KR102646424B1 - Snp marker set for identifying cucurbita moschata cultivars and method for identifying cucurbita moschata cultivars using the same - Google Patents

Snp marker set for identifying cucurbita moschata cultivars and method for identifying cucurbita moschata cultivars using the same Download PDF

Info

Publication number
KR102646424B1
KR102646424B1 KR1020210170194A KR20210170194A KR102646424B1 KR 102646424 B1 KR102646424 B1 KR 102646424B1 KR 1020210170194 A KR1020210170194 A KR 1020210170194A KR 20210170194 A KR20210170194 A KR 20210170194A KR 102646424 B1 KR102646424 B1 KR 102646424B1
Authority
KR
South Korea
Prior art keywords
cmo
asian
pumpkin
dna
single nucleotide
Prior art date
Application number
KR1020210170194A
Other languages
Korean (ko)
Other versions
KR20230082354A (en
Inventor
이은수
김도선
이혜은
한고은
이예린
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020210170194A priority Critical patent/KR102646424B1/en
Publication of KR20230082354A publication Critical patent/KR20230082354A/en
Application granted granted Critical
Publication of KR102646424B1 publication Critical patent/KR102646424B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/13Plant traits
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 동양계 호박의 순도검정 및 품종판별을 위한 단일염기 다형성 마커세트 및 이의 용도에 관한 것으로, 동양계 호박 형질의 순도검정 및 품종을 판별하는데 필요한 시간과 비용을 절감하거나 판단의 정확도를 높일 수 있다.The present invention relates to a single nucleotide polymorphism marker set and its use for purity testing and variety identification of Asian pumpkin traits, and can reduce the time and cost required for purity testing and variety identification of Asian pumpkin traits or increase the accuracy of judgment. .

Description

동양계 호박의 순도검정 및 품종판별을 위한 단일염기 다형성 마커세트 및 이의 용도 {SNP MARKER SET FOR IDENTIFYING CUCURBITA MOSCHATA CULTIVARS AND METHOD FOR IDENTIFYING CUCURBITA MOSCHATA CULTIVARS USING THE SAME}Single nucleotide polymorphism marker set and its use for purity testing and variety identification of Asian pumpkins {SNP MARKER SET FOR IDENTIFYING CUCURBITA MOSCHATA CULTIVARS AND METHOD FOR IDENTIFYING CUCURBITA MOSCHATA CULTIVARS USING THE SAME}

본 발명은 동양계 호박의 순도검정 및 품종판별을 위한 단일염기 다형성 마커세트 및 이의 용도에 관한 것이다.The present invention relates to a single nucleotide polymorphism marker set and its use for purity testing and variety identification of Asian pumpkins.

식물의 품종간 구분은 여러 가지 목적에 따라 필요한 연구이다. 예를 들면, 국제식물신품종보호동맹 UPOV(International Uion for the Protection of New Varieties of Plant)의 설립 이후 품종보호권 설정은 종자 회사와 육종가의 큰 관심사가 되었고, UPOV의 회원국인 우리나라 또한 품종보호를 위하여 품종구분에 객관적인 기준을 설정 혹은 수치화하는 계량화의 필요성을 인식하게 되었다.Distinguishing between plant varieties is a necessary study for various purposes. For example, after the establishment of the International Union for the Protection of New Varieties of Plant (UPOV), establishing variety protection rights became a major concern for seed companies and breeders, and Korea, a member of UPOV, also took steps to protect varieties. The need for quantification, which establishes or quantifies objective standards for classification, has been recognized.

일반적인 품종 구분은 표현형에 근거하여 구분되어 왔다. 하지만 표현형은 환경요인에 많은 영향을 받기 때문에 통계적으로 많은 실험을 요구한다. 또한 품종간 구별에 있어 표현형은 객관적 기준이 불분명하고 체감적인 차이를 반영하지 못한다. 이런 어려움을 극복하기 위해 DNA 분자 마커를 개발하기 시작했다. General breed classification has been based on phenotype. However, because phenotypes are greatly influenced by environmental factors, many statistical experiments are required. In addition, when distinguishing between breeds, the objective criteria for phenotypes are unclear and do not reflect perceived differences. To overcome these difficulties, we began developing DNA molecular markers.

DNA 분자 마커는 RFLP(restriction fragment length polymorphism), RAPD(random amplified polymorphic DNA), SSR(simple sequence repeat), SNP(Single-nucleotide polymorphism) 등 여러 가지 종류가 있다. 이중에 SNP 마커는 DNA 염기 변이 형태의 가장 흔한 유형이며 다형성 마커 개발에 높은 성공의 결과를 나타내는 방법 중 하나이다. There are several types of DNA molecular markers, such as restriction fragment length polymorphism (RFLP), random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR), and single-nucleotide polymorphism (SNP). Among these, SNP markers are the most common type of DNA base mutation and are one of the methods with high success in developing polymorphic markers.

호박(Cucurbita spp.)은 2003년부터 수요 증대로 재배면적이 2007년까지 지속적으로 증가하였다가 이후 증감을 거듭하였고 재배면적은 2003년 8,791 ha에서 2018년 9,206 ha로 증가하였고 생산량도 2018년 31만톤 이상으로 2000년 27만톤 비해 약 1.1배 증가하였다. 국내 호박 종자시장도 2018년에 117억 규모로 2014년에 비해 약 1.5 배 이상 증가하여 향후에도 성장세를 이어갈 것으로 예측된다(종자협회, 2019). 호박의 경제적 중요성이 증가함에 따라 신품종 육성이 활발히 이루어지고 있으며 지적재산권인 품종보호권 강화 및 유사복제품종 개발 차단의 중요성이 강조되고 있다. The cultivation area of pumpkin (Cucurbita spp.) continued to increase until 2007 due to increased demand from 2003, and then continued to increase and decrease. The cultivation area increased from 8,791 ha in 2003 to 9,206 ha in 2018, and production amounted to 310,000 tons in 2018. This is an increase of approximately 1.1 times compared to 270,000 tons in 2000. The domestic pumpkin seed market is also expected to grow by more than 1.5 times to KRW 11.7 billion in 2018 compared to 2014 (Seed Association, 2019). As the economic importance of pumpkin increases, the cultivation of new varieties is actively carried out, and the importance of strengthening the variety protection rights, which are intellectual property rights, and blocking the development of similar clones is emphasized.

1. KR 10-2264690B11. KR 10-2264690B1

본 발명의 일 목적은 서열번호 1 내지 41의 염기서열에서 각 염기서열의 61번째 염기에 위치한 단일염기다형성 (single nucleotide polymorphism, SNP) 전부를 검출하기 위한 제제를 포함하는, 동양계 호박의 순도검정 및 품종판별용 조성물을 제공하는 것이다.An object of the present invention is to test the purity of Asian pumpkin, including an agent for detecting all single nucleotide polymorphisms (SNPs) located at the 61st base of each base sequence in the base sequences of SEQ ID NOs. 1 to 41, and The purpose is to provide a composition for variety identification.

본 발명의 다른 일 목적은 상기 조성물을 포함하는, 동양계 호박의 순도검정 및 품종판별용 키트를 제공하는 것이다.Another object of the present invention is to provide a kit for purity testing and variety identification of Asian pumpkin, comprising the above composition.

본 발명의 다른 일 목적은 a) 동양계 호박 시료로부터 폴리뉴클레오티드를 분리하고, 서열번호 1 내지 41번으로 표시되는 각각의 염기서열의 61번째 위치에 존재하는 단일염기다형성 전부의 유전자형을 결정하는 단계; 및 b) 상기 단일염기다형성의 유전자형을 분석하여 동양계 호박의 순도 및 품종을 식별하는 단계를 포함하는, 동양계 호박의 순도검정 및 품종판별 방법을 제공하는 것이다.Another object of the present invention is a) isolating a polynucleotide from an Asian pumpkin sample and determining the genotype of all single nucleotide polymorphisms present at the 61st position of each base sequence represented by SEQ ID NOs. 1 to 41; and b) analyzing the genotype of the single nucleotide polymorphism to identify the purity and variety of the Asian pumpkin.

본 발명의 일 양상은 서열번호 1 내지 41의 염기서열에서 각 염기서열의 61번째 염기에 위치한 단일염기다형성 (single nucleotide polymorphism, SNP) 전부를 검출하기 위한 제제를 포함하는, 동양계 호박의 순도검정 및 품종판별용 조성물을 제공한다.One aspect of the present invention is a purity test for Asian pumpkin, comprising an agent for detecting all single nucleotide polymorphisms (SNPs) located at the 61st base of each base sequence in the base sequences of SEQ ID NOs. 1 to 41, and A composition for variety identification is provided.

상기 서열번호 1 내지 41의 염기서열은 아래와 같다:The base sequences of SEQ ID NOs: 1 to 41 are as follows:

서열번호sequence number Assays IDAssay ID Chr.Chr. SNP Pos (bp)SNP Pos (bp) SequenceSequence 1One CmoSPT01CmoSPT01 Cmo_Chr01Cmo_Chr01 11526211152621 TCTGATGGCA ACGAACATTC TTCAGCCGAC AGTTTACAAG CCGTCGGTGA AGATCGCTGC [T/C]AAGGTAATCGGGCGTAAGTGGGCACCGTTGCCGGCGGTGATGGCGACGTTTTTAGTATCGTCTGATGGCA ACGAACATTC TTCAGCCGAC AGTTTACAAG CCGTCGGTGA AGATCGCTGC [T/C]AAGGTAATCGGGCGTAAGTGGGCACCGTTGCCGGCGGTGATGGCGACGTTTTTAGTATCG 22 CmoSPT02CmoSPT02 Cmo_Chr01Cmo_Chr01 32451423245142 ATCTCCTACCCCGATTAGGCAAAAAGGATCCGTTGCTTAGGAATGTCGATTTATTCATAT[A/T]ATTGCAACTTTTTCTTCAGGGGGCCTGTATTTTCAACCTCTTTCATGGAGCCTTCGCTTGATCTCCTACCCCGATTAGGCAAAAAGGATCCGTTGCTTAGGAATGTCGATTTATTCATAT[A/T]ATTGCAACTTTTTCTTCAGGGGGCCTGTATTTTCAACCTCTTTCATGGAGCCTTCGCTTG 33 CmoSPT3CmoSPT3 Cmo_Chr01Cmo_Chr01 1218925212189252 AAAGCTGGAGGCTCTGGAGTTCCCCCAGTGCTGCGTTGTAGTGTGTGTTATTATATGGGT[T/C]TCTTATAACCCTTTCTTTTTTGGATGAACTGAATTCCTCTCATGGAGGAGTTATGATGATAAAGCTGGAGGCTCTGGAGTTCCCCCAGTGCTGCGTTGTAGTGTGTGTTATTATATGGGT[T/C]TCTTATAACCCTTTCTTTTTTGGATGAACTGAATTCCTCTCATGGAGGGAGTTATGATGAT 44 CmoSPT4CmoSPT4 Cmo_Chr02Cmo_Chr02 485611485611 TCCCCTCGATGTTCCACCGCTGCCTTCCGTTCATCTCCATCCCTCTCTTATCTCTTCCTC[A/T]CTCTCAGAAGGAATCTATGCGAATTTATAGGAATGCAGGCGGAGACGACGACGGAACCGGTCCCCTCGATGTTCCACCGCTGCCTTCCGTTCATCTCCATCCCTCTCTTATCTCTTCCTC[A/T]CTCTCAGAAGGAATCTATGCGAATTTATAGGAATGCAGGCGGAGACGACGACGGAACCGG 55 CmoSPT5CmoSPT5 Cmo_Chr02Cmo_Chr02 82908508290850 CTATCCTAGATCCCCGCGCTCCACCAGCGGATCTGACGGAACCAAGCAGCAGAGCTACTG[T/G]AAAGAAGACGAACTCCAATTCAAAAATCGAGACAATACAACGGAGAAGCAATTCAAATATCTATCCTAGATCCCCGCGCTCCACCAGCGGATCTGACGGAACCAAGCAGCAGAGCTACTG[T/G]AAAGAAGACGAACTCCAATTCAAAAATCGAGACAATACAACGGAGAAGCAATTCAAATAT 66 CmoSPT6CmoSPT6 Cmo_Chr03Cmo_Chr03 32357753235775 TATCTTTGGGGAAGCCAAGATTGAAGATTTGAGCTCCCAACTACAAACCCAAGCTGCAGA[A/G]CAGTTCAAGGCACCTAATTTGAGTAACTTGACATCAAAGCCTGAGCCATCAACCGTGGTTTATCTTTGGGGAAGCCAAGATTGAAGATTTGAGCTCCCAACTACAAACCCAAGCTGCAGA[A/G]CAGTTCAAGGCACCTAATTTGAGTAACTTGACATCAAAGCCTGAGCCATCAACCGTGGTT 77 CmoSPT7CmoSPT7 Cmo_Chr03Cmo_Chr03 80033178003317 ATGTCCATCCCTTTTACCTTATTGTACTCGAGTGACGAGAAAAAAACAGTAAAAAAAAGG[A/G]ACTTTTGCTTCATAGCTTTTCTCGTGGTGCCTTCGAGGAGTGAATTATGGGTACCCTTTAATGTCCATCCCTTTTACCTTATTGTACTCGAGTGACGAGAAAAAAACAGTAAAAAAAAGG[A/G]ACTTTTGCTTCATAGCTTTTCTCGTGGTGCCTTCGAGGAGTGAATTATGGGTACCCTTTA 88 CmoSPT8CmoSPT8 Cmo_Chr04Cmo_Chr04 42628434262843 TTATGGGCTTGGCTCTGTATCGTTGGTTGGGGCACCATAACAGATTGATATGAATGGTTA[T/G]TGGGAGCAGGATGCGGCTGCATAGACATGAAAACATTAGGATCTGAACCAATGGCCAACGTTATGGGCTTGGCTCTGTATCGTTGGTTGGGGCACCATAACAGATTGATATGAATGGTTA[T/G]TGGGAGCAGGATGCGGCTGCATAGACATGAAAACATTAGGATCTGAACCAATGGCCAACG 99 CmoSPT9CmoSPT9 Cmo_Chr04Cmo_Chr04 78169367816936 CTGGCCGTTCGTCACGATCGCGCTCAAAATACTCTCAATACGCTCCACCAGTTCCTCATC[A/G]ACGCCCTCCGCTGCCTCCAATACGCCATCAATCGACTGGAGAAACTCCACATTCGAATCGCTGGCCGTTCGTCACGATCGCGCTCAAAATACTCTCAATACGCTCCACCAGTTCCTCATC[A/G]ACGCCCTCCGCTGCCTCCAATACGCCATCAATCGACTGGAGAAACTCCACATTCGAATCG 1010 CmoSPT10CmoSPT10 Cmo_Chr04Cmo_Chr04 1795680017956800 GCGAATGAGCTAGTGCAGAAGTTTCATATAGCAATGGAGACTGTTTCTGAAAACATTAAT[A/T]GCAGTGAAGCTGGAGATAAATTTACCCAGCAGCATAAAGAACTTCTGTCTGTTCTCGATCGCGAATGAGCTAGTGCAGAAGTTTCATATAGCAATGGAGACTGTTTCTGAAAACATTAAT[A/T]GCAGTGAAGCTGGAGATAAATTTACCCAGCAGCATAAAGAACTTCTGTCTGTTCTCGATC 1111 CmoSPT11CmoSPT11 Cmo_Chr05Cmo_Chr05 272092272092 TTTAAGATGCTTTGTTGGGTCACTGAAGTCAAACAAAACGCAGCATAGATTTAGCTTCTT[A/G]ACAAACAAATTCTGTTTTTCAGAGCTTGGAACTTCCCTAAACCCAGGCAATGCCTCATATTTTAAGATGCTTTGTTGGGTCACTGAAGTCAAACAAAACGCAGCATAGATTTAGCTTCTT[A/G]ACAAACAAATTCTGTTTTTCAGAGCTTGGAACTTCCCTAAACCCAGGCAAATGCCTCATATAT 1212 CmoSPT12CmoSPT12 Cmo_Chr05Cmo_Chr05 52803395280339 TTATGAGTCGGTATGATTCTGCTAGCCAGAGTCACTTTTCACTTCTCTTTAGATCAGTGC[A/T]GCAGACAATAATGTTCTAGTCATTAGTAGGGTAGAAACTGATGTCTCCAATTTTTTTTTTTTATGAGTCGGTATGATTCTGCTAGCCAGAGTCACTTTTCACTTCTCTTTAGATCAGTGC[A/T]GCAGACAATAATGTTCTAGTCATTAGTAGGGTAGAAACTGATGTCTCCAATTTTTTTTTT 1313 CmoSPT13CmoSPT13 Cmo_Chr06Cmo_Chr06 88731978873197 CAGAAGTGCTTCAGTAAATCTTGGCTAGCCAGGGTTGAAACGTGGTTCTTCACCCCGATC[A/G]TAATCGACCCCAAGAGAAACGTGCCTCATCATCTGCTCGCAGCTTACAGCCATCCTTCAACAGAAGTGCTTCAGTAAATCTTGGCTAGCCAGGGTTGAAACGTGGTTCTTCACCCCGATC[A/G]TAATCGACCCCAAGAGAAACGTGGCCTCATCATCTGCTCGCAGCTTACAGCCATCCTTCAA 1414 CmoSPT14CmoSPT14 Cmo_Chr07Cmo_Chr07 28660182866018 TTTGATGACTTTGCTGGCTTCTTGAGTTACTGGGTCGACAAGATAGTCAGGCACGTCACG[T/C]AGATGAGGAGCAGGGGGCTTCTTGCTGAGAATCTTATCATGTTTCAACAAATCTGCCCAATTTGATGACTTTGCTGGCTTCTTGAGTTACTGGGTCGACAAGATAGTCAGGCACGTCACG[T/C]AGATGAGGAGCAGGGGGCTTCTTGCTGAGAATCTTATCATGTTTCAACAAATCTGCCCAA 1515 CmoSPT15CmoSPT15 Cmo_Chr07Cmo_Chr07 41209454120945 CCCACCGAGTAAACAAAGAACAATGAGTGACAGACCAATCCACTGGTGGCCTTAGCAGCT[A/C]AGAAGCCCCCTCGGGCCCCAACGGAGGAAGTGGGTACAGAGAAGGAAAGGCCAACGCCAACCCACCGAGTAAACAAAGAACAATGAGTGACAGACCAATCCACTGGTGGCCTTAGCAGCT[A/C]AGAAGCCCCCTCGGGCCCCAACGGAGGAAGTGGGTACAGAGAAGGAAAGGCCAACGCCAA 1616 CmoSPT16CmoSPT16 Cmo_Chr08Cmo_Chr08 721844721844 TTCTTATACTCATGTAGCTGCACTGAGGAAGGAGATCTCAGACGAGACTGATAGAGAGAC[A/C]GGGCGCAGTAAACAAATTTCAAGTGTTCCAATCCATCTGAGTATCTACTCTCCCAATGGTTTCTTATACTCATGTAGCTGCACTGAGGAAGGAGATCTCAGACGAGACTGATAGAGAGAC[A/C]GGGCGCAGTAAACAAATTTCAAGTGTTCCAATCCATCTGAGTATCTACTCTCCCAATGGT 1717 CmoSPT17CmoSPT17 Cmo_Chr09Cmo_Chr09 910035910035 TGACTTTGATGAGTCTAGCTGTAGGCTTAATGGTCGTTGCACTTGTTACAAAGGATCTAA[T/C]GAGGAACAGAAATGCTGCAACTTGAGCCATCACAGAATTTCTTGTGCAGCTACGGTTAGGTGACTTTGATGAGTCTAGCTGTAGGCTTAATGGTCGTTGCACTTGTTACAAAGGATCTAA[T/C]GAGGAACAAGAAATGCTGCAACTTGAGCCATCACAGAATTTCTTGTGCAGCTACGGTTAGG 1818 CmoSPT18CmoSPT18 Cmo_Chr09Cmo_Chr09 21768022176802 TATAAATCCCTTTACCCCTAAGTTTTGGGTACTGACCTCTTGCTGCATGATGATCATCCT[A/G]GTCGGTTGTTGCGAACAAAAGGCACGAGAATGGTGACGGTTGGACGGGGATGGAACGAAATATAAAATCCCTTTACCCCTAAGTTTTGGGTACTGACCTCTTGCTGCATGATGATCATCCT[A/G]GTCGGTTGTTGCGAACAAAAGGCACGAGAATGGTGACGGTTGGACGGGGATGGAACGAAA 1919 CmoSPT19CmoSPT19 Cmo_Chr09Cmo_Chr09 60663336066333 GATGAACAGGGTTGGCTTTTCTTAACCACTTGAATTCTGTATCTAAGTAATCCTTACTGT[T/C]GTTTTGTTTCTTGTTTACATCTATGATTTGTTTCTTTGTTTCAATTGGTGGAATCTTCTGGATGAACAGGGTTGGCTTTTCTTAACCACTTGAATTCTGTATCTAAGTAATCCTTACTGT[T/C]GTTTTGTTTCTTGTTTACATCTATGATTTGTTTCTTTGTTTCAATTGGTGGAATCTTCTG 2020 CmoSPT20CmoSPT20 Cmo_Chr10Cmo_Chr10 10504901050490 TTCAGGTCCAGAAACCTCCTGATTTCTGGGACTTGTTTTTGAATTTGAATTGTTGCTCTG[T/C]TTTTTAATCCACTGATCAAATGAGATCTTTTATGCCCACCAAGTGCTTGACCTGATGCGATTCAGGTCCAGAAACCTCCTGATTTCTGGGACTTGTTTTTGAATTTGAATTGTTGCTCTG[T/C]TTTTTAATCCACTGATCAAATGAGATCTTTTATGCCCACCAAGTGCTTGACCTGATGCGA 2121 CmoSPT21CmoSPT21 Cmo_Chr10Cmo_Chr10 20772802077280 TTTTTCAAGATTGAAATCAATCTCAATCTCATGGTTGTCTTCTATAGGAAGCACGGATGC[A/C]ACTCCTCCAGTTGATTTGTTTTTGTAGTCGGATCTTGCTTTAAGCGTGGCTGCTCCTTTCTTTTTCAAGATTGAAATCAATCTCAATCTCATGGTTGTCTTCTATAGGAAGCACGGATGC[A/C]ACTCCTCCAGTTGATTTGTTTTTGTAGTCGGATCTTGCTTTAAGCGTGGCTGCTCCTTTC 2222 CmoSPT22CmoSPT22 Cmo_Chr10Cmo_Chr10 1077929110779291 ATTGTTAACTGTATGTGAGATTCACTGTTCAGCACAGAATAGAATCTATGGAACGGAAAA[T/C]GATTGGTATGGGATTCTTCAAATTGATCAATCAGCAGACGAAACAATTATAAAAAAGCAAATTGTTAACTGTATGTGAGATTCACTGTTCAGCACAGAATAGAATCTATGGAACGGAAAA[T/C]GATTGGTATGGGATTCTTCAAAATTGATCAATCAGCAGACGAAACAATTATAAAAAAAGCAA 2323 CmoSPT23CmoSPT23 Cmo_Chr11Cmo_Chr11 1167148611671486 CATAGACAGTGACAATGAGTTTAAGAAATCGGATTCTCATGGGCATATCGTCGACGCGTT[T/C]GGGGCGTCAATGGTAGAGCCTTGGCTTGCAGCCCATGGAGACCCAACAAGGTTTTCATTTCATAGACAGTGACAATGAGTTTAAGAAATCGGATTCTCATGGGCATATCGTCGACGCGTT[T/C]GGGGCGTCAATGGTAGAGCCTTGGCTTGCAGCCCATGGAGACCCAACAAGGTTTTCATTT 2424 CmoSPT24CmoSPT24 Cmo_Chr12Cmo_Chr12 188855188855 GACTGGGCCTTCAACGGTATCGTTGCTACCACCGGGAGCCGCGGCCCCGTCGGTGGTGTT[T/C]CCAATCTTGCCATCGGCGCCGGGAGCCTCGGTTTTATTAGCACCGGCCTTGGGAGTTTCAGACTGGGCCTTCAACGGTATCGTTGCTACCACCGGGAGCCGCGGCCCCGTCGGTGGTGTT[T/C]CCAATCTTGCCATCGGCGCCGGGAGCCTCGGTTTTATTAGCACCGGCCTTGGGAGTTTCA 2525 CmoSPT25CmoSPT25 Cmo_Chr12Cmo_Chr12 93894159389415 CTTCCCACACGGCGGAGCCATGGACTCAATGGATCATGGGGTTTACAGCGGGGGTGGAAG[T/C]GGAGACGGGTACGGCGGGAACTTCCTGATTTCGATGGCGGCCGGGGCGGAAGCCGGGAGCCTTCCCACACGGCGGAGCCATGGACTCAATGGATCATGGGGTTTACAGCGGGGGGTGGAAG[T/C]GGAGACGGGTACGGCGGGAACTTCCTGATTTCGATGGCGGCCGGGGCGGAAGCCGGGAGC 2626 CmoSPT26CmoSPT26 Cmo_Chr13Cmo_Chr13 61508996150899 CACCAAAGGAGCAATTCTTCTCAAAATTTTAAAAGGTACTAAGTTGGAATCCCATTCTAA[G/C]TAAAGATTCTTGTGGTACAAGGACTACAAATTAATAGGAAGAAAAACAATGTTGACTACTCACCAAAGGAGCAATTCTTCTCAAAATTTTAAAAGGTACTAAGTTGGAATCCCATTCTAA[G/C]TAAAGATTCTTGTGGTACAAGGACTACAAATTAATAGGAAGAAAAAACAATGTTGACTACT 2727 CmoSPT27CmoSPT27 Cmo_Chr14Cmo_Chr14 10945621094562 CTCCTTAAGAACGGACACAAGCTCAATATTTGATTCTTGACTTCTCTTTAGCTGCAGAGC[T/G]AAATCAGCATTGGATTCTTTTTGGAACTTCAGTTCATCTTTCAATTCATCTAAGATTTTTCTCCTTAAGAACGGACACAAGCTCAATATTTGATTCTTGACTTCTCTTTAGCTGCAGAGC[T/G]AAATCAGCATTGGATTCTTTTTGGAACTTCAGTTCATCTTTCAATTCATCTAAGATTTTT 2828 CmoSPT28CmoSPT28 Cmo_Chr14Cmo_Chr14 54948585494858 TAACTTTGAAAGGTCCGAAAAGTTGCAGCTCCGAAAGCAATTCGAATCAGATTTTTATTC[A/G]ACTTTTGGTTTTTCTTACGAAGTAGTCGGGTCGGGAGGTTTACAGTGTTTTTAACAACAGTAACTTTGAAAGGTCCGAAAAGTTGCAGCTCCGAAAGCAATTCGAATCAGATTTTTATTC[A/G]ACTTTTGGTTTTTCTTACGAAGTAGTCGGGTCGGGAGGTTTACAGTGTTTTTAACAACAG 2929 CmoSPT29CmoSPT29 Cmo_Chr15Cmo_Chr15 36277843627784 ACATTTCTTACCCGAAATTGCAGCATTTAAGGCCGGTCTTCTTCTGCTCCCACAACAGTT[T/G]ACACCCGCCGTAGATATCGATGCGGCGGCAACGGTAGACCTGGTGATGCTGGTTCCGGTGACATTTCTTACCCGAAATTGCAGCATTTAAGGCCGGTCTTCTTCTGCTCCCACAACAGTT[T/G]ACACCCGCCGTAGATATCGATGCGGCGGCAACGGTAGACCTGGTGATGCTGGTTCCGGTG 3030 CmoSPT30CmoSPT30 Cmo_Chr16Cmo_Chr16 320626320626 TCGAGCTGCTTGTTCTCGCAAGCGATGGACTTTGGGACGTGGTACGCAACGAGGTATGCT[G/C]ACTACATCATTACCCCATGTATCTAAGATGCTCTAAATTGTGAACTCCACATACGAACTTTCGAGCTGCTTGTTCTCGCAAGCGATGGACTTTGGGACGTGGTACGCAACGAGGTATGCT[G/C]ACTACATCATTACCCCATGTATCTAAGATGCTCTAAATTGTGAACTCCACATACGAACTT 3131 CmoSPT31CmoSPT31 Cmo_Chr16Cmo_Chr16 91489539148953 ATCATCTTCGGCCGAAAACTCCTCTGTTTCGTCGCAGACGATATCGGTGTCGTCAAATTC[A/C]CCGCTGCCAAGCTGACAATGGGGGAGTCATTAGTAATGTCGATAAGCGCCGATCGATCTTATCATCTTCGGCCGAAAACTCCTCTGTTTCGTCGCAGACGATATCGGTGTCGTCAAATTC[A/C]CCGCTGCCAAGCTGACAATGGGGGAGTCATTAGTAATGTCGATAAGCGCCGATCGATCTT 3232 CmoSPT32CmoSPT32 Cmo_Chr17Cmo_Chr17 24361172436117 TGACGTTTTCACTGCAGATTTCAATTCCAGTAAAAACCAGTGCCAATTTTCCTCCGTCTC[G/C]GCATCTACAACTGCAAAAGCTGCTGGAAATATGCCATCTTCCCCATCCACAGCTGTGGCATGACGTTTTCACTGCAGATTTCAATTCCAGTAAAACCAGTGCCAATTTTCCTCCGTCTC[G/C]GCATCTACAACTGCAAAAGCTGCTGGAAATATGCCATCTTCCCCATCCACAGCTGTGGGCA 3333 CmoSPT33CmoSPT33 Cmo_Chr17Cmo_Chr17 78987007898700 ATTAAATTCACATTCGAGAGGAGTGGAAGCAGCCGTAGGATTGAAGCAAGGGTAGGATAG[T/G]AAATTAAGACAAAAGTGAAGGGCAGGGGTCAGTCGCACGTGTGAAAAAGATTGAAGTCACATTAAATTCACATTCGAGAGGAGTGGAAGCAGCCGTAGGATTGAAGCAAGGGTAGGATAG[T/G]AAATTAAGACAAAAGTGAAGGGCAGGGGTCAGTCGCACGTGTGAAAAAGATTGAAGTCAC 3434 CmoSPT34CmoSPT34 Cmo_Chr18Cmo_Chr18 856797856797 AGATTCAGATTTACAGGTGATGAAGGAGAAATTAAACCCTGCAATCTTCCAGGGAAACGG[A/G]GAGGTTGAAGGTAAGAAAATCAGTGGGAGAAGTAACGGGGAAAGTTTCTCGGTGTCGAAGAGATTCAGATTTACAGGTGATGAAGGAGAAATTAAACCCTGCAATCTTCCAGGGAAACGG[A/G]GAGGTTGAAGGTAAGAAAATCAGTGGGAGAAGTAACGGGGAAAGTTTCTCGGTGTCGAAG 3535 CmoSPT35CmoSPT35 Cmo_Chr18Cmo_Chr18 55066085506608 ACAGATGCCCTTCTTCATTGACATTTGTCAGTCTGTAGAAAGATAGCCAAGCATGACAGC[T/C]TTGGATAAATTTGGTGACTAAACTGTATAAAATCTTTAAAAAGTCCTTTAGTCTTACATTACAGATGCCCTTCTTCATTGACATTTGTCAGTCTGTAGAAAGATAGCCAAGCATGACAGC[T/C]TTGGATAAATTTGGTGACTAAACTGTATAAAATCTTTAAAAAGTCCTTTAGTCTTACATT 3636 CmoSPT36CmoSPT36 Cmo_Chr18Cmo_Chr18 1245940412459404 CTCTGACATTTTTCTTCTCAGCTGCGGCTCATCCTCCAGTCCCACCTTCTTTAACCGCAC[T/C]TTCGTCGGCGATTCAGTCAAACCCGCCTCCGACTTTCTCACTGCCGGCCGATCGGTGGCGCTCTGACATTTTTCTTCTCAGCTGCGGCTCATCCTCCAGTCCCACCTTCTTTAACCGCAC[T/C]TTCGTCGGCGATTCAGTCAAACCCGCCTCCGACTTTCTCACTGCCGGCCGATCGGTGGCG 3737 CmoSPT37CmoSPT37 Cmo_Chr19Cmo_Chr19 139944139944 TCGTAGAGCTACAAGAACGAAGATGATGATTCAATGTTTTTTGACATTTGGCTTCTGAAC[T/G]TTTAAATGCTTGCTCTGTCTTTGGTTTTTGTAGTTACAGATCTTTATATTGTTCATCGAATCGTAGAGCTACAAGAACGAAGATGATGATTCAATGTTTTTTGACATTTGGGCTTCTGAAC[T/G]TTTTAAATGCTTGCTCTGTCTTTGGTTTTTGTAGTTACAGATCTTTTATATTGTTCATCGAA 3838 CmoSPT38CmoSPT38 Cmo_Chr19Cmo_Chr19 85234158523415 TATATACACTCATCCATCATATACACTCATCCATCGCCCTCTCGCTCTCTCTCGTGCGTT[T/G]TGTATGTACAGGAAGATTGTAACAGTGGAAGAGATCTTAACAATTGACATAAAACCAGGTTATATACACTCATCCATCATATACACTCATCCATCGCCCTCTCGCTCTCTCTCGTGCGTT[T/G]TGTATGTACAGGAAGATTGTAACAGTGGAAGAGATCTTAACAATTGACATAAAACCAGGT 3939 CmoSPT39CmoSPT39 Cmo_Chr20Cmo_Chr20 124230124230 GTTGGAGCAGCTCTTTGACAGCTCCCTCGTGGGTTGAGTATTACTCATCTATTTGTAGCT[T/C]TCCACTTATCAATGGATATTTTCTCGTTTCTTATCTAAAATATTTGCCGTCAACTTATCCGTTGGAGCAGCTCTTTGACAGCTCCCTCGTGGGTTGAGTATTACTCATCTATTTGTAGCT[T/C]TCCACTTATCAATGGATATTTTCTCGTTTCTTATCTAAAATATTTGCCGTCAACTTATCC 4040 CmoSPT40CmoSPT40 Cmo_Chr20Cmo_Chr20 21671112167111 ACAGAATCAAACAGTCTCTATGAGACTTATAATCACCACTCATATGGTTCTTCACCGGCC[G/C]ATTCGTTCTTCGATGGAGTTTCATCGCCAGATTTCTCCACTCCAAACATGGCTGATTCAAACAGAATCAAACAGTCTCTATGAGACTTATAATCACCACTCATATGGTTTCTTCACCGGCC[G/C]ATTCGTTCTTCGATGGAGTTTCATCGCCAGATTTCTCCACTCCAAACATGGCTGATTCAA 4141 CmoSPT41CmoSPT41 Cmo_Chr20Cmo_Chr20 40926244092624 TCATTTACTGGTGATCGATCATCATTGATATTTGAACAGCACGTACCTGGAGAGAGTGTC[A/G]ATGAGCTGAAAAAGAAAATTCAGTCACAGGTGATTTTAACATGCTTCAATTTGTGTTATCTCATTTACTGGTGATCGATCATCATTGATATTTGAACAGCACGTACCTGGAGAGAGTGTC[A/G]ATGAGCTGAAAAAGAAAATTCAGTCACAGGTGATTTTAACATGCTTCAATTTGTGTTATC

상기 단일염기다형성 (single nucleotide polymorphism, SNP)은 DNA에서 한 개의 뉴클레오티드의 삽입, 소실, 또는 치환이 일어나는 것을 말한다. '다형성'이라는 용어는 군집 내에서 변하는 유전자의 서열에서의 배치를 지칭한다. 다형성은 상이한 "대립유전자"로 구성된다. "대립유전자"는 한 쌍의 상동염색 체에서 서로 대응하는 부위, 즉 상동하는 유전자자리에 위치하는 대립형질에 대응하는 유전자를 말하며, 같은 염색체 위치 (same chromosomallocus)를 점유하는 한 유전자의 둘 또는 그 이상의 선택적인 형태 (alternative forms) 중 하나를 뜻한다. 이러한 다형성의 배치는 유전자에서의 그의 위치 및 그에서 발견되는 상이한 아미노산 또는 염기에 의해 확인될 수 있다. 이러한 아미노산 변이는 2개의 상이한 대립유전자인, 2개의 가능한 변이체 염기, C 및 T의 결과이다. 유전자형은 2개의 다른 별개의 대립유전자로 구성되기 때문에, 여러 가능한 변이체 중 임의의 변이체가 어느 한 개체에서 관찰될 수 있다 (예를 들어, CC (A로 표시), CT (H로 표시) 또는 TT (B로 표시)). 개개의 다형성은 또한 당업자에게 공지되어 있다.The single nucleotide polymorphism (SNP) refers to the insertion, deletion, or substitution of one nucleotide in DNA. The term 'polymorphism' refers to the arrangement in the sequence of a gene that varies within a population. Polymorphisms consist of different “alleles.” “Allele” refers to a gene corresponding to an allele located in a corresponding region on a pair of homologous chromosomes, that is, a homologous locus. Two or more of one gene occupying the same chromosomal location (same chromolocsomalus). It means one of the above alternative forms. The placement of this polymorphism can be identified by its location in the gene and the different amino acids or bases found therein. This amino acid variation is the result of two possible variant bases, C and T, which are two different alleles. Because a genotype consists of two distinct alleles, any of several possible variants can be observed in any one individual (e.g., CC (denoted A), CT (denoted H), or TT (marked B)). Individual polymorphisms are also known to those skilled in the art.

본 발명에 있어서 단일염기다형성은 서열번호 1 내지 41의 염기서열에서 각 염기서열의 61번째 염기에 위치한 것일 수 있다. In the present invention, the single nucleotide polymorphism may be located at the 61st base of each base sequence in SEQ ID NOs: 1 to 41.

상기 61번째 염기는 서열번호 1 내지 41번 중 어느 하나의 염기서열 상에서 61번째 염기이다. 서열번호 1 내지 41번의 염기서열은 각각 동양계 호박의 염색체 상에 존재하는 단일염기다형성 및 측면 서열(Flanking sequence)을 포함한다. 상기 서열번호 1 내지 41번에서, 각각의 61번째 염기는 동양계 호박의 염색체 상에 존재하는 단일염기다형성으로, 동양계 호박의 순도 및 품종식별과 관련된 것을 선별한 것이다. 상기 단일염기다형성의 대립유전자형을 분석하면 양친과 자손의 염기 차이를 비교하여 동양계 호박의 순도 및 품종판별 하는데 유용할 수 있다. The 61st base is the 61st base in any one of SEQ ID NOs: 1 to 41. The base sequences of SEQ ID NOs: 1 to 41 include single nucleotide polymorphisms and flanking sequences that exist on the chromosomes of Asian pumpkins, respectively. In SEQ ID NOs. 1 to 41, each 61st base is a single nucleotide polymorphism that exists on the chromosome of Asian pumpkins, and those related to the purity and variety identification of Asian pumpkins were selected. Analyzing the allele type of the single nucleotide polymorphism can be useful in determining the purity and variety of Asian pumpkins by comparing the nucleotide differences between parents and offspring.

상기 제제는 선택된 단일염기다형성에 해당하는 염기를 포함하는 연속염기와 동일하거나 상보적인 염기서열로 이루어진 폴리뉴클레오티드를 포함할 수 있다. 상기 연속 염기는 5 내지 121개의 염기로 이루어질 수 있다. 예를 들면, 상기 제제는 서열번호 1 내지 41번의 염기서열 중 어느 하나에서, 61번째 위치한 대립유전자 중 어느 하나의 염기 및 이의 측면 서열의 전부 또는 일부로 구성된 폴리뉴클레오티드, 또는 이와 상보적인 서열로 구성된 폴리뉴클레오티드일 수 있다. 각 서열번호의 염기서열은 61번째 염기에 단일염기다형성이 위치하고, 61번째 염기를 기준으로 상류(upstream) 및 하류(downstream) 방향으로 각각 60bp의 측면 서열(flanking sequence)이 SNP에 연결되어 있다. 각 서열번호의 염기서열에는 1개의 단일염기다형성이 위치한다. 상기 연속 염기의 길이는 SNP 유전자형 판단 방법에 따라 길이가 달라질 수 있다.The agent may contain a polynucleotide consisting of a base sequence identical to or complementary to contiguous bases including bases corresponding to the selected single nucleotide polymorphism. The contiguous bases may consist of 5 to 121 bases. For example, the agent is a polynucleotide consisting of all or part of the base of any one of the alleles located at the 61st position in any one of the base sequences of SEQ ID NOs. 1 to 41 and all or part of its flanking sequence, or a polynucleotide consisting of a sequence complementary thereto. It may be a nucleotide. In the nucleotide sequence of each sequence number, a single nucleotide polymorphism is located at the 61st base, and flanking sequences of 60 bp each are linked to the SNP in the upstream and downstream directions based on the 61st base. One single nucleotide polymorphism is located in the base sequence of each sequence number. The length of the consecutive bases may vary depending on the SNP genotype determination method.

일 구체예에 따르면 상기 제제는 검출 또는 증폭하고자 하는 폴리뉴클레오티드에 해당하는 서열번호의 61번째 염기에 위치한 단일염기다형성을 식별하기 위한 것일 수 있다. 상기 제제는 서열번호 중 어느 하나의 61번째 염기에 해당하는 단일염기다형성 대립유전자형 중 어느 하나의 염기 및 이와 연속적인 측면서열의 전부 또는 일부를 포함하는 프라이머일 수 있다.According to one embodiment, the agent may be used to identify a single nucleotide polymorphism located at the 61st base of the sequence number corresponding to the polynucleotide to be detected or amplified. The agent may be a primer containing the base of any one of the single nucleotide polymorphism alleles corresponding to the 61st base of the sequence number and all or part of the flanking sequences contiguous thereto.

일 구체예에 따르면 상기 제제는 프로브, 프라이머 및 이들의 조합 중 어느 하나일 수 있다.According to one embodiment, the agent may be any one of a probe, a primer, and a combination thereof.

용어 "프로브"는 특정 표적 서열에 특이적으로 결합하는 폴리뉴클레오티드를 말한다. 상기 프로브는 단일염기다형성 부위를 포함하는 폴리뉴클레오티드에 상보적이거나 특이적 결합을 이룰 수 있는 것일 수 있다. 상기 프로브는 단일염기다형성의 염기 차이에 따라 결합력의 차이가 있는 것일 수 있다. 상기 프로브는 라벨링(labeling)되어 있어서 특정 핵산의 존재 유무를 확인할 수 있는 것일 수 있다.The term “probe” refers to a polynucleotide that specifically binds to a particular target sequence. The probe may be complementary to or capable of specific binding to a polynucleotide containing a single nucleotide polymorphism site. The probe may have a difference in binding ability depending on the base difference in the single nucleotide polymorphism. The probe may be labeled so that the presence or absence of a specific nucleic acid can be confirmed.

용어 "프라이머"는 중합효소에 의한 뉴클레오티드의 중합반응에서 개시점으로 작용할 수 있는 단일가닥의 폴리뉴클레오티드를 의미한다. 상기 프라이머는 선택한 SNP 분석 방법에 따라 통상 기술자에게 알려진 방법을 이용하여 제작할 수 있다. 상기 프라이머 서열은 서열번호 1 내지 41번의 염기서열 중 일부 연속염기와 동일하거나 상보적일 수 있다. 상기 프라이머의 길이는 다양한 인자, 예를 들어 온도 및 프라이머의 용도에 따라 달라질 수 있다. 상기 서열번호 1 내지 41의 식별하기 위한 프라이머들은 아래의 표 2와 같다:The term “primer” refers to a single-stranded polynucleotide that can serve as a starting point in the polymerization reaction of nucleotides by a polymerase. The primers can be produced using methods known to those skilled in the art according to the selected SNP analysis method. The primer sequence may be identical to or complementary to some consecutive bases among the base sequences of SEQ ID NOs. 1 to 41. The length of the primer may vary depending on various factors, such as temperature and the purpose of the primer. Primers for identification of SEQ ID NOs: 1 to 41 are shown in Table 2 below:

서열번호sequence number Assays IDAssay ID Chr.Chr. SNP Pos (bp)SNP Pos (bp) Primer Seq Allele X (FAM)Primer Seq Allele X (FAM) Primer Seq Allele Y (HEX)Primer Seq Allele Y (HEX) Primer Seq commonPrimer Seq common 1One CmoSPT01CmoSPT01 Cmo_Chr01Cmo_Chr01 11526211152621 CCCACTTACGCCCGATTACCTTACCCACTTACGCCCGATTACCTTA CCACTTACGCCCGATTACCTTGCCACTTACGCCCGATTACCTTG CAGTTTACAAGCCGTCGGTGAAGATCAGTTTACAAGCCGTGGTGGAAGAT 22 CmoSPT02CmoSPT02 Cmo_Chr01Cmo_Chr01 32451423245142 GTTGCTTAGGAATGTCGATTTATTCATATAGTTGCTTAGGAATGTCGATTTATTCATATA GTTGCTTAGGAATGTCGATTTATTCATATTGTTGCTTAGGAATGTCGATTTATTCATATT GGCCCCCTGAAGAAAAAGTTGCAATGGCCCCCTGAAGAAAAAAGTTGCAAT 33 CmoSPT3CmoSPT3 Cmo_Chr01Cmo_Chr01 1218925212189252 GTTCATCCAAAAAAGAAAGGGTTATAAGAAGTTCATCCAAAAAAGAAAGGGTTATAAGAA CATCCAAAAAAGAAAGGGTTATAAGAGCATCCAAAAAAAGAAAGGGTTATAAGAG GTGCTGCGTTGTAGTGTGTGTTATTATATGTGCTGCGTTGTAGTGTGTGTTATTATAT 44 CmoSPT4CmoSPT4 Cmo_Chr02Cmo_Chr02 485611485611 AAATTCGCATAGATTCCTTCTGAGAGTAAATTCGCATAGATTCCTTCTGAGAGT AAATTCGCATAGATTCCTTCTGAGAGAAAATTCGCATAGATTCCTTCTGAGAGA CCGTTCATCTCCATCCCTCTCTTATCCGTTCATCTCCATCCCTCTCTTAT 55 CmoSPT5CmoSPT5 Cmo_Chr02Cmo_Chr02 82908508290850 GAACCAAGCAGCAGAGCTACTGTGAACCAAGCAGCAGAGCTACTGT AACCAAGCAGCAGAGCTACTGGAACCAAGCAGCAGAGCTACTGG GTCTCGATTTTTGAATTGGAGTTCGTCTTGTCTCGATTTTTGAATTGGAGTTCGTCTT 66 CmoSPT6CmoSPT6 Cmo_Chr03Cmo_Chr03 32357753235775 TACTCAAATTAGGTGCCTTGAACTGTTACTCAAATTAGGTGCTTGAACTGT ACTCAAATTAGGTGCCTTGAACTGCACTCAAATTAGGTGCTTGAACTGC GATTTGAGCTCCCAACTACAAACCCAAGATTTGAGCTCCCAACTACAAACCCAA 77 CmoSPT7CmoSPT7 Cmo_Chr03Cmo_Chr03 80033178003317 CACGAGAAAAGCTATGAAGCAAAAGTTCACGAGAAAAGCTATGAAGCAAAAGTT ACGAGAAAAGCTATGAAGCAAAAGTCACGAGAAAAGCTATGAAGCAAAAGTC TTACCTTATTGTACTCGAGTGACGAGAAATTACCTTATTGTACTCGAGTGACGAGAAA 88 CmoSPT8CmoSPT8 Cmo_Chr04Cmo_Chr04 42628434262843 CAGCCGCATCCTGCTCCCAACAGCCGCATCCTGCTCCCAA AGCCGCATCCTGCTCCCACAGCCGCATCCTGCTCCCAC GGCACCATAACAGATTGATATGAATGGTTGGCACCATAACAGATTGATATGAATGGTT 99 CmoSPT9CmoSPT9 Cmo_Chr04Cmo_Chr04 78169367816936 ACGCTCCACCAGTTCCTCATCAACGCTCCACCAGTTCCTCATCA CGCTCCACCAGTTCCTCATCGCGCTCCACCAGTTCCTCATCG GTTTCTCCAGTCGATTGATGGCGTAGTTTCTCCAGTCGATTGATGGCGTA 1010 CmoSPT10CmoSPT10 Cmo_Chr04Cmo_Chr04 1795680017956800 GTAAATTTATCTCCAGCTTCACTGCTGTAAATTTATCTCCAGCTTCACTGCT GTAAATTTATCTCCAGCTTCACTGCAGTAAATTTATCTCCAGCTTCACTGCA GCAATGGAGACTGTTTCTGAAAACATTAATGCAATGGAGACTGTTTCTGAAAACATTAAT 1111 CmoSPT11CmoSPT11 Cmo_Chr05Cmo_Chr05 272092272092 CAAAACGCAGCATAGATTTAGCTTCTTACAAAACGCAGCATAGATTTAGCTTCTTA AAAACGCAGCATAGATTTAGCTTCTTGAAAACGCAGCATAGATTTAGCTTCTTG GGAAGTTCCAAGCTCTGAAAAACAGAATTGGAAGTTCCAAGCTCTGAAAAACAGAATT 1212 CmoSPT12CmoSPT12 Cmo_Chr05Cmo_Chr05 52803395280339 TTTCACTTCTCTTTAGATCAGTGCATTTCACTTCTCTTTAGATCAGTGCA CTTTTCACTTCTCTTTAGATCAGTGCTCTTTTCACTTCTCTTTAGATCAGTGCT CAGTTTCTACCCTACTAATGACTAGAACATCAGTTTCTACCCTACTAATGACTAGAACAT 1313 CmoSPT13CmoSPT13 Cmo_Chr06Cmo_Chr06 88731978873197 ACGTGGTTCTTCACCCCGATCAACGTGGTTCTTCACCCCGATCA CGTGGTTCTTCACCCCGATCGCGTGGTTCTTCACCCCGATCG GCAGATGATGAGGCACGTTTCTCTTGCAGATGATGAGGCACGTTTCTCTT 1414 CmoSPT14CmoSPT14 Cmo_Chr07Cmo_Chr07 28660182866018 CAAGATAGTCAGGCACGTCACGTCAAGATAGTCAGGCACGTCACGT AAGATAGTCAGGCACGTCACGCAAGATAGTCAGGCACGTCACGC CAAGAAGCCCCCTGCTCCTCATCAAGAAGCCCCCTGCTCCTCAT 1515 CmoSPT15CmoSPT15 Cmo_Chr07Cmo_Chr07 41209454120945 CACTGGTGGCCTTAGCAGCTACACTGGTGGCCTTAGCAGCTA CACTGGTGGCCTTAGCAGCTCCACTGGTGGCCTTAGCAGCTC TTCTCTGTACCCACTTCCTCCGTTTTCCTGTACCCACTTCCTCCGTT 1616 CmoSPT16CmoSPT16 Cmo_Chr08Cmo_Chr08 721844721844 CACTTGAAATTTGTTTACTGCGCCCTCACTTGAAATTTGTTTACTGCGCCCT ACTTGAAATTTGTTTACTGCGCCCGACTTGAAATTTGTTACTGCGCCCG GAAGGAGATCTCAGACGAGACTGATGAAGGAGATCTCAGACGAGACTGAT 1717 CmoSPT17CmoSPT17 Cmo_Chr09Cmo_Chr09 910035910035 CAAGTTGCAGCATTTCTGTTCCTCACAAGTTGCAGCATTTCTGTTCCTCA AAGTTGCAGCATTTCTGTTCCTCGAAGTTGCAGCATTTCTGTTCCTCG GTCGTTGCACTTGTTACAAAGGATCTAAGTCGTTGCACTTGTTACAAAGGATCTAA 1818 CmoSPT18CmoSPT18 Cmo_Chr09Cmo_Chr09 21768022176802 CTTGCTGCATGATGATCATCCTACTTGCTGCATGATGATCATCCTA CTTGCTGCATGATGATCATCCTGCTTGCTGCATGATGATCATCCTG CCATTCTCGTGCCTTTTGTTCGCAACCATTCTCGTGCCTTTTGTTCGCAA 1919 CmoSPT19CmoSPT19 Cmo_Chr09Cmo_Chr09 60663336066333 AACAAATCATAGATGTAAACAAGAAACAAAACAAACAAATCATAGATGTAAACAAGAAACAAAACA CAAATCATAGATGTAAACAAGAAACAAAACGCAAATCATAGATGTAAACAAGAAACAAAACG CCACTTGAATTCTGTATCTAAGTAATCCTTCCACTTGAATTCTGTATCTAAGTAATCCTT 2020 CmoSPT20CmoSPT20 Cmo_Chr10Cmo_Chr10 10504901050490 TGTTTTTGAATTTGAATTGTTGCTCTGTTGTTTTTGAATTTGAATTGTTGCTCTGT GTTTTTGAATTTGAATTGTTGCTCTGCGTTTTTGAATTTGAATTGTTGCTCTGC GGCATAAAAGATCTCATTTGATCAGTGGATGGCATAAAAGATCTCATTTGATCAGTGGAT 2121 CmoSPT21CmoSPT21 Cmo_Chr10Cmo_Chr10 20772802077280 CTTCTATAGGAAGCACGGATGCACTTCTATAGGAAGCCACGGATGCA CTTCTATAGGAAGCACGGATGCCCTTCTATAGGAAGCACGATGCC CCACGCTTAAAGCAAGATCCGACTACCACGCTTAAAGCAAGATCCGACTA 2222 CmoSPT22CmoSPT22 Cmo_Chr10Cmo_Chr10 1077929110779291 GATCAATTTGAAGAATCCCATACCAATCAGATCAATTTGAAGAATCCCATACCAATCA CAATTTGAAGAATCCCATACCAATCGCAATTTGAAGAATCCCATACCAATCG AGCACAGAATAGAATCTATGGAACGGAAAAGCACAGAATAGAATCTATGGGAACGGAAA 2323 CmoSPT23CmoSPT23 Cmo_Chr11Cmo_Chr11 1167148611671486 GGGCATATCGTCGACGCGTTTGGGCATATCGTCGACGCGTTT GGCATATCGTCGACGCGTTCGGCATATCGTCGACGCGTTC GCTGCAAGCCAAGGCTCTACCATGCTGCAAGCCAAGGCTCTACCAT 2424 CmoSPT24CmoSPT24 Cmo_Chr12Cmo_Chr12 188855188855 GGCGCCGATGGCAAGATTGGAGGGCGCGATGGGCAAGATTGGA GCGCCGATGGCAAGATTGGGGCGCCGATGGCAAGATTGGG CGGCCCCGTCGGTGGTGTTCGGCCCGTCGGTGGTGTT 2525 CmoSPT25CmoSPT25 Cmo_Chr12Cmo_Chr12 93894159389415 CCGCCGTACCCGTCTCCACCGCCGTACCCGTCTCCA CCGCCGTACCCGTCTCCGCCGCCGTACCCGTCTCCG CATGGACTCAATGGATCATGGGGTTCATGGACTCAAATGGATCATGGGGTT 2626 CmoSPT26CmoSPT26 Cmo_Chr13Cmo_Chr13 61508996150899 AGTCCTTGTACCACAAGAATCTTTACAGTCCTTGTACCACAAGAATCTTTAC AGTCCTTGTACCACAAGAATCTTTAGAGTCCTTGTACCACAAGAATCTTTAG AAAAGGTACTAAGTTGGAATCCCATTCTAAAAAAGGTACTAAGTTGGAATCCCATTCTAA 2727 CmoSPT27CmoSPT27 Cmo_Chr14Cmo_Chr14 10945621094562 TGACTTCTCTTTAGCTGCAGAGCTTGACTTCTCTTTAGCTGCAGAGCT GACTTCTCTTTAGCTGCAGAGCGGACTTCTCTTTAGCTGCAGAGCG CTGAAGTTCCAAAAAGAATCCAATGCTGATCTGAAGTTTCCAAAAAGAATCCAATGCTGAT 2828 CmoSPT28CmoSPT28 Cmo_Chr14Cmo_Chr14 54948585494858 CGACTACTTCGTAAGAAAAACCAAAAGTTCGACTACTTCGTAAGAAAAAACCAAAAGTT GACTACTTCGTAAGAAAAACCAAAAGTCGACTACTTCGTAAGAAAAAACCAAAAGTC AGCTCCGAAAGCAATTCGAATCAGATTTAGCTCCGAAAGCAATTCGAATCAGATTT 2929 CmoSPT29CmoSPT29 Cmo_Chr15Cmo_Chr15 36277843627784 CATCGATATCTACGGCGGGTGTACATCGATATCTACGGCGGGTGTA ATCGATATCTACGGCGGGTGTCATCGATATCTACGGCGGTGTC GTCTTCTTCTGCTCCCACAACAGTTGTCTTCTTCTGCTCCCACAACAGTT 3030 CmoSPT30CmoSPT30 Cmo_Chr16Cmo_Chr16 320626320626 GGTACGCAACGAGGTATGCTGGGTACGCAACGAGGTATGCTG GGTACGCAACGAGGTATGCTCGGTACGCAACGAGGTATGCTC GCATCTTAGATACATGGGGTAATGATGTAGCATCTTAGATACATGGGGTAATGATGTA 3131 CmoSPT31CmoSPT31 Cmo_Chr16Cmo_Chr16 91489539148953 GACGATATCGGTGTCGTCAAATTCAGACGATATCGGTGTCGTCAAATTCA ACGATATCGGTGTCGTCAAATTCCACGATATCGGTGTCGTCAAATTCC CTAATGACTCCCCCATTGTCAGCTTCTAATGACTCCCCCATTGTCAGCTT 3232 CmoSPT32CmoSPT32 Cmo_Chr17Cmo_Chr17 24361172436117 GTGCCAATTTTCCTCCGTCTCGGTGCCAATTTTCCTCCGTCTCG GTGCCAATTTTCCTCCGTCTCCGTGCCAATTTTCCTCCGTCTCC TATTTCCAGCAGCTTTTGCAGTTGTAGATTATTTCCAGCAGCTTTTGCAGTTGTAGAT 3333 CmoSPT33CmoSPT33 Cmo_Chr17Cmo_Chr17 78987007898700 AGGATTGAAGCAAGGGTAGGATAGTAGGATTGAAGCAAGGGTAGGATAGT GAAGCAAGGGTAGGATAGGGAAGCAAGGGTAGGATAGG CCCCTGCCCTTCACTTTTGTCTTAACCCCTGCCCTTCACTTTTGTCTTAA 3434 CmoSPT34CmoSPT34 Cmo_Chr18Cmo_Chr18 856797856797 GCAATCTTCCAGGGAAACGGAGCAATCTTCCAGGGAAACGGA GCAATCTTCCAGGGAAACGGGGCAATCTTCCAGGGAAACGGG ACTTCTCCCACTGATTTTCTTACCTTCAAACTTCTCCCACTGATTTTCTTACCTTCAA 3535 CmoSPT35CmoSPT35 Cmo_Chr18Cmo_Chr18 55066085506608 TTTATACAGTTTAGTCACCAAATTTATCCAAATTTATACAGTTTAGTCACCAAATTTATCCAAA ATACAGTTTAGTCACCAAATTTATCCAAGATACAGTTTAGTCACCAAATTTATCCAAAG CATTTGTCAGTCTGTAGAAAGATAGCCAACATTGTCAGTCTGTAGAAAGATAGCCAA 3636 CmoSPT36CmoSPT36 Cmo_Chr18Cmo_Chr18 1245940412459404 GTCCCACCTTCTTTAACCGCACTGTCCCACCTTCTTTAACCGCACT CCCACCTTCTTTAACCGCACCCCCACCTTTCTTTAACCGCACC GGTTTGACTGAATCGCCGACGAAGGTTTGACTGAATCGCCGACGAA 3737 CmoSPT37CmoSPT37 Cmo_Chr19Cmo_Chr19 139944139944 AAAAACCAAAGACAGAGCAAGCATTTAAAAAAAAACCAAAGACAGAGCAAGCATTTAAAA AACCAAAGACAGAGCAAGCATTTAAACAACCAAAGACAGAGCAAGCATTTAAAC GAGCTACAAGAACGAAGATGATGATTCAAGAGCTACAAGAACGAAGATGATGATTCAA 3838 CmoSPT38CmoSPT38 Cmo_Chr19Cmo_Chr19 85234158523415 CACTGTTACAATCTTCCTGTACATACAACACTGTTACAATCTTCCTGTACATACAA ACTGTTACAATCTTCCTGTACATACACACTGTTACAATCTTCCTGTACATACAC CTCTCGCTCTCTCTCGTGCGTTCTCTCGCTCTCTCTCTGTGCGTT 3939 CmoSPT39CmoSPT39 Cmo_Chr20Cmo_Chr20 124230124230 AAACGAGAAAATATCCATTGATAAGTGGAAAAACGAGAAAATATCCATTGATAAGTGGAA CGAGAAAATATCCATTGATAAGTGGAGCGAGAAAATATCCATTGATAAGTGGAG CTCGTGGGTTGAGTATTACTCATCTATTTCTCGTGGGTTGAGTATTACTCATCTATTT 4040 CmoSPT40CmoSPT40 Cmo_Chr20Cmo_Chr20 21671112167111 CATATGGTTCTTCACCGGCCGCATATGGTTCTTCACCGGCCG CATATGGTTCTTCACCGGCCCCATATGGTTCTTCACCGGCCC GCGATGAAACTCCATCGAAGAACGAAGCGATGAAACTCCATCGAAGAACGAA 4141 CmoSPT41CmoSPT41 Cmo_Chr20Cmo_Chr20 40926244092624 CACGTACCTGGAGAGAGTGTCACACGTACCTGGAGAGAGTGTCA ACGTACCTGGAGAGAGTGTCGACGTACCTGGAGAGAGTGTCG CCTGTGACTGAATTTTCTTTTTCAGCTCATCCTGTGACTGAATTTTTCTTTTTCAGCTCAT

상기 프라이머는 동양계 호박 순도 및 품종 판별을 위한 KASP 마커를 증폭시키기 위한 프라이머일 수 있다. The primer may be a primer for amplifying the KASP marker for determining the purity and variety of Asian pumpkin.

상기 "KASP(kompetitive allele specific PCR)"는 PCR 기반의 분석 방법 중 하나로, 상동의 (homogenous) 그리고 형광(fluorescence) 기반의 유전형 분석 기술이다. KASP는 대립형질(allele)-특이적 올리고 연장(extension) 및 신호생성을 위한 형광공명에너지전이(fluorescence resonance energy transfer)를 기반으로 하는 기술이다.The “KASP (kompetitive allele specific PCR)” is one of the PCR-based analysis methods and is a homogenous and fluorescence-based genotyping technology. KASP is a technology based on fluorescence resonance energy transfer for allele-specific oligo extension and signal generation.

본 발명의 다른 일 양상은 상기 조성물을 포함하는, 동양계 호박의 순도검정 및 품종판별용 키트를 제공한다.Another aspect of the present invention provides a kit for purity testing and variety identification of Asian pumpkin, comprising the above composition.

본 발명의 일 구체예에서 상기 키트는 PCR 키트, 마이크로어레이, 또는 KASP 키트일 수 있다. In one embodiment of the present invention, the kit may be a PCR kit, microarray, or KASP kit.

상기 PCR 키트는 상기 단일염기다형성을 검출할 수 있는 프라이머 세트를 포함하는 것일 수 있다. 상기 PCR 키트는 DNA 중합효소, dNTP 혼합물 및 PCR 완충 용액을 더 포함하는 것일 수 있다. 상기 DNA 중합효소는 예를 들면, E.coli DNA 중합효소 I의 클레나우(klenow) 단편, 열안정성 DNA 중합효소 또는 박테리오파아지 T7 중합효소인 것일 수 있다. 상기 PCR 완충용액은 KCl, Tris-HCl 및 MgCl2를 함유하는 것일 수 있다. 또한 상기 PCR 키트는 증폭 산물의 확인에 필요한 구성 성분을 포함할 수 있다. 상기 PCR 키트는 안내서를 포함하는 것일 수 있다. 상기 안내서는 키트 사용법, 예를 들면, PCR 완충 용액 제조방법, 제시되는 반응 조건 등을 설명하는 인쇄물일 수 있다.The PCR kit may include a primer set capable of detecting the single nucleotide polymorphism. The PCR kit may further include DNA polymerase, dNTP mixture, and PCR buffer solution. The DNA polymerase may be, for example, a klenow fragment of E. coli DNA polymerase I, a thermostable DNA polymerase, or bacteriophage T7 polymerase. The PCR buffer solution may contain KCl, Tris-HCl, and MgCl2. Additionally, the PCR kit may include components necessary for confirmation of the amplification product. The PCR kit may include a guide. The guide may be a printed document explaining how to use the kit, for example, how to prepare a PCR buffer solution, proposed reaction conditions, etc.

상기 마이크로어레이(microarray)는 기판 표면의 구분된 영역에 상기 단일염기다형성을 검출할 수 있는 폴리뉴클레오티드, 예를 들면 프로브가 높은 밀도로 고정화되어 있는 것일 수 있다.The microarray may be one in which polynucleotides, for example, probes capable of detecting the single nucleotide polymorphism, are immobilized at a high density in distinct areas of the substrate surface.

상기 KASP 분석용 키트는 KASP용 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는 것일 수 있고, 상기 증폭 반응을 수행하기 위한 시약은 DNA 폴리머라제, dNTPs, 및 버퍼를 포함할 수 있으나, 이에 제한되는 것은 아니다. 상기 dNTPs는 dATP, dCTP, dGTP, dTTP를 포함하며, DNA 폴리머라제는 내열성 DNA 중합효소로서 Taq DNA 폴리머라제, Tth DNA 폴리머라제 등 시판되는 폴리머라제를 이용할 수 있다.The KASP analysis kit includes a primer set for KASP; and a reagent for performing an amplification reaction, and the reagent for performing the amplification reaction may include, but is not limited to, DNA polymerase, dNTPs, and a buffer. The dNTPs include dATP, dCTP, dGTP, and dTTP. DNA polymerase is a heat-stable DNA polymerase, and commercially available polymerases such as Taq DNA polymerase and Tth DNA polymerase can be used.

본 발명의 다른 일 양상은 a) 동양계 호박 시료로부터 폴리뉴클레오티드를 분리하고, 서열번호 1 내지 41번으로 표시되는 각각의 염기서열의 61번째 위치에 존재하는 단일염기다형성 전부의 유전자형을 결정하는 단계; 및 b) 상기 단일염기다형성의 유전자형을 분석하여 동양계 호박의 순도 및 품종을 식별하는 단계를 포함하는, 동양계 호박의 순도검정 및 품종판별 방법을 제공한다.Another aspect of the present invention includes the steps of: a) isolating a polynucleotide from an Asian pumpkin sample and determining the genotype of all single nucleotide polymorphisms present at the 61st position of each base sequence represented by SEQ ID NOs. 1 to 41; and b) analyzing the genotype of the single nucleotide polymorphism to identify the purity and variety of the Asian pumpkin.

상기 a) 단계에서는 시료로부터 분리된 폴리뉴클레오티드를 증폭하는 단계를 더 포함할 수 있다. 상기 증폭하는 단계는 당업자에게 알려진 어떠한 방법이든 사용 가능하다. 예를 들어, 중합효소연쇄반응(PCR), 리가아제 연쇄반응(ligase chain reaction), 핵산 서열 기재 증폭(nucleic acid sequence-based amplification), 전사 기재 증폭 시스템(transcription-based amplification system), 가닥 치환 증폭(strand displacement amplification) 또는 복제효소(replicase)를 사용할 수 있으며, 이에 제한되지 않는다.Step a) may further include amplifying the polynucleotide isolated from the sample. The amplification step can be performed using any method known to those skilled in the art. For example, polymerase chain reaction (PCR), ligase chain reaction, nucleic acid sequence-based amplification, transcription-based amplification system, strand displacement amplification. (strand displacement amplification) or replicase may be used, but are not limited thereto.

상기 b) 단계에서는 분석된 단일염기다형성의 유전자형을 분석하여 동양계 호박의 순도 및 품종을 식별할 수 있다. 구체적으로, 동양계 호박 F1 의 분석된 단일염기다형성의 유전자형을 이의 양친 호박의 유전자형과 비교하여 순도 검정 및 품종을 판별하는 것일 수 있다. In step b), the purity and variety of Asian pumpkin can be identified by analyzing the genotype of the analyzed single nucleotide polymorphism. Specifically, the genotype of the analyzed single nucleotide polymorphism of the Asian pumpkin F 1 may be compared with the genotype of its parent pumpkin to test purity and determine the variety.

일 구체예에 따른 본 발명의 동양계 호박의 순도검정 및 품종판별용 조성물은 동양계 호박 F1 품종을 판별할 수 있고, F1 종자의 순도를 검정하여 양친에 의한 교배 여부를 정확하고 신속히 판단할 수 있다. The composition for testing the purity and identifying varieties of Asian pumpkins according to one embodiment of the present invention can determine the F 1 variety of Asian pumpkins, and can accurately and quickly determine whether or not they are crossed by both parents by testing the purity of the F 1 seeds. there is.

따라서 본 발명은 동양계 호박 종자 분쟁 발생 시 품종의 진위성 검정과 품종보호 출원 시 대조 품종의 선정, 그리고 종자 유통 관리 등 다양한 방면에서 활용될 수 있다.Therefore, the present invention can be used in various fields, such as testing the authenticity of varieties in the event of a dispute over Asian pumpkin seeds, selecting control varieties when applying for variety protection, and managing seed distribution.

도 1은 동양계 호박 핵심계통 38개 중 33개에 대한 유전자형 분석 결과(A사 및 B사)(빨간색 : FAM 형광, 녹색 : HEX 형광, 파란색 : 이형접합형, 흰색 : 결측값)를 나타낸 것이다.
도 2는 동양계 호박 F1품종(4개) 및 양친 계통에 대한 유전자형 분석 결과(C사)를 나타낸 것이다.
도 3은 양계 호박 육종에 활용되고 있는 다양한 육성재료 45계통에 대한 유전자형 분석 결과(A사, B사 및 D사)를 나타낸 것이다.
도 4는 동양계 호박 SNP 분자표지 활용한 유전자형 분석 결과(예시 : 4개 프라이머에 대한 결과)를 나타낸 것이다.
도 5는 효용성이 검정된 동양계 호박 SNP 41개 마커세트의 위치를 나타낸 물리적지도(녹색 : 효용성 검정된 41개 SNP 위치)를 나타낸 것이다.
도 6은 동양계 호박 핵심계통 및 육성재료(총 78개)에 대한 유전적 계통수 분석 및 분류 결과를 나타낸 것이다.
도 7은 동양계 호박 핵심계통 및 육성재료(총 78개)에 대한 군집화(clustering) 분석 결과를 나타낸 것이다.
도 8은 동양계 호박 F1 및 양친 계통(총 12개)에 대한 유전적 계통수 분석 및 분류 결과를 나타낸 것이다.
Figure 1 shows the results of genotyping (Company A and Company B) for 33 out of 38 Asian pumpkin core lines (red: FAM fluorescence, green: HEX fluorescence, blue: heterozygous type, white: missing value).
Figure 2 shows the results of genotyping (C company) for Asian pumpkin F 1 varieties (4) and parental lines.
Figure 3 shows the results of genotyping of 45 lines of various breeding materials used in poultry pumpkin breeding (Company A, Company B, and Company D).
Figure 4 shows the results of genotyping using Asian pumpkin SNP molecular markers (example: results for 4 primers).
Figure 5 shows a physical map showing the locations of the 41 marker sets of Asian pumpkin SNPs whose utility was tested (green: locations of 41 SNPs whose utility was tested).
Figure 6 shows the results of genetic phylogenetic tree analysis and classification for Asian pumpkin core lines and growing materials (78 in total).
Figure 7 shows the results of clustering analysis for Asian pumpkin core lines and growing materials (78 in total).
Figure 8 shows the results of genetic phylogenetic tree analysis and classification for Asian pumpkin F 1 and parental lines (total 12).

이하 하나 이상의 구체예를 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 하나 이상의 구체예를 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, one or more specific examples will be described in more detail through examples. However, these examples are intended to illustrate one or more embodiments and the scope of the present invention is not limited to these examples.

실시예 1: 재료 및 방법Example 1: Materials and Methods

1-1.1-1. 시험 재료test material

동양계 호박의 다양한 육종 조합에 이용할 수 있는 SNP를 선발하기 위하여, 호박 자원 226개를 수집하였고 다양한 형질에서 특성이 중복되지 않는 동양계 호박 핵심계통 38개를 선발하였다(A사 및 B사 분양). In order to select SNPs that can be used in various breeding combinations of Asian pumpkins, 226 pumpkin resources were collected and 38 Asian pumpkin core lines with non-overlapping characteristics in various traits were selected (sold by companies A and B).

개발할 마커세트 검정을 위한 재료로 애호박, 대목(동양계) F1 4개 품종과 그것의 양친인 8계통, 그리고 나머지 육성계통 45개를 활용하였다 (A사, B사, C사, D사 분양). As materials for testing the marker set to be developed, four cultivars of zucchini and rootstock (oriental) F 1 , their eight parent lines, and the remaining 45 breeding lines were used (distributed by companies A, B, C, and D). .

1-2.1-2. 동양계 호박 핵심계통의 GBS 분석, 계통 간 SNP 탐색 및 선발GBS analysis of Asian pumpkin core lines, SNP search and selection between lines

CTAB방법으로 고순도 gDNA를 분리하였고, Nanodrop을 이용하여 A260/280 값이 1.8이상이고 농도가 100ng/μL 이상의 기준에 충족함을 확인하였다. High purity gDNA was isolated using the CTAB method, and using Nanodrop, it was confirmed that the A260/280 value was over 1.8 and the concentration met the standards of over 100ng/μL.

제한효소 ApeKI를 이용하여 GBS 라이브러리를 구축하였으며, 해당 라이브러리를 Illumina Nextseq 500 장비를 이용하여 동양계 호박 핵심계통별로 염기서열 분석을 실시하였다. A GBS library was constructed using the restriction enzyme ApeKI, and the library was subjected to base sequence analysis for each core lineage of Asian pumpkin using Illumina Nextseq 500 equipment.

SAM Tools 프로그램을 이용하여 핵심계통의 SNP calling을 진행하였고, SNP filtering을 진행하여 선발조건을 만족하는 SNP를 선발하였다.SNP calling of core lines was performed using the SAM Tools program, and SNP filtering was performed to select SNPs that satisfied the selection conditions.

1-3. KASP 마커세트 형태로 개발하여 종묘회사 육성 계통 및 F1-3. Developed in the form of a KASP marker set for seedling company breeding lines and F 1One 품종에 적용 Applies to breeds

선발된 SNP는 KASPTM 유전자형 분석시스템 맞춤 프라이머(또는 탐침) 세트로 개발하였으며, 이를 활용하면 짧은 시간 내에 다수의 시료에 대한 다수의 분자표지 검정이 가능하다. The selected SNPs were developed as a set of primers (or probes) customized for the KASP TM genotyping system, and using this, it is possible to test multiple molecular markers on multiple samples in a short period of time.

디자인된 SNP 마커세트는 핵심계통 38개 중 33개에 대하여 적용하였으며, 또한 F1 4개 품종과 그 양친인 8계통 그리고 동양계 호박 육종에 활용되고 있는 다양한 육성재료 41계통 대해 유전자형 분석을 실시하였다. The designed SNP marker set was applied to 33 out of 38 core lines, and genotype analysis was performed on 4 F 1 cultivars, 8 parent lines, and 41 lines of various breeding materials used for breeding Asian pumpkins.

고속대량(high-throughput) 마커세트의 유전자형 분석 결과를 통해 동양계 호박 육종 시 활용되는 계통들 간의 다형성을 보이는 SNP를 추가로 선발하였으며, 이를 통해 순도검정 및 품종판별이 가능하다. Through the genotyping results of the high-throughput marker set, SNPs showing polymorphism between lines used when breeding Asian pumpkins were additionally selected, which allows for purity testing and variety identification.

각 계통별로 유전적 다양성(genetic diversity)을 분석하기 위해 유전적 계통수 분석을 실시하였다.Genetic tree analysis was performed to analyze the genetic diversity of each lineage.

실시예 2: 연구 결과Example 2: Study Results

2-1.2-1. 동양계 호박 핵심계통 선발 및 수집Selection and collection of Asian pumpkin core lines

호박 형질인 과크기, 과형, 과피색, 잎형태, 잎의 무늬 유무 및 초세 등에 다양한 특성이 포함되어 있는 226개 자원 중, 동양계 핵심계통으로 38개 선발하여 어린 잎(신초)을 수집하였다(A사 및 B사 분양). Among 226 resources containing various characteristics such as pumpkin traits such as fruit size, fruit shape, skin color, leaf shape, presence of leaf patterns, and first age, 38 were selected as core Asian strains and young leaves (shoots) were collected (Company A) and sale by Company B).

2-2. 동양계 호박 핵심계통의 GBS 분석 및 SNP 탐색2-2. GBS analysis and SNP search of Asian pumpkin core lineage

고순도의 gDNA를 추출하여 GBS 라이브러리를 구축하기 위해 ApeKI 제한효소를 사용하여 read로 조각내었다. 조각 양 끝에 서로 다른 adapter를 붙이고 이를 T4 DNA ligase로 ligation 시켰다. High purity gDNA was extracted and fragmented into reads using ApeKI restriction enzyme to construct a GBS library. Different adapters were attached to both ends of the fragment and ligated with T4 DNA ligase.

구축된 GBS 라이브러리의 염기서열에 대해 Illumina Nextseq 500 장비를 활용하여 호박 자원별로 시퀀싱을 실시하였으며, 이후 trimmomatic 프로그램을 통하여 adapter 서열을 제거하고 trimming 작업을 실시하였다. 그 결과 수집한 192자원(A사), 34자원(B사)에 대한 각각의 평균 reads 수는 1,765,076 및 2,523,739개였다. The base sequence of the constructed GBS library was sequenced for each pumpkin resource using Illumina Nextseq 500 equipment, and then the adapter sequence was removed and trimming was performed using the trimmomatic program. As a result, the average number of reads for 192 resources (Company A) and 34 resources (Company B) collected were 1,765,076 and 2,523,739, respectively.

Bowtie2 프로그램을 이용하여 표준유전체에 read mapping을 수행하였으며, 평균 overall read mapping rate는 A사는 84.0%, B사는 81.8%이었다. Read mapping was performed on the standard genome using the Bowtie2 program, and the average overall read mapping rate was 84.0% for Company A and 81.8% for Company B.

VCFtools 프로그램을 이용하여 표준유전체와 수집한 호박 자원 중 동양계 자원(167개) 간의 유전체 변이 정보를 탐색하는 SNP calling을 실시하였으며, 그 결과 10,549개의 최종 SNP를 탐색하였다.Using the VCFtools program, SNP calling was performed to search for genome variation information between the standard genome and Asian resources (167) among the collected pumpkin resources, and as a result, 10,549 final SNPs were discovered.

In-house scrip를 이용하여 각 염색체 별 SNP의 개수을 계산하였으며, 각 샘플별 home/hetero genotype의 비율 또한 계산하였다.The number of SNPs for each chromosome was calculated using in-house scrip, and the home/hetero genotype ratio for each sample was also calculated.

2-3. 고속대량 분석시스템(high-throughput) 맞춤 SNP 선발 및 마커세트 개발2-3. High-throughput customized SNP selection and marker set development

A사 및 B사에서 탐색한 총 10,549개의 SNP를 depth가 5x 이상에 해당되는 유전자형 결과를 선발하고 계통 간 유전자형이 다른 것들을 SNP로 분류하여 총 2,693개의 SNP를 선발하였으며, 동형접합성이 0.96이상인 SNP를 2,214개 선발하였다.A total of 10,549 SNPs searched by companies A and B were selected for genotype results corresponding to a depth of 5x or more, and those with different genotypes between strains were classified as SNPs to select a total of 2,693 SNPs, and SNPs with a homozygosity of 0.96 or more were selected. 2,214 were selected.

선발된 SNP 중 순도검정 및 품종판별 등의 작업에 적합한 SNP를 고르기 위해 PIC(Polymorphism Information Content) 값이 약 0.35~0.5 값을 나타내며, 20개의 염색체에 균등하게 분포하는 SNP를 최종적으로 48개를 확보하였다.Among the selected SNPs, in order to select SNPs suitable for tasks such as purity testing and breed identification, the PIC (Polymorphism Information Content) value is approximately 0.35 to 0.5, and 48 SNPs that are evenly distributed across 20 chromosomes were ultimately secured. did.

SNP 위치에서 upstream 및 downstream 양방향으로 인접한 60bp 염기서열인 인접 염기서열(flanking 또는 amplicon sequence) 정보를 바탕으로 PCR 증폭을 하는 KASPTM 프라이머 (또는 탐침) 세트를 합성하였다.A KASP TM primer (or probe) set for PCR amplification was synthesized based on the flanking or amplicon sequence information, which is a 60bp nucleotide sequence adjacent to the SNP position in both directions.

2-4. 동양계 호박 계통 및 품종에 KASP 마커세트를 적용하여 효용성 검정2-4. Efficacy testing by applying KASP marker set to Asian pumpkin strains and varieties

디자인한 48개 KASPTM 프라이머를 동양계 호박 품종개발에 활용되고 있는 다양한 육성계통 및 F1 품종에 대해 적용하여 효용성을 검정하였다. The effectiveness of the designed 48 KASP TM primers was tested by applying them to various breeding lines and F 1 varieties used in the development of Asian pumpkin varieties.

핵심계통 38개 중 33개와 F1 4개 품종과 그 양친인 8계통, 그리고 동양계 호박 육종에 활용되고 있는 다양한 육성재료 45계통에 대해 유전자형 분석을 분석하였다 (도 1 내지 3).Genotyping was performed on 33 of 38 core lines, 4 F 1 cultivars, 8 parent lines, and 45 lines of various breeding materials used for breeding Asian pumpkins (Figures 1 to 3).

분석결과, 개발된 48개 KASPTM 마커세트 중에 대부분의 계통에서 이형접합성(heterozygote) 유전자형을 나타내거나 형광 탐침으로 탐지하기 모호한 7개를 제외한 41개가 분자표지로서 기능함을 확인하였다 (도 4). 효용성이 검정된 SNP 마커세트 41개에 대한 물리적 지도를 작성하였다 (도 5).As a result of the analysis, it was confirmed that among the 48 developed KASP TM marker sets, 41, excluding 7 that showed heterozygote genotypes in most lines or were difficult to detect with a fluorescent probe, functioned as molecular markers (Figure 4). A physical map was created for 41 SNP marker sets whose utility was tested (Figure 5).

유전자형 분석으로 효용성이 검정된 최종 41개 KASP 마커세트에 대한 정보를 나타내었다 (표 1).Information on the final 41 KASP marker sets whose utility was tested through genotyping analysis is shown (Table 1).

F1 품종과 육성계통들의 다형성 있는 유전자형 분석 결과를 통해, 개발된 41개의 동양계 호박 SNP 마커세트를 이용하여 순도검정 및 품종판별에 활용할 수 있음을 확인하였다(도 1 내지 3). Through the results of polymorphic genotyping of the F 1 variety and breeding lines, it was confirmed that the developed 41 Asian pumpkin SNP marker set can be used for purity testing and variety identification (Figures 1 to 3).

분석에 사용된 각 계통들의 유전적 다양성을 분석하기 위해 유전적 계통수(Phylogenetic tree, Dendrogram) 분석을 실시하였다. 계통 발생 분석은 계층적 클러스터링(hierarchical clustering) 방법 중 산술평균을 사용하는 비가중 쌍 그룹 방법(unweighted pair group method with arithmetic mean)을 사용하여 Darwin6 소프트웨어(ver. 6.0.10)(http://darwin.cirad.fr/)에서 수행하였다. 부트스트랩(bootstraps)은 1,000 반복(replicates)으로 결정하였다. Phylogenetic tree (dendrogram) analysis was performed to analyze the genetic diversity of each lineage used in the analysis. Phylogenetic analysis was performed using Darwin6 software (ver. 6.0.10) (http://darwin) using the unweighted pair group method with arithmetic mean among the hierarchical clustering methods. Carried out in .cirad.fr/). Bootstraps were determined at 1,000 replicates.

A사, B사 및 D사에서 분양받은 동양계 호박 핵심계통 및 육성재료에 대한 유전적 다양성 분석 결과 크게 3그룹으로 분류되었다. 첫 번째와 두 번째 그룹에서는 동양계 호박 중 주로 식용재료(애호박 등)인 계통이 포함되었고, 세 번째 그룹에서는 대목으로 사용되는 육성재료가 다수 포함되었다(도 6).As a result of genetic diversity analysis of the core strains and breeding materials of Asian pumpkins distributed by Company A, Company B, and Company D, they were broadly classified into three groups. The first and second groups included strains of Asian pumpkins that were mainly edible (zucchini, etc.), and the third group included many growing materials used as rootstock (Figure 6).

그리고 Darwin6 소프트웨어에서 Factorial analysis를 통해 핵심계통 및 육성계통들의 분포도를 분석하였는데, 유연관계 분석처럼 크게 3가지의 그룹으로 분류되는 것을 확인하였다 (도 7).In addition, we analyzed the distribution of core lines and foster lines through factorial analysis in Darwin6 software, and it was confirmed that they were largely classified into three groups, as in the flexible relationship analysis (Figure 7).

C사에서 분양받은 동양계 호박 F1 및 양친 계통 총 12개에 대하여 총 41개의 마커세트를 이용하여 유전적 다양성을 분석하였다. F1 및 양친 계통 모두 유전적으로 유사하나 분류되었다 (도 8).Genetic diversity was analyzed using a total of 41 marker sets for a total of 12 Asian pumpkin F 1 and parental lines distributed from Company C. Both F 1 and parental lines were genetically similar but classified (Figure 8).

상기한 결과들을 요약하면 다음과 같다:The above results can be summarized as follows:

다양한 형질(과형태, 과색, 엽회반 및 초세 등)의 특성을 가지는 동양계 호박 핵심계통을 38개를 선발하였고, 어린 잎에서 DNA를 추출하여 ApeKI 제한효소를 이용하여 GBS 라이브러리를 구축하였다. 해당 염기서열은 Illumina Nextseq 500을 활용하여 분석하였다.Thirty-eight Asian pumpkin core lines with various characteristics (fruit shape, fruit color, leaf ash and spine, etc.) were selected, DNA was extracted from young leaves, and a GBS library was constructed using ApeKI restriction enzyme. The corresponding base sequence was analyzed using Illumina Nextseq 500.

염기서열 신뢰도(depth), 다형성지수(PIC, polymorphism information content), 동형접합성, 분리비, SNP 근접 정도 등의 기준에 따라 380개의 SNP를 선발하였으며 KASPTM 유전자형 분석시스템 맞춤 48개의 SNP 프라이머(또는 탐침) 세트를 개발하였다. 380 SNPs were selected based on criteria such as sequence reliability (depth), polymorphism information content (PIC), homozygosity, separation ratio, and SNP proximity, and 48 SNP primers (or probes) customized to the KASP TM genotyping analysis system. A set was developed.

개발된 마커세트는 95개 자원 중 90개 자원에 적용하였다. 핵심계통 38계통 중 33계통에 적용하였고, 또한 종묘회사에서 육종에 활용되고 있는 애호박, 대목(동양계) 등 육성계통 총 45개와 동양계 F1 및 양친 계통 12개에 대하여 검정한 결과, 총 48개 중에 41개의 프라이머(또는 탐침)가 분자표지로서 기능함을 확인하였다. The developed marker set was applied to 90 of 95 resources. It was applied to 33 of the 38 core lines, and as a result of testing on a total of 45 breeding lines such as zucchini and rootstock (oriental) used in breeding at seed companies, as well as 12 Asian F 1 and parent lines, out of a total of 48 It was confirmed that 41 primers (or probes) function as molecular markers.

최종적으로 효용성이 검정된 41개의 마커세트는 각각의 육성계통에 대해 유전자형을 검정할 수 있기 때문에 종자의 순도검정 및 품종의 판별 등에 활용할 수 있다.The 41 marker sets whose effectiveness was ultimately tested can be used to test the purity of seeds and identify varieties because they can test the genotype for each breeding line.

이제까지 본 발명에 대하여 그 바람직한 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its preferred embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims rather than the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

<110> Republic of Korea (Management: Rural Development Administration) <120> SNP MARKER SET FOR IDENTIFYING CUCURBITA MOSCHATA CULTIVARS AND METHOD FOR IDENTIFYING CUCURBITA MOSCHATA CULTIVARS USING THE SAME <130> RDA-BPN210028 <160> 41 <170> KoPatentIn 3.0 <210> 1 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT01 <400> 1 tctgatggca acgaacattc ttcagccgac agtttacaag ccgtcggtga agatcgctgc 60 yaaggtaatc gggcgtaagt gggcaccgtt gccggcggtg atggcgacgt ttttagtatc 120 g 121 <210> 2 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT02 <400> 2 atctcctacc ccgattaggc aaaaaggatc cgttgcttag gaatgtcgat ttattcatat 60 wattgcaact ttttcttcag ggggcctgta ttttcaacct ctttcatgga gccttcgctt 120 g 121 <210> 3 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT3 <400> 3 aaagctggag gctctggagt tcccccagtg ctgcgttgta gtgtgtgtta ttatatgggt 60 ytcttataac cctttctttt ttggatgaac tgaattcctc tcatggagga gttatgatga 120 t 121 <210> 4 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT4 <400> 4 tcccctcgat gttccaccgc tgccttccgt tcatctccat ccctctctta tctcttcctc 60 wctctcagaa ggaatctatg cgaatttata ggaatgcagg cggagacgac gacggaaccg 120 g 121 <210> 5 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT5 <400> 5 ctatcctaga tccccgcgct ccaccagcgg atctgacgga accaagcagc agagctactg 60 kaaagaagac gaactccaat tcaaaaatcg agacaataca acggagaagc aattcaaata 120 t 121 <210> 6 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT6 <400> 6 tatctttggg gaagccaaga ttgaagattt gagctcccaa ctacaaaccc aagctgcaga 60 rcagttcaag gcacctaatt tgagtaactt gacatcaaag cctgagccat caaccgtggt 120 t 121 <210> 7 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT7 <400> 7 atgtccatcc cttttacctt attgtactcg agtgacgaga aaaaaacagt aaaaaaaagg 60 racttttgct tcatagcttt tctcgtggtg ccttcgagga gtgaattatg ggtacccttt 120 a 121 <210> 8 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT8 <400> 8 ttatgggctt ggctctgtat cgttggttgg ggcaccataa cagattgata tgaatggtta 60 ktgggagcag gatgcggctg catagacatg aaaacattag gatctgaacc aatggccaac 120 g 121 <210> 9 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT9 <400> 9 ctggccgttc gtcacgatcg cgctcaaaat actctcaata cgctccacca gttcctcatc 60 racgccctcc gctgcctcca atacgccatc aatcgactgg agaaactcca cattcgaatc 120 g 121 <210> 10 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT10 <400> 10 gcgaatgagc tagtgcagaa gtttcatata gcaatggaga ctgtttctga aaacattaat 60 wgcagtgaag ctggagataa atttacccag cagcataaag aacttctgtc tgttctcgat 120 c 121 <210> 11 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT11 <400> 11 tttaagatgc tttgttgggt cactgaagtc aaacaaaacg cagcatagat ttagcttctt 60 racaaacaaa ttctgttttt cagagcttgg aacttcccta aacccaggca atgcctcata 120 t 121 <210> 12 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT12 <400> 12 ttatgagtcg gtatgattct gctagccaga gtcacttttc acttctcttt agatcagtgc 60 wgcagacaat aatgttctag tcattagtag ggtagaaact gatgtctcca attttttttt 120 t 121 <210> 13 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT13 <400> 13 cagaagtgct tcagtaaatc ttggctagcc agggttgaaa cgtggttctt caccccgatc 60 rtaatcgacc ccaagagaaa cgtgcctcat catctgctcg cagcttacag ccatccttca 120 a 121 <210> 14 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT14 <400> 14 tttgatgact ttgctggctt cttgagttac tgggtcgaca agatagtcag gcacgtcacg 60 yagatgagga gcagggggct tcttgctgag aatcttatca tgtttcaaca aatctgccca 120 a 121 <210> 15 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT15 <400> 15 cccaccgagt aaacaaagaa caatgagtga cagaccaatc cactggtggc cttagcagct 60 magaagcccc ctcgggcccc aacggaggaa gtgggtacag agaaggaaag gccaacgcca 120 a 121 <210> 16 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT16 <400> 16 ttcttatact catgtagctg cactgaggaa ggagatctca gacgagactg atagagagac 60 mgggcgcagt aaacaaattt caagtgttcc aatccatctg agtatctact ctcccaatgg 120 t 121 <210> 17 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT17 <400> 17 tgactttgat gagtctagct gtaggcttaa tggtcgttgc acttgttaca aaggatctaa 60 ygaggaacag aaatgctgca acttgagcca tcacagaatt tcttgtgcag ctacggttag 120 g 121 <210> 18 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT18 <400> 18 tataaatccc tttaccccta agttttgggt actgacctct tgctgcatga tgatcatcct 60 rgtcggttgt tgcgaacaaa aggcacgaga atggtgacgg ttggacgggg atggaacgaa 120 a 121 <210> 19 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT19 <400> 19 gatgaacagg gttggctttt cttaaccact tgaattctgt atctaagtaa tccttactgt 60 ygttttgttt cttgtttaca tctatgattt gtttctttgt ttcaattggt ggaatcttct 120 g 121 <210> 20 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT20 <400> 20 ttcaggtcca gaaacctcct gatttctggg acttgttttt gaatttgaat tgttgctctg 60 ytttttaatc cactgatcaa atgagatctt ttatgcccac caagtgcttg acctgatgcg 120 a 121 <210> 21 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT21 <400> 21 tttttcaaga ttgaaatcaa tctcaatctc atggttgtct tctataggaa gcacggatgc 60 mactcctcca gttgatttgt ttttgtagtc ggatcttgct ttaagcgtgg ctgctccttt 120 c 121 <210> 22 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT22 <400> 22 attgttaact gtatgtgaga ttcactgttc agcacagaat agaatctatg gaacggaaaa 60 ygattggtat gggattcttc aaattgatca atcagcagac gaaacaatta taaaaaagca 120 a 121 <210> 23 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT23 <400> 23 catagacagt gacaatgagt ttaagaaatc ggattctcat gggcatatcg tcgacgcgtt 60 yggggcgtca atggtagagc cttggcttgc agcccatgga gacccaacaa ggttttcatt 120 t 121 <210> 24 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT24 <400> 24 gactgggcct tcaacggtat cgttgctacc accgggagcc gcggccccgt cggtggtgtt 60 yccaatcttg ccatcggcgc cgggagcctc ggttttatta gcaccggcct tgggagtttc 120 a 121 <210> 25 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT25 <400> 25 cttcccacac ggcggagcca tggactcaat ggatcatggg gtttacagcg ggggtggaag 60 yggagacggg tacggcggga acttcctgat ttcgatggcg gccggggcgg aagccgggag 120 c 121 <210> 26 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT26 <400> 26 caccaaagga gcaattcttc tcaaaatttt aaaaggtact aagttggaat cccattctaa 60 staaagattc ttgtggtaca aggactacaa attaatagga agaaaaacaa tgttgactac 120 t 121 <210> 27 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT27 <400> 27 ctccttaaga acggacacaa gctcaatatt tgattcttga cttctcttta gctgcagagc 60 kaaatcagca ttggattctt tttggaactt cagttcatct ttcaattcat ctaagatttt 120 t 121 <210> 28 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT28 <400> 28 taactttgaa aggtccgaaa agttgcagct ccgaaagcaa ttcgaatcag atttttattc 60 racttttggt ttttcttacg aagtagtcgg gtcgggaggt ttacagtgtt tttaacaaca 120 g 121 <210> 29 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT29 <400> 29 acatttctta cccgaaattg cagcatttaa ggccggtctt cttctgctcc cacaacagtt 60 kacacccgcc gtagatatcg atgcggcggc aacggtagac ctggtgatgc tggttccggt 120 g 121 <210> 30 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT30 <400> 30 tcgagctgct tgttctcgca agcgatggac tttgggacgt ggtacgcaac gaggtatgct 60 sactacatca ttaccccatg tatctaagat gctctaaatt gtgaactcca catacgaact 120 t 121 <210> 31 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT31 <400> 31 atcatcttcg gccgaaaact cctctgtttc gtcgcagacg atatcggtgt cgtcaaattc 60 mccgctgcca agctgacaat gggggagtca ttagtaatgt cgataagcgc cgatcgatct 120 t 121 <210> 32 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT32 <400> 32 tgacgttttc actgcagatt tcaattccag taaaaaccag tgccaatttt cctccgtctc 60 sgcatctaca actgcaaaag ctgctggaaa tatgccatct tccccatcca cagctgtggc 120 a 121 <210> 33 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT33 <400> 33 attaaattca cattcgagag gagtggaagc agccgtagga ttgaagcaag ggtaggatag 60 kaaattaaga caaaagtgaa gggcaggggt cagtcgcacg tgtgaaaaag attgaagtca 120 c 121 <210> 34 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT34 <400> 34 agattcagat ttacaggtga tgaaggagaa attaaaccct gcaatcttcc agggaaacgg 60 rgaggttgaa ggtaagaaaa tcagtgggag aagtaacggg gaaagtttct cggtgtcgaa 120 g 121 <210> 35 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT35 <400> 35 acagatgccc ttcttcattg acatttgtca gtctgtagaa agatagccaa gcatgacagc 60 yttggataaa tttggtgact aaactgtata aaatctttaa aaagtccttt agtcttacat 120 t 121 <210> 36 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT36 <400> 36 ctctgacatt tttcttctca gctgcggctc atcctccagt cccaccttct ttaaccgcac 60 yttcgtcggc gattcagtca aacccgcctc cgactttctc actgccggcc gatcggtggc 120 g 121 <210> 37 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT37 <400> 37 tcgtagagct acaagaacga agatgatgat tcaatgtttt ttgacatttg gcttctgaac 60 ktttaaatgc ttgctctgtc tttggttttt gtagttacag atctttatat tgttcatcga 120 a 121 <210> 38 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT38 <400> 38 tatatacact catccatcat atacactcat ccatcgccct ctcgctctct ctcgtgcgtt 60 ktgtatgtac aggaagattg taacagtgga agagatctta acaattgaca taaaaccagg 120 t 121 <210> 39 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT39 <400> 39 gttggagcag ctctttgaca gctccctcgt gggttgagta ttactcatct atttgtagct 60 ytccacttat caatggatat tttctcgttt cttatctaaa atatttgccg tcaacttatc 120 c 121 <210> 40 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT40 <400> 40 acagaatcaa acagtctcta tgagacttat aatcaccact catatggttc ttcaccggcc 60 sattcgttct tcgatggagt ttcatcgcca gatttctcca ctccaaacat ggctgattca 120 a 121 <210> 41 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT41 <400> 41 tcatttactg gtgatcgatc atcattgata tttgaacagc acgtacctgg agagagtgtc 60 ratgagctga aaaagaaaat tcagtcacag gtgattttaa catgcttcaa tttgtgttat 120 c 121 <110> Republic of Korea (Management: Rural Development Administration) <120> SNP MARKER SET FOR IDENTIFYING CUCURBITA MOSCHATA CULTIVARS AND METHOD FOR IDENTIFYING CUCURBITA MOSCHATA CULTIVARS USING THE SAME <130>RDA-BPN210028 <160> 41 <170> KoPatentIn 3.0 <210> 1 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT01 <400> 1 tctgatggca acgaacattc ttcagccgac agtttacaag ccgtcggtga agatcgctgc 60 yaaggtaatc gggcgtaagt gggcaccgtt gccggcggtg atggcgacgt ttttagtatc 120 g 121 <210> 2 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT02 <400> 2 atctcctacc ccgattaggc aaaaaggatc cgttgcttag gaatgtcgat ttattcatat 60 wattgcaact ttttcttcag ggggcctgta ttttcaacct ctttcatgga gccttcgctt 120 g 121 <210> 3 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT3 <400> 3 aaagctggag gctctggagt tcccccagtg ctgcgttgta gtgtgtgtta ttatatgggt 60 ytcttataac cctttctttt ttggatgaac tgaattcctc tcatggagga gttatgatga 120 t 121 <210> 4 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT4 <400> 4 tcccctcgat gttccaccgc tgccttccgt tcatctccat ccctctctta tctcttcctc 60 wctctcagaa ggaatctatg cgaatttata ggaatgcagg cggagacgac gacggaaccg 120 g 121 <210> 5 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT5 <400> 5 ctatcctaga tccccgcgct ccaccagcgg atctgacgga accaagcagc agagctactg 60 kaaagaagac gaactccaat tcaaaaatcg agacaataca acggagaagc aattcaaata 120 t 121 <210> 6 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT6 <400> 6 tatctttggg gaagccaaga ttgaagattt gagctcccaa ctacaaaccc aagctgcaga 60 rcagttcaag gcacctaatt tgagtaactt gacatcaaag cctgagccat caaccgtggt 120 t 121 <210> 7 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT7 <400> 7 atgtccatcc cttttacctt attgtactcg agtgacgaga aaaaaacagt aaaaaaaaagg 60 racttttgct tcatagcttt tctcgtggtg ccttcgagga gtgaattatg ggtacccttt 120 a 121 <210> 8 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT8 <400> 8 ttatgggctt ggctctgtat cgttggttgg ggcaccataa cagattgata tgaatggtta 60 ktgggagcag gatgcggctg catagacatg aaaacattag gatctgaacc aatggccaac 120 g 121 <210> 9 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT9 <400> 9 ctggccgttc gtcacgatcg cgctcaaaat actctcaata cgctccacca gttcctcatc 60 racgccctcc gctgcctcca atacgccatc aatcgactgg agaaactcca cattcgaatc 120 g 121 <210> 10 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT10 <400> 10 gcgaatgagc tagtgcagaa gtttcatata gcaatggaga ctgtttctga aaacattaat 60 wgcagtgaag ctggagataa atttacccag cagcataaag aacttctgtc tgttctcgat 120 c 121 <210> 11 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT11 <400> 11 tttaagatgc tttgttgggt cactgaagtc aaacaaaacg cagcatagat ttagcttctt 60 racaaacaaa ttctgttttt cagagcttgg aacttcccta aacccaggca atgcctcata 120 t 121 <210> 12 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT12 <400> 12 ttatgagtcg gtatgattct gctagccaga gtcacttttc acttctcttt agatcagtgc 60 wgcagacaat aatgttctag tcattagtag ggtagaaact gatgtctcca attttttttt 120 t 121 <210> 13 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT13 <400> 13 cagaagtgct tcagtaaaatc ttggctagcc agggttgaaa cgtggttctt caccccgatc 60 rtaatcgacc ccaagagaaa cgtgcctcat catctgctcg cagcttacag ccatccttca 120 a 121 <210> 14 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT14 <400> 14 tttgatgact ttgctggctt cttgagttac tgggtcgaca agatagtcag gcacgtcacg 60 yagatgagga gcagggggct tcttgctgag aatcttatca tgtttcaaca aatctgccca 120 a 121 <210> 15 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT15 <400> 15 cccaccgagt aaacaaaagaa caatgagtga cagaccaatc cactggtggc cttagcagct 60 magaagcccc ctcgggcccc aacggaggaa gtgggtacag agaaggaaag gccaacgcca 120 a 121 <210> 16 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT16 <400> 16 ttcttatact catgtagctg cactgaggaa ggagatctca gacgagactg atagagagac 60 mgggcgcagt aaacaaattt caagtgttcc aatccatctg agtatctact ctcccaatgg 120 t 121 <210> 17 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT17 <400> 17 tgactttgat gagtctagct gtaggcttaa tggtcgttgc acttgttaca aaggatctaa 60 ygaggaacag aaatgctgca acttgagcca tcacagaatt tcttgtgcag ctacggttag 120 g 121 <210> 18 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT18 <400> 18 tataaatccc tttaccccta agttttgggt actgacctct tgctgcatga tgatcatcct 60 rgtcggttgt tgcgaacaaa aggcacgaga atggtgacgg ttggacgggg atggaacgaa 120 a 121 <210> 19 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT19 <400> 19 gatgaacagg gttggctttt cttaaccact tgaattctgt atctaagtaa tccttactgt 60 ygttttgttt cttgtttaca tctatgattt gtttctttgt ttcaattggt ggaatcttct 120 g 121 <210> 20 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT20 <400> 20 ttcaggtcca gaaacctcct gatttctggg acttgttttt gaatttgaat tgttgctctg 60 ytttttaatc cactgatcaa atgagatctt ttatgcccac caagtgcttg acctgatgcg 120 a 121 <210> 21 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT21 <400> 21 tttttcaaga ttgaaatcaa tctcaatctc atggttgtct tctataggaa gcacggatgc 60 mactcctcca gttgatttgt ttttgtagtc ggatcttgct ttaagcgtgg ctgctccttt 120 c 121 <210> 22 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT22 <400> 22 attgttaact gtatgtgaga ttcactgttc agcacagaat agaatctatg gaacggaaaa 60 ygattggtat gggattcttc aaattgatca atcagcagac gaaacaatta taaaaaagca 120 a 121 <210> 23 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT23 <400> 23 catagacagt gacaatgagt ttaagaaatc ggattctcat gggcatatcg tcgacgcgtt 60 yggggcgtca atggtagagc cttggcttgc agcccatgga gacccaacaa ggttttcatt 120 t 121 <210> 24 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT24 <400> 24 gactgggcct tcaacggtat cgttgctacc accgggagcc gcggccccgt cggtggtgtt 60 yccaatcttg ccatcggcgc cgggagcctc ggttttatta gcaccggcct tgggagtttc 120 a 121 <210> 25 <211> 121 <212> DNA <213> Artificial Sequence <220> <223> CmoSPT25 <400> 25 cttcccacac ggcggagcca tggactcaat ggatcatggg gtttacagcg ggggtggaag 60 yggagacggg tacggcggga acttcctgat ttcgatggcg gccggggcgg aagccgggag 120 c 121 <210> 26 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT26 <400> 26 caccaaagga gcaattcttc tcaaaatttt aaaaggtact aagttggaat cccattctaa 60 staaagattc ttgtggtaca aggactacaa attaatagga agaaaaaacaa tgttgactac 120 t 121 <210> 27 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT27 <400> 27 ctccttaaga acggacacaa gctcaatatt tgattcttga cttctcttta gctgcagagc 60 kaaatcagca ttggattctt tttggaactt cagttcatct ttcaattcat ctaagatttt 120 t 121 <210> 28 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT28 <400> 28 taactttgaa aggtccgaaa agttgcagct ccgaaagcaa ttcgaatcag atttttattc 60 racttttggt ttttcttacg aagtagtcgg gtcgggaggt ttacagtgtt tttaacaaca 120 g 121 <210> 29 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT29 <400> 29 acatttctta cccgaaattg cagcatttaa ggccggtctt cttctgctcc cacaacagtt 60 kacaccgcc gtagatatcg atgcggcggc aacggtagac ctggtgatgc tggttccggt 120 g 121 <210> 30 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT30 <400>30 tcgagctgct tgttctcgca agcgatggac tttgggacgt ggtacgcaac gaggtatgct 60 sactacatca ttacccccatg tatctaagat gctctaaatt gtgaactcca catacgaact 120 t 121 <210> 31 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT31 <400> 31 atcatcttcg gccgaaaact cctctgtttc gtcgcagacg atatcggtgt cgtcaaattc 60 mccgctgcca agctgacaat gggggagtca ttagtaatgt cgataagcgc cgatcgatct 120 t 121 <210> 32 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT32 <400> 32 tgacgttttc actgcagatt tcaattccag taaaaaccag tgccaatttt cctccgtctc 60 sgcatctaca actgcaaaag ctgctggaaa tatgccatct tccccatcca cagctgtggc 120 a 121 <210> 33 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT33 <400> 33 attaaattca cattcgagag gagtggaagc agccgtagga ttgaagcaag ggtaggatag 60 kaaattaaga caaaagtgaa gggcaggggt cagtcgcacg tgtgaaaaag attgaagtca 120 c 121 <210> 34 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT34 <400> 34 agattcagat ttacaggtga tgaaggagaa attaaaccct gcaatcttcc agggaaacgg 60 rgaggttgaa ggtaagaaaa tcagtgggag aagtaacggg gaaagtttct cggtgtcgaa 120 g 121 <210> 35 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT35 <400> 35 acagatgccc ttcttcattg acatttgtca gtctgtagaa agatagccaa gcatgacagc 60 yttggataaa tttggtgact aaactgtata aaatctttaa aaagtccttt agtcttacat 120 t 121 <210> 36 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT36 <400> 36 ctctgacatt tttcttctca gctgcggctc atcctccagt cccaccttct ttaaccgcac 60 yttcgtcggc gattcagtca aacccgcctc cgactttctc actgccggcc gatcggtggc 120 g 121 <210> 37 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT37 <400> 37 tcgtagagct acaagaacga agatgatgat tcaatgtttt ttgacatttg gcttctgaac 60 ktttaaatgc ttgctctgtc tttggttttt gtagttacag atctttatat tgttcatcga 120 a 121 <210> 38 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT38 <400> 38 tatatacact catccatcat atacactcat ccatcgccct ctcgctctct ctcgtgcgtt 60 ktgtatgtac aggaagattg taacagtgga agagatctta acaattgaca taaaaccagg 120 t 121 <210> 39 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT39 <400> 39 gttggagcag ctctttgaca gctccctcgt gggttgagta ttactcatct atttgtagct 60 ytccacttat caatggatat tttctcgttt cttatctaaa atatttgccg tcaacttatc 120 c 121 <210> 40 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT40 <400> 40 acagaatcaa acagtctcta tgagacttat aatcaccact catatggttc ttcaccggcc 60 sattcgttct tcgatggagt ttcatcgcca gatttctcca ctccaaacat ggctgattca 120 a 121 <210> 41 <211> 121 <212> DNA <213> Artificial Sequence <220> <223>CmoSPT41 <400> 41 tcatttactg gtgatcgatc atcattgata tttgaacagc acgtacctgg agagagtgtc 60 ratgagctga aaaagaaaat tcagtcacag gtgattttaa catgcttcaa tttgtgttat 120 c 121

Claims (6)

서열번호 1 내지 41의 염기서열에서 각 염기서열의 61번째 염기에 위치한 단일염기다형성 (single nucleotide polymorphism, SNP) 전부를 검출하기 위한 제제를 포함하는, 동양계 호박의 순도검정 및 품종판별용 조성물.
A composition for purity testing and variety identification of Asian pumpkin, comprising an agent for detecting all single nucleotide polymorphisms (SNPs) located at the 61st base of each base sequence in the base sequences of SEQ ID NOs: 1 to 41.
제 1 항에 있어서,
상기 제제는 서열번호 1 내지 41번의 염기서열에서 각 염기서열의 61번째 염기에 위치한 단일염기다형성 부위를 포함하는 5 내지 121개의 연속염기, 또는 이와 상보적인 염기서열로 이루어진 폴리뉴클레오티드를 포함하는, 동양계 호박의 순도검정 및 품종판별용 조성물.
According to claim 1,
The agent contains a polynucleotide consisting of 5 to 121 consecutive bases including a single nucleotide polymorphism site located at the 61st base of each base sequence in SEQ ID NOs. 1 to 41, or a base sequence complementary thereto. Composition for purity testing and variety identification of pumpkin.
제 1 항에 있어서,
상기 제제는 프로브, 프라이머, 및 이들의 조합 중 어느 하나인 것인, 동양계 호박의 순도검정 및 품종판별용 조성물.
According to claim 1,
A composition for purity testing and variety identification of Asian pumpkin, wherein the agent is any one of a probe, a primer, and a combination thereof.
제 1 항의 조성물을 포함하는, 동양계 호박의 순도검정 및 품종판별용 키트.
A kit for purity testing and variety identification of Asian pumpkin, comprising the composition of claim 1.
제 4 항에 있어서, 상기 키트는 PCR 키트, 마이크로어레이, 또는 KASP 키트인 것인, 동양계 호박의 순도검정 및 품종판별용 키트.
The kit for purity testing and variety identification of Asian pumpkin according to claim 4, wherein the kit is a PCR kit, microarray, or KASP kit.
a) 동양계 호박 시료로부터 폴리뉴클레오티드를 분리하고, 서열번호 1 내지 41번으로 표시되는 각각의 염기서열의 61번째 위치에 존재하는 단일염기다형성 전부의 유전자형을 결정하는 단계; 및
b) 상기 단일염기다형성의 유전자형을 분석하여 동양계 호박의 순도 및 품종을 식별하는 단계를 포함하는, 동양계 호박의 순도검정 및 품종판별 방법.
a) isolating a polynucleotide from an Asian pumpkin sample and determining the genotype of all single nucleotide polymorphisms present at the 61st position of each base sequence represented by SEQ ID NOs: 1 to 41; and
b) A purity test and variety identification method for Asian pumpkins, comprising the step of identifying the purity and variety of Asian pumpkins by analyzing the genotype of the single nucleotide polymorphism.
KR1020210170194A 2021-12-01 2021-12-01 Snp marker set for identifying cucurbita moschata cultivars and method for identifying cucurbita moschata cultivars using the same KR102646424B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210170194A KR102646424B1 (en) 2021-12-01 2021-12-01 Snp marker set for identifying cucurbita moschata cultivars and method for identifying cucurbita moschata cultivars using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210170194A KR102646424B1 (en) 2021-12-01 2021-12-01 Snp marker set for identifying cucurbita moschata cultivars and method for identifying cucurbita moschata cultivars using the same

Publications (2)

Publication Number Publication Date
KR20230082354A KR20230082354A (en) 2023-06-08
KR102646424B1 true KR102646424B1 (en) 2024-03-12

Family

ID=86765725

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210170194A KR102646424B1 (en) 2021-12-01 2021-12-01 Snp marker set for identifying cucurbita moschata cultivars and method for identifying cucurbita moschata cultivars using the same

Country Status (1)

Country Link
KR (1) KR102646424B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102264690B1 (en) 2020-06-18 2021-06-14 세종대학교산학협력단 Marker composition for identification of pumkin and identification method using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102461756B1 (en) * 2020-12-16 2022-11-01 대한민국 Snp marker set for identifying cucurbita moschata cultivars and method for identifying cucurbita moschata cultivars using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102264690B1 (en) 2020-06-18 2021-06-14 세종대학교산학협력단 Marker composition for identification of pumkin and identification method using the same

Also Published As

Publication number Publication date
KR20230082354A (en) 2023-06-08

Similar Documents

Publication Publication Date Title
US20100240061A1 (en) Soybean Polymorphisms and Methods of Genotyping
US20100223293A1 (en) Polymorphic Markers and Methods of Genotyping Corn
US20090208964A1 (en) Soybean Polymorphisms and Methods of Genotyping
US20080083042A1 (en) Maize polymorphisms and methods of genotyping
KR101923647B1 (en) SNP markers for discrimination of Jubilee type or Crimson type watermelon cultivar
CN113913533B (en) SNP molecular marker related to grass carp characters and application thereof
KR20180077873A (en) SNP markers for selection of marker-assisted backcross in watermelon
KR101979218B1 (en) Composition for determining bud mutation cultivar of Fuji apple
US20170283854A1 (en) Multiplexed pcr assay for high throughput genotyping
KR102461756B1 (en) Snp marker set for identifying cucurbita moschata cultivars and method for identifying cucurbita moschata cultivars using the same
KR102646424B1 (en) Snp marker set for identifying cucurbita moschata cultivars and method for identifying cucurbita moschata cultivars using the same
KR102458440B1 (en) Primer set for selecting Phytophthora blight resistant pepper and selection method using the same primer set
KR102461763B1 (en) Snp marker set for identifying cucurbita maxima cultivars and method for identifying cucurbita maxima cultivars using the same
KR102646426B1 (en) Snp marker set for identifying cucurbita maxima cultivars and method for identifying cucurbita maxima cultivars using the same
KR101955074B1 (en) Snp markers for discrimination of raphanus sativus
KR102296889B1 (en) Molecular marker for selecting Gray leaf spot resistant or susceptible tomato cultivar and selection method using the same molecular marker
KR101481734B1 (en) Microsatellite marker of Korean Astragalus mongholicus and primer set for amplifying the same
KR101985659B1 (en) Method for identification of Baekwoo breed using single nucleotide polymorphism markers
WO1999053100A2 (en) Method for finding genetic markers of somaclonal variation
CN115772579B (en) Eggplant bacterial wilt resistance trait closely linked SNP molecular marker and application thereof
KR102575912B1 (en) Single nucleotide polymorphism marker for discriminating cabbage having low content of sinigrin and uses thereof
KR102535529B1 (en) SINGLE NUCLEOTIDE POLYMORPHISM MARKER SET FOR LINE PURITY CHECKING AND EARLY FIXED LINE SELECTING IN WATERMELON (Citrullus lanatus)
KR102530346B1 (en) Genetic maker for parentage and thereof in Stichopus japonicus
KR20230173302A (en) SNP marker set for identification of purities and varieties in Cucurbita pepo
KR101801019B1 (en) Single nucleotide polymorphism marker for discerning leaf blight-resistant lily cultivar based on 60s ribosomal gene and uses thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant