctg cggctgatcg tcttaacctg acttccggcc atctgaatgc cggccgtaaa 60 cgcagtagca gttctgtgtc attgaaagct gcagaaaaac ctttcaaggt tacggtgatt 120 ggaagtggga actggggtac tacgatcgcc aaagtggtgg ccgagaattg taagggatac 180 ccggaagttt ttgcgcctat agttcagatg tgggtgttcg aggaagagat taatggtgag 240 aaactgaccg aaatcataaa tactagacat cagaatgtga aatatttgcc tggcataact 300 ctgcccgaca atctggttgc caatccagac ttgattgatt cagtcaaaga tgtcgacatc 360 atcgttttca acattccaca ccagtttttg ccgcgtattt gcagccagtt gaaagggcat 420 gtagattcac acgtccgtgc gatctcctgt ttgaagggtt ttgaagtggg tgcgaaaggc 480 gtgcaattgc tctcctcgta cataaccgaa gagctgggta ttcagtgtgg tgctctgtct 540 ggggcgaaca ttgccaccga agtcgcgcag gagcactgga gcgaaacaac agttgcttat 600 catattccga aagatttccg cggtgagggc aaggacgtcg accacaaggt gcttaaggcc 660 ctcttccaca gaccttattt ccacgtcagt gtgatcgagg atgtcgctgg catttcaatc 720 tgtggtgcgt tgaagaacgt tgttgcctta ggttgcggct tcgttgaggg tctaggctgg 780 gggaataacg cttctgctgc gatccagcga gtcggtttgg gcgagatcat ccggttcggc 840 caaatgtttt tcccagagtc tcgggaagag acctactacc aagaatctgc tggtgttgcg 900 gatttgatca ccacctgcgc tgggggccgc aacgtaaagg ttgctaggct gatggctact 960 tctggtaagg atgcctggga atgcgagaag gagttgttga atggccaatc cgctcagggt 1020 ttaattacct gcaaggaagt tcatgaatgg ttggaaaacat gtgggtctgt agaagacttc 1080 ccactctttg aggccgtata ccagatcgta tataacaatt acccgatgaa gaacctgccg 1140 gacatgatg aagaattaga ccttcatgaa gattga 1176 <210> 28 <211> 753 <212> DNA <213> Saccharomyces cerevisiae <220> <221> gene <222> (1)..(753) <223> GPP2 <400> 28 atgggactca ctacgaaacc gctgagcttg aaagttaatg ctgcgctgtt tgacgtcgat 60 ggcaccatta tcatcagcca gcccgccatt gccgcatttt ggcgcgattt cggtaaggac 120 aaaccttatt ttgatgctga gcacgttatt caagtgagtc atgggtggag aacgtttgat 180 gcaattgcga aattcgcgcc ggatttcgcc aatgaagagt acgtgaataa actggaggct 240 gaaattccgg ttaaatatgg tgaaaaaagc atagaagtgc caggtgcagt taagctgtgc 300 aacgctctta acgcccttcc caaggaaaaa tgggcagtgg cgacgtcagg gacccgtgac 360 atggcacaga agtggttcga acatctgggc atacggcgtc caaagtattt tattaccgct 420 aatgatgtca agcagggtaa gcctcatcca gaaccgtatc tgaagggccg caatggctta 480 ggatatccga tcaacgagca agacccttcg aaatctaaag tggtagtatt tgaggatgct 540 ccggcaggaa ttgccgccgg taaagcggcg gggtgtaaaa tcataggtat tgcaactaca 600 tttgatttgg acttcctgaa ggagaaaggc tgtgatatca ttgtcaagaa ccacgaatcc 660 atccgcgtag gcggatacaa tgcggaaaca gatgaagttg agtttatatt tgatgactac 720 ttatatgcca aagacgatct gctgaaatgg taa 753

Claims (7)

서열번호 3의 합성 5'-UTR (untranslated region)이 도입된 글리세롤-3-포스페이트 디하이드로게나제(glycerol-3-phosphate dehydrogenase: GPD) 를 코딩하는 유전자 및 서열번호 11의 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 포스파타제(glycerol-3-phosphate phosphatase: GPP)를 코딩하는 유전자로 형질전환된,
글리세롤을 생산하는 미생물.
A gene encoding glycerol-3-phosphate dehydrogenase (GPD) into which the synthetic 5'-UTR (untranslated region) of SEQ ID NO: 3 was introduced and the synthetic 5'-UTR of SEQ ID NO: 11 Transformed with a gene encoding the introduced glycerol-3-phosphate phosphatase (GPP),
Microorganisms that produce glycerol.
서열번호 3의 합성 5'-UTR (untranslated region)이 도입된 글리세롤-3-포스페이트 디하이드로게나제(glycerol-3-phosphate dehydrogenase: GPD) 를 코딩하는 유전자 및 서열번호 11의 합성 5'-UTR 이 도입된 글리세롤-3-포스페이트 포스파타제(glycerol-3-phosphate phosphatase: GPP)를 코딩하는 유전자로 미생물을 형질전환하는 단계; 및
상기 형질전환된 미생물을 탄소원 함유 배지에서 배양하여 글리세롤을 생산하는 단계를 포함하는,
글리세롤의 생산 방법.
A gene encoding glycerol-3-phosphate dehydrogenase (GPD) into which the synthetic 5'-UTR (untranslated region) of SEQ ID NO: 3 was introduced and the synthetic 5'-UTR of SEQ ID NO: 11 Transforming a microorganism with a gene encoding the introduced glycerol-3-phosphate phosphatase (GPP); and
Comprising the step of producing glycerol by culturing the transformed microorganism in a medium containing a carbon source,
Method of producing glycerol.
제2항에 있어서, 상기 탄소원은 단당류, 올리고당류, 다당류, 단일탄소기질 또는 이들의 혼합물인, 글리세롤의 생산 방법.The method of claim 2, wherein the carbon source is a monosaccharide, oligosaccharide, polysaccharide, single carbon substrate, or a mixture thereof. 글리세롤-3-포스페이트 디하이드로게나제(glycerol-3-phosphate dehydrogenase: GPD) 를 코딩하는 유전자의 전사량을 증가시키는, 서열번호 3으로 표시되는 염기 서열로 이루어진, 단리된 5'UTR 폴리뉴클레오티드.An isolated 5'UTR polynucleotide consisting of the base sequence represented by SEQ ID NO: 3, which increases the transcription amount of the gene encoding glycerol-3-phosphate dehydrogenase (GPD). 글리세롤-3-포스페이트 포스파타제(glycerol-3-phosphate phosphatase: GPP)를 코딩하는 유전자의 전사량을 증가시키는, 서열번호 11로 표시되는 염기 서열로 이루어진, 단리된 5'UTR 폴리뉴클레오티드.An isolated 5'UTR polynucleotide consisting of the base sequence represented by SEQ ID NO: 11, which increases the transcription amount of the gene encoding glycerol-3-phosphate phosphatase (GPP). 삭제delete 삭제delete
KR1020180121272A 2018-10-11 2018-10-11 5'-UTR for improving conversion of glucose to glycerol and uses thereof KR102659292B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180121272A KR102659292B1 (en) 2018-10-11 2018-10-11 5'-UTR for improving conversion of glucose to glycerol and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180121272A KR102659292B1 (en) 2018-10-11 2018-10-11 5'-UTR for improving conversion of glucose to glycerol and uses thereof

Publications (2)

Publication Number Publication Date
KR20200041168A KR20200041168A (en) 2020-04-21
KR102659292B1 true KR102659292B1 (en) 2024-04-18

Family

ID=70456518

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180121272A KR102659292B1 (en) 2018-10-11 2018-10-11 5'-UTR for improving conversion of glucose to glycerol and uses thereof

Country Status (1)

Country Link
KR (1) KR102659292B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040104165A (en) 2003-06-03 2004-12-10 씨제이 주식회사 A glycerol-3-phosphate phosphatase and glycerol-3-phosphate dehydrogenase from Candida albicans, a gene encoding the same, a vector and a host cell containing the gene and a method for the production of glycerol using the host cell
KR102091259B1 (en) * 2015-09-03 2020-05-27 주식회사 엘지화학 Method for controlling polyhydroxyalkanoate using sequence variation in 5'-untranslated region
KR101760340B1 (en) * 2016-01-07 2017-07-21 포항공과대학교 산학협력단 3-hydroxypropionic acid-producing recombinant microorganism and method of producing 3-hydroxypropionic acid using the same
KR101965330B1 (en) * 2016-10-06 2019-04-03 포항공과대학교 산학협력단 Lycopene-producing recombinant microorganism and method of producing lycopene using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Zheng 등, Journal of Bioscience and Bioengineering, 제105권, 제5호, 페이지 508-512 (2008) 1부.*

Also Published As

Publication number Publication date
KR20200041168A (en) 2020-04-21

Similar Documents

Publication Publication Date Title
KR102569806B1 (en) Microorganism transformed by a gene encoding adenosyltransferase and uses thereof
US11512301B2 (en) Composition for producing tagatose from fructose-6-phosphate and method of producing tagatose from fructose-6-phosphate using the same
KR101730035B1 (en) Variant Microorganism Producing L-Aspartic acid Derivative and Method for Preparing L-Aspartic acid derivatives Using the Same
KR102691723B1 (en) Recombinant microorganism for producing carnosine, histidine, beta-alanine, and method for producing carnosine, histidine, beta-alanine using thereof
JP7046229B2 (en) Recombinant corynebacterium having 1,3-PDO-producing ability and inhibiting 3-HP-producing ability, and a method for producing 1,3-PDO using the recombinant corynebacterium.
EP2904104B1 (en) Recombinant microorganisms for producing organic acids
US20220049235A1 (en) Engineering Bacteria for Ferulic Acid Production, Preparation Method and Use Thereof
KR102603624B1 (en) Microorganisms with production capacity of 3-hydroxypropionic acid from glucose and uses thereof
KR101725454B1 (en) Gene encoding lysine decarboxylase derived from H. alvei, recombinant vector, host cell and method for producing cadaverine using the same
KR102659292B1 (en) 5&#39;-UTR for improving conversion of glucose to glycerol and uses thereof
KR20140032057A (en) Recombinant microorganism having improved productivity of glycerol dehydration product and use thereof
EP1844135B1 (en) Escherichia strain capable of converting xmp to gmp and maintaining the inactivated state of gene(s) associated with gmp degradation and methods of using the same
KR20200136242A (en) Use of inducible promoter for improving conversion of glucose to glycerol
EP3741860A1 (en) Variant microorganism having ability to produce 1,3-propanediol, and method for preparing 1,3-pdo by using same
KR20210036632A (en) Microorganism with increased 3-hydroxypropionic acid production and method for producing 3-hydroxypropionic acid using the same
KR20210028779A (en) Method for improving conversion of glucose to glycerol using CRISPR system
KR102631362B1 (en) 5&#39;-UTR for enhancing expression level of dhaB gene and uses thereof
KR102685486B1 (en) Mutant microorganism having enhanced L-lysine productivity and method for producing L-lysine using the same
JP7556793B2 (en) D-Xylose dehydrogenase from coryneform bacteria and method for producing D-xylonate (Herstellung)
KR20220089528A (en) E.coli strain with increased 3-hydroxypropionic acid production and method for producing 3-hydroxypropionic acid using the same
KR20240147934A (en) Mutant microorganism producing 1,4-butanediol and method for producing 1,4-butanediol using the same
KR20230036587A (en) Microorganism with increased production capacity of 1,3-propanediol from glucose or use thereof
KR20180082079A (en) Process for preparing 2,3-butanediol using transformant
KR20210038244A (en) Method for producing 3-hydroxypropionic acid using vitamin B12-independent glycerol dehydratase
KR20210020663A (en) Recombinant Cell comprising Soluble Hydrogenase Gene and Method of Preparing 3-hydroxypropionate Using the Same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant