KR102649397B1 - Linear Deposition Source - Google Patents

Linear Deposition Source Download PDF

Info

Publication number
KR102649397B1
KR102649397B1 KR1020210102056A KR20210102056A KR102649397B1 KR 102649397 B1 KR102649397 B1 KR 102649397B1 KR 1020210102056 A KR1020210102056 A KR 1020210102056A KR 20210102056 A KR20210102056 A KR 20210102056A KR 102649397 B1 KR102649397 B1 KR 102649397B1
Authority
KR
South Korea
Prior art keywords
nozzle
auxiliary
main
crucible
deposition
Prior art date
Application number
KR1020210102056A
Other languages
Korean (ko)
Other versions
KR20230020226A (en
Inventor
조영수
문병준
최건훈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020210102056A priority Critical patent/KR102649397B1/en
Priority to PCT/KR2021/013959 priority patent/WO2023013816A1/en
Publication of KR20230020226A publication Critical patent/KR20230020226A/en
Application granted granted Critical
Publication of KR102649397B1 publication Critical patent/KR102649397B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/243Crucibles for source material

Abstract

본 실시예는 증착 물질이 수용되는 증착 공간이 형성되고 좌우 방향으로 긴 도가니; 도가니의 외측 주변에서 도가니를 가열하는 히터; 도가니의 상부에 배치되어 상기 증착 공간을 덮고 복수개의 메인 노즐이 돌출된 노즐 블록을 포함하고, 복수개의 메인 노즐은 좌측 노즐과, 중앙측 노즐과, 우측 노즐을 포함하고, 좌측 노즐의 토출면에서 연장된 가상선은 좌측 노즐의 우측 상부 방향을 향하고, 우측 노즐의 토출면에서 연장된 가상선은 상기 우측 노즐의 좌측 상부 방향을 향하며, 좌측 노즐의 토출면에서 연장된 가상선과, 우측 노즐의 토출면에서 연장된 가상선 각각은 수평선 보다 수직선에 더 가까울 수 있다.In this embodiment, a deposition space accommodating the deposition material is formed and a crucible long in the left and right directions; A heater that heats the crucible around the outside of the crucible; It is disposed on the upper part of the crucible, covers the deposition space, and includes a nozzle block with a plurality of main nozzles protruding, the plurality of main nozzles including a left nozzle, a central nozzle, and a right nozzle, and at the discharge surface of the left nozzle. The extended virtual line points toward the upper right of the left nozzle, the virtual line extending from the discharge surface of the right nozzle points toward the upper left of the right nozzle, the virtual line extending from the discharge surface of the left nozzle, and the discharge surface of the right nozzle Each imaginary line extending from a surface may be closer to a vertical line than to a horizontal line.

Description

선형 증발원{Linear Deposition Source}Linear Deposition Source}

본 발명은 선형 증발원에 관한 것으로, 더욱 상세하게는 증착 물질을 피증착물로 증착하는 증착 장치에 관한 것이다.The present invention relates to a linear evaporation source, and more specifically, to a deposition apparatus for depositing a deposition material as a deposited object.

증착(deposition)이란 기체 상태의 입자를, 금속, 유리(glass) 등과 같은 물체의 표면에 얇은 고체 막을 입히는 방법이다.Deposition is a method of coating gaseous particles as a thin solid film on the surface of an object such as metal or glass.

최근에는 TV, 휴대폰 등과 같은 전자 기기에 OLED(Organic Light Emitting Diodes) 디스플레이의 사용이 증가하면서, OLED 디스플레이 패널을 제조하는 장치, 공정 등에 대한 연구가 활발하다. 특히, OLED 디스플레이 패널 제조 공정은 진공 상태에서 유리 기판 등의 기판에 유기 물질을 증착시키는 공정을 포함한다.Recently, as the use of OLED (Organic Light Emitting Diodes) displays has increased in electronic devices such as TVs and mobile phones, research on devices and processes for manufacturing OLED display panels has been active. In particular, the OLED display panel manufacturing process includes a process of depositing organic materials on a substrate such as a glass substrate in a vacuum.

구체적으로, 증착 공정은 유기/무기 물질이 수용된 도가니(crucible)를 가열하여 유기/무기 물질을 기체 상태로 증발시키는 공정과, 기체 상태의 유기 물질이 노즐(nozzle)을 통과하여 기판에 증착되는 공정을 포함한다.Specifically, the deposition process is a process of heating a crucible containing organic/inorganic materials to evaporate the organic/inorganic materials into a gaseous state, and a process in which the organic materials in the gaseous state pass through a nozzle and are deposited on the substrate. Includes.

이 때, 우수한 박막 특성 확보를 위해서는 기체 상태의 유기 물질은 기판에 균일하게 증착되어야 한다. 따라서, 증착 장치는 복수개 노즐로 기체 상태의 유기 물질을 균일하게 공급하는 것이 바람직하고, 복수개 노즐을 통과한 기체 상태의 유기 물질을 기판의 각 영역으로 균일하게 안내해야 한다.At this time, in order to secure excellent thin film properties, the gaseous organic material must be deposited uniformly on the substrate. Therefore, it is desirable for the deposition apparatus to uniformly supply the gaseous organic material through a plurality of nozzles, and the gaseous organic material that has passed through the plurality of nozzles must be uniformly guided to each area of the substrate.

최근에, 증착 프로세스의 정밀도가 증가되었고, 이로 인해 예컨대, 더욱 더 작은 픽셀 크기들을 제공하는 것이 가능하게 되었다. 몇몇 프로세스들에서, 마스크들은, 증발된 재료가 마스크 개구부들을 통과할 때 픽셀들을 정의하는 데에 사용된다. 그러나, 마스크의 새도잉 효과(shadowing effects)는 증발 공정의 예측 가능성 및 정밀도를 증가시키기 어렵게 한다.Recently, the precision of the deposition process has been increased, making it possible to provide, for example, smaller and smaller pixel sizes. In some processes, masks are used to define pixels as evaporated material passes through mask openings. However, the shadowing effects of the mask make it difficult to increase the predictability and precision of the evaporation process.

대한민국 등록특허공보 10-2058612(2019년12월23일 공고)에는 증발된 재료를 증착시키기 위한 증발 소스가 개시되고, 증발 소소는 복수의 노즐들을 갖는 하나 또는 그 초과의 분배 파이프들를 포함하고, 복수의 노즐들 중 각각의 노즐은 증발된 소스 재료의 플룸을 기판을 향하여 지향시키도록 구성되고, 복수의 개구들을 포함하는 차폐 디바이스를 포함하고, 복수의 개구들 중 적어도 하나의 개구부는 연결된 단일 노즐로부터 방출되는 증발된 소소 재료의 플룸을 성형하도록 구성된다. Republic of Korea Patent Publication No. 10-2058612 (announced on December 23, 2019) discloses an evaporation source for depositing evaporated material, the evaporation source comprising one or more distribution pipes having a plurality of nozzles, and a plurality of Each nozzle of the nozzles is configured to direct a plume of evaporated source material toward the substrate, and includes a shielding device including a plurality of openings, wherein at least one opening of the plurality of openings is configured to direct a plume of evaporated source material toward the substrate, wherein at least one opening of the plurality of openings is configured to direct a plume of evaporated source material toward the substrate. It is configured to shape a plume of ejected vaporized ignition material.

대한민국 등록특허공보 10-2058612(2019년12월23일 공고)Republic of Korea Patent Publication No. 10-2058612 (announced on December 23, 2019)

본 발명은 마스크의 새도우 불량을 최소화할 수 있는 증착 장치를 제공하는데 있다.The purpose of the present invention is to provide a deposition device that can minimize mask shadow defects.

본 실시 예에 따른 증착 장치는 증착 물질이 수용되는 증착 공간이 형성되고 좌우 방향으로 긴 도가니; 도가니의 외측 주변에서 도가니를 가열하는 히터; 및 도가니의 상부에 배치되어 증착 공간을 덮고 복수개의 메인 노즐이 돌출된 노즐 블록을 포함할 수 있다.The deposition apparatus according to this embodiment includes a crucible in which a deposition space for receiving the deposition material is formed and is long in the left and right directions; A heater that heats the crucible around the outside of the crucible; And it may include a nozzle block disposed on the upper part of the crucible, covering the deposition space, and having a plurality of main nozzles protruding.

복수개의 메인 노즐은 좌측 노즐과, 중앙측 노즐과, 우측 노즐을 포함할 수 있다. The plurality of main nozzles may include a left nozzle, a central nozzle, and a right nozzle.

좌측 노즐의 토출면에서 연장된 가상선은 좌측 노즐의 우측 상부 방향을 향할 수 있다. An imaginary line extending from the discharge surface of the left nozzle may point toward the upper right side of the left nozzle.

우측 노즐의 토출면에서 연장된 가상선은 우측 노즐의 좌측 상부 방향을 향할 수 있다. An imaginary line extending from the discharge surface of the right nozzle may be directed toward the upper left side of the right nozzle.

좌측 노즐의 토출면에서 연장된 가상선과, 우측 노즐의 토출면에서 연장된 가상선 각각은 수평선 보다 수직선에 더 가까울 수 있다. The virtual line extending from the discharge surface of the left nozzle and the virtual line extending from the discharge surface of the right nozzle may each be closer to a vertical line than a horizontal line.

노즐 블록은 상기 복수개의 메인 노즐이 돌출된 노즐 플레이트를 포함할 수 있다. The nozzle block may include a nozzle plate on which the plurality of main nozzles protrude.

가상선은 상기 노즐 플레이트(81)와 50°초과 80°미만의 경사각을 갖을 수 있다. The virtual line may have an inclination angle of more than 50° and less than 80° with the nozzle plate 81.

증착 장치는 복수개 메인 노즐 중 일부에만 삽입된 보조 노즐; 및 노즐 블록과 기판의 사이에 배치된 마스크를 더 포함할 수 있다. The deposition device includes auxiliary nozzles inserted into only some of the plurality of main nozzles; And it may further include a mask disposed between the nozzle block and the substrate.

보조 노즐은 복수개 제공될 수 있고, 복수개 메인 노즐은 보조 노즐이 삽입되는 않은 제1메인 노즐과, 보조 노즐이 삽입된 제2메인 노즐을 포함할 수 있다. A plurality of auxiliary nozzles may be provided, and the plurality of main nozzles may include a first main nozzle into which an auxiliary nozzle is inserted and a second main nozzle into which an auxiliary nozzle is inserted.

보조 노즐의 상단은 제2메인 노즐의 외부로 노출되고, 보조 노즐의 최상단 높이는 제2메인 노즐의 최상단 높이 보다 높고, 보조 노즐은 입구면과 출구면이 나란하지 않는다.The top of the auxiliary nozzle is exposed to the outside of the second main nozzle, the top height of the auxiliary nozzle is higher than the top height of the second main nozzle, and the entrance and exit surfaces of the auxiliary nozzle are not parallel.

출구면과 수평면 사이의 제1각도는 입구면과 수평면 사이에 제2각도 보다 클 수 있다. The first angle between the outlet surface and the horizontal plane may be greater than the second angle between the inlet surface and the horizontal plane.

보조 노즐의 출구면은 제2메인 노즐의 출구면 보다 수직에 가까울 수 있다. The exit surface of the auxiliary nozzle may be closer to vertical than the exit surface of the second main nozzle.

제2메인 노즐은 노즐 블록의 단부과 중앙 중 단부에 더 근접할 수 있다. The second main nozzle may be closer to the end of the nozzle block.

제2메인 노즐의 개수는 제1메인 노즐의 개수 보다 적을 수 있다. The number of second main nozzles may be less than the number of first main nozzles.

제2메인 노즐의 내측 하부에는 보조 노즐이 안착되는 보조 노즐 안착부가 돌출될 수 있다. An auxiliary nozzle seating portion on which an auxiliary nozzle is mounted may protrude from the inner lower portion of the second main nozzle.

보조 노즐 안착부의 상면은 구배질 수 있다. The upper surface of the auxiliary nozzle seating portion may be inclined.

보조 노즐 안착부의 내부에는 기화된 증착 물질을 보조 노즐로 안내하는 통공이 형성될 수 있다. A through hole may be formed inside the auxiliary nozzle seating portion to guide the vaporized deposition material to the auxiliary nozzle.

본 실시 예에 따르면, 증착 물질이 좌측 노즐의 역 방향으로 비산되는 것을 최소화하고, 우측 노즐의 역 방향으로 비산되는 것을 최소화하여, 마스크의 개구 중 좌,우측 노즐과 거리가 먼 개구의 새도우 효과를 최소화할 수 있고, 증착 공정의 정밀도를 높일 수 있다. According to this embodiment, scattering of the deposition material in the reverse direction of the left nozzle is minimized and scattering in the reverse direction of the right nozzle is minimized, thereby creating a shadow effect in the openings of the mask that are far from the left and right nozzles. It can be minimized and the precision of the deposition process can be increased.

또한, 보조 노즐의 삽입시 보조 노즐이 보조 노즐 안착부에 안착되어, 보조 노즐이 과삽입되지 않고, 보조 노즐의 높이를 유지시킬 수 있다. Additionally, when inserting the auxiliary nozzle, the auxiliary nozzle is seated on the auxiliary nozzle seating portion, so that the auxiliary nozzle is not over-inserted and the height of the auxiliary nozzle can be maintained.

또한, 노즐 볼록의 교체나 노즐 볼륵에 형성된 메인 노즐의 튜닝을 최소화할 수 있어, 양산성이 높다.In addition, replacement of the nozzle convexity or tuning of the main nozzle formed on the nozzle convex can be minimized, resulting in high mass production.

도 1은 본 발명의 실시 예에 따른 증착 장치가 도시된 종단면도,
도 2는 본 실시예의 증착 장치의 선형 증발원의 도시된 도,
도 3는 비교예의 메인 노즐과 본 실시예의 메인 노즐이 도시된 도,
도 4은 본 실시예의 노즐 블록에 보조 노즐이 배치된 사시도,
도 5는 본 실시예의 노즐 블록과 보조 노즐이 도시된 일부 절결 사시도,
도 6는 본 실시예의 노즐 블록 및 보조 노즐이 도시된 확대 단면도이다.
도 7은 본 실시예의 보조 노즐이 메인 노즐에 나사 결합된 예가 도시된 도이다.
1 is a longitudinal cross-sectional view showing a deposition apparatus according to an embodiment of the present invention;
2 is a diagram showing a linear evaporation source of the deposition apparatus of this embodiment;
3 is a diagram showing the main nozzle of the comparative example and the main nozzle of the present embodiment;
Figure 4 is a perspective view of auxiliary nozzles arranged in the nozzle block of this embodiment;
Figure 5 is a partially cut away perspective view showing the nozzle block and auxiliary nozzle of this embodiment;
Figure 6 is an enlarged cross-sectional view showing the nozzle block and auxiliary nozzle of this embodiment.
Figure 7 is a diagram showing an example in which the auxiliary nozzle of this embodiment is screwed to the main nozzle.

이하에서는 본 발명의 구체적인 실시 예를 도면과 함께 상세히 설명하도록 한다. Hereinafter, specific embodiments of the present invention will be described in detail along with the drawings.

도 1은 본 발명의 실시 예에 따른 증착 장치가 도시된 종단면도이다.1 is a longitudinal cross-sectional view showing a deposition apparatus according to an embodiment of the present invention.

증착 장치는 하우징(1)와, 기판 지지대(2) 및 선형 증발원(3)을 포함할 수 있다. The deposition device may include a housing (1), a substrate support (2) and a linear evaporation source (3).

하우징(1)의 내부에는 공간(11)이 형성될 수 있다. 하우징(1)은 선형 증발원(3)에 의해 증착 물질이 기판(21)을 증착될 때, 공간(11)에 진공을 형성하는 진공 챔버일 수 있다. A space 11 may be formed inside the housing 1. The housing 1 may be a vacuum chamber that creates a vacuum in the space 11 when the deposition material is deposited on the substrate 21 by the linear evaporation source 3.

기판 지지대(2)는 선형 증발원(3)과 함께 하우징(1) 내부의 공간(11)에 수용될 수 있다. The substrate support 2 can be accommodated in the space 11 inside the housing 1 together with the linear evaporation source 3.

기판 지지대(2)는 공간(11) 중 상측에 위치될 수 있다. 기판 지지대(2)에는 피증착물인 기판(21)이 지지될 수 있다. 기판(21)은 사각형 형상일 수 있다. The substrate support 2 may be located on the upper side of the space 11. The substrate 21, which is a deposited object, may be supported on the substrate support 2. The substrate 21 may have a square shape.

기판(21)의 일 예은 OLED 등의 디스플레이 소자의 기판일 수 있고, 기판(21)에는 픽셀이 형성될 수 있다. An example of the substrate 21 may be a substrate of a display device such as OLED, and pixels may be formed on the substrate 21.

기판(21)과 선형 증발원(3)의 사이에는 선형 증발원(3)에서 기화된 증착 물질(42)이 고르게 기판(21)으로 유도되도록 마스크(22)가 배치될 수 있다. A mask 22 may be disposed between the substrate 21 and the linear evaporation source 3 so that the deposition material 42 vaporized in the linear evaporation source 3 is evenly guided to the substrate 21.

마스크(22)는 선형 증발원(3)의 노즐 블록(8)과, 기판(21)의 사이에 배치될 수 있다. The mask 22 may be disposed between the nozzle block 8 of the linear evaporation source 3 and the substrate 21.

마스크(22)는 기판(21)의 하측에 배치될 수 있다. 마스크(22)에는 기화된 증착 물질이 통과하는 개구(23)가 형성될 수 있다.The mask 22 may be disposed on the lower side of the substrate 21 . An opening 23 through which the vaporized deposition material passes may be formed in the mask 22 .

선형 증발원(3)은 하우징(1) 내에 배치되어 기판(21)에 증착 물질(42)을 기화시킬 수 있다.A linear evaporation source 3 may be disposed within the housing 1 to vaporize the deposition material 42 on the substrate 21 .

선형 증발원(3)은 도가니(4)와, 이너 플레이트(5)와, 히터(6)와, 히터 프레임(7) 및 노즐 블록(8)을 포함할 수 있다.The linear evaporation source 3 may include a crucible 4, an inner plate 5, a heater 6, a heater frame 7, and a nozzle block 8.

도가니(4)는 내부에 증착 공간(41)이 형성될 수 있다. 도가니(4)는 상면이 개방된 용기 형상일 수 있다. The crucible 4 may have a deposition space 41 formed therein. The crucible 4 may be in the shape of a container with an open top.

증착 공간(41)에는 증착 물질(42)이 수용될 수 있다. 증착 물질(42)의 일 예는 유기물일 수 있다.The deposition material 42 may be accommodated in the deposition space 41 . An example of the deposition material 42 may be an organic material.

도가니(4)는 히터 프레임(7)에 이격되게 배치될 수 있다.The crucible 4 may be arranged to be spaced apart from the heater frame 7.

도가니(4)의 상부에는 노즐 블록(8)에 체결될 수 있다. 도가니(4)는 노즐 블록(8)의 하부에 고정될 수 있다. 도가니(4)는 노즐 블록(8)과 일체화될 수 있다.The upper part of the crucible 4 may be fastened to the nozzle block 8. The crucible 4 may be fixed to the lower part of the nozzle block 8. The crucible 4 may be integrated with the nozzle block 8.

이너 플레이트(5)는 증착 공간(41)에 배치될 수 있고, 홀(51)이 형성될 수 있다. 홀(51)은 복수개 형성될 수 있다.The inner plate 5 may be placed in the deposition space 41 and a hole 51 may be formed. A plurality of holes 51 may be formed.

이너 플레이트(5)는 도가니(4) 내부에 복수개 제공될 수 있다. 복수개 이너 플레이트(5)는 상하 방향(Z)으로 이격될 수 있다.A plurality of inner plates 5 may be provided inside the crucible 4. The plurality of inner plates 5 may be spaced apart in the vertical direction (Z).

복수개 이너 플레이트(5)는 도가니(4)에 이격되게 지지될 수 있다.A plurality of inner plates 5 may be supported to be spaced apart from each other in the crucible 4 .

도가니(4)의 내둘레에는 이너 플레이트(5)의 테두리부가 안착되는 안착홈(44;또는 단턱부)가 형성될 수 있다. 안착홈은 복수개 제공될 수 있고, 복수개 안착홈은 도가니(4)의 내둘레에 이격되게 형성될 수 있다. 복수개의 이너 플레이트(5)는 도가니(4)의 내둘레에 서로 이격되게 안착될 수 있다. A seating groove 44 (or step portion) into which the edge portion of the inner plate 5 is seated may be formed on the inner circumference of the crucible 4. A plurality of seating grooves may be provided, and a plurality of seating grooves may be formed to be spaced apart from each other on the inner circumference of the crucible 4. A plurality of inner plates 5 may be seated on the inner circumference of the crucible 4 to be spaced apart from each other.

히터(6)는 도가니(4)를 가열할 수 있다. 히터(6)는 전기 히터를 포함할 수 있다. 히터(6)는 도가니(4)의 외둘레면을 둘러 쌀 수 있다. 히터(6)는 도가니(4)의 외측 주변에서 도가니(4)를 가열할 수 있다.The heater 6 can heat the crucible 4. Heater 6 may include an electric heater. The heater 6 may surround the outer circumferential surface of the crucible 4. The heater 6 may heat the crucible 4 around the outside of the crucible 4.

히터(6)은 도가니(4)의 외측에 배치되고 도가니(4)의 전,후,좌,우 네 면을 둘러쌀 수 있다.The heater 6 is placed on the outside of the crucible 4 and can surround the front, rear, left, and right sides of the crucible 4.

히터 프레임(7)은 도가니(4)의 외측에서 히터(6)를 지지할 수 있다.The heater frame 7 may support the heater 6 on the outside of the crucible 4.

히터 프레임(7)은 내측에 히터(6)가 설치된 프레임(71)과, 프레임(71)의 하측에 제공되어 프레임(71)을 지지하는 프레임 지지대(72)를 포함할 수 있다.The heater frame 7 may include a frame 71 with the heater 6 installed inside, and a frame support 72 provided on the lower side of the frame 71 to support the frame 71.

프레임(71)에는 도가니(4)와 노즐 블록(8) 중 적어도 하나가 안착되는 안착핀(74; 혹은 플로팅 핀)이 제공될 수 있다. The frame 71 may be provided with a seating pin 74 (or floating pin) on which at least one of the crucible 4 and the nozzle block 8 is seated.

안착핀(74)는 프레임(71)의 내둘레에 돌출되게 제공될 수 있다. The seating pin 74 may be provided to protrude from the inner circumference of the frame 71.

도가니(4) 또는 노즐 블록(8)에는 안착 핀(74)에 올려지는 안착부(46)가 형성될 수 있다. 안착부(46)가 도가니(4)에 형성될 경우, 안착부(46)는 도가니(4)의 외둘레에 형성될 수 있다.A seating portion 46 mounted on the seating pin 74 may be formed in the crucible 4 or the nozzle block 8. When the seating portion 46 is formed on the crucible 4, the seating portion 46 may be formed on the outer circumference of the crucible 4.

노즐 블록(8)은 증착 공간(41)을 덮도록 도가니(4)의 상부에 배치될 수 있다. 노즐 블록(8)은 도가니(4)의 상단 위에 배치된 도가니 캡일 수 있다. The nozzle block 8 may be placed on top of the crucible 4 to cover the deposition space 41. The nozzle block 8 may be a crucible cap placed on top of the crucible 4.

노즐 블록(8)의 경우, 한 개의 도가니(4)에 한 개의 노즐 블록(8)을 형성할 수도 있고, 혹은 한 개의 도가니(4)에 필요에 의해 2개 이상의 분할된 노즐 블록(8)을 형성할 수도 있다.In the case of the nozzle block 8, one nozzle block 8 may be formed in one crucible 4, or two or more divided nozzle blocks 8 may be formed in one crucible 4 if necessary. It can also be formed.

노즐 블록(8)는 도가니(4)의 상부에 결합될 수 있다. 노즐 블록(8)은 도가니(4)와 함께 도가니 어셈블리를 구성할 수 있다.The nozzle block 8 may be coupled to the top of the crucible 4. The nozzle block 8 may form a crucible assembly together with the crucible 4.

노즐 블록(8)은 직사각형 형상일 수 있다. The nozzle block 8 may have a rectangular shape.

노즐 블록(8)은 노즐 플레이트(81)와, 노즐 플레이트(81)에 제공된 메인 노즐(82)을 포함할 수 있다. The nozzle block 8 may include a nozzle plate 81 and a main nozzle 82 provided on the nozzle plate 81.

노즐 플레이트(81)의 상면은 기판(21) 및 마스크(22)을 향할 수 있다. 노즐 플레이트(81)의 상면은 기판(21)과 나란할 수 있다. 노즐 플레이트(81)의 상면은 수평할 수 있다. The upper surface of the nozzle plate 81 may face the substrate 21 and the mask 22. The upper surface of the nozzle plate 81 may be parallel to the substrate 21. The upper surface of the nozzle plate 81 may be horizontal.

메인 노즐(82)는 노즐 플레이트(81)의 상면에 돌출되게 배치될 수 있다. 메인 노즐(82)은 노즐 플레이트(81)와 일체로 형성되는 것이 가능하다. 메인 노즐(82)은 노즐 플레이트(81)와 별도로 제조된 후 노즐 플레이트(81)에 용접 등으로 조립되는 것도 가능하다. The main nozzle 82 may be disposed to protrude from the upper surface of the nozzle plate 81. The main nozzle 82 can be formed integrally with the nozzle plate 81. The main nozzle 82 may be manufactured separately from the nozzle plate 81 and then assembled to the nozzle plate 81 by welding or the like.

노즐 블록(8)의 하면은 도가니(4)을 향할 수 있다. The lower surface of the nozzle block (8) may face the crucible (4).

선형 증발원(3)은 쿨링 블록(100)을 더 포함할 수 있다.The linear evaporation source 3 may further include a cooling block 100.

쿨링 블록(100)은 히터 프레임(7)의 외측에서 히터 프레임(7)을 둘러쌀 수 있다. 쿨링 블록(100)은 내부에 공간(102)이 형성될 수 있다. 도가니(4)와 히터(6)와 히터 프레임(7) 및 노즐 블록(8)은 공간(102)에 수용될 수 있다.The cooling block 100 may surround the heater frame 7 on the outside of the heater frame 7. The cooling block 100 may have a space 102 formed therein. The crucible 4, the heater 6, the heater frame 7, and the nozzle block 8 can be accommodated in the space 102.

쿨링 블록(100)은 상면이 개방될 수 있다. 쿨링 블록(100)은 직육면체 형상일 수 있다.The top of the cooling block 100 may be open. The cooling block 100 may have a rectangular parallelepiped shape.

쿨링 블록(100)은 히터(6)가 방출하는 열이 외부로 방출되지 않도록 차단할 수 있다.The cooling block 100 can block the heat emitted by the heater 6 from being emitted to the outside.

쿨링 블록(100)는 냉각수 등의 냉매가 통과하는 냉매 튜브 또는 냉매 채널을 포함할 수 있다. 쿨링 블록(100)는 냉매 튜브 또는 냉매 채널을 포함하는 냉각수 블록을 포함한다.The cooling block 100 may include a refrigerant tube or a refrigerant channel through which a refrigerant such as coolant passes. Cooling block 100 includes a coolant block including refrigerant tubes or refrigerant channels.

선형 증발원(3)은 어퍼 리플렉터(110)를 포함할 수 있다. 어퍼 리플렉터(110)는 쿨링 블록(100)의 상부에 배치될 수 있다. 어퍼 리플렉터(110)에는 개구부(112)가 형성될 수 있다. 개구부(112)은 원형 형상 또는 직사각형 형상일 수 있다. 개구부(112)는 복수개 제공되는 것도 가능하다.The linear evaporation source 3 may include an upper reflector 110. The upper reflector 110 may be placed at the top of the cooling block 100. An opening 112 may be formed in the upper reflector 110. The opening 112 may have a circular or rectangular shape. It is possible to provide a plurality of openings 112.

선형 증발원(3)은 하부 플레이트(120)와, 사이드 리플렉터(130)를 포함할 수 있다. The linear evaporation source 3 may include a lower plate 120 and a side reflector 130.

하부 플레이트(120)는 히터 프레임(7)을 지지할 수 있다. 하부 플레이터(120)는 쿨링 블록(100)을 지지할 수 있다.The lower plate 120 may support the heater frame 7. The lower plater 120 may support the cooling block 100.

히터 프레임(7)의 하단과, 쿨링 블록(100)의 하단은 하부 플레이트(120)에 놓여질 수 있다.The lower end of the heater frame 7 and the lower end of the cooling block 100 may be placed on the lower plate 120.

사이드 리플렉터(130)는 히터 프레임(7)의 외측에 배치될 수 있다. 사이드 리플렉터(130)는 히터(6)의 주변으로 퍼지는 열을 도가니(4)의 방향으로 반사시킬 수 있고, 단열 효과를 증대시킬 수 있다. The side reflector 130 may be disposed outside the heater frame 7. The side reflector 130 can reflect heat spreading around the heater 6 in the direction of the crucible 4 and increase the insulation effect.

선형 증발원(3)은 로어 리플렉터(140)를 더 포함할 수 있다.The linear evaporation source 3 may further include a lower reflector 140.

로어 리플렉터(140)은 도가니(4) 및 히터(6)의 하측에 위치되도록 히터 프레임(7)에 배치될 수 있다. 로어 리플렉터(140)는 도가니(4)의 하단과 이격되게 히터 프레임(7)의 내측에 위치될 있다. 로어 리플렉터(140)는 히터(6)의 하측으로 퍼지는 열을 도가니(4)의 방향으로 반사시킬 수 있고, 단열 효과를 증대시킬 수 있다. The lower reflector 140 may be disposed on the heater frame 7 so as to be located below the crucible 4 and the heater 6. The lower reflector 140 is located inside the heater frame 7 and spaced apart from the bottom of the crucible 4. The lower reflector 140 can reflect heat spreading below the heater 6 in the direction of the crucible 4 and increase the insulation effect.

도 2는 본 실시예의 증착 장치의 선형 증발원의 도시된 도이고, 도 3는 비교예의 메인 노즐과, 본 실시예의 메인 노즐이 도시된 도이다.FIG. 2 is a diagram showing a linear evaporation source of the deposition apparatus of this embodiment, and FIG. 3 is a diagram showing the main nozzle of the comparative example and the main nozzle of the present embodiment.

기판(21)의 좌우 방향(Y) 길이는 기판(21)의 전후 방향(X) 길이 보다 길 수 있고, 기판(21)은 좌우 방향(Y)으로 긴 직사각형 형상일 수 있다. The length of the substrate 21 in the left-right direction (Y) may be longer than the length of the substrate 21 in the front-back direction (X), and the substrate 21 may have a rectangular shape that is long in the left-right direction (Y).

마스크(22)의 좌우 방향(Y) 길이는 마스크(22)의 전후 방향(X) 길이 보다 길 수 있고, 좌우 방향(Y)으로 긴 직사각형 형상일 수 있다. The length of the mask 22 in the left-right direction (Y) may be longer than the length of the mask 22 in the front-back direction (X), and may have a long rectangular shape in the left-right direction (Y).

마스크(22)는 좌우 방향(Y)으로, 좌측단 영역(22A)와, 중앙 영역(22B)와, 우측단 영역(22C)으로 구분될 수 있다. The mask 22 can be divided in the left and right direction (Y) into a left end area 22A, a center area 22B, and a right end area 22C.

개구(23)는 복수개 형성될 수 있고, 복수개 개구(23)는 좌측단 영역(22A)에 형성된 좌측단 개구(23A)와, 중앙 영역(22B)에 형성된 중앙측 개구(23B)와, 우측단 영역(22C)에 형성된 우측단 개구(23C)를 포함할 수 있다. A plurality of openings 23 may be formed, and the plurality of openings 23 may include a left end opening 23A formed in the left end area 22A, a central opening 23B formed in the center area 22B, and a right end opening 23. It may include a right end opening 23C formed in the area 22C.

선형 증발원(3)의 좌우 방향(Y) 길이는 선형 증발원(3)의 전후 방향(X) 길이 보다 길 수 있고, 선형 증발원(3)은 대략 직육면체 형상일 수 있다. The length of the linear evaporation source 3 in the left-right direction (Y) may be longer than the length of the linear evaporation source 3 in the front-back direction (X), and the linear evaporation source 3 may have a substantially rectangular parallelepiped shape.

도가니(4)는 좌우 방향(Y)으로 길게 형성될 수 있다. 도가니(4)는 전후 방향(X)의 길이 보다 좌우 방향(Y)의 길이가 긴 형상일 수 있다.The crucible 4 may be formed to be long in the left and right direction (Y). The crucible 4 may have a shape in which the length in the left-right direction (Y) is longer than the length in the front-back direction (X).

도가니(4)가 좌우 방향으로 긴 직육면체 형상일 경우, 노즐 블록(8)은 좌우 방향(Y)으로 긴 직사각형 형상일 수 있다.When the crucible 4 has a rectangular shape that is long in the left-right direction, the nozzle block 8 may have a rectangular shape that is long in the left-right direction (Y).

노즐 플레이트(81)의 좌우 방향(Y)의 길이는 노즐 플레이트(81)의 전후 방향(X)의 길이 보다 길 수 있고, 노즐 플레이트(81)은 직사각형 판체일 수 있다. The length of the nozzle plate 81 in the left-right direction (Y) may be longer than the length of the nozzle plate 81 in the front-back direction (X), and the nozzle plate 81 may be a rectangular plate body.

노즐 블록(8)에는 도 2에 도시된 바와 같이, 복수개의 메인 노즐(82)이 제공될 수 있다.As shown in FIG. 2, the nozzle block 8 may be provided with a plurality of main nozzles 82.

복수개의 메인 노즐(82)는 중앙측 노즐(83)와, 외곽측 노즐(84)(85)을 포함할 수 있다. The plurality of main nozzles 82 may include a central nozzle 83 and outer nozzles 84 and 85.

중앙측 노즐(83)은 외곽측 노즐(84)(85) 사이에 위치할 수 있다. 중앙측 노즐(83)은 중공 형상일 수 있다. 중앙측 노즐(83)에는 상측 방향(U)으로 개방된 노즐 통로가 형성될 수 있다. 중앙측 노즐(83)의 노즐 통로는 상하 방향(Z)으로 개방될 수 있다. The central nozzle 83 may be located between the outer nozzles 84 and 85. The central nozzle 83 may have a hollow shape. A nozzle passage open in the upward direction (U) may be formed in the central nozzle 83. The nozzle passage of the central nozzle 83 may be open in the vertical direction (Z).

중앙측 노즐(83)은 복수개 제공될 수 있다. A plurality of central nozzles 83 may be provided.

외곽측 노즐(84)(85)은 노즐 블록(8)의 길이 방향(Y)으로 서로 이격될 수 있다.The outer nozzles 84 and 85 may be spaced apart from each other in the longitudinal direction (Y) of the nozzle block 8.

외곽측 노즐(84)(85)은 좌측 노즐(84)와, 우측 노즐(85)을 포함할 수 있고, 좌측 노즐(84)과 우측 노즐(85) 각각은 복수개 제공될 수 있다. The outer nozzles 84 and 85 may include a left nozzle 84 and a right nozzle 85, and a plurality of each of the left nozzles 84 and right nozzles 85 may be provided.

좌측 노즐(84)과 우측 노즐(85)는 각각은 중공 형상일 수 있다. 좌측 노즐(84)과 우측 노즐(85)는 각각에는 경사 방향(LC)(RC)으로 개방된 노즐 통로(즉, 노즐 공)가 형성될 수 있다. 좌측 노즐(84)의 노즐 통로는 좌측 상부 방향(LC)으로 개방될 수 있고, 우측 노즐(85)의 노즐 통로는 우측 상부 방향(RC)으로 개방될 수 있다. The left nozzle 84 and the right nozzle 85 may each have a hollow shape. The left nozzle 84 and the right nozzle 85 may each have a nozzle passage (i.e., nozzle hole) formed in an inclined direction (LC) (RC). The nozzle passage of the left nozzle 84 may be opened in the upper left direction (LC), and the nozzle passage of the right nozzle 85 may be opened in the upper right direction (RC).

좌측 노즐(84)과 우측 노즐(85)은 각각 증착 물질이 토출되는 토출면(86)을 갖을 수 있다. 여기서, 토출면(86)은 좌,우측 노즐(84)(85) 중 노즐 통로의 출구가 형성된 면으로 정의될 수 있다. The left nozzle 84 and the right nozzle 85 may each have a discharge surface 86 through which the deposition material is discharged. Here, the discharge surface 86 can be defined as the surface on which the exit of the nozzle passage is formed among the left and right nozzles 84 and 85.

좌측 노즐(84)의 토출면(86)은 좌측 상부 방향(LC)를 향할 수 있고, 우측 노즐(85)의 토출면(86)은 우측 상부 방향(RC)를 향할 수 있다. The discharge surface 86 of the left nozzle 84 may face the upper left direction (LC), and the discharge surface 86 of the right nozzle 85 may face the upper right direction (RC).

복수개 메인 노즐(82)이 형성되는 영역은 증착 물질 표면적의 장변방향 길이(L)의 2/3 이상 까지일 수 있고, 바람직하게. 2/3 L 이상 3/3 L 미만일 수 있다. 복수개 메인 노즐(82) 중 최좌측 노즐과, 최우측 노즐 사이의 거리는 2/3 L 이상 3/3 L 미만일 수 있다.The area where the plurality of main nozzles 82 are formed may be, preferably, up to 2/3 or more of the longitudinal length (L) of the surface area of the deposition material. It may be more than 2/3 L and less than 3/3 L. The distance between the leftmost nozzle and the rightmost nozzle among the plurality of main nozzles 82 may be 2/3 L or more and less than 3/3 L.

예를 들어, 증착 물질 표면적의 장변방향 길이(L)가 1000mm 일 경우, 복수개 메인 노즐이 형성되는 영역은, 666 내지 1000mm 일 수 있다. 복수개 메인 노즐(82) 중 최좌측 노즐과, 최우측 노즐 사이의 거리는 최소 666mm이고 1000mm 미만일 수 있다. For example, when the long side length (L) of the surface area of the deposition material is 1000 mm, the area where the plurality of main nozzles are formed may be 666 to 1000 mm. The distance between the leftmost nozzle and the rightmost nozzle among the plurality of main nozzles 82 is at least 666mm and may be less than 1000mm.

통상의 L에 비해 크기가 너무 작은 노즐 통로가 개방될 경우, 증착 물질의 표면 대비 내무 작은 노즐 통로로 인해 증발원의 입자 분출 효율(증발되는 입자 대비 메인 노즐 밖으로 빠져나가는 입자의 양)이 크게 감소되어 입자의 충돌량이 증가하고, 증착 물질 표면의 압력 값이 크게 증가하여, 증착 물질의 끓는 점이 증가하고, 더 높은 공정온도(즉, 히팅 온도)를 필요로 한다. 이러한 현상의 장기간 발생시, 증착 물질(유기물)의 열화속도는 증가하고, 장시간 공정시 불리할 수 있다. If a nozzle passage that is too small in size compared to the normal L is opened, the particle ejection efficiency of the evaporation source (the amount of particles escaping out of the main nozzle compared to the particles evaporated) of the evaporation source is greatly reduced due to the small interior of the nozzle passage compared to the surface of the deposition material. The collision amount of particles increases, and the pressure value on the surface of the deposition material increases significantly, which increases the boiling point of the deposition material and requires a higher processing temperature (i.e., heating temperature). When this phenomenon occurs for a long period of time, the deterioration rate of the deposition material (organic material) increases, which may be disadvantageous during long-term processing.

노즐 투 픽셀값(Distance)은 증가할 경우, 쉐도우 값이 증가되고, 이로 인해 기판(21)의 멍얼룩 불량 등이 증가되는 문제가 발생될 수 있다. When the nozzle-to-pixel value (Distance) increases, the shadow value increases, which may cause problems such as increased defects such as bruises on the substrate 21.

본 실시예의 메인 노즐(82)은 상기와 같은 쉐도우를 최소화할 수 있는 형상을 갖는다. The main nozzle 82 of this embodiment has a shape that can minimize the above shadow.

도 3의 (a)에는 본 실시예와 비교되는 비교예의 메인 노즐이 도시된 도이고, 도 3의 (b)에는 본 실시예의 메인 노즐이 도시된 도이다. Figure 3(a) shows the main nozzle of the comparative example compared to the present embodiment, and Figure 3(b) shows the main nozzle of the present embodiment.

좌측 노즐(84)과 우측 노즐(85) 각각의 토출면(86)은 상단(86a)과 하단(86b)를 포함할 수 있다. The discharge surface 86 of each of the left nozzle 84 and the right nozzle 85 may include an upper end 86a and a lower end 86b.

토출면(86)의 상단(86a) 높이는 토출면(86)의 하단(86b) 높이 보다 높을 수 있다. The height of the upper end (86a) of the discharge surface (86) may be higher than the height of the lower end (86b) of the discharge surface (86).

토출면(86)은 하단(86b)은 토출면(86)은 상단(86b) 보다 노즐 블록(8)의 단부(8A)에 더 근접할 수 있다. The discharge surface 86 may be closer to the end 8A of the nozzle block 8 than the lower end 86b.

토출면(86)의 하단(86b)와 상단(86b)을 잇는 선에서 연장된 연장선은 토출면(86)에서 연장된 가상선(L1,L2,L3,L4)으로 정의될 수 있다. The extension line extending from the line connecting the lower end 86b and the upper end 86b of the discharge surface 86 may be defined as virtual lines L1, L2, L3, and L4 extending from the discharge surface 86.

도 3의 (a)에 도시된 바와 같이, 비교예의 좌측 노즐(84')의 토출면(86')에서 연장된 가상선(L1)은 좌측 노즐(84')의 우측 상부 방향을 향할 수 있고, 비교예의 우측 노즐(85')의 토출면(86')에서 연장된 가상선(L3)은 우측 노즐(85')의 좌측 상부 방향을 향할 수 있고, 이러한 비교예의 가상선(L1,L3)은 수직선(V) 보다 수평선(H)에 더 가깝게 경사질 수 있다. As shown in (a) of FIG. 3, the virtual line L1 extending from the discharge surface 86' of the left nozzle 84' of the comparative example may be directed toward the upper right of the left nozzle 84'. , the virtual line L3 extending from the discharge surface 86' of the right nozzle 85' in the comparative example may be directed toward the upper left side of the right nozzle 85', and the virtual lines L1 and L3 in the comparative example may be inclined closer to the horizontal line (H) than to the vertical line (V).

비교예의 가상선(L1,L3)는 노즐 플레이트(81)와 45°미만의 작은 경사각(θ1; 도 3 참조)을 갖을 수 있다. The virtual lines L1 and L3 of the comparative example may have a small inclination angle θ1 (see FIG. 3) of less than 45° with the nozzle plate 81.

비교예는 도 3의 (a)에 도시된 바와 같이, 증착 물질 중 좌측 노즐(84')의 노즐통로 개방 방향(LC')과 역방향으로 비산되는 양이 과다하고, 이러한 증착 물질이 마스크(22)의 우측단 개구(23C)에 진입할 경우, 기판(21)에 형성된 픽셀의 쉐도우 값이 커지게 된다.In the comparative example, as shown in (a) of FIG. 3, the amount of the deposition material scattered in the direction opposite to the nozzle passage opening direction (LC') of the left nozzle 84' is excessive, and this deposition material is used in the mask 22 ), the shadow value of the pixel formed on the substrate 21 increases.

좌측 노즐(84')를 통해 역방향으로 비상되는 증착 물질은 우측단 개구(23C)에 높은 각도(θ2; 도 2 참조)로 침투하게 되는데, 이는 기판(21)에 형성된 픽셀 즉, 발광층의 종횡비(aspect ratio)값을 감소시키고, 픽셀 영역을 넘어서까지 증착 물질이 증착되게 된다. The deposition material flying in the reverse direction through the left nozzle 84' penetrates into the right end opening 23C at a high angle (θ2; see FIG. 2), which is determined by the aspect ratio of the pixel formed on the substrate 21, that is, the light emitting layer ( The aspect ratio value is reduced, and the deposition material is deposited beyond the pixel area.

그리고, 비교예는 도 3의 (a)에 도시된 바와 같이, 증착 물질 중 우측 노즐(85')의 노즐통로 개방 방향(RC')과 역방향으로 비산되는 양이 과다하고, 이러한 과다한 증착 물질이 마스크(22)의 좌측단 개구(23A)에 진입할 경우, 기판(21)에 형성된 픽셀의 쉐도우 값이 커지게 된다.In the comparative example, as shown in (a) of FIG. 3, the amount of the deposited material scattered in the direction opposite to the nozzle passage opening direction (RC') of the right nozzle 85' is excessive, and this excess deposited material is When entering the left end opening 23A of the mask 22, the shadow value of the pixel formed on the substrate 21 increases.

우측 노즐(85')를 통해 역방향으로 비상되는 증착 물질은 좌측단 개구(23A)에 높은 각도로 침투되게 되는데, 이는 기판(21)에 형성된 픽셀 즉, 발광층의 종횡비(aspect ratio)값을 감소시키고, 픽셀 영역을 넘어서까지 증착 물질이 증착되게 된다. The deposition material flying in the reverse direction through the right nozzle 85' penetrates into the left end opening 23A at a high angle, which reduces the aspect ratio value of the pixel formed on the substrate 21, that is, the light emitting layer. , the deposition material is deposited beyond the pixel area.

상기와 같이, 픽셀 영역을 넘어서 증착되는 부분(즉, 새도우)는 기판(21)에 멍 얼룩 등의 불량을 발생시킬 수 있다. As described above, the portion deposited beyond the pixel area (i.e., shadow) may cause defects such as bruises and stains on the substrate 21.

본 실시예는 비교예의 좌측 노즐(84')의 에지와, 우측 노즐(85')의 에지를 컷하여, 좌측 노즐(84)의 토출면(86)과, 우측 노즐(85)의 토출면(86)을 보다 가파르게 성형한 예일 수 있다. In this embodiment, the edge of the left nozzle 84' and the edge of the right nozzle 85' of the comparative example are cut, and the discharge surface 86 of the left nozzle 84 and the discharge surface of the right nozzle 85 ( 86) may be an example of being molded more steeply.

도 3의 (b)에 도시된 바와 같이, 본 실시예의 좌측 노즐(84)의 토출면(86)에서 연장된 가상선(L2)은 좌측 노즐(84)의 우측 상부 방향을 향할 수 있고, 우측 노즐(85)의 토출면(86)에서 연장된 가상선(L4)은 우측 노즐(85)의 좌측 상부 방향을 향할 수 있고, 이러한 가상선(L2, L4)은 수평선(H) 보다 수직선(V)에 더 가깝게 경사질 수 있다. 본 실시예의 좌측 노즐(84)의 가상선(L2)과 우측 노즐(85)의 가상선(L4) 각각은 노즐 플레이트(81)와 45°초과 90°미만의 큰 경사각(θ3)을 갖을 수 있고, 이러한 경사각(θ3)의 바람직한 예는 50°초과 80°미만일 수 있다.As shown in (b) of FIG. 3, the virtual line L2 extending from the discharge surface 86 of the left nozzle 84 in this embodiment may be directed toward the upper right of the left nozzle 84, and toward the right. The imaginary line (L4) extending from the discharge surface 86 of the nozzle 85 may be directed toward the upper left side of the right nozzle 85, and these imaginary lines (L2, L4) are more aligned with the vertical line (V) than the horizontal line (H). ) can be inclined closer to . In this embodiment, each of the virtual line L2 of the left nozzle 84 and the virtual line L4 of the right nozzle 85 may have a large inclination angle θ3 of more than 45° and less than 90° with the nozzle plate 81, , a preferred example of this inclination angle (θ3) may be greater than 50° and less than 80°.

본 실시예의 경우, 증착 물질 중 좌측 노즐(84)의 노즐통로 개방 방향(LC)과 역방향으로 비산되는 양은 비교예의 좌측 노즐(84')의 경우 보다 감소될 수 있고, 이러한 증착 물질이 마스크(22)의 우측단 개구(23C)에 진입할 경우, 기판(21)에 형성된 픽셀의 쉐도우 값은 작게 된다.In the case of this embodiment, the amount of the deposition material scattered in the opposite direction to the nozzle passage opening direction (LC) of the left nozzle 84 can be reduced compared to the case of the left nozzle 84' of the comparative example, and this deposition material is applied to the mask 22 ), the shadow value of the pixel formed on the substrate 21 becomes small.

그리고, 본 실시예의 경우, 증착 물질 중 우측 노즐(85)의 노즐통로 개방 방향(RC)과 역방향으로 비산되는 양은 비교예의 우측 노즐(85')의 경우 보다 감소될 수 있고, 이러한 증착 물질이 마스크(22)의 좌측단 개구(23A)에 진입할 경우, 기판(21)에 형성된 픽셀의 쉐도우 값은 작아지게 된다.In addition, in the case of this embodiment, the amount of the deposition material scattered in the opposite direction to the nozzle passage opening direction (RC) of the right nozzle 85 can be reduced compared to the case of the right nozzle 85' of the comparative example, and this deposition material is used as a mask. When entering the left end opening 23A of (22), the shadow value of the pixel formed on the substrate 21 becomes small.

통상 Gaussian Distribution이 시작되는 기준 평면이 본 실시예와 같이 50°초과 80°미만과 같이, 가파를 경우, 픽셀 영역의 뒤로 퍼져 나가는 입자의 분포는 희박할 수 있고, 이를 통해 전반적인 노즐 영역은 확대하면서 픽셀의 쉐도우값을 조절하는 것이 가능하다. Normally, if the reference plane where Gaussian Distribution starts is steep, such as greater than 50° but less than 80° as in this embodiment, the distribution of particles spreading behind the pixel area may be sparse, thereby expanding the overall nozzle area. It is possible to adjust the shadow value of the pixel.

한편, 증착 공정의 도중에 픽셀의 쉐도우값을 낮추어야할 경우, 보조 노즐(9, 도 4 내지 도 6 참조)을 좌측 노즐(84)와 우측 노즐(85) 중 적어도 하나에 인서트할 수 있고, 특정 메인 노즐에서 국소적인 입자 비산을 추가로 제어하는 것이 가능하다. Meanwhile, when it is necessary to lower the shadow value of a pixel during the deposition process, an auxiliary nozzle (9, see FIGS. 4 to 6) can be inserted into at least one of the left nozzle 84 and the right nozzle 85, and a specific main It is possible to further control local particle scattering at the nozzle.

도 4은 본 실시예의 노즐 블록에 보조 노즐이 배치된 사시도이고, 도 5는 본 실시예의 노즐 블록과 보조 노즐이 도시된 일부 절결 사시도이며, 도 6는 본 실시예의 노즐 블록 및 보조 노즐이 도시된 확대 단면도이다.Figure 4 is a perspective view of an auxiliary nozzle arranged in the nozzle block of this embodiment, Figure 5 is a partially cut away perspective view showing a nozzle block and an auxiliary nozzle of this embodiment, and Figure 6 is a nozzle block and an auxiliary nozzle of this embodiment shown. This is an enlarged cross-sectional view.

노즐 블록(8)에는 도 4 내지 도 6에 도시된 바와 같이, 적어도 하나의 보조 노즐(9)이 제공될 수 있다. The nozzle block 8 may be provided with at least one auxiliary nozzle 9, as shown in FIGS. 4 to 6.

보조 노즐(9)은 메인 노즐(82)에 인서트 될 수 있고, 이 경우, 노즐 블록(8)의 교체나 튜닝을 최소화할 수 있고, 양산성이 향상될 수 있다.The auxiliary nozzle 9 can be inserted into the main nozzle 82, and in this case, replacement or tuning of the nozzle block 8 can be minimized and mass productivity can be improved.

보조 노즐(9)이 장착되지 않은 경우, 노즐 블록(8)은 수많은 양산 물질(즉 증착 물질)에 적용할 경우, 메인 노즐(82)의 튜닝(Tuning)이 잦고, 양산 공정의 특성상 교체가 용이하지 않다. When the auxiliary nozzle (9) is not installed, the nozzle block (8) requires frequent tuning of the main nozzle (82) when applied to numerous mass production materials (i.e. deposition materials), and is easy to replace due to the nature of the mass production process. don't do it

반면에, 보조 노즐(9)이 장착된 경우, 노즐 블록(8)의 메인 노즐(82)를 튜닝할 필요 없고, 보조 노즐(9)에 의해 기판(21)에 형성된 픽셀의 쉐도우 값을 최소화할 수 있다. On the other hand, when the auxiliary nozzle 9 is mounted, there is no need to tune the main nozzle 82 of the nozzle block 8, and the shadow value of the pixel formed on the substrate 21 by the auxiliary nozzle 9 can be minimized. You can.

보조 노즐(9)은 메인 노즐(82)에 삽입될 수 있고, 탭 등을 이용하여 체결될 수 있다. 보조 노즐(9)의 경우 분리형이 아닌 일체형으로 제작될 수도 있다. The auxiliary nozzle 9 can be inserted into the main nozzle 82 and fastened using a tab or the like. In the case of the auxiliary nozzle 9, it may be manufactured as an integrated type rather than a separate type.

공정의 필요성 등에 따라 보조 노즐(9)은 일체형이 유리한 경우에 있기 때문에, 필요에 따라 다수의 보조 노즐(9)이 일체형으로 제작되는 것 또한 유리하다. Depending on the needs of the process, etc., it is advantageous to manufacture the auxiliary nozzles 9 in an integrated form, so it is also advantageous for a plurality of auxiliary nozzles 9 to be manufactured in an integrated form as needed.

보조 노즐(9)의 경우, 양산 공정상 사람의 공수가 필요하기 때문에, 단점이 될 수 있는데, 특정 물질에 대해 공정 안전화가 진행되어 보조 조즐(9)의 수정이 불필요할 때는, 편의에 따라 일체형으로 제작될 수 있다. In the case of the auxiliary nozzle (9), it can be a disadvantage because it requires human labor during the mass production process. However, when process safety has progressed for a specific material and modification of the auxiliary nozzle (9) is unnecessary, it can be integrated for convenience. It can be produced with

보조 노즐(9)는 노즐 블록(8)에 복수개 제공될 수 있다. 보조 노즐(9)은 메인 노즐(82)의 일부에만 필요에 의해 인서트되어 배치될 수 있고, 메인 노즐(82)의 나머지에는 삽입되지 않을 수 있다. A plurality of auxiliary nozzles 9 may be provided in the nozzle block 8. The auxiliary nozzle 9 may be inserted and disposed only in a part of the main nozzle 82 if necessary, and may not be inserted in the remainder of the main nozzle 82.

메인 노즐(82)은 보조 노즐(9)의 유무에 따라, 제1메인 노즐과, 제2메인 노즐로 구분될 수 있다. The main nozzle 82 can be divided into a first main nozzle and a second main nozzle depending on the presence or absence of the auxiliary nozzle 9.

제1메인 노즐은 내부에 보조 노즐(9)이 삽입되지 않는 노즐일 수 있고, 도가니(4)의 증착 공간(41)에서 기화된 증착 물질 중 일부는 제1메인 노즐을 통과할 수 있다. The first main nozzle may be a nozzle in which the auxiliary nozzle 9 is not inserted, and some of the deposition material vaporized in the deposition space 41 of the crucible 4 may pass through the first main nozzle.

제2메인 노즐은 내부에 보조 노즐(9)이 삽입된 노즐일 수 있고, 하나의 제2메인 노즐에 하나의 보조 노즐(9)이 인서트되어 장착될 수 있다. 도가니(4)의 증착 공간(41)에서 기화된 증착 물질 중 나머지는 보조 노즐(9)을 통과할 수 있다. The second main nozzle may be a nozzle with an auxiliary nozzle 9 inserted therein, and one auxiliary nozzle 9 may be inserted and mounted on one second main nozzle. The remainder of the deposition material vaporized in the deposition space 41 of the crucible 4 may pass through the auxiliary nozzle 9.

제2메인 노즐의 내측 하부에는 도 5 및 도 6에 도시된 바와 같이, 보조 노즐(9)이 안착되는 보조 노즐 안착부(87)가 돌출될 수 있다. As shown in FIGS. 5 and 6, an auxiliary nozzle seating portion 87 on which the auxiliary nozzle 9 is mounted may protrude from the inner lower portion of the second main nozzle.

보조 노즐 안착부(87)의 상면(87a)은 구배질 수 있다. The upper surface 87a of the auxiliary nozzle seating portion 87 may be inclined.

보조 노즐 안착부(87)의 내부에는 기화된 증착 물질(42)이 통과하는 통공(87b)이 형성될 수 있다. A through hole 87b through which the vaporized deposition material 42 passes may be formed inside the auxiliary nozzle seating portion 87.

통공(87b)은 기화된 증착 물질(42)을 보조 노즐(9)의 내부로 안내할 수 있다. The through hole 87b may guide the vaporized deposition material 42 into the auxiliary nozzle 9.

보조 노즐(9)은 제2메인 노즐의 내부로 삽입되었을 때, 보조 노즐 안착부(87)의 상면에 안착되어 걸릴 수 있고, 보조 노즐(9)의 과삽입이 제한될 수 있다. When the auxiliary nozzle 9 is inserted into the second main nozzle, it may be seated and caught on the upper surface of the auxiliary nozzle seating portion 87, and over-insertion of the auxiliary nozzle 9 may be restricted.

증착 공간(41)에서 기화된 증착 물질(42)은 보조 노즐 안착부(87)의 통공(87a)을 통과한 후, 보조 노즐(9)의 내부를 통과할 수 있고, 보조 노즐(9)의 출구(O)가 개방된 방향으로 토출될 수 있다. The deposition material 42 vaporized in the deposition space 41 may pass through the through hole 87a of the auxiliary nozzle seating portion 87 and then pass through the interior of the auxiliary nozzle 9. It can be discharged in the direction in which the outlet (O) is open.

보조 노즐(9)은 제2메인 노즐에 삽입되었을 때, 그 중 일부가 제2메인 노즐의 외부로 노출될 수 있다. 도가니(4)의 증착 공간(41)에서 기화된 증착 물질(42)은 보조 노즐(9)이 안내하는 방향으로 토출될 수 있다. When the auxiliary nozzle 9 is inserted into the second main nozzle, a portion of the auxiliary nozzle 9 may be exposed to the outside of the second main nozzle. The deposition material 42 vaporized in the deposition space 41 of the crucible 4 may be discharged in a direction guided by the auxiliary nozzle 9.

도 6에 도시된 바와 같이, 보조 노즐(9)의 최상단(91) 높이(H1)는 제2메인 노즐의 최상단 높이(H2) 보다 높을 수 있다. As shown in FIG. 6, the height H1 of the top 91 of the auxiliary nozzle 9 may be higher than the height H2 of the top of the second main nozzle.

보조 노즐(9)의 출구면(93) 각도는 제2메인 노즐의 출구면(84a) 각도와 상이할 수 있다. 보조 노즐(9)의 출구면(93)는 제2메인 노즐의 출구면(84a) 보다 수직에 가까울 수 있다. The angle of the outlet surface 93 of the auxiliary nozzle 9 may be different from the angle of the outlet surface 84a of the second main nozzle. The outlet surface 93 of the auxiliary nozzle 9 may be closer to vertical than the outlet surface 84a of the second main nozzle.

보조 노즐(9)은 입구면(92)과 출구면(93)이 나란하지 않을 수 있다. The auxiliary nozzle 9 may have an inlet surface 92 and an outlet surface 93 that are not aligned.

보조 노즐(9)은 입구면(92)은 입구(I)가 위치하는 면으로 정의될 수 있고, 보조 노즐(9)의 출구면(93)은 출구(O)가 위치하는 면으로 정의될 수 있다. The inlet surface 92 of the auxiliary nozzle 9 can be defined as the surface where the inlet (I) is located, and the outlet surface 93 of the auxiliary nozzle 9 can be defined as the surface where the outlet (O) is located. there is.

보조 노즐(9)의 입구면(92)은 보조 노즐(9)의 하부에 위치할 수 있고, 보조 노즐(9)의 출구면(93)은 보조 노즐(9)의 상부에 위치할 수 있다. The inlet surface 92 of the auxiliary nozzle 9 may be located at the lower part of the auxiliary nozzle 9, and the outlet surface 93 of the auxiliary nozzle 9 may be located at the upper part of the auxiliary nozzle 9.

보조 노즐(9)은 입구면(92)과 출구면(93)이 나란하지 않을 수 있다. The auxiliary nozzle 9 may have an inlet surface 92 and an outlet surface 93 that are not aligned.

출구면(93)과 수평면 사이의 제1각도는 입구면(92)과 수평면 사이에 제2각도 보다 클 수 있다. The first angle between the outlet surface 93 and the horizontal may be greater than the second angle between the inlet surface 92 and the horizontal.

제1각도가 클수록 보조 노즐(9)은 수평방향에 가까운 경사 방향으로 증착 물질(42)을 유도할 수 있다. 반대로 제1각도가 작을수록 보조 노즐(9)은 수직방향과 가까운 경사 방향으로 증착 물질(42)을 유도할 수 있다. As the first angle becomes larger, the auxiliary nozzle 9 can guide the deposition material 42 in an inclined direction closer to the horizontal direction. Conversely, as the first angle becomes smaller, the auxiliary nozzle 9 can guide the deposition material 42 in an inclined direction closer to the vertical direction.

상기와 같은 보조 노즐(9)은, 메인 노즐(82) 중 외곽측 노즐에 삽입될 수 있고, 보조 노즐(9)이 삽입된 제2메인 노즐은 노즐 블록(8)의 단부(8A)(8B)과 중앙(8C) 중 단부(8A,8B; 도 2 참조)에 더 근접할 수 있다. The auxiliary nozzle 9 as described above can be inserted into the outer nozzle of the main nozzle 82, and the second main nozzle into which the auxiliary nozzle 9 is inserted is the end portion 8A (8B) of the nozzle block 8. ) and the center (8C) may be closer to the ends (8A, 8B; see Figure 2).

제1메인 노즐은 노즐 블록(8)의 중앙에 위치하거나 중앙에 근접한 중앙측 노즐(83)일 수 있고, 제2메인 노즐은 좌,우측 노즐(84)(85)일 수 있다. The first main nozzle may be the central nozzle 83 located at or close to the center of the nozzle block 8, and the second main nozzle may be the left and right nozzles 84 and 85.

한편, 본 실시예는 노즐 블록(8)에 보조 노즐(9)를 별도로 인서트 하지 않고, 노즐 블록(8)의 가공을 통해 보조 노즐(9)을 일체로 성형하는 것도 가능하다. 본 실시예에 따르면 노즐의 개구부에 특정 경사부(역방향 비산을 위해 수평면에서 설정각도 이상 예를 들어 10도 이상)를 형성하도록 후처리한 노즐을 이용하여 제 2 메인 노즐의 역방향으로 비산되는 것을 최소화하며, 이는 필요 시 보조 노즐을 이용할 수도 있으며, 기판(21)에 형성된 픽셀의 새도우 효과를 최소화할 수 있다. Meanwhile, in this embodiment, instead of separately inserting the auxiliary nozzle 9 into the nozzle block 8, it is possible to integrally mold the auxiliary nozzle 9 through processing of the nozzle block 8. According to this embodiment, scattering in the reverse direction of the second main nozzle is minimized by using a nozzle that has been post-processed to form a specific slope at the opening of the nozzle (for example, 10 degrees or more than a set angle in the horizontal plane for reverse scattering). In addition, an auxiliary nozzle can be used when necessary, and the shadow effect of the pixel formed on the substrate 21 can be minimized.

제2메인 노즐의 개수는 제1메인 노즐의 개수 보다 적을 수 있다. The number of second main nozzles may be less than the number of first main nozzles.

도 7은 본 실시예의 보조 노즐이 메인 노즐에 나사 결합된 예가 도시된 도이다. Figure 7 is a diagram showing an example in which the auxiliary nozzle of this embodiment is screwed to the main nozzle.

본 실시예는 보조 노즐(9)이 메인 노즐(82)에 탭으로 결합될 수 있다. 보조 노즐(9)의 외둘레에는 수나사(9a)가 형성될 수 있고, 메인 노즐(82)의 내둘레에는 수나사(9a)가 나사 결합되는 암나사(82a)가 형성될 수 있다. 보조 노즐(9)은 메인 노즐(82)의 내부로 돌려 끼움 되어 결합될 수 있고, 보조 노즐(9)은 메인 노즐(82)에 나사 체결되어 견고하게 고정될 수 있다. In this embodiment, the auxiliary nozzle 9 may be coupled to the main nozzle 82 with a tab. A male thread 9a may be formed on the outer circumference of the auxiliary nozzle 9, and a female thread 82a to which the male thread 9a may be screwed may be formed on the inner circumference of the main nozzle 82. The auxiliary nozzle 9 can be screwed into the main nozzle 82 and connected to it, and the auxiliary nozzle 9 can be firmly fixed by screwing to the main nozzle 82.

이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. The above description is merely an illustrative explanation of the technical idea of the present invention, and various modifications and variations will be possible to those skilled in the art without departing from the essential characteristics of the present invention.

따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but rather to explain it, and the scope of the technical idea of the present invention is not limited by these embodiments.

본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The scope of protection of the present invention should be interpreted in accordance with the claims below, and all technical ideas within the equivalent scope should be construed as being included in the scope of rights of the present invention.

4: 도가니 6: 히터
8: 노즐 블록 9: 보조 노즐
21: 기판 22: 마스크
41: 증착 공간 42: 증착 물질
83: 중앙측 노즐 84: 좌측 노즐
85: 우측 노즐 91: 보조 노즐의 상단
92: 입구면 93: 출구면
H1: 보조 노즐의 최상단 높이 H2: 제2메인 노즐의 최상단 높이
4: Crucible 6: Heater
8: Nozzle block 9: Auxiliary nozzle
21: substrate 22: mask
41: deposition space 42: deposition material
83: Center nozzle 84: Left nozzle
85: Right nozzle 91: Top of auxiliary nozzle
92: inlet side 93: outlet side
H1: Height of the top of the auxiliary nozzle H2: Height of the top of the second main nozzle

Claims (10)

증착 물질이 수용되는 증착 공간이 형성되고 좌우 방향으로 긴 도가니;
상기 도가니의 외측 주변에서 도가니를 가열하는 히터; 및
상기 도가니의 상부에 배치되어 상기 증착 공간을 덮고 복수개의 메인 노즐이 돌출된 노즐 블록을 포함하고,
상기 복수개의 메인 노즐은 좌측 노즐과, 중앙측 노즐과, 우측 노즐을 포함하고,
상기 좌측 노즐의 토출면에서 연장된 가상선은 상기 좌측 노즐의 우측 상부 방향을 향하고,
상기 우측 노즐의 토출면에서 연장된 가상선은 상기 우측 노즐의 좌측 상부 방향을 향하며,
상기 좌측 노즐의 토출면에서 연장된 가상선과, 상기 우측 노즐의 토출면에서 연장된 가상선 각각은 수평선 보다 수직선에 더 가깝고,
상기 복수개 메인 노즐 중 일부에만 필요에 의해 인서트된 보조 노즐 및
상기 노즐 블록과 기판의 사이에 배치된 마스크를 더 포함하고,
상기 보조 노즐은 복수개 제공되고,
상기 복수개 메인 노즐은
상기 보조 노즐이 삽입되지 않은 제1메인 노즐과,
상기 보조 노즐이 삽입된 제2메인 노즐을 포함하고,
상기 보조 노즐의 상단은 상기 제2메인 노즐의 외부로 노출되고,
상기 보조 노즐의 최상단 높이는 상기 제2메인 노즐의 최상단 높이 보다 높고,
상기 보조 노즐은 입구면과 출구면이 나란하지 않으며,
상기 출구면과 수평면 사이의 제1각도는 상기 입구면과 수평면 사이의 제2각도 보다 큰
증착장치.
A deposition space in which the deposition material is accommodated is formed and a long crucible is formed in the left and right directions;
A heater that heats the crucible around the outside of the crucible; and
It includes a nozzle block disposed on the upper part of the crucible, covering the deposition space, and having a plurality of main nozzles protruding,
The plurality of main nozzles include a left nozzle, a central nozzle, and a right nozzle,
An imaginary line extending from the discharge surface of the left nozzle points toward the upper right of the left nozzle,
An imaginary line extending from the discharge surface of the right nozzle points toward the upper left side of the right nozzle,
Each of the virtual line extending from the discharge surface of the left nozzle and the virtual line extending from the discharge surface of the right nozzle are closer to the vertical line than the horizontal line,
Auxiliary nozzles inserted as needed in only some of the plurality of main nozzles and
Further comprising a mask disposed between the nozzle block and the substrate,
A plurality of auxiliary nozzles are provided,
The plurality of main nozzles are
A first main nozzle into which the auxiliary nozzle is not inserted,
It includes a second main nozzle into which the auxiliary nozzle is inserted,
The top of the auxiliary nozzle is exposed to the outside of the second main nozzle,
The top height of the auxiliary nozzle is higher than the top height of the second main nozzle,
The auxiliary nozzle has an inlet surface and an outlet surface that are not parallel,
The first angle between the outlet surface and the horizontal plane is greater than the second angle between the inlet surface and the horizontal plane.
deposition equipment.
제 1 항에 있어서,
상기 노즐 블록은 상기 복수개의 메인 노즐이 돌출된 노즐 플레이트를 포함하고,
상기 가상선은 상기 노즐 플레이트와 50°초과 80°미만의 경사각을 갖는 증착장치.
According to claim 1,
The nozzle block includes a nozzle plate on which the plurality of main nozzles protrude,
The virtual line and the nozzle plate have an inclination angle of more than 50° and less than 80°.
삭제delete 삭제delete 제 1 항에 있어서,
상기 보조 노즐의 출구면은 상기 제2메인 노즐의 출구면 보다 수직에 가까운 증착장치.
According to claim 1,
A deposition apparatus in which the outlet surface of the auxiliary nozzle is closer to vertical than the outlet surface of the second main nozzle.
제 1 항에 있어서,
상기 제2메인 노즐은 상기 노즐 블록의 단부와 중앙 중 단부에 더 근접한 증착장치.
According to claim 1,
The second main nozzle is a deposition device closer to the end of the nozzle block.
제 1 항, 제 2 항, 제 5 항, 제 6 항 중 어느 한 항에 있어서,
상기 제2메인 노즐의 개수는 상기 제1메인 노즐의 개수 보다 적은 증착장치.
According to any one of claims 1, 2, 5, and 6,
A deposition apparatus in which the number of second main nozzles is less than the number of first main nozzles.
제 1 항에 있어서,
상기 제2메인 노즐의 내측 하부에는 상기 보조 노즐이 안착되는 보조 노즐 안착부가 돌출된 증착장치.
According to claim 1,
A deposition apparatus in which an auxiliary nozzle seating portion on which the auxiliary nozzle is seated protrudes from an inner lower portion of the second main nozzle.
제 8 항에 있어서,
상기 보조 노즐 안착부의 상면은 구배진 증착장치.
According to claim 8,
A deposition device in which the upper surface of the auxiliary nozzle seating portion is sloped.
제 8 항에 있어서,
상기 보조 노즐 안착부의 내부에는 기화된 증착 물질을 보조 노즐로 안내하는 통공이 형성된 증착장치.
According to claim 8,
A deposition device in which a through hole is formed inside the auxiliary nozzle seating portion to guide the vaporized deposition material to the auxiliary nozzle.
KR1020210102056A 2021-08-03 2021-08-03 Linear Deposition Source KR102649397B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210102056A KR102649397B1 (en) 2021-08-03 2021-08-03 Linear Deposition Source
PCT/KR2021/013959 WO2023013816A1 (en) 2021-08-03 2021-10-12 Linear evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210102056A KR102649397B1 (en) 2021-08-03 2021-08-03 Linear Deposition Source

Publications (2)

Publication Number Publication Date
KR20230020226A KR20230020226A (en) 2023-02-10
KR102649397B1 true KR102649397B1 (en) 2024-03-21

Family

ID=85154602

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210102056A KR102649397B1 (en) 2021-08-03 2021-08-03 Linear Deposition Source

Country Status (2)

Country Link
KR (1) KR102649397B1 (en)
WO (1) WO2023013816A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120141674A1 (en) 2010-12-03 2012-06-07 Il-Soo Park Evaporator and method for depositing organic material
KR101866956B1 (en) * 2016-12-30 2018-06-14 주식회사 선익시스템 Crucible for linear evaporation source and Linear evaporation source having the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102480457B1 (en) * 2015-07-27 2022-12-22 삼성디스플레이 주식회사 Deposition apparatus
WO2017194097A1 (en) 2016-05-10 2017-11-16 Applied Materials, Inc. Evaporation source for depositing an evaporated material, and method for depositing an evaporated material
KR101853689B1 (en) * 2016-05-23 2018-05-03 주식회사 선익시스템 Deposited material injection device for deposition device
CN110592538B (en) * 2019-09-26 2021-12-24 京东方科技集团股份有限公司 Evaporation device, evaporation source and nozzle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120141674A1 (en) 2010-12-03 2012-06-07 Il-Soo Park Evaporator and method for depositing organic material
KR101866956B1 (en) * 2016-12-30 2018-06-14 주식회사 선익시스템 Crucible for linear evaporation source and Linear evaporation source having the same

Also Published As

Publication number Publication date
KR20230020226A (en) 2023-02-10
WO2023013816A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
KR102318264B1 (en) Depositing apparatus
EP1927674B1 (en) Evaporation source and vacuum evaporator using the same
KR20070112668A (en) Linear type evaporator for manufacturing elements of organic semiconductor device
KR102036597B1 (en) Linear evaporation source, apparatus having the same and method using the same
KR101877908B1 (en) An evaporation source for an organic material, a device having an evaporation source for an organic material, and a method for depositing an organic material
KR20170095371A (en) Material deposition arrangement, a vacuum deposition system and method for depositing material
KR20180048444A (en) NOZZLE FOR DISTRIBUTION ASSEMBLY OF MATERIAL VAPOR SOURCE AREAS, METHOD FOR MAKING SOURCE ARRANGEMENT, VACUUM VAPOR DEPOSITION SYSTEM, AND METHOD FOR VAPORING MATERIAL
KR101961752B1 (en) Deposition Chamber Having Structure for Controlling Angle of Injection to Prevent Mask Shadow
KR102649397B1 (en) Linear Deposition Source
KR102005835B1 (en) Linear evaporation source having slit nozzle, and apparatus having the same
TWI625415B (en) Deposition apparatus and method for manufacturing organic light emitting diode display using the same
KR20220046983A (en) Linear Deposition Source
JP2019508571A (en) Material deposition apparatus, vacuum deposition system, and method for performing vacuum deposition
KR20140133133A (en) Particle-free molecular beam focusing apparatus of top down evaporation source
KR20090015324A (en) Top-down type high temperature evaporation source for deposition of metal-like film on substrate
KR20110085486A (en) An evaporator for vacuum thermal evaporation
KR20100053365A (en) Evapration apparatus which can evaporate downward direction
KR20210089748A (en) A vapor source for depositing an evaporative material, a nozzle for the vapor source, a vacuum deposition system, and a method for depositing an evaporative material
KR102454832B1 (en) Linear Deposition Source
KR102598142B1 (en) Deposition apparatus
KR20160001901A (en) Evaporation source and Apparatus for deposition having the same
KR20170083587A (en) Material source arrangement and nozzle for vacuum deposition
KR20220006823A (en) Linear Source
KR102528282B1 (en) Evaporating source
KR101160437B1 (en) Top down type high temperature evaporation source for metal film on substrate

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right