KR102626747B1 - Icpms 매트릭스 오프셋 캘리브레이션을 위한 시스템 및 방법 - Google Patents

Icpms 매트릭스 오프셋 캘리브레이션을 위한 시스템 및 방법 Download PDF

Info

Publication number
KR102626747B1
KR102626747B1 KR1020180173493A KR20180173493A KR102626747B1 KR 102626747 B1 KR102626747 B1 KR 102626747B1 KR 1020180173493 A KR1020180173493 A KR 1020180173493A KR 20180173493 A KR20180173493 A KR 20180173493A KR 102626747 B1 KR102626747 B1 KR 102626747B1
Authority
KR
South Korea
Prior art keywords
sample
analysis
calibration curve
matrix
interest
Prior art date
Application number
KR1020180173493A
Other languages
English (en)
Other versions
KR20190082154A (ko
Inventor
대니얼 알. 위더린
카일 더블유. 울마이어
마이클 피. 필드
재 석 이
Original Assignee
엘리멘탈 사이언티픽, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘리멘탈 사이언티픽, 인코포레이티드 filed Critical 엘리멘탈 사이언티픽, 인코포레이티드
Publication of KR20190082154A publication Critical patent/KR20190082154A/ko
Application granted granted Critical
Publication of KR102626747B1 publication Critical patent/KR102626747B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0009Calibration of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/105Ion sources; Ion guns using high-frequency excitation, e.g. microwave excitation, Inductively Coupled Plasma [ICP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J2003/2866Markers; Calibrating of scan
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N2021/3595Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using FTIR

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Plasma & Fusion (AREA)
  • Food Science & Technology (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Amplifiers (AREA)
  • Analogue/Digital Conversion (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

본원에는 복수의 샘플 매트릭스를 연속하여 분석하는 분석 기구를 캘리브레이션하는 시스템 및 방법이 기술된다.  시스템 실시예는, 이하에 한정되는 것은 아니지만, 복수의 원격 샘플링 시스템으로부터 복수의 샘플을 수신하고 복수의 샘플 각각에 포함된 하나 이상의 대상 종의 강도를 측정하도록 구성된 샘플 분석 장치와, 샘플 분석 장치에 의한 제1 샘플 매트릭스를 갖는 제1 표준 솔루션의 분석에 기초하여 1차 캘리브레이션 커브를 생성하고 샘플 분석 장치에 의한 제2 샘플 매트릭스를 갖는 제2 표준 솔루션의 분석에 기초하여 적어도 하나의 2차 캘리브레이션 커브를 생성하도록 구성되는 제어기를 포함할 수 있고, 제어기는 매트릭스 보정 인자에 따라 적어도 하나의 2차 캘리브레이션 커브를 1차 캘리브레이션 커브와 결합시키도록 구성된다.

Description

ICPMS 매트릭스 오프셋 캘리브레이션을 위한 시스템 및 방법{SYSTEMS AND METHODS FOR ICPMS MATRIX OFFSET CALIBRATION}
유도 결합 플라즈마(ICP) 분광분석은 액체 샘플 내의 미량 원소(trace element) 농도 및 동위원소 비율(isotope ratio)을 결정하기 위해서 일반적으로 이용되는 분석 기술이다. ICP 분광분석은, 약 7,000 K의 온도에 달하는, 전자기적으로 생성된 부분적으로 이온화된 아르곤 플라즈마를 이용한다. 샘플이 플라즈마로 도입될 때, 고온은 샘플 원자가 이온화되게 하거나 광을 방출하게 한다. 각각의 화학 원소가 특징적인 질량 또는 방출 스펙트럼을 생성하기 때문에, 방출된 질량 또는 광의 스펙트럼을 측정하는 것은 원래의 샘플의 원소 조성의 결정을 가능하게 한다.
분석을 위해서 액체 샘플을 ICP 분광분석 기구(예를 들어, 유도 결합 플라즈마 질량 분광계(ICP/ICP-MS), 또는 유도 결합 플라즈마 원자 방출 분광계(ICP-AES) 등) 내로 도입하기 위해서, 샘플 도입 시스템이 이용될 수 있다. 예를 들어, 샘플 도입 시스템이 액체 샘플의 부분 표본(aliquot)을 컨테이너로부터 인출할 수 있고 그 이후에 부분 표면을 분무기(nebulizer)로 운송할 수 있으며, 그러한 분무기는 부분 표본을 ICP 분광분석 기구에 의한 플라즈마 내의 이온화에 적합한 다분산 에어로졸(polydisperse aerosol)로 변환한다. 이어서, 에어로졸을 분무 챔버 내에서 분류하여 큰 에어로졸 입자를 제거한다. 분무 챔버를 떠날 때, 에어로졸은, 분석을 위해서 ICP-MS 또는 ICP-AES 기구의 플라즈마 토치 조립체에 의해서 플라즈마 내로 도입된다.
복수의 샘플 매트릭스를 시리즈로 가지는 샘플을 분석할 때, 유도-결합 플라즈마 분석 기구(예를 들어, ICP-MS, ICP-AES, 등)을 캘리브레이션하기 위한 시스템 및 방법이 설명된다. 시스템 실시예는, 비제한적으로, 복수의 원격 샘플링 시스템으로부터 복수의 샘플을 수용하도록 그리고 복수의 샘플의 각각에 포함된 하나 이상의 관심 대상 종의 세기(intensity)를 결정하도록 구성된 분석 장치; 및 샘플 분석 장치에 동작 가능하게 커플링된 제어기를 포함하고, 그러한 제어기는 샘플 분석 장치에 의한 제1 샘플 매트릭스를 가지는 제1 표준 용액의 분석을 기초로 일차 캘리브레이션 커브를 생성하도록 그리고 샘플 분석 장치에 의해서 제2 샘플 매트릭스를 가지는 제2 표준 용액의 분석을 기초로 적어도 하나의 이차 캘리브레이션 커브를 생성하도록 구성되며, 제어기는 매트릭스 보정 인자에 따라 적어도 하나의 이차 캘리브레이션 커브를 일차 캘리브레이션 커브와 연관시키도록 구성된다.
이러한 "발명의 내용"은 "발명을 실시하기 위한 구체적인 내용"에서 추가적으로 후술되는 단순화된 형태의 개념의 선택을 도입하기 위해서 제공된 것이다. 이러한 "발명의 내용"은 청구된 청구 대상의 중요 특징 또는 본질적 특징을 식별하도록 의도된 것이 아니고, 청구된 청구 대상의 범위를 결정하는데 도움을 주기 위한 것으로 이용되도록 의도된 것도 아니다.
첨부 도면을 참조하여 상세한 설명을 설명한다.
도 1a는 본 개시내용의 예시적인 실시예에 따른, 장거리에 걸쳐 이송되는 샘플을 분석하도록 구성된 시스템을 도시한 부분적 선도이다.
도 1b는 본 개시내용의 예시적인 실시예에 따른, 복수의 시리즈의 샘플 매트릭스를 위한 유도-결합 플라즈마 분석 기구를 캘리브레이션하기 위한 방법을 도시한 흐름도이다.
도 1c는 본 개시내용의 예시적인 실시예에 따른, 예시적인 샘플 매트릭스 캘리브레이션 커브를 도시한 표이다.
도 1d는 본 개시내용의 예시적인 실시예에 따른, 다양한 샘플 매트릭스를 갖는 다양한 샘플에 대한 예시적인 농도 결정을 도시한 표이다.
도 2a는 본 개시내용의 예시적인 실시예에 따른, 원격 샘플링 시스템에서 이용되는 원격 샘플링 장치를 도시하는 주변도이다.
도 2b는 본 개시내용의 예시적인 실시예에 따른, 원격 샘플링 시스템에서 이용되는 원격 샘플링 장치를 도시하는 주변도이다.
도 3a는 본 개시내용의 예시적인 실시예에 따른, 분석 시스템에서 이용되는 분석 장치를 도시하는 주변도이다.
도 3b는 본 개시내용의 예시적인 실시예에 따른, 분석 시스템에서 이용되는 분석 장치를 도시하는 주변도이다.
도 4는 본 개시내용의 예시적인 실시예에 따른, 장거리에 걸쳐 이송되는 샘플을 분석하도록 구성된 시스템 내의 분석 시스템을 도시한 부분적 선도이다.
도 5는 본 개시내용의 예시적인 실시예에 따른, 도 4에 도시된 분석 시스템 내에서 이용될 수 있는 검출기를 도시한 부분적 선도이다.
도 6은 본 개시내용의 예시적인 실시예에 따른, 원격 샘플링 시스템으로부터 수용된 샘플을 분석하기 위한 복수의 분석 장치를 가지는 분석 시스템을 도시한 주변도이다.
도 7은 본 개시내용의 예시적인 실시예에 따른, 샘플 수용 라인, 및 샘플 수용 라인이 검출기들 사이에서 연속적인 액체 단편을 포함하는 때를 결정하도록 구성된 검출기를 포함하는 시스템의 개략도이다.
도 8은 본 개시내용의 예시적인 실시예에 따른, 원격 샘플링 시스템에 의해서 획득된 다수의 샘플의 단편을 포함하는 샘플 전달 라인의 부분적 횡단면이다.
도 9는 본 개시내용의 예시적인 실시예에 따른, 샘플 수용 라인에 제공되고 2개의 검출기에 의해서 등록된 다수의 액체 샘플 단편들을 도시한 연대표(timeline)이다.
도 10은 본 개시내용의 예시적인 실시예에 따른, 샘플 수용 라인이 검출기들 사이에서 연속적인 액체 단편을 포함하는 때를 결정하기 위한 방법을 도시한 흐름도이다.
도 11은 본 개시내용의 예시적인 실시예에 따른, 화학물질 검출 한계를 기초로 프로세스 동작을 모니터링하고 제어하기 위한 제어 시스템의 프로세스 흐름도이다.
도 12는 본 개시내용의 예시적인 실시예에 따른, 복수의 원격 샘플링 시스템을 포함하는 프로세싱 시설의 개략도이다.
도 13은 본 개시내용의 예시적인 실시예에 따른, 수동 샘플링을 나타내는 데이터 지점 및 자동 시스템으로 획득된 데이터 지점과 함께, 시간에 걸친 화학물질 욕(chemical bath)의 금속 오염을 도시한 차트이다.
개요
유도-결합 플라즈마 분석 기구가 샘플 또는 표준물을 프로세스할 때, 기구는 일반적으로 측정 샘플의 세기를 출력하고, 그러한 세기는 샘플 내에 존재하는 원자 또는 이온의 수와 관련된다. 예를 들어, ICP-MS에서, 특정 전하 대 질량 비율을 갖는 이온이, 원래의 샘플 내에 존재하는 전하 대 질량 비율을 갖는 화학적 원소의 농도와 관련된 세기를 갖는 펄스를 측정하는 검출기로 전달되는 반면, ICP-AES에서, 세기는 열원(예를 들어, 불꽃, 플라즈마 등)으로부터 방출되는 특정 파장의 광의 세기와 관련된다. 측정된 세기를 제공한 화학적 원소의 농도를 결정하기 위해서, 샘플로부터의 측정된 세기를 알고 있는 농도의 표준 용액으로부터의 표준 커브(예를 들어, 세기 및 농도를 관련시키는 캘리브레이션 커브)에 대해서 비교한다. 표준 커브는 일반적으로 표준물과 동일한 샘플 매트릭스 조성을 갖는 샘플에 대한 정확한 캘리브레이션 커브를 제공한다. 예를 들어, 탈이온수(DI water) 내의 표준 구리 농도에 대해서 얻어진 캘리브레이션 커브가, 탈이온수 내의 미지의 조성의 샘플이 구리를 포함하는지의 여부 및 그 농도를 테스트하기 위한 유효 표준이 될 수 있다. 그러나, 탈이온수 내의 구리 표준은 일반적으로, 산, 유기 용매, 또는 기타와 같은 다른 샘플 매트릭스 내의 구리의 테스트에 대한 유효 표준이 되지 못할 것이다. 그 대신, 적합한 매트릭스(예를 들어, 산, 유기 용매, 또는 기타) 내에 존재하는 구리의 세기를 측정하기 위해서, 다른 표준이 생성될 수 있다. 따라서, 실험실 셋팅은 다수의 샘플 매트릭스를 갖는 샘플을 테스트하기 위한 이하의 시나리오를 제공할 수 있다: 첫 번째로, 제1 매트릭스 내의 관심 대상 화학적 종의 기지의(known) 농도를 갖는 표준물(예를 들어, 탈이온수 내의 구리 표준물)이 ICP 분석 기구에 의해서 테스트되어, 제1 매트릭스 내의 화학적 종에 대한 캘리브레이션 커브를 제공한다. 다음에, 제1 매트릭스(예를 들어, 탈이온수) 내의 모든 샘플이 ICP 분석 기구에 의해서 프로세스되어, 제1 캘리브레이션 커브에 대해서 비교하기 위한 제1 매트릭스 내의 화학적 종의 세기를 제공한다. 다음에, 제2 매트릭스 내의 관심 대상 화학적 종의 기지의 농도를 갖는 표준물(예를 들어, 이소프로필 알코올 내의 구리 표준물)이 ICP 분석 기구에 의해서 테스트되어, 제2 매트릭스 내의 화학적 종에 대한 제2 캘리브레이션 커브를 제공한다. 다음에, 제2 매트릭스(예를 들어, 이소프로필 알코올) 내의 모든 샘플이 ICP 분석 기구에 의해서 프로세스되어, 제2 캘리브레이션 커브에 대해서 비교하기 위한 제2 매트릭스 내의 화학적 종의 세기를 제공한다. 그러한 프로세스는 각각의 후속 샘플 매트릭스에 대해서 계속될 수 있다. 그러한 프로세스는, 샘플의 유입 및 유형이 비교적 예측 가능하고 동일한 샘플 매트릭스가 종종 배치(batch)로 함께 분석되는, 실험실 셋팅에 적합할 수 있다. 그러나, 이러한 프로세스는, 예측할 수 없는 시간에 또는 예측 가능한 시간에 다양한 샘플 매트릭스를 갖는, 그러나 여전히 테스트를 위해 필요한 상이한 매트릭스를 갖는 샘플이 수용될 수 있는, 샘플의 큰 턴오버(turnover)로 필드 분석 테스트하는데 적합하지 않다.
양태에서, 본 개시내용은, 복수의 샘플 매트릭스를 시리즈로 가지는 샘플을 분석할 때, 유도-결합 플라즈마 분석 기구(예를 들어, ICP-MS, ICP-AES, 등)을 캘리브레션하기 위한 시스템 및 방법을 제공한다. 예를 들어, 시스템 실시예는, (예를 들어, 복수의 샘플 매트릭스를 갖는) 복수의 샘플을 획득하기 위한 복수의 원격 샘플링 장치를 가지고, 샘플 내에 존재하는 관심 대상의 화학적 종의 세기를 측정하기 위해서 원격 샘플링 시스템으로부터 ICP 분석 기구를 갖는 분석 시스템까지 샘플을 전달하는, 원격 샘플링 시스템을 포함할 수 있다. 표준 캘리브레이션 커브는, ICP 분석 기구에 의해서 분석되는 제1 매트릭스 내의 관심 대상의 화학적 종의 기지의 농도의 표준 용액을 분석하는 것에 의해서 생성된다. 예를 들어, (예를 들어, 세기 대 농도 도표(plot)를 기초로) 캘리브레이션 커브를 구축하기 위해서 관심 대상 화학적 종의 기지의 농도를 획득하기 위해, 표준 용액이 복수의 기지의 희석 인자에 따라 희석될 수 있다. 표준 캘리브레이션 커브는 분석이 예상되는 샘플 내에 존재하는 각각의 샘플 매트릭스에 대해서 생성된다. 예를 들어, 이소프로필 알코올, 암모니아 용액, 불화 수소산, 및 과산화물의 매트릭스를 갖는 샘플을 분석하고자 하는 경우에, 이소프로필 알코올, 암모니아 용액, 불화 수소산, 및 과산화물(즉, 각각의 매트릭스) 내의 관심 대상의 화학적 종에 대한 별개의 캘리브레이션 커브가 생성된다. 상이한 샘플 매트릭스들을 갖는 복수의 원격 샘플링 시스템으로부터의 샘플을 ICP 분석 기구로 분석하여, 각각의 샘플 내의 관심 대상 화학적 종의 세기를 생성할 수 있다. 보정 인자는 이러한 변동 감쇠(attenuation in drift)를 기초로 모든 다른 매트릭스 캘리브레이션 커브에 적용되는데, 이는, 모든 다른 캘리브레이션 커브가 측정된 표준의 감쇠의 변화에 비례하여 시간에 걸쳐 변화되기 때문이다. 각각의 샘플 매트릭스에 대한 보정 인자는 일차 표준 매트릭스 캘리브레이션 커브(예를 들어, 탈이온수 캘리브레이션 커브)와 각각의 이차 표준 매트릭스 캘리브레이션 커브 사이의 비율일 수 있다. 예를 들어, 시스템은, 이차 매트릭스 캘리브레이션 커브를, 일차 표준 매트릭스 캘리브레이션 커브가 시간에 걸쳐 어떻게 변화하는지에 대해서 비교한다. 시간에 걸쳐 ICP 분석 기구에 의해서 샘플이 어떻게 분석되는지와 관련하여 ICP 분석 기구 변동 또는 변화를 고려하기 위해서, 기지의 농도를 갖는 표준물이 분석되고 그 각각의 표준 캘리브레이션 커브에 대해서 비교되어, (예를 들어, 이전의 캘리브레이션 커브를 기초로) 결과가 예상된 결과의 문턱값 범위 이내에 있는지의 여부를 결정한다. 예측 범위를 벗어난 결과는 변동의 감쇠를 신호 전달할 수 있다. 이러한 표준물은 ICP 분석 기구에서의 변동의 임의 감쇠에 가장 민감한 것으로 예상되는 샘플 매트릭스일 수 있거나, 표준물과 다른 매트릭스의 조합일 수 있다. 결과가 예상 범위를 벗어날 때, 시스템은 새로운 세트의 표준물을 분석함으로써 새로운 캘리브레이션 커브 또는 커브들을 자동적으로 생성할 수 있다. 예시적인 구현예가 이하에서 설명된다.
예시적인 구현예
일반적으로 도 1a 내지 도 13을 참조하여, 장거리에 걸쳐 이송되는 샘플을 분석하도록 구성된 예시적인 시스템을 설명한다. 예시적인 실시예에서, 샘플은, 하나 이상의 원격 샘플링 시스템과 원격 샘플링 시스템 사이에서 전달되고, 분석 시스템은 원격 샘플링 시스템으로부터 원격에 배치된다. 시스템(100)은 제1 위치에서 분석 시스템(102)을 포함한다. 시스템(100)은 또한 제1 위치로부터 이격된 제2 위치에서 하나 이상의 원격 샘플링 시스템(104)을 포함할 수 있다. 예를 들어, 하나 이상의 원격 샘플링 시스템(104)은, 분석 시스템(102)으로 분석하고자 하는 화학물질의 공급원에, 예를 들어, 화학물질 저장 탱크, 화학물질 처리 탱크(예를 들어, 화학물질 욕), 화학물질 이송 라인 또는 파이프, 또는 기타(예를 들어, 제2 위치)에 근접 배치될 수 있고, 분석 시스템(102)은, 생산 시설(예를 들어, 제1 위치)을 위한 분석 허브와 같은, 원격 샘플링 시스템(들)(104)으로부터 원격에 배치될 수 있다. 시스템(100)은 또한 제3 위치, 제4 위치, 등에서 하나 이상의 원격 샘플링 시스템(들)(104)을 포함할 수 있고, 제3 위치 및/또는 제4 위치가 제1 위치로부터 이격된다. 구현예에서, 원격 샘플링 시스템(104)의 제3 위치, 제4 위치, 및 다른 위치는 다른 원격 샘플링 시스템(104)의 각각의 다른 위치로부터 원격일 수 있다. 예를 들어, 하나의 원격 샘플링 시스템(104)이 물 라인(예를 들어, 탈이온수 이송 라인)에 배치될 수 있는 반면, 하나 이상의 다른 원격 샘플링 시스템(104)은 화학물질 저장 탱크, 화학물질 처리 탱크(예를 들어, 화학물질 욕), 화학물질 이송 라인 또는 파이프, 또는 기타에 배치될 수 있다. 일부 실시예에서, 시스템(100)은 또한 (예를 들어, 분석 시스템(102)에 근접한) 제1 위치에서 하나 이상의 원격 샘플링 시스템(들)(104)을 포함할 수 있다. 예를 들어, 제1 위치에서의 샘플링 시스템(104)은, 분석 시스템(102)과 커플링된 자동 샘플러를 포함할 수 있다. 하나 이상의 샘플링 시스템(104)이 제1 위치, 제2 위치, 제3 위치, 제4 위치, 및 기타 등등으로부터 샘플을 수용하도록 동작될 수 있고, 시스템(100)은 분석을 위해서 샘플을 분석 시스템(102)에 전달하도록 동작될 수 있다.
원격 샘플링 시스템(104)은, 샘플(150)을 수용하도록 그리고 (예를 들어, 분석 시스템(102)으로의) 전달 및/또는 분석을 위해서 샘플(150)을 준비하도록 구성될 수 있다. 실시예에서, 원격 샘플링 시스템(104)은 분석 시스템(102)으로부터 다양한 거리(예를 들어, 1 m, 5 m, 10 m, 30 m, 50 m, 100 m, 300 m, 1000 m 등)에 배치될 수 있다. 구현예에서, 원격 샘플링 시스템(104)이 원격 샘플링 장치(106) 및 샘플 준비 장치(108)를 포함할 수 있다. 샘플 준비 장치(108)는 관통-유동 밸브와 같은 밸브(148)를 더 포함할 수 있다. 구현예에서, 원격 샘플링 장치(106)는 샘플 스트림 또는 공급원(예를 들어, 폐수, 헹굼물, 화학물질, 산업용 화학물질, 등과 같은 액체, 액체와 접촉되는 공기 샘플 및/또는 그 내부의 오염물과 같은 가스, 등)으로부터 샘플(150)을 수집하도록 구성된 장치를 포함할 수 있다. 원격 샘플링 장치(106)는, 샘플 공급원으로부터 샘플을 획득하고 샘플을 거리에 걸쳐 분석 시스템(102)에 전달하기에 적합한, 펌프, 밸브, 배관, 센서 등과 같은 구성요소를 포함할 수 있다. 샘플 준비 장치(108)는, 예를 들어 특별한 샘플 농도, 스파이크드(spiked) 샘플, 캘리브레이션 커브, 또는 기타를 제공하기 위해서, 희석제(114), 내부 표준물(internal standard)(116), 운반체(154), 등을 이용하여 원격 샘플링 장치(106)으로부터 수집된 샘플(150)을 준비하도록 구성된 장치를 포함할 수 있고, 헹굼 용액(158)으로 헹굼할 수 있다.
일부 실시예에서, 샘플(150)은, 비제한적으로: 희석, 예비-농축(pre-concentration), 하나 이상의 캘리브레이션 표준물의 첨가, 등을 포함하는, 하나 이상의 준비 기술을 이용하여 전달 및/또는 분석을 위해서 준비될 수 있다(예를 들어, 준비된 샘플(152)). 예를 들어, 점성 샘플(150)은, (예를 들어, 샘플(150)이 전달 중에 분리되는 것을 방지하기 위해서) 분석 시스템(102)에 전달되기 전에, (예를 들어, 샘플 준비 장치(108)에 의해서) 원격에서 희석될 수 있다. 본원에서 설명된 바와 같이, 원격 샘플링 시스템(104)으로부터 전달된 샘플은 샘플(150)로서 지칭될 수 있고, 샘플(150)은 또한 준비된 샘플(152)로 지칭될 수 있다. 일부 실시예에서, 샘플(들)(150)을 희망 속도(rate)로 시스템을 통해서 이동시키기 위해서, 샘플 희석이 동적으로 조정될(예를 들어, 자동적으로 조정될) 수 있다. 예를 들어, 샘플(150)이 (예를 들어, 제2 위치로부터 제1 위치까지의 전달 시간에 의해서 측정될 때) 시스템(100)을 통해서 너무 느리게 이동될 때, 특별한 샘플 또는 샘플 유형에 첨가되는 희석제(114)가 증가된다. 다른 예에서, 1 리터(1 L)의 해수가, 분석 시스템(102)에의 전달에 앞서서, 원격에서 예비-농축될 수 있다. 추가적인 예에서, 가능한 공기중의 오염물을 예비-농축시키기 위해서, 정전기적 농축이 공기 샘플로부터의 재료 상에서 이용된다. 일부 실시예에서, 인-라인 희석 및/또는 캘리브레이션이 시스템(100)에 의해서 자동적으로 실시된다. 예를 들어, 샘플 준비 장치(108)는, 분석 시스템(102)을 캘리브레이션하기 위해서 분석 시스템(102)에 전달된 샘플에 하나 이상의 내부 표준물을 첨가할 수 있다.
개시내용의 실시예에서, 복수의 시리즈의 샘플 매트릭스를 갖는 샘플의 분석을 돕기 위해서, 시스템(100)은 분석 시스템(102)의 분석 기구(예를 들어, 분석 장치(112))를 캘리브레이션할 수 있다. 예를 들어, 분석 시스템(102)은 다수의 원격 샘플링 시스템(104)으로부터 샘플을 수용할 수 있고, 여기에서 샘플은 동일한 또는 상이한 샘플 매트릭스를 가질 수 있다. 예를 들어, 샘플 매트릭스는, 비제한적으로, 탈이온수, 이소프로필 알코올, 암모니아 용액, 불화 수소산, 염산, 과산화물, 암모늄 불화물, LAL 화학물질, DSP 화학물질, FND 화학물질, 및 그 조합을 포함한다. 예가 도 1b의 방법(200)에 도시된 실시예에서, 시스템(100)은, 샘플 매트릭스를 일차 샘플 매트릭스에 관련시켜 시간에 걸친 분석 장치(112)에서의 변동 감쇠를 고려하기 위해서, 개별적인 샘플 매트릭스에 대한 매트릭스 캘리브레이션 인자를 결정한다. 예를 들어, 시스템(100)의 제어기(예를 들어, 도 4를 참조하여 설명되는 제어기(118))가 캘리브레이션 커브의 자동적인 구축, 캘리브레이션 인자의 자동적인 결정, 및 기타를 촉진할 수 있다. 구현예에서, 방법(200)은 제1 샘플 매트릭스 내에 존재하는 관심 대상의 종을 갖는 제1 표준 용액을 분석하는 단계를 포함한다(블록(202)). 예를 들어, 제1 샘플 매트릭스는, 분석 시스템(102)에 의해서 취급하고자 하는 다른 예상 샘플 매트릭스에 대비하여, 분석 장치(112)에서의 임의의 변동의 감쇠에 가장 민감한 것으로 예상되는 샘플 매트릭스일 수 있다. 시스템(100)은, 제1 샘플 매트릭스 내의 관심 대상 종의 복수의 농도를 제공하기 위해서(예를 들어, 캘리브레이션 커브의 구축을 돕기 위해서) 제1 표준 용액에 도입되는 희석제의 희석 인자를 제어할 수 있다. 방법(200)은 또한, 제1 샘플 매트릭스와 상이한 샘플 매트릭스가 원격 샘플링 시스템(104)으로부터 분석 시스템(102)에 의해서 수용되는 것으로 예상되는지의 여부를 결정하는 단계를 포함한다(블록(204)). 예를 들어, 제1 표준 용액이 탈이온수의 제1 샘플 매트릭스를 포함하는 경우에, 시스템(100)은, 부가적인 샘플 매트릭스가 하나 이상의 원격 샘플링 시스템(104)으로부터 전송되도록 계획되었는지의 여부 및 분석 시스템(102)에 의해서 수용될 것으로 예상되는 샘플 매트릭스가 탈이온수와 상이한지의 여부를 검증한다. 부가적인 샘플 매트릭스가 포함될 것임을 시스템(100)이 결정한 경우에, 방법(200)은 예상되는 각각의 샘플 매트릭스에 대한 관심 대상 종의 표준 용액을 분석하는 단계를 포함한다(블록(206)). 예를 들어, 시스템(100)은, 각각의 부가적인 샘플 매트릭스 내의 관심 대상 종의 복수의 농도를 제공하기 위해서(예를 들어, 캘리브레이션 커브의 구축을 돕기 위해서) 각각의 표준 용액에 도입되는 희석제의 희석 인자를 제어할 수 있다. 부가적인 샘플 매트릭스가 예상되지 않을 때(예를 들어, 각각의 샘플 매트릭스에 대한 표준물이 분석 장치(112)에 의해서 이미 분석되었을 때), 시스템(100)은 각각의 샘플 매트릭스에 대한 캘리브레이션 커브를 생성한다(블록(208)). 예를 들어, 시스템(100)의 제어기(예를 들어, 도 4를 참조하여 설명된 제어기(118))가, 각각의 샘플 매트릭스에 대한 각각의 표준 용액의 분석 장치(112)에 의한 분석을 기초로 각각의 샘플 매트릭스에 대한 캘리브레이션 커브를 구축할 수 있다.
방법(200)은 또한 캘리브레이션 커브 중 하나를 일차 캘리브레이션 커브로서 할당하고(블록(210)), 캘리브레이션 커브의 나머지를 이차 캘리브레이션 커브로서 할당(블록(212))하는 것을 포함한다. 일차 캘리브레이션 커브는 블록(208)에서 생성된 다른 캘리브레이션 커브들 사이의 민감도(예를 들어, 매트릭스 보정 인자)에 대한 관계 인자를 결정하기 위한 기준으로서의 역할을 할 수 있다. 따라서, 샘플의 시퀀스가 분석 시스템(102)에 의해서 시간에 걸쳐 분석될 때, 민감도에 대한 관계 인자가, 일차 캘리브레이션 커브와 연관된 매트릭스를 가지는 샘플의 측정을 기초로, 이차 캘리브레이션 커브와 연관된 매트릭스를 가지는 샘플에 대한 측정에 적용될 수 있다. 예를 들어, 방법(200)은 각각의 이차 캘리브레이션 커브에 대한 매트릭스 보정 인자(MCF 또는 Cm)를 생성하는 단계를 포함할 수 있다(블록(214)). 캘리브레이션 커브에 대해서, 특정 관심 대상 종의 농도가 수학식 (1)을 통해서 결정된다:
여기에서, y는 주어진 샘플 매트릭스 내의 관심 대상 종의 세기를 나타내고, m은 주어진 샘플 매트릭스의 기울기(slope)를 나타내고, x는 주어진 샘플 매트릭스 내의 관심 대상 종의 농도를 나타내며, b는 주어진 샘플 매트릭스의 y-절편(intercept)을 나타낸다. 따라서, 주어진 샘플 매트릭스 내의 관심 대상 종의 농도는 수학식 (2)를 통해서 결정될 수 있다:
각각의 이차 커브에 대한 매트릭스 보정 인자(Cm)는, 수학식 (3)을 통해서 결정되는 바와 같이, 각각의 이차 커브와 일차 커브 사이의 기울기의 관계를 통해서 표현될 수 있다:
따라서, 이차 캘리브레이션 커브의 기울기는 수학식 (4)를 통해서 일차 캘리브레이션 커브의 기울기와 관련될 수 있다:
특정 이차 캘리브레이션 커브에 대한 그리고 연관된 샘플 매트릭스에 대한 매트릭스 보정 인자의 결정 이후에, 방법(200)은 분석 장치(112)로 샘플을 분석하고 각각의 샘플의 각각의 샘플 매트릭스에 따라 매트릭스 보정 인자를 샘플에 적용하는 단계를 포함한다(블록(216)). 예를 들어, 분석 장치(212)가 샘플 용액 내의 종의 세기를 결정할 때, 그러한 종에 대한 샘플 매트릭스의 캘리브레이션 커브를 이용하여 샘플 용액 내의 종의 농도를 계산할 수 있고, 여기에서 가장 최근의 일차 캘리브레이션 커브 정보를 이용하여 이차 캘리브레이션 커브를 업데이트하기 위해서 매트릭스 보정 인자가 이용된다. 예를 들어, 이차 캘리브레이션 커브와 연관된 샘플 매트릭스 내에 존재하는 샘플에 대한 농도가 수학식 (5)를 통해서 결정될 수 있다:
따라서, 분석 시스템(102)이 시간에 걸쳐 다양한 원격 샘플링 시스템(104)으로부터 수용된 샘플을 프로세스할 때, 이차 캘리브레이션 커브와 연관된 샘플 매트릭스 내의 샘플이 가장 최근의 일차 캘리브레이션 커브에 대해서 비교될 수 있다. 따라서, 각각의 이차 캘리브레이션 커브에 대한 캘리브레이션 커브를 재-동작시키는 것(re-running) 대신, 매트릭스 보정 인자 조정을 이용하여 가장 최근의 일차 캘리브레이션 커브를 기초로 제2 샘플 매트릭스 내의 샘플에 대한 샘플 농도를 정확하게 결정할 수 있는데, 이는, 일차와 이차 사이의 민감도에 대한 관계 인자가 시스템(100)의 동작 중에 실질적으로 일정하기 때문이다. 따라서, 시스템(100)은 부가적인 이차 캘리브레이션 커브의 동작에 관한 잠재적인 과다한 기간을 필요로 하지 않는다. 그 대신, 업데이트된 캘리브레이션이 요구될 때마다, 시스템(100)이 다른 일차 캘리브레이션 커브를 작동시켜 보다 최근의 캘리브레이션 커브를 제공할 수 있다. 이어서, 이차 캘리브레이션 커브는, 각각의 샘플 매트릭스에 대한 미리-결정된 매트릭스 보정 인자에 따라, 업데이트된 일차 캘리브레이션 커브에 관련될 수 있다.
도 1c를 참조하면, 예시적인 캘리브레이션 표가 도시되어 있고, 여기에서 9개의 예시적인 샘플 매트릭스 캘리브레이션 커브가 표시되어 있다(일차 캘리브레이션 커브에 대한 하나 및 이차 캘리브레이션 커브에 대한 8개). 각각의 캘리브레이션 커브는 설명(즉, 어떠한 샘플 매트릭스가 포함되는지), 전술한 수학식 (3)에 따라 계산된 매트릭스 보정 인자(Cm), 및 캘리브레이션 커브에 대한 y-절편을 포함한다. 확인되는 바와 같이, 일차 또는 "주" 캘리브레이션 커브는 1의 매트릭스 보정 인자를 갖는다(즉, 일차 캘리브레이션 커브에 대한 보정이 없는데, 이는 이러한 커브가 비교 기준이기 때문이다). 도 1d를 참조하면, 매트릭스 보정 인자가 분석 시스템(102)에 의해서 측정된 예시적인 샘플에 적용되는 것으로 도시되어 있다. 각각의 샘플은 해당 샘플과 연관된 샘플 매트릭스에 따라 식별되고(예를 들어, 표준 용액, 이소프로필 알코올, 암모늄 용액, LAL, 불화 수소산 등), 여기에서 각각의 샘플은 분석 장치(112)에 의해서 측정된 바와 같은 상응하는 세기를 갖는다. 또한, 각각의 샘플은 전술한 수학식 (5)에 따라 계산된 농도를 포함한다. 예를 들어, 각각의 샘플에 대한 매트릭스 보정 인자가, 할당된 샘플 매트릭스를 기초로 결정될 수 있다(예를 들어, 도 1d의 제3 열(column)). 실시예에서, 품질 체크 샘플이 시스템(100)에 의해서 프로세스된다(예를 들어, 도 1d에서 "QC"로 표기됨)(블록(218)). 품질 체크 샘플은, 분석 장치(112)에 의해서 결정된 농도가 예상 농도의 문턱값 범위 이내에 있는지를 체크하기 위한, 주어진 샘플 매트릭스(예를 들어, 일차 샘플 매트릭스, 다른 샘플 매트릭스, 또는 그 조합) 내의 기지의 농도의 표준 용액일 수 있다. 예시적인 구현예에서, 문턱값 범위는 예상 농도 값(예를 들어, 표준 농도 값)의 5% 이내의 농도 값이다. 품질 체크 샘플의 농도가 문턱값 범위 내에 있는 경우에, 시스템(100)은, 캘리브레이션 커브가 여전히 정확하다는 확신을 가지고 진행될 수 있다. 품질 체크 샘플의 농도가 문턱값 범위를 벗어난 경우에, 시스템(100)은 부가적인 표준 용액을 작동시켜, 샘플 농도를 현재 시스템 동작 조건에 대해서 비교하기 위해서 다른 일차 캘리브레이션 커브를 구축할 수 있다(블록(220)). 제2 캘리브레이션 커브는, 이차 캘리브레이션 커브의 각각에 대한 캘리브레이션 커브를 재작동시킬 필요가 없이, 각각의 매트릭스 보정 인자에 따라 일차 캘리브레이션 커브에 대해서 계속 측정될 수 있다. 구현예에서, 품질 체크 샘플이 문턱값 범위를 벗어난 때, 시스템(100)의 제어기(예를 들어, 제어기(118))는 업데이트된 일차 캘리브레이션 커브의 생성을 자동적으로 개시한다.
개시내용의 실시예에서, 분석 시스템(102)은, 분석 시스템(102)과 하나 이상의 원격 샘플링 시스템(104) 사이에 커플링된 샘플 전달 라인(144)으로부터 샘플(150)을 수집하도록 구성된 샘플 수집기(110) 및/또는 샘플 검출기(130)를 포함할 수 있다. 샘플 수집기(110) 및/또는 샘플 검출기(130)는, 하나 이상의 원격 샘플링 시스템(104)으로부터 (예를 들어, 하나 이상의 샘플 전달 라인(144)을 통해서) 샘플(150)을 수용하기 위해서, 펌프, 밸브, 배관, 포트, 센서, 등과 같은 구성요소를 포함할 수 있다. 예를 들어, 시스템(100)이 다수의 원격 샘플링 시스템(104)을 포함하는 경우에, 각각의 원격 샘플링 시스템은, 샘플 수집기(110)의 별개의 부분에 또는 분석 시스템(102)의 별개의 샘플 수집기(110)에 커플링시키기 위한 전용 샘플 전달 라인(144)을 포함할 수 있다. 부가적으로, 분석 시스템(102)은, 분석 시스템(102)에 대해서 국소적인(local) 샘플(150)을 수집하도록 구성된 샘플링 장치(160)(예를 들어, 국소적인 자동 샘플러)를 포함할 수 있다.
분석 시스템(102)은 또한, (예를 들어, 액체 샘플 내의) 미량 원소 농도, 동위원소 비율, 등을 결정하기 위해서 샘플을 분석하도록 구성된 적어도 하나의 분석 장치(112)를 포함한다. 예를 들어, 분석 장치(112)는, 비제한적으로, 유도 결합 플라즈마 질량 분광계(ICP/ICP-MS), 유도 결합 플라즈마 원자 방출 분광계(ICP-AES), 또는 기타를 포함하는 ICP 분광분석 기구를 포함할 수 있다. 실시예에서, 분석 시스템(102)은 복수의 분석 장치(112)(즉, 하나 초과의 분석 장치)를 포함한다. 예를 들어, 시스템(100) 및/또는 분석 시스템(102)은 다수의 샘플링 루프를 포함할 수 있고, 각각의 샘플링 루프는 샘플의 일부를 복수의 분석 장치(112)에 도입한다. 다른 예로서, 시스템(100) 및/또는 분석 시스템(102)은 다중위치 밸브로 구성될 수 있고, 그에 따라 단일 샘플이 신속하게 그리고 연속적으로 복수의 분석 장치(112)에 도입될 수 있다. 예를 들어, 도 6은 분석 시스템(102)과 유체 연통되는 하나의 원격 샘플링 시스템(104)을 도시하며, 분석 시스템(102)은 원격 샘플링 시스템(104)으로부터 수용된 샘플을 분석하기 위해서 (ICPMS(602), 이온 크로마토그래프(IC) 컬럼(604), 및 푸리에 변환 적외 분광(FTIR)(606)으로 도시된) 3개의 분석 장치와 커플링된 다중위치 밸브(600)를 포함한다. 도 6은 분석 시스템(102)이 3개의 분석 장치를 포함하는 실시예를 도시하지만, 분석 시스템(102)은 그보다 적은(예를 들어, 3개 미만의) 또는 그보다 많은(예를 들어, 3개 초과의) 분석 장치(112)를 포함할 수 있다. 실시예에서, 분석 장치(112)는, 비제한적으로, (예를 들어, 미량 금속 결정을 위한) ICPMS, (예를 들어, 미량 금속 결정을 위한) ICPOES, (예를 들어, 음이온 및 양이온 결정을 위한) 이온 크로마토그래프, (예를 들어, 유기 오염물 결정을 위한) 액체 크로마토그래프(LC), (예를 들어, 화학적 조성 및 구조적 정보 결정을 위한) FTIR 적외선, (예를 들어, 미용해 입자의 검출을 위한) 입자 계수기, (예를 들어, 샘플 내의 물의 검출을 위한) 수분 분석기, (예를 들어, 휘발성 성분의 검출을 위한) 가스 크로마토그래프(GC), 또는 기타를 포함할 수 있다. 실시예에서, 복수의 분석 장치(112)는 원격 샘플링 장치(104)와 동일한 위치에 위치될 수 있는 한편, 시스템(100)은, 복수의 분석 장치(112)에 의해서 실시된 그러한 분석(들) 이외의 부가적인 또는 상이한 샘플 분석을 위해서, 원격 샘플링 시스템(104)으로부터 원격에 위치된 하나 이상의 부가적인 분석 장치(112)를 포함할 수 있다. 대안적으로 또는 부가적으로, 복수의 분석 장치(112)가 원격 샘플링 시스템(104)과 상이한 위치에 위치될 수 있다.
시스템(100) 및/또는 분석 시스템(102)은 시간에 걸쳐 소정 위치에서 피분석물 농도를 보고하도록 구성될 수 있다(도 13을 참조하여 이하에서 더 도시됨). 일부 실시예에서, 분석 장치(112)는 샘플(150) 내의 하나 이상의 미량 금속을 검출하도록 구성될 수 있다. 다른 실시예에서, 분석 장치(112)는 이온 크로마토그래피를 위해서 구성될 수 있다. 예를 들어, 이온 및/또는 양이온이 샘플(150) 내에서 수집될 수 있고 크로마토그래프 분석 장치(112)에 전달될 수 있다. 추가적인 실시예에서, 유기 분자, 단백질, 등이 샘플 내에서 수집될 수 있고 (예를 들어, 분무기(156)를 이용하여) 고해상도 비행-시간(time-of-flight)(HR-ToF) 질량 분광계 분석 장치(112)에 전달될 수 있다. 따라서, 본원에서 설명된 바와 같은 시스템은, 비제한적으로: (예를 들어, 다수의 제약 반응기에 연결된 중앙 질량 분광계 분석 장치를 가지는) 제약 적용예, 하나 이상의 폐기물 스트림의 폐기물 모니터링, 반도체 제조 설비, 등을 포함하는, 다양한 적용예를 위해서 이용될 수 있다. 예를 들어, 폐기물 스트림은 오염물에 대해서 연속적으로 모니터링될 수 있고 오염물이 검출될 때 탱크로 전달될 수 있다. 다른 예에서, 하나 이상의 화학물질 스트림이, 분석 시스템(102)에 연계된 하나 이상의 원격 샘플링 시스템(104)에 의해서 획득된 샘플의 분석을 통해서, 연속적으로 모니터링될 수 있고, 그에 의해서 오염 한계가 각각의 화학물질 스트림에 대해서 설정될 수 있다. 특정 스트림에 대한 오염 한계를 초과하는 오염물의 검출 시에, 시스템(100)은 경보를 제공할 수 있다.
연속적인 액체 샘플 단편(150)을 샘플 전달 라인(144)에 공급하기 위해서 원격 샘플링 시스템(104)이 샘플 전달 라인(144)과 유체 연통되게 동작 가능하도록, 원격 샘플링 시스템(104)은 적어도 하나의 샘플 전달 라인(144)과 선택적으로 커플링되도록 구성될 수 있다. 예를 들어, 원격 샘플링 시스템(104)은 샘플(150)을 수집하도록, 그리고 예를 들어, 원격 샘플링 시스템(104)을 샘플 전달 라인(144)에 커플링시키는 관통-유동 밸브(148)를 이용하여, 샘플(150)을 샘플 전달 라인(144)에 공급하도록 구성될 수 있다. 샘플 전달 라인(144)으로의 샘플(150)의 공급은 "피치(pitch)"로서 지칭될 수 있다. 샘플 전달 라인(144)은 가스 공급부(146)와 커플링될 수 있고 제2 위치(그리고 가능하게는 제3 위치, 제4 위치, 등)로부터 제1 위치까지 가스를 이송하도록 구성될 수 있다. 이러한 방식으로, 원격 샘플링 시스템(104)에 의해서 공급되는 액체 샘플 단편은 가스 스트림 내에서 수집되고, 가스 압력 샘플 전달을 이용하여 분석 시스템(102)의 위치로 이송된다.
일부 실시예에서, 샘플 전달 라인(144) 내의 가스는, 비제한적으로: 질소 가스, 아르곤 가스, 등을 포함하는, 불활성 가스를 포함할 수 있다. 일부 실시예에서, 샘플 전달 라인(144)은 8/10 밀리미터(0.8 mm)의 내경을 가지는 단편화되지 않은 또는 최소로 단편화된 관을 포함할 수 있다. 그러나, 8/10 밀리미터의 내경은 단지 예로서 제공된 것이고 본 개시내용의 제한을 의미하지 않는다. 다른 실시예에서, 샘플 전달 라인(144)은 8/10 밀리미터 초과의 내경 및/또는 8/10 밀리미터 미만의 내경을 포함할 수 있다. 일부 실시예에서, 샘플 전달 라인(144) 내의 압력은 적어도 약 사(4) 바아 내지 십(10) 바아의 범위일 수 있다. 그러나, 이러한 범위는 단지 예로서 제공된 것이고 본 개시내용의 제한을 의미하지 않는다. 다른 실시예에서, 샘플 전달 라인(144) 내의 압력은 10 바아 초과 및/또는 4 바아 미만일 수 있다. 또한, 일부 구체적인 실시예에서, 샘플(150)이 일반적으로 상향 방향으로(즉, 수직으로) 분배되도록, 샘플 전달 라인(144) 내의 압력이 조정될 수 있다. 그러한 수직 배향은 (예를 들어, 샘플 공급원(들) 및 원격 샘플링 시스템(들)이 분석 시스템(102)에 비해서 "아래층"에 위치되는 경우에) 분석 시스템(102) 보다 낮은 위치에서 수집된 샘플의 전달을 도울 수 있다.
일부 예에서, 샘플 전달 라인(144)은 제1 액체 욕(또는 화학물질 욕)과 유체 연통되는 원격 샘플링 시스템(104) 및 제2 액체 욕(또는 화학물질 욕)과 유체 연통되는 분석 시스템(102)과 커플링될 수 있다. 개시내용의 실시예에서, 제1 위치 및/또는 하나 이상의 원격 위치(예를 들어, 제2 위치, 제3 위치, 제4 위치, 등)에서의 범람을 방지하거나 최소화하기 위해서, 시스템(100)은 (예를 들어, 홈통(trough) 내에 장착된) 하나 이상의 누출 센서를 포함할 수 있다. 주사기 펌프 또는 진공 펌프와 같은 펌프를 이용하여 샘플을 샘플링 장치(106) 내로 적재할 수 있다. 밸브(148)를 이용하여 원격 샘플링 시스템(104)에서 샘플(150)을 선택할 수 있고, 샘플(150)은 샘플 전달 라인(144)에 공급될 수 있고, 샘플 전달 라인은 샘플(150)을 제1 위치에서 분석 시스템(102)에 전달할 수 있다. 격막 펌프와 같은 다른 펌프를 이용하여, 분석 시스템(102) 상의 배수(drain)를 펌핑할 수 있고 샘플(150)을 샘플 전달 라인(144)으로부터 끌어 당길 수 있다.
시스템(100)은 폐쇄된 샘플링 시스템으로서 구현될 수 있고, 여기에서 샘플 전달 라인(144) 내의 가스 및 샘플은 주변 환경에 노출되지 않는다. 예를 들어, 하우징 및/또는 외피가 시스템(100)의 하나 이상의 구성요소를 둘러쌀 수 있다. 일부 실시예에서, 원격 샘플링 시스템(104)의 하나 이상의 샘플 라인이 샘플 전달들 사이에서 세정될 수 있다. 또한, 샘플 전달 라인(144)은 (예를 들어, 세정 용액을 이용하여) 샘플들(150) 사이에서 세정될 수 있다.
연속적인 액체 샘플 단편을 수용하기 위해서 샘플 루프(164)가 샘플 전달 라인(144)과 유체 연통되게 동작 가능하도록, 샘플 전달 라인(144)은 제1 위치에서 샘플 수용 라인(162)과 선택적으로 커플링되게 구성될 수 있다(예를 들어, 샘플 루프(164)). 연속적인 액체 샘플 단편을 샘플 루프(164)에 전달하는 것이 "캐치(catch)"로서 지칭될 수 있다. (예를 들어, 충분한 액체 샘플 단편이 분석 시스템(102)에 의해서 분석을 위해서 이용될 수 있다는 것을 시스템(100)이 결정하였을 때) 연속적인 액체 샘플 단편을 분석 장치(112)에 공급하기 위해서 샘플 루프(164)가 분석 장치(112)와 유체 연통되게 동작될 수 있도록, 샘플 루프(164)는 또한 분석 장치(112)와 선택적으로 커플링되게 구성된다. 개시내용의 실시예에서, 분석 시스템(102)은, 샘플 루프(164)가 분석 시스템(102)에 의한 분석을 위한 충분한 양의 연속적인 액체 샘플 단편을 포함하는지를 결정하도록 구성된 하나 이상의 검출기를 포함할 수 있다. 일 예에서, 충분한 양의 연속적인 액체 샘플은 분석 장치(112)로 보내기에 충분한 액체 샘플을 포함할 수 있다. 충분한 양의 연속적인 액체 샘플의 다른 예는 (예를 들어, 도 7에 도시된 바와 같이) 제1 검출기(126)와 제2 검출기(128) 사이의 샘플 수용 라인(162) 내의 연속적인 액체 샘플을 포함할 수 있다. 구현예에서, 제1 검출기(126) 및/또는 제2 검출기(128)는 광 분석기(132), 광학 센서(134), 전도도 센서(136), 금속 센서(138), 전도 센서(conducting sensor)(140), 및/또는 압력 센서(142)를 포함할 수 있다. 제1 검출기(126) 및/또는 제2 검출기(128)가 다른 센서를 포함할 수 있는 점이 고려된다. 예를 들어, 제1 검출기(126)는, 샘플(150)이 샘플 루프(164)에 진입하는 때를 검출하는 광 분석기(132)를 포함할 수 있고, 제2 검출기(128)는, 샘플 루프(164)가 충진되는 때를 검출하는 다른 광 분석기(132)를 포함할 수 있다. 이러한 예는 "성공적인 캐치"로서 지칭될 수 있다. 광 분석기(132)는 단지 예로서 제공된 것이고 본 개시내용의 제한을 의미하지 않는다는 것을 주목하여야 한다. 다른 예시적인 검출기는: 광학 센서, 전도도 센서, 금속 센서, 전도 센서, 압력 센서, 등을 포함하나, 반드시 그러한 것으로 제한되는 것은 아니다.
도 7을 참조하여, 연속적인 액체 샘플 단편이 샘플 수용 라인(162) 내에 포함되는 때 및/또는 샘플 루프(164)가 (예를 들어, 분석 시스템(102)에 의한) 분석에 충분한 양의 연속적인 액체 샘플 단편을 포함하는 때를 결정할 수 있는 시스템(100)을 설명한다. 예시적인 실시예에서, 제1 검출기(126)는 둘 이상의 상태를 결정하도록 구성될 수 있고, 그러한 상태는 샘플 수용 라인(162) 내의 제1 위치에서의 액체(예를 들어, 액체 샘플 단편)의 존재, 샘플 수용 라인(162) 내의 제1 위치에서의 액체의 부재, 등을 나타낼 수 있다. 예를 들어, (예를 들어, 하이 상태(high state)와 같은, 제1 로직 레벨에 의해서 표시된) 제1 상태를 이용하여 (예를 들어, 제1 검출기(126)에 근접한) 샘플 수용 라인(162) 내의 제1 위치에서의 액체 샘플 단편의 존재를 나타낼 수 있고, (예를 들어, 로우 상태와 같은, 제2 로직 레벨에 의해서 표시된) 제2 상태를 이용하여 샘플 수용 라인(162) 내의 제1 위치에서의 액체 샘플 단편의 부재(예를 들어, 샘플 수용 라인(162) 내의 공극 또는 가스)를 나타낼 수 있다.
일부 실시예에서, 압력 센서(142)를 포함하는 제1 검출기(126)를 이용하여, (예를 들어, 액체가 존재할 때 제1 위치에 근접한 샘플 수용 라인(162) 내의 압력의 증가를 검출하는 것에 의해서) 샘플 수용 라인(162) 내의 제1 위치에서의 액체의 존재를 검출할 수 있다. 또한 제1 검출기(126)를 이용하여, (예를 들어, 제1 위치에 근접한 샘플 수용 라인(162) 내의 압력의 감소를 검출하는 것에 의해서) 샘플 수용 라인(162) 내의 제1 위치에서의 액체의 부재를 검출할 수 있다. 그러나, 압력 센서는 단지 예로서 제공된 것이고 본 개시내용의 제한을 의미하지 않는다. 다른 실시예에서, 광학 센서(134)를 포함하는 제1 검출기(126)를 이용하여, (예를 들어, 액체가 존재할 때 제1 위치에 근접한 샘플 수용 라인(162)을 통과하는 광의 감소를 검출하는 것에 의해서) 샘플 수용 라인(162) 내의 제1 위치에서의 액체의 존재를 검출할 수 있다. 또한 제1 검출기(126)를 이용하여, (예를 들어, 제1 위치에 근접한 샘플 수용 라인(162)을 통과하는 광의 증가를 검출하는 것에 의해서) 샘플 수용 라인(162) 내의 제1 위치에서의 액체의 부재를 검출할 수 있다. 이러한 예에서, 제1 검출기(126)는 제1 위치에서의 액체 샘플의 존재를 하이 상태로서 그리고 제1 위치에서의 액체 샘플의 부재를 로우 상태로서 보고할 수 있다.
일부 실시예에서, 시스템(100)은 또한, 제2 검출기(126), 제3 검출기 등과 같은 하나 이상의 부가적인 검출기를 포함할 수 있다. 예를 들어, 제2 검출기(126)는 또한 둘 이상의 상태를 결정하도록 구성될 수 있고, 그러한 상태는 샘플 수용 라인(162) 내의 제2 위치에서의 액체(예를 들어, 액체 샘플 단편)의 존재, 샘플 수용 라인(162) 내의 제2 위치에서의 액체의 부재, 등을 나타낼 수 있다. 예를 들어, (예를 들어, 하이 상태와 같은, 제1 로직 레벨에 의해서 표시된) 제1 상태를 이용하여 (예를 들어, 제2 검출기(126)에 근접한) 샘플 수용 라인(162) 내의 제2 위치에서의 액체 샘플 단편의 존재를 나타낼 수 있고, (예를 들어, 로우 상태와 같은, 제2 로직 레벨에 의해서 표시된) 제2 상태를 이용하여 샘플 수용 라인(162) 내의 제2 위치에서의 액체 샘플 단편의 부재를 나타낼 수 있다.
일부 실시예에서, 압력 센서(142)를 포함하는 제2 검출기(126)를 이용하여, (예를 들어, 액체가 존재할 때 제2 위치에 근접한 샘플 수용 라인(162) 내의 압력의 증가를 검출하는 것에 의해서) 샘플 수용 라인(162) 내의 제2 위치에서의 액체의 존재를 검출할 수 있다. 또한 제2 검출기(126)를 이용하여, (예를 들어, 제2 위치에 근접한 샘플 수용 라인(162) 내의 압력의 감소를 검출하는 것에 의해서) 샘플 수용 라인(162) 내의 제2 위치에서의 액체의 부재를 검출할 수 있다. 그러나, 압력 센서는 단지 예로서 제공된 것이고 본 개시내용의 제한을 의미하지 않는다. 다른 실시예에서, 광학 센서(134)를 포함하는 제2 검출기(126)를 이용하여, (예를 들어, 액체가 존재할 때 제2 위치에 근접한 샘플 수용 라인(162)을 통과하는 광의 감소를 검출하는 것에 의해서) 샘플 수용 라인(162) 내의 제2 위치에서의 액체의 존재를 검출할 수 있다. 또한 제2 검출기(126)를 이용하여, (예를 들어, 제2 위치에 근접한 샘플 수용 라인(162)을 통과하는 광의 증가를 검출하는 것에 의해서) 샘플 수용 라인(162) 내의 제2 위치에서의 액체의 부재를 검출할 수 있다. 이러한 예에서, 제2 검출기(126)는 제2 위치에서의 액체 샘플의 존재를 하이 상태로서 그리고 제2 위치에서의 액체 샘플의 부재를 로우 상태로서 보고할 수 있다.
제어기(118)는 하나 이상의 검출기(들)(126)과 통신 가능하게 커플링될 수 있고 샘플 수용 라인(162) 내의 제1 위치에서, 샘플 수용 라인(162) 내의 제2 위치에서, 샘플 수용 라인(162) 내의 다른 위치에서, 그리고 기타에서, 액체를 등록하도록 구성된다. 예를 들어, 제어기(118)는 제1 검출기(126)를 이용하여 검출 동작을 개시하고, 샘플 수용 라인(162) 내의 제1 위치에서의 액체는 (예를 들어, 제어기(118)가 제1 검출기(126)에 의해서 결정된 바에 따라 로우로부터 하이로의 상태의 변화를 등록할 때) 제어기(118)에 의해서 등록될 수 있다. 이어서, 제1 검출기(126)가 (예를 들어, 연속적으로, 적어도 실질적으로 연속적으로) 모니터링될 수 있고, 제어기(118)는 (예를 들어, 제어기(118)가 제1 검출기(126)에 의해서 결정된 바에 따라 하이로부터 로우로의 상태의 변화를 등록할 때) 샘플 수용 라인(162) 내의 제1 위치에서의 액체의 부재를 후속하여 등록할 수 있다.
유사하게, 제어기(118)는 또한 제2 검출기(126)를 이용하여 검출 동작을 개시할 수 있고, 샘플 수용 라인(162) 내의 제2 위치에서의 액체는 (예를 들어, 제어기(118)가 제2 검출기(126)에 의해서 결정된 바에 따라 로우로부터 하이로의 상태의 변화를 등록할 때) 제어기(118)에 의해서 등록될 수 있다. 이어서, 제2 검출기(126)가 (예를 들어, 연속적으로, 적어도 실질적으로 연속적으로) 모니터링될 수 있고, 제어기(118)는 (예를 들어, 제어기(118)가 제2 검출기(126)에 의해서 결정된 바에 따라 하이로부터 로우로의 상태의 변화를 등록할 때) 샘플 수용 라인(162) 내의 제2 위치에서의 액체의 부재를 후속하여 등록할 수 있다.
제어기(118) 및/또는 하나 이상의 검출기(126)는, 시스템(100)을 위해 특정 이벤트(예를 들어, 샘플 수용 라인(162) 내의 다수의 위치에서의 특별한 시간에서의 액체의 존재 또는 부재)의 타이밍을 제공하기 위해서, 타이머를 포함할 수 있거나 타이머의 동작에 영향을 미칠 수 있다. 예로서, 제어기(118)는, (예를 들어, 액체를 폐기물로 또는 유지 루프로 지향시키는 것에 대조적인 것으로서) 액체 샘플이 분석 시스템(102)으로 지향되게 허용할 것인지의 여부에 관한 결정을 하기 위해서, 다양한 검출기(들)에 의해서 상태의 변화가 등록되는 시간을 모니터링할 수 있다. 다른 예로서, 제어기(118)는 검출기(들)(126)를 통해서 제어기(118)에 의해서 등록되는 상태의 변화를 기초로 액체가 샘플 수용 라인(162) 및/또는 샘플 루프(164) 내에서 소비하는 시간을 모니터링할 수 있다.
액체 샘플 단편 중단 및 적절한 액체 단편의 결정
일반적으로, 샘플이 연관된 분석 장치에 근접하여 획득될 때(예를 들어, 분석 장치 옆의 자동 샘플러), 상당한 샘플량을 필요로 하지 않으면서, 샘플이 샘플 공급원과 분석 장치 사이의 전체 거리에 걸쳐질 수 있다. 그러나, 샘플의 장거리 전달의 경우에, 원격 샘플링 시스템(104)과 분석 시스템(102) 사이의 (예를 들어, 수백 미터까지의 샘플 길이의) 전체 전달 라인(144)을 충진하는 것은, 예를 들어, 미사용 샘플 부분의 폐기와 관련한 환경적 염려, 샘플의 점도, 또는 기타로 인해서, 이루어질 수 없거나 바람직하지 않을 수 있다. 따라서, 실시예에서, 원격 샘플링 시스템(104)은 전체 전달 라인(144)을 샘플로 충진하지 않고, 그 대신에, 총 전달 라인(144) 부피의 일부를 나타내는 액체 샘플 단편이 분석 시스템(102)에 의한 분석을 위해서 전달 라인(144)을 통해서 전달된다. 예를 들어, 전달 라인(144)이 수백 미터까지의 길이일 수 있으나, 샘플은, 분석 시스템(102)으로의 운송 중에, 임의의 주어진 시간에 약 1 미터 이하의 전달 라인(144)을 점유할 수 있다. 라인 통해서 액체 샘플 단편을 전달하는 것이 원격 샘플링 시스템(104)으로부터 전달되는 샘플의 양을 줄일 수 있지만, 그러한 샘플은, 분석 시스템(102)으로의 운송 중에 샘플 전달 라인(144) 내에서 기포 또는 간극/공극을 유발할 수 있다. 그러한 기포 또는 간극/공극은, 운송 중의 배관 사이의 오리피스들의 변화와 같은 샘플의 장거리 전달과 연관된 환경으로 인해서, 샘플들 사이에서 라인을 세정하기 위해서 이용되는 잔류 세정 유체와의 상호 작용으로 인해서, 라인 내의 잔류 유체와의 상호 작용으로 인해서, 전달 라인 전장(span)을 따른 압력 차(들)로 인해서, 또는 기타로 인해서, 형성될 수 있다. 예를 들어, 도 8에 도시된 바와 같이, 액체 샘플(800)은 원격 샘플링 시스템(104)으로부터 전달 라인(144)을 통해서 분석 시스템(102)이 위치되는 제1 위치까지 전달될 수 있다. 원격 샘플링 시스템(104)에 의해서 획득되는 총 샘플의 부피를 도 8에서 VTOT로 표시하였다. 도시된 바와 같이, 간극 또는 공극(802)은 원격 샘플링 시스템(104)으로부터의 운송 중에 전달 라인(144) 내에서 형성될 수 있다. 간극 또는 공극(802)은, 분석 시스템(102)에 의한 분석을 위한 충분한 양 또는 부피의 샘플을 포함하지 않는 많은 수의 샘플 단편(804)으로 구획한다. 그러한 샘플 단편(804)은 분석 시스템(102)에 의한 분석에 충분한 부피를 가지는 (VSAMPLE로 도시된) 큰 샘플 단편(806)에 선행 및/또는 후행할 수 있다. 실시예에서, 원격 샘플링 시스템(104)에 의해서 수집된 샘플의 양(예를 들어, VTOT)을 조정하여, 분석 장치(112)에 의한 분석에 충분한 양의 샘플(150)을 제공한다. 예를 들어, "피치된" 샘플(150)의 양 대 "캐치된" 샘플(150)의 양의 부피비(예를 들어, VTOT/VSAMPLE)는 적어도 약 1과 1/4(1.25)이다. 그러나, 이러한 비율은 단지 예로서 제공된 것이고 본 개시내용의 제한을 의미하지 않는다. 일부 실시예에서, 그러한 비율은 1과 1/4보다 크고, 다른 실시예에서 그 비율은 1과 1/4보다 작다. 일 예에서, 샘플(150)(예를 들어, 농축 황산 또는 질산)의 2와 1/2 밀리리터(2.5 mL)가 피치되었고, 샘플(150)의 1 밀리리터(1 mL)가 캐치되었다. 다른 예에서, 샘플(150)의 1과 1/2 밀리리터(1.5 mL)가 피치되었고, 샘플(150)의 1 밀리리터(1 mL)가 캐치되었다. 개시내용의 실시예에서, 제1 위치와 제2 위치 사이의 거리, 제1 위치와 제2 위치 사이의 샘플 전달 라인 배관의 양, 샘플 전달 라인(144) 내의 압력, 및 기타에 상당하도록 "피치된" 샘플(150)의 양을 조정하였다. 일반적으로, VTOT/VSAMPLE의 비율은 1보다 클 수 있고, 이는 전달 중의 샘플 전달 라인(144) 내의 간극/공극(802) 및 샘플 단편(804)의 형성에 해당한다.
시스템(100)은 복수의 원격 샘플링 시스템(104) 중 어떠한 것이 그 각각의 샘플을 분석 시스템(102)에 전송하여야 하는지(예를 들어, "피치")를 선택할 수 있고, 그에 의해서 검출기(126)는 분석 시스템(102)에 보내기에(예를 들어, "캐치") 충분한 샘플이 존재하는지(예를 들어, 샘플 루프(164) 내의 VSAMPLE)의 여부 또는 공극 또는 간극이 라인 내에(예를 들어, 검출기들(126) 사이에) 존재하는지의 여부, 그에 따라 해당되는 특별한 시간에 샘플을 분석 시스템(102)에 보내지 않아야 하는지의 여부를 결정하는데 도움을 준다. 만약 기포 또는 간극이 (예를 들어, 샘플 루프(164) 내에) 존재한다면, 특히 분석 장치(112)에의 도입에 앞서서 분석 시스템(102)에서 샘플이 희석되거나 추가로 희석되어야 하는 경우에, 그러한 기포 또는 간극의 존재는 샘플의 분석의 정확도를 손상시킬 수 있는데, 이는 분석 장치(112)가 "블랭크(blank)" 용액을 분석할 수 있기 때문이다.
일부 실시예에서, 시스템(100)은, 연속적인 액체 샘플 단편(예를 들어, 샘플 단편(806))이 샘플 수용 라인(162) 및/또는 샘플 루프(164) 내에 포함되는 때를 결정하도록 구성될 수 있고, 그에 따라 시스템(100)은 간극 또는 공극(802)을 또는 작은 샘플 단편(804)을 분석 장치(112)에 전달하는 것을 방지할 수 있다. 예를 들어, 시스템(100)은 샘플 수용 라인(162)을 따른 제1 위치에서 제1 검출기(126)를 그리고 (예를 들어, 제1 위치 하류의) 샘플 수용 라인(162)을 따른 제2 위치에서 제2 검출기(126)를 포함할 수 있다. 시스템(100)은 또한 제1 검출기(126)와 제2 검출기(126) 사이에서 샘플 루프(164)를 포함할 수 있다. 실시예에서, 적어도 2개의 유동 경로 구성(예를 들어, 도 3a에 도시된 밸브(148)의 제1 유동 경로 구성; 도 3b에 도시된 밸브(148)의 제2 유동 경로 구성, 등) 사이에서 스위칭될 수 있는 다중-포트 밸브와 같은 밸브가 제1 검출기(126)와 샘플 루프(164) 사이에 그리고 제2 검출기(126)와 샘플 루프(164) 사이에 배치될 수 있다. 개시내용의 실시예에서, 시스템(100)은, 제1 위치 및 제2 위치 모두에서 동시에 액체를 등록하는 한편, 제1 위치에서 제1 검출기(126)를 통한 하이로부터 로우로의 상태의 변화를 등록하지 않음으로써, 연속적인 액체 샘플 단편이 샘플 수용 라인(162) 및/또는 샘플 루프(164) 내에 포함되는지를 결정할 수 있다. 달리 설명하면, 액체 샘플은 제1 검출기(126)로부터 제2 검출기(126)로 연속적으로 전달되고, 제2 검출기(126)가 액체 샘플의 존재를 인지할 때까지 상태의 변화는 제1 검출기(126)에 의해서 검출되지 않는다.
샘플 수용 라인이 검출기들 사이에서 연속적인 액체 단편을 포함하는 때를 결정하기 위해서 둘 이상의 검출기가 이용되는 예시적인 구현에서, 액체 단편은 샘플 수용 라인 내에 수용된다. 예를 들어, 도 7을 참조하면, 샘플 수용 라인(162)은 액체 샘플 단편을 수용한다. 이어서, 액체 단편은 샘플 수용 라인 내의 제1 위치에서 액체 단편의 존재 및/또는 부재를 검출하도록 구성된 제1 검출기를 이용한 검출 동작을 개시함으로써 샘플 수용 라인 내의 제1 위치에서 등록된다. 예를 들어, 도 7을 참조하면, 제1 검출기(126)는 샘플 수용 라인(162) 내의 제1 위치에서 액체 샘플 단편을 로우로부터 하이로의 상태의 변화로서 검출한다. 도 9를 참조하면, 액체 샘플 단편은 시간(t1) 및 시간(t5)에서 제1 위치에서 검출될 수 있다. 이어서, 제1 위치에서 액체 단편을 등록한 이후에, 제1 검출기가 모니터링된다. 예를 들어, 도 7을 참조하면, 제1 검출기(126)는 제어기(118)에 의해서 모니터링되고, 제1 검출기(126)는 샘플 수용 라인(162) 내의 제1 위치에서 액체 샘플 단편의 부재를 하이로부터 로우로의 상태의 변화로서 검출한다. 도 9를 참조하면, 제1 위치는 시간(t1) 및 시간(t5)에서 시작하여 (예를 들어, 연속적으로, 적어도 실질적으로 연속적으로) 모니터링되고, 액체 샘플 단편의 부재는 시간(t3) 및 시간(t6)에서 제1 위치에서 검출될 수 있다.
유사하게, 액체 단편은 샘플 수용 라인 내의 제2 위치에서 액체 단편의 존재 및/또는 부재를 검출하도록 구성된 제2 검출기를 이용한 검출 동작을 개시함으로써 샘플 수용 라인 내의 제2 위치에서 등록된다. 예를 들어, 도 7을 참조하면, 제2 검출기(126)는 샘플 수용 라인(162) 내의 제2 위치에서 액체 샘플 단편을 로우로부터 하이로의 상태의 변화로서 검출한다. 도 9를 참조하면, 액체 샘플 단편은 시간(t2) 및 시간(t7)에서 제2 위치에서 검출될 수 있다. 이어서, 제2 위치에서 액체 단편을 등록한 이후에, 제2 검출기가 모니터링된다. 예를 들어, 도 7을 참조하면, 제2 검출기(126)는 제어기(118)에 의해서 모니터링되고, 제2 검출기(126)는 샘플 수용 라인(162) 내의 제2 위치에서 액체 샘플 단편의 부재를 하이로부터 로우로의 상태의 변화로서 검출한다. 도 9를 참조하면, 제2 위치는 시간(t2) 및 시간(t7)에서 시작하여 (예를 들어, 연속적으로, 적어도 실질적으로 연속적으로) 모니터링되고, 액체 샘플 단편의 부재는 시간(t4) 및 시간(t8)에서 제2 위치에서 검출될 수 있다.
액체가 제1 위치 및 제2 위치 모두에서 동시에 등록될 때, 연속적인 액체 단편은 제1 검출기와 제2 검출기 사이에서 샘플 수용 라인 내에 등록된다. 예를 들어, 도 7을 참조하면, 하이 상태가 제1 검출기(126) 및 제2 검출기(126)의 각각에서 액체 샘플 단편의 존재를 나타낼 때, 제어기(118)는 샘플 수용 라인(162) 내의 연속적인 액체 샘플 단편을 (예를 들어, 제1 검출기(126)와 제2 검출기(126) 사이에 존재하는 것으로) 등록한다. 도 9를 참조하면, 액체 샘플 단편이 제2 위치에서 검출될 때, 연속적인 액체 샘플 단편이 시간(t2)에서 등록될 수 있다.
일부 실시예에서, 논리적인 AND 동작을 이용하여, 연속적인 액체 단편이 샘플 수용 라인 내에서 등록되는 때를 결정할 수 있고 샘플 수용 라인으로부터 분석 장비로의 연속적인 액체 단편의 전달을 개시할 수 있다. 예를 들어, 도 7을 참조하면, 제어기(118)는 제1 검출기(126) 및 제2 검출기(126)의 각각에서 하이 상태에서 논리적 AND 동작을 이용할 수 있고 밸브(148)를 이용한 샘플 루프(164)와 분석 장치(112)의 선택적인 커플링을 개시할 수 있고, 그에 따라 연속적인 액체 샘플 단편을 분석 장치(112)에 공급하기 위해서 샘플 루프(164)가 분석 장치(112)와 유체 연통되도록 동작될 수 있다. 일부 실시예에서, 제어기(118)는, 로우로부터 하이로의 상태 변화가 제1 검출기(126) 또는 제2 검출기(126)에서 등록될 때 연속적인 액체 샘플 단편을 분석 장치(112)에 공급하기 위해서 밸브(148)를 스위칭할지의 여부만을 결정할 수 있다. 일부 실시예에서, 시스템(100)은, 제2 검출기(126)에서의 하이 상태가 샘플 루프(164)와 분석 장치의 선택적인 커플링을 개시하기에 앞서서 소정 기간(예를 들어, 도 9에 도시된 tΔ)동안 유지될 것을 요구한다. 예를 들어, 제어기(118) 및/또는 프로세서(120)의 타이머 또는 타이밍 기능이, 제2 검출기(126)가 하이 상태를 유지한 기간을 확인할 수 있고, 그에 의해서 제2 검출기(126)가 시간(tΔ)(예를 들어, 문턱값 시간) 동안 하이 상태로 유지되었고 제1 검출기가 하이 상태에 있는 경우에, 제어기(118)는, 충분한 액체 샘플 단편(예를 들어, 도 8의 단편(806))이 캐치되었다는 것을 결정할 수 있고, 연속적인 액체 샘플 단편을 분석 장치(112)에 공급하기 위해서 밸브(148)를 스위칭할 수 있다. tΔ의 지속시간은, 샘플 또는 다른 전달 조건의 유량에 따라 달라질 수 있는 기간으로서, 해당 기간이 도과되는 경우에 제2 검출기가 공극 또는 기포를 측정하지 못할 수도 있는 기간에 상응할 수 있다.
일부 실시예에서, 제어기(118)는 하이 상태에서 및/또는 로우 상태에서 제1 검출기(126)의 타이밍을 모니터링할 수 있다. 예를 들어, 원격 샘플링 시스템(104)으로부터 전달되는 샘플의 유동 특성을 알고 있는 실시예에서, 제1 검출기(126)를 모니터링하여, 제2 검출기(126)에서 하이 상태를 확인하거나 확인하지 않거나 간에, 제어기(118)가 샘플을 분석 장치(112)에 보내기에 충분한 액체 샘플이 샘플 수용 라인(162) 및/또는 샘플 루프(164) 내에 존재하는지의 여부를 개산(approximate)하기 위해서, 하이 상태에서 경과된 시간의 길이를 결정할 수 있다. 예를 들어, 샘플의 주어진 유량에 대해서, 제1 검출기(126)가 하이 상태에 있었던 시간의 길이를 모니터링하는 것에 의해서, 샘플의 부피가 개산될 수 있다. 그러나, 샘플의 유량은 펌프 기능의 요동(fluctuation), 전달되는 샘플의 유형, 샘플의 점도, 전달의 지속시간, 전달의 거리, 주변 온도 조건, 전달 라인(144) 온도 조건, 또는 기타로 인해서 용이하게 명확해지지 않을 수 있고, 그에 따라 제2 검출기(126)의 기능이 정보를 제공할 수 있다.
개시내용의 실시예에서, 본원에서 설명된 시스템 및 기술을 이용하여, 제1 검출기(126)와 제2 검출기(126) 사이의 샘플 수용 라인(예를 들어, 샘플 루프)의 일부가 기포 존재 없이 충진되었다는 것을 결정할 수 있다. 예를 들어, 도 9를 참조하여 설명된 바와 같은 시간(t3)과 시간(t5) 사이의 제1 위치에서 액체 샘플의 부재는 샘플 수용 라인(162) 내의 기포의 존재에 상응할 수 있다. 샘플 수용 라인(162) 내에 기포가 존재하지 않을 수 있는 조건에 시스템(100)이 도달하였을 때, 제어기(118)는 밸브(148)를 스위칭하여, 샘플 루프(164) 내의 유체가 (예를 들어, 분석 또는 분석 전의 샘플 컨디셔닝을 위해서) 분석 장치(112)에 전달될 수 있게 한다.
예시적인 방법
도 10은, 연속적인 액체 샘플 단편 내에 간극 또는 공극이 없이, 샘플 수용 라인이 분석 시스템에 의한 분석을 위해서 충분한 양의 샘플을 연속적인 액체 샘플 단편 내에서 포함하는 때를 결정하기 위해서 2개의 검출기가 이용되는 예시적인 구현예의 과정(810)을 도시한다. 도시된 바와 같이, 액체 단편이 샘플 수용 라인 내에 수용된다(블록(812)). 예를 들어, 샘플 수용 라인(162)은 원격 샘플링 시스템(104)에 의해서 획득되고 운송 라인(144)을 통해서 전달된 샘플을 수용할 수 있다. 과정(810)은 또한, 액체 단편이 제1 위치를 지나서 이동될 때 액체 단편의 존재 및/또는 부재를 검출하도록 구성된 제1 검출기로 샘플 수용 라인 내의 제1 위치에서 액체 단편을 등록하는 것을 포함한다(블록(814)). 예를 들어, 제1 검출기(126)는 샘플 수용 라인(162) 내의 제1 위치에서 액체 샘플 단편의 존재를 측정할 수 있다. 도 9를 참조하면, 액체 샘플 단편은 시간(t1) 및 시간(t5)에서 제1 위치에서 검출된다.
다음에, 제1 위치에서 액체 단편을 등록한 이후에, 제1 검출기가 모니터링된다(블록(816)). 예를 들어, 샘플 수용 라인(162) 내의 제1 위치에서 액체 단편의 부재가 존재하는지의 여부(예를 들어, 제1 검출기(126)가, 샘플 유체의 검출을 나타내는 하이 상태로부터, 샘플 유체가 검출되지 않는 로우 상태로 전이되었는지의 여부)를 결정하도록, 제1 검출기(126)가 제어기(118)에 의해서 모니터링될 수 있다. 도 9를 참조하면, 제1 위치는 시간(t1) 및 시간(t5)에서 시작하여 (예를 들어, 연속적으로, 적어도 실질적으로 연속적으로) 모니터링된다. 이어서, 제2 위치에서 액체 단편의 존재 및/또는 부재를 검출하도록 구성된 제2 검출기를 이용한 검출 동작을 실시함으로써, 제1 위치 하류의 샘플 수용 라인 내의 제2 위치에서 액체 단편을 등록하기 전에, 샘플 수용 라인 내의 제1 위치에서 액체 단편의 부재가 등록되지 않은 때, 연속적인 액체 단편이 샘플 수용 라인 내에서 등록된다(블록(818)). 예를 들어, 도 9를 참조하면, 제1 검출기(126)는 시간(t1) 및 시간(t5)에서 샘플 유체의 존재를 검출하는 반면, 제2 검출기(126)는 시간(t2) 및 시간(t7)에서 샘플 유체의 존재를 검출한다. 제2 검출기가 해당 샘플 단편을 검출하기 전에 중간 시간에 제1 검출기(126)가 부재를 검출하지 않고, 제1 검출기에서 시간(t1)과 시간(t3) 사이의 액체 샘플 단편 만이 (시간(t2)에서 시작하여) 제2 검출기에 의해서 등록될 수 있다. 그러한 시간에, 제어기(118)는 샘플 루프(164) 내에 포함된 샘플을 분석 장치(112)에 보내도록 밸브(148)에 스위칭을 지시할 수 있다. 제2 검출기(126)가 t7에서 액체 샘플의 존재를 후속하여 검출하기 전에, 제1 검출기(126)가 t5에서 액체 샘플의 존재를 등록하는 한편, 제1 검출기는 또한 t6에서 액체 샘플의 부재를 검출한다. 따라서, 시스템(100)은, 간극 또는 공극(예를 들어, 간극/공극(802))이 샘플 루프(164) 내에 존재한다는 것을 인지할 것이고, 분석을 위해서 밸브(148)를 스위칭 하지 않을 것이고, 그 대신에 부적절한 샘플 단편(예를 들어, 액체 단편(804))이 폐기물로 전달될 수 있게 할 것이다. 본원에서 설명된 바와 같이, 제1 검출기(126)가 중간에 하이 상태에서 유지된 후에 제2 검출기(126)가 특정 기간(예를 들어, tΔ) 동안 하이 상태에서 유지되면, (예를 들어, 제어기(118)에 의해서 구현된) 타이머를 이용하여 밸브(148)가 스위칭되게 할 수 있다.
제어 시스템
시스템의 일부 또는 모든 구성요소를 포함하여, 시스템(100)이 컴퓨터 제어 하에서 동작될 수 있다. 예를 들어, 프로세서(120)가 시스템(100)과 함께 포함되거나 시스템 내에 포함되어, 소프트웨어, 펌웨어, 하드웨어(예를 들어, 고정형 로직 회로망), 수동 프로세싱, 또는 그 조합을 이용하여 본원에서 설명된 시스템의 구성요소 및 기능을 제어할 수 있다. 본원에서 사용된 바와 같이, "제어기", "기능", "서비스" 및 "로직"이라는 용어는 일반적으로, 시스템의 제어와 협력하는 소프트웨어, 펌웨어, 하드웨어, 또는 소프트웨어, 펌웨어, 또는 하드웨어의 조합을 나타낸다. 소프트웨어 구현예의 경우, 모듈, 기능, 또는 로직은, 프로세서(예를 들어, 중앙 프로세싱 유닛(CPU) 또는 CPU들)에서 실행될 때, 특정 과제를 실시하는 프로그램 코드를 나타낸다. 프로그램 코드는 하나 이상의 컴퓨터-판독 가능 메모리 장치(예를 들어, 내부 메모리 및/또는 하나 이상의 유형적 매체(tangible media)) 등에 저장될 수 있다. 본원에서 설명된 구조, 기능, 접근 방식, 및 기술은 다양한 프로세서를 가지는 다양한 상용 컴퓨팅 플랫폼에서 구현될 수 있다.
예를 들어, 분석 시스템(102), 원격 샘플링 시스템(104), 밸브(148), 펌프, 및/또는 검출기(예를 들어, 제1 검출기(126), 제2 검출기(126), 샘플 검출기(130))와 같은, 시스템의 하나 이상의 구성요소가 샘플(150)의 수집, 전달 및/또는 분석을 제어하기 위해서 제어기와 커플링될 수 있다. 예를 들어, 제어기(118)는, 성공적인 "캐치"가 제1 검출기(126) 및 제2 검출기(126)에 의해서 표시될 때(예를 들어, 양 센서가 액체를 검출할 때), 샘플 루프(164)를 분석 시스템(102)에 커플링시키는 밸브(148)를 스위칭하도록 그리고 샘플(150)을 샘플 루프(164)로부터 분석 시스템(102)으로 지향시키도록 구성될 수 있다. 또한, 제어기(118)는 "성공적이지 못한 캐치"(예를 들어, 샘플 루프(164)가 분석 시스템(102)에 의한 분석을 완료하기에 충분한 샘플(150)로 충진되지 않았을 때)를 결정하기 위한 기능을 실시할 수 있다. 일부 실시예에서, "성공적이지 못한 캐치"는, 예를 들어, 제1 검출기(126) 또는 제2 검출기(126)와 같은 센서로부터 수신된 신호의 신호 세기의 변동을 기초로 결정된다. 다른 실시예에서, 제1 검출기(126)가 샘플 수용 라인(162) 내의 샘플(150)을 나타냈고 제2 검출기(126)가 샘플 수용 라인(162) 내의 샘플(150)을 표시하지 않는 미리 결정된 시간량이 경과되었을 때, "성공적이지 못한 캐치"가 결정된다.
일부 실시예에서, 제어기(118)는, 제2 위치와 같은, 원격 위치에서 표시부와 통신 가능하게 커플링되고, 불충분한 샘플(150)이 제1 위치에서 수용될 때 제2 위치에서 표시(예를 들어, 경보)를 제공한다. 표시는 (예를 들어, 자동적으로) 부가적인 샘플 수집 및 전달을 개시하기 위해서 이용될 수 있다. 일부 실시예에서, (예를 들어, 하나 이상의 표시부 조명을 통해서, 디스플레이 판독을 통해서, 그 조합을 통해서, 기타를 통해서) 표시부는 경보를 조작자에게 제공한다. 또한, 표시는 하나 이상의 미리 결정된 조건을 기초로 (예를 들어, 다수의 샘플을 놓쳤을 때에만) 타이밍화되고 및/또는 개시될 수 있다. 일부 실시예에서, 표시부는 또한 원격 샘플링 장소에서 측정된 조건을 기초로 활성화될 수 있다. 예를 들어, 제2 위치에서의 검출기(130)를 이용하여, 샘플(150)이 원격 샘플링 시스템(104)에 제공되는 때를 결정할 수 있고, 샘플(150)이 수집되지 않을 때 표시부가 활성화될 수 있다.
일부 실시예에서, 제어기(118)는 상이한 원격 위치들로부터의 샘플들의 수집에 대해서 및/또는 상이한 유형들의 샘플들(150)에 대해서 상이한 타이밍을 제공하도록 동작될 수 있다. 예를 들어, 제어기(118)는 원격 샘플링 시스템(104)이 샘플(150)을 샘플 전달 라인(144)에 전달하기 위한 준비가 되었을 때 경보를 받을 수 있고, 샘플(150)의 샘플 전달 라인(144)으로의 전달을 개시할 수 있다. 제어기(118)는 또한 샘플(150)과 연관된 식별 정보(그리고 가능하게는 로그/기록 정보)를 수신하기 위해서 및/또는 샘플들(150)이 시스템(100) 내에 전달되는 순서를 제어하기 위해서 하나 이상의 원격 샘플링 시스템(102)과 통신 가능하게 커플링될 수 있다. 예를 들어, 제어기(118)는 다수의 샘플(150)이 원격적으로 줄지어지게 할 수 있고(queue) 하나 이상의 샘플 전달 라인(144)을 통한 샘플의 전달을 조정할 수 있다. 이러한 방식으로, 샘플(150)의 전달은 (예를 들어, 다수의 샘플 전달 라인(144)을 통해서) 다수의 동시적인 유동 경로들을 따라서 조정될 수 있고, 하나 이상의 부가적인 샘플(150)이 취해지는 동안 하나 이상의 샘플(150)이 전달될 수 있고, 기타 등등이 이루어질 수 있다. 예를 들어, 도 11은 시스템(100)을 위한 예시적인 제어 흐름도를 도시하고, 여기에서 2개의 원격 샘플링 시스템(104a 및 104b) 및 연관된 전달 라인(144a 및 144b)을 통해서, 샘플 위치(900) 및 샘플 위치(902)로서 도시된, 2개의 원격 샘플 위치와 유체 연통되는 분석 시스템(102)이 도시되어 있다. 도시된 실시예에서, 분석 시스템(102)은, 각각 904a 및 904b로 도시된, 원격 샘플링 시스템(104a) 및 원격 샘플링 시스템(104b)의 각각에 명령을 전송한다. 원격 샘플링 시스템(104a 및 104b) 각각은 전달 라인(144a) 및 전달 라인(144b) 각각을 통해서 각각의 샘플링 위치(원격 샘플링 시스템(104a)을 위한 샘플링 위치(900), 원격 샘플링 시스템(104b)을 위한 샘플링 위치(902))에서 획득된 샘플을 분석 시스템(102)에 전달한다. 이어서, 분석 시스템(102)은 샘플을 프로세스하여 내부의 다양한 화학적 종 컨테이너의 양을 결정한다. 이어서, 분석 시스템(102)은 임의의 화학물질 종의 양이 원소-특정 한계(element-specific limit)(예를 들어, 샘플 내의 특정 오염물에 대한 한계)를 초과하는지의 여부를 결정한다. 실시예에서, 시스템(100)은, 독립적으로, 각각의 샘플링 위치에 대해서 그리고 독립적으로 각각의 샘플링 위치에서 특별한 화학물질 종에 대해서 오염 한계를 설정할 수 있다. 예를 들어, 특별한 금속 오염물에 대한 공차가 프로세싱 중에 감소될 수 있고, 그에 따라 특별한 화학물질 종에 대해서, 하류의 화학물질 샘플이 상류에서 취해진 화학물질 샘플보다 낮은 한계를 가질 수 있다. 도 11에 도시된 바와 같이, 분석 시스템(102)은, 화학물질 종이 원격 샘플링 시스템(104a)에 의해서 샘플링 위치(900)에서 획득된 샘플에 대한 임의의 원소-특정 한계를 초과하지 않는다는 것을 결정하였다. 이어서, 분석 시스템(102)은, 원소-특정 한계 미만의 프로세스 애플리케이션의 동작으로 인해, 908a로서 도시된 표시를 CIM 호스트(906)에 전송하여, 샘플링 위치(900)에서 프로세스 애플리케이션이 계속되게 한다. 분석 시스템(102)은, 원격 샘플링 시스템(104b)에 의해서 샘플링 위치(902)에서 획득된 샘플 내에 존재하는 적어도 하나의 화학물질 종이 원소-특정 한계(예를 들어, 샘플 내의 오염물에 대한 한계)를 초과한다는 것을 결정하였다. 이어서, 분석 시스템(102)은, 원소-특정 한계 초과의 프로세스 애플리케이션의 동작으로 인해, 908b로서 도시된 표시를 CIM 호스트(906)에 전송하여, 샘플링 위치(902)에서 프로세스 애플리케이션에 지시되는 경보를 전송한다. 이어서, CIM 호스트(906)는, 샘플링 위치(902)에서 원격 샘플링 시스템(104b)에 의해서 획득된 샘플의 분석을 기초로, 프로세스 정지 명령(910)을 통해서, 샘플링 위치(902)에서 프로세스에 지시하여, 동작을 정지시킨다. 실시예에서, CIM 호스트(906)와 시스템(100)의 구성요소 사이의 통신은 SECS/GEM 프로토콜에 의해서 촉진될 수 있다. 실시예에서, 시스템(100)은, 원소가 특별한 샘플 위치에 대한 샘플 내의 원소-특정 한계를 초과하는 것으로 결정될 때, 문맥-특정 행동(context-specific action)을 포함할 수 있고, 그러한 문맥-특정 행동은, 비제한적으로, 경보를 무시하고 프로세스 동작을 계속하는 것, 프로세스 동작을 중단시키는 것, 시스템 캘리브레이션을 실행하고 이어서 한계-초과 샘플에 대해 재-실행하는 것, 또는 기타를 포함할 수 있다. 예를 들어, 제1 경보 시에, 분석 시스템(102)은 캘리브레이션(또는 다른 캘리브레이션)을 실시하고 이어서 샘플을 재-실행할 수 있는 반면, 후속 경보(예를 들어, 제2 경보)는, CIM 호스트(906)가 문제 샘플링 위치에서의 프로세스에 동작 중단을 명령하게 할 수 있다.
제어기(118)는 프로세서(120), 메모리(122), 및 통신 인터페이스(124)를 포함할 수 있다. 프로세서(120)는 제어기(118)를 위한 프로세싱 기능을 제공하고, 임의 수의 프로세서, 마이크로-제어기, 또는 다른 프로세싱 시스템, 그리고 제어기(118)에 의해서 액세스되거나 생성되는 데이터 또는 다른 정보를 저장하기 위한 상주 메모리 또는 외부 메모리를 포함할 수 있다. 프로세서(120)는, 본원에서 설명된 기술을 구현하는 하나 이상의 소프트웨어 프로그램을 실행할 수 있다. 프로세서(120)는, 형성 재료 또는 내부에서 이용되는 프로세싱 메커니즘에 의해서 제한되지 않으며, 그에 따라, (예를 들어, 전자 집적 회로(IC) 구성요소를 이용하는) 반도체(들) 및/또는 트랜지스터, 등을 통해서 구현될 수 있다.
메모리(122)는, 본원에서 설명된 기능을 실시하기 위해서, 소프트웨어 프로그램 및/또는 코드 단편(code segment)과 같은, 제어기(118)의 동작과 연관된 다양한 데이터, 또는 제어기(118)의 프로세서(120) 및 가능한 다른 요소에 지시하기 위한 다른 데이터를 저장하기 위한 저장 기능을 제공하는 유형적인 컴퓨터-판독 가능 저장 매체의 예이다. 따라서, 메모리(122)는 (시스템의 구성요소를 포함하여) 시스템(100)을 동작시키기 위한 명령어의 프로그램과 같은, 데이터 등을 저장할 수 있다. 단일 메모리가 설명되었지만, 매우 다양한 유형의 메모리 및 그 조합(예를 들어, 유형적, 비-일시적 메모리)이 이용될 수 있다는 것을 주목하여야 한다. 메모리(122)는 프로세서(120)와 통합될 수 있거나, 단독형 메모리를 포함할 수 있거나, 그 모두의 조합일 수 있다.
메모리(122)는, 랜덤-액세스 메모리(RAM), 판독 전용 메모리(ROM), 플래시 메모리(예를 들어, 보안 디지털(SD) 메모리 카드, 미니 SD 메모리 카드 및/또는 마이크로-SD 메모리 카드), 자기 메모리, 광학 메모리, 범용 직렬 버스(USB) 메모리 장치, 하드 디스크 메모리, 외부 메모리 등과 같은, 분리 가능 및 비-분리형 메모리 구성 요소를 포함할 수 있으나, 반드시 그러한 것으로 제한되는 것은 아니다. 구현예에서, 시스템(100) 및/또는 메모리(122)는, 가입자 식별 모듈(SIM) 카드, 범용 가입자 식별 모듈(USIM) 카드, 범용 집적 회로 카드(UICC) 등에 의해 제공되는 메모리(122)와 같은 분리 가능한 집적 회로 카드(ICC) 메모리를 포함할 수 있다.
통신 인터페이스(124)는 시스템의 구성요소와 통신하도록 동작 가능하게 구성된다. 예를 들어, 통신 인터페이스(124)는 시스템(100) 내의 저장을 위해서 데이터를 전송하도록, 시스템(100) 내의 저장부로부터 데이터를 검색하도록, 그리고 기타등등을 하도록 구성될 수 있다. 통신 인터페이스(124)가 또한 프로세서(120)와 통신 가능하게 커플링되어, (예를 들어, 제어기(118)와 통신 가능하게 커플링된 장치로부터 수신된 입력을 프로세서(120)에 통신하기 위해서) 시스템(100)의 구성요소와 프로세서(120) 사이의 데이터 전달을 돕는다. 통신 인터페이스(124)가 제어기(118)의 구성요소로서 설명되었지만, 통신 인터페이스(124)의 하나 이상의 구성요소가, 유선 및/또는 무선 연결을 통해서, 시스템(100)에 통신 가능하게 커플링된 외부 구성요소로서 구현될 수 있다는 것을 주목하여야 한다. 시스템(100)은 또한, 비제한적으로: 디스플레이, 마우스, 터치패드, 키보드, 등을 포함하는, 하나 이상의 입/출력(I/O) 장치를 포함하고 및/또는 (예를 들어, 통신 인터페이스(124)를 통해서) 그에 연결될 수 있다.
통신 인터페이스(124) 및/또는 프로세서(120)는: 3G 셀룰러 네트워크, 4G 셀룰러 네트워크, 또는 GSM(global system for mobile communications) 네트워크와 같은, 광역 셀룰러 전화 네트워크; Wi-Fi 네트워크(예를 들어, IEEE 802.11 네트워크 표준을 사용하여 동작되는 무선 근거리 네트워크(WLAN))와 같은, 무선 컴퓨터 통신 네트워크; 인터넷(internet); 인터넷(Internet); 광역 네트워크(WAN); 근거리 네트워크(LAN); 개인 영역 네트워크(PAN)(예를 들어, IEEE 802.15 네트워크 표준을 사용하여 동작되는 무선 개인 영역 네트워크(WPAN)); 공중 전화 네트워크; 엑스트라넷; 인트라넷; 등을 포함하나, 반드시 그러한 것으로 제한되지 않는, 다양한 상이한 네트워크와 통신하도록 구성될 수 있다. 그러나, 이러한 목록은 단지 예로서 제공된 것이고 본 개시내용의 제한을 의미하지 않는다. 또한, 통신 인터페이스(124)는 단일 네트워크 또는 상이한 접속 지점들에 걸친 다수의 네트워크와 통신하도록 구성될 수 있다.
예 1 - 예시적인 모니터링 시스템
일반적으로, 본원에서 설명된 시스템(100)은 임의 수의 샘플링 위치로부터 샘플을 취하기 위해서 임의 수의 원격 샘플링 시스템(104)을 통합할 수 있다. 도 12에 도시된 구현예에서, 시스템(100)은 화학물질 욕, 벌크 화학물질, 환경 유출물, 및 기타 액체 샘플을 이용하는 프로세스 설비의 5개의 상이한 위치에 배치된 (104A, 104B, 104C, 104D, 104E로 도시된) 5개의 원격 샘플링 시스템(104)을 포함한다. 원격 샘플링 시스템(104)은, 5개의 원격 샘플링 시스템(104)의 각각으로부터 원격에 배치된 분석 시스템(102)에 전달하기 위해서 상이한 위치들에서 샘플을 획득한다. 제1 원격 샘플링 시스템(104A)은 탈이온수 파이프라인(1000)에 근접 배치되고 (d5로 도시된) 약 사십 미터(40 m)의 거리만큼 분석 시스템(102)으로부터 이격된다. 제2 원격 샘플링 시스템(104B)은 분배 밸브 지점(1002)에 근접 배치되고 (d4로 도시된) 약 팔십 미터(80 m)의 거리만큼 분석 시스템(102)으로부터 이격된다. 제3 원격 샘플링 시스템(104C)은 화학물질 공급 탱크(1004)에 근접 배치되고 (d3으로 도시된) 약 팔십 미터(80 m)의 거리만큼 분석 시스템(102)으로부터 이격된다. 화학물질 공급 탱크(1004)는 화학물질 저장 탱크(1008)로부터 원격에 배치되고, 화학물질 저장 탱크(1008)로부터 화학물질을 공급 받는다. 제4 원격 샘플링 시스템(104D)은 화학물질 공급 탱크(1006)에 근접 배치되고 (d2로 도시된) 약 팔십 미터(80 m)의 거리만큼 분석 시스템(102)으로부터 이격된다. 화학물질 공급 탱크(1006)는 화학물질 저장 탱크(1008)로부터 원격에 배치되고, 화학물질 저장 탱크(1008)로부터 화학물질을 공급 받는다. 제5 원격 샘플링 시스템(104E)은 화학물질 저장 탱크(1004)에 근접 배치되고 (d1으로 도시된) 약 삼백 미터(300 m)의 거리만큼 분석 시스템(102)으로부터 이격된다. 5개의 원격 샘플링 시스템(104)이 도시되어 있지만, 시스템(100)은, 다른 프로세스 스트림, 화학물질 욕, 벌크 화학물질 저장부, 환경 유출물, 및 다른 액체 샘플과 같은, 프로세싱 설비 전반을 통해서 초-미량 불순물을 모니터링하기 위해서 5개 초과의 원격 샘플링 시스템(104)을 이용할 수 있다. 구현예에서, 원격 샘플링 시스템(104)으로부터 분석 시스템으로의 샘플의 전달은 초당 약 1.2 미터(1.2 m/s)의 비율로 제공되어, 프로세싱 설비 전반을 통한 초-미량 불순물의 거의 실시간의 분석(예를 들어, ICPMS 분석)을 제공한다.
예 2 - 재현성
구현예에서, 분석 시스템(102)은 원격 샘플링 시스템(104)으로부터 백미터(100 m)에 배치되었다. 원격 샘플링 시스템(104)은 20개의 구분된 샘플을 획득하였고, 20개의 구분된 샘플의 각각에 존재하는 각각의 화학물질 종의 신호 세기의 결정을 위해서, 그 샘플을 분석 시스템(102)에 이송하였다. 각각의 구분된 샘플은 이하의 화학물질 종을 포함하였다: 리튬(Li), 베릴륨(Be), 붕소(B), 나트륨(Na), 마그네슘(Mg), 알루미늄(Al), 칼슘(Ca), 망간(Mn), 철(Fe), 코발트(Co), 니켈(Ni), 구리(Cu), 아연(Zn), 게르마늄(Ge), 스트론튬(Sr), 은 (Ag), 카드뮴(Cd), 인듐(In), 주석(Sn), 안티모니(Sb), 바륨(Ba), 세륨(Ce), 하프늄(Hf), 텅스텐(W) 및 납(Pb). 분석 시스템(102)에 의한 분석 시에, 모든 화학물질 종에 대한 모든 20개의 구분된 샘플에 걸쳐, 상대 표준 편차(RSD)가 삼 퍼센트 미만(< 3%)이었다는 것이 결정되었다. 따라서, 분석 시스템(102)과 원격 샘플링 시스템(104) 사이가 백 미터인 예시적인 시스템(100)은 샘플 획득, (예를 들어, 전달 라인(144)을 통해서) 분석 시스템(102)까지 샘플을 백 미터 전달하는 것, 그리고 분석 시스템(102)으로 샘플을 분석하는 것에서 신뢰 가능한 재현성을 제공하였다.
예 3 - 수동 샘플링과의 비교 - 반도체 프로세스 예
도 13을 참조하면, 시간에 걸친 반도체 제조 프로세스에 대한 화학물질 욕(SC-1 욕)의 금속 오염을 보여주는 차트가 제공된다. 차트는 3개의 시점에서 취해진 수동 샘플로부터 측정된 금속 오염에 대한 데이터 지점을 보여주는 부분(1100)을 포함한다. 차트는 또한, 수동 샘플링 방법의 샘플링 빈도수를 초과하는 (예를 들어, 적어도 16배 내지 17배로 더 빈번한) 샘플링 빈도수로 시스템(100)으로부터 (원격 샘플링 시스템(104)으로부터) 취한 샘플로부터 측정된 금속 오염에 대한 데이터 지점에 중첩된, 부분(1100)으로부터의 수동 샘플로부터 측정된 금속 오염에 대한 데이터 지점을 보여주는 부분(1102)을 포함한다. 부분(1102)에 도시된 바와 같이, 반도체 제조 프로세스에서 오염물의 점진적인 증가가 시간에 걸쳐 발생된다. 특별한 반도체 프로세스(예를 들어, 부분(1100)으로부터의 수동 샘플링 기술)에서 화학물질을 교환하기 위한 때를 결정하는 수명 또는 수명 계수 방법(life time or life counts method)은 종종 시간에 걸친 금속 오염물의 특이성을 설명할 수 없다. 따라서, 화학물질은 종종 욕 내의 금속 오염물에 관한 지식이 없이 교환된다. 이는, 화학물질 욕이 실질적으로 부가적인 웨이퍼 프로세싱을 제공할 수 있음에도 불구하고 어쨌든 변경되는(예를 들어, 프로세스 가동 시간의 손실을 초래하는), 과다-교환을 초래할 수 있거나, 화학물질 욕이 용인될 수 없는 금속 오염물을 실제로 가짐에도 불구하고 늦은 시간까지 교환되지 않는(예를 들어, 잠재적으로 프로세스에 의해서 생산되는 웨이퍼를 위태롭게 하는), 과소-교환을 초래할 수 있다. 부분(1102)에서 볼 수 있는 바와 같이, 금속 오염은 더 많은 빈도수로 자동적으로 시스템(100)으로 추적될 수 있다. 오염 한계(1104)는, 화학물질 욕에 대한 오염물 한계에 도달될 때, CIM 호스트(906)에 경보하도록 설정된다. 그에 따라, 시스템(100)은, 오염 한계(1104)에 도달할 때, 프로세스 동작을 자동적으로 중단시키게(예를 들어, 과소-교환을 방지하게) 하는 한편, 오염 한계(1104)에 도달하지 않았을 때 프로세스가 계속될 수 있게 하며, 그에 의해서 가능할 때, 프로세스 가동 시간을 제공한다(예를 들어, 과다-교환을 방지한다).
본원에서 설명된 다른 예에 대해서 대안적으로 또는 부가적으로, 예는 이하의 임의 조합을 포함한다.
유도-결합 플라즈마 (ICP) 분석 기구를 캘리브레이트하기 위한 시스템이: 원격 샘플링 시스템으로부터 샘플을 수용하도록 그리고 수용된 샘플 내의 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 농도를 결정하도록 구성된 샘플 분석 장치; 및 샘플 분석 장치에 동작 가능하게 커플링된 제어기를 포함하고, 제어기는: 샘플 분석 장치에 의해서 제2 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 일차 캘리브레이션 커브를 생성하도록, 샘플 분석 장치에 의한 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 이차 캘리브레이션 커브를 생성하도록, 그리고 이차 캘리브레이션 커브를 일차 캘리브레이션 커브와 연관시키는 매트릭스 보정 인자를 결정하도록 구성된다.
전술한 시스템에서, 샘플 분석 장치가 제1 위치에 배치되고 원격 샘플링 시스템은 제2 위치에 배치되며, 제1 위치는 제2 위치로부터 이격된다.
전술한 시스템에서, 제2 샘플 매트릭스는, 제1 샘플 매트릭스보다, 샘플 분석 장치에서 감쇠 및 변동 중 적어도 하나에 대해서 비교적 더 민감하다.
전술한 시스템에서, 제어기는 샘플 분석 장치에 의해서 제2 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 주기적인 분석을 기초로 일차 캘리브레이션 커브를 업데이트하도록 구성된다.
전술한 시스템에서, 제1 샘플 매트릭스는 탈이온수, 이소프로필 알코올, 암모니아 용액, 불화 수소산, 염산, 과산화물, 암모늄 불화물, LAL 화학물질, DSP 화학물질, 및 FND 화학물질로 이루어진 그룹으로부터 선택된 샘플 매트릭스로 구성된다.
전술한 시스템에서, 제2 샘플 매트릭스는 탈이온수, 이소프로필 알코올, 암모니아 용액, 불화 수소산, 염산, 과산화물, 암모늄 불화물, LAL 화학물질, DSP 화학물질, 및 FND 화학물질로 이루어진 그룹으로부터 선택된 샘플 매트릭스로 구성된다.
전술한 시스템에서, 일차 캘리브레이션 커브는 일차 커브 기울기를 가지고, 이차 캘리브레이션 커브는 제2 커브 기울기를 가지며, 매트릭스 보정 인자는 제2 커브 기울기를 일차 커브 기울기로 나누는 것에 의해서 결정된다.
유도-결합 플라즈마 (ICP) 분석 기구를 캘리브레이트하기 위한 방법이: 샘플 분석 장치에 의해서 제1 샘플 매트릭스를 가지는 관심 대상 화학적 종의 제1 표준 용액의 분석을 기초로 일차 캘리브레이션 커브를 생성하는 단계; 샘플 분석 장치에 의해서 제2 샘플 매트릭스를 가지는 관심 대상 화학적 종의 제2 표준 용액의 분석을 기초로 이차 캘리브레이션 커브를 생성하는 단계; 및 이차 캘리브레이션 커브를 일차 캘리브레이션 커브와 연관시키기 위한 이차 캘리브레이션 커브에 대한 매트릭스 보정 인자를 결정하는 단계를 포함한다.
전술한 방법에서, 일차 캘리브레이션 커브를 생성하는 단계는 샘플 분석 장치에 의해서 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 일차 캘리브레이션 커브를 생성하는 단계를 포함한다.
전술한 방법에서, 이차 캘리브레이션 커브를 생성하는 단계는 샘플 분석 장치에 의해서 제2 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 이차 커브를 생성하는 단계를 포함한다.
전술한 방법에서, 제1 샘플 매트릭스는, 제2 샘플 매트릭스보다, 샘플 분석 장치에서 감쇠 및 변동 중 적어도 하나에 대해서 비교적 더 민감하다.
전술한 방법에서, 샘플 분석 장치에 의해서 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 주기적인 분석을 기초로 일차 캘리브레이션 커브를 업데이트하는 단계를 더 포함한다.
전술한 방법에서, 이차 캘리브레이션 커브의 기울기를 일차 캘리브레이션 커브의 기울기로 나누는 것에 의해서 매트릭스 보정 인자를 결정하는 단계를 더 포함한다.
유도-결합 플라즈마 (ICP) 분석 기구를 캘리브레이트하기 위한 시스템이: 샘플 분석 장치에 통신 가능하게 커플링되도록 구성된 적어도 하나의 프로세서; 및 컴퓨터 프로그램 코드를 포함하는 적어도 하나의 메모리를 포함하고, 적어도 하나의 메모리 및 컴퓨터 프로그램 코드는, 적어도 하나의 프로세서로, ICP 분석 기구가: 샘플 분석 장치에 의해서 제2 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도들의 분석을 기초로 일차 캘리브레이션 커브를 생성하게 하고, 샘플 분석 장치에 의한 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도들의 분석을 기초로 이차 캘리브레이션 커브를 생성하게 하고, 그리고 이차 캘리브레이션 커브를 일차 캘리브레이션 커브와 연관시키는 매트릭스 보정 인자를 결정하게 하도록 구성된다.
전술한 시스템에서, 적어도 하나의 프로세서는 추가적으로, ICP 분석 기구가, 샘플 분석 장치에 의해서 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 일차 캘리브레이션 커브를 생성하게 한다.
전술한 시스템에서, 적어도 하나의 프로세서는 추가적으로, ICP 분석 기구가, 샘플 분석 장치에 의해서 제2 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 이차 커브를 생성하게 한다.
전술한 시스템에서, 제1 샘플 매트릭스는, 제2 샘플 매트릭스보다, 샘플 분석 장치에서 감쇠 및 변동 중 적어도 하나에 대해서 비교적 더 민감하다.
전술한 시스템에서, 적어도 하나의 프로세서는 추가적으로, ICP 분석 기구가, 샘플 분석 장치에 의해서 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 주기적인 분석을 기초로 일차 캘리브레이션 커브를 업데이트하게 한다.
전술한 시스템에서, 적어도 하나의 프로세서는 추가적으로, ICP 분석 기구가, 이차 캘리브레이션 커브의 기울기를 일차 캘리브레이션 커브의 기울기로 나누는 것에 의해서 매트릭스 보정 인자를 결정하게 한다.
전술한 시스템에서, 제1 샘플 매트릭스는 탈이온수, 이소프로필 알코올, 암모니아 용액, 불화 수소산, 염산, 과산화물, 암모늄 불화물, LAL 화학물질, DSP 화학물질, 및 FND 화학물질로 이루어진 그룹으로부터 선택된 샘플 매트릭스로 구성되고, 제2 샘플 매트릭스는 탈이온수, 이소프로필 알코올, 암모니아 용액, 불화 수소산, 염산, 과산화물, 암모늄 불화물, LAL 화학물질, DSP 화학물질, 및 FND 화학물질로 이루어진 그룹으로부터 선택된 샘플 매트릭스로 구성된다.
결론
구현예에서, 다양한 분석 장치가 본원에서 설명된, 구조, 기술, 접근 방식, 등을 이용할 수 있다. 따라서, 시스템이 본원에서 설명되었지만, 다양한 분석 기구는 설명된 기술, 접근 방식, 구조 등을 이용할 수 있다. 이러한 장치는 제한된 기능(예를 들어, 얇은 장치)으로 또는 강건한 기능(예를 들어, 두꺼운 장치)으로 구성될 수 있다. 따라서, 장치의 기능은 장치의 소프트웨어 또는 하드웨어 자원, 예를 들어 프로세싱 파워, 메모리(예를 들어, 데이터 저장 용량), 분석 능력, 등과 관련될 수 있다.
일반적으로, 본원 설명된 임의의 기능이, 하드웨어(예를 들어, 집적 회로와 같은 고정 로직 회로망), 소프트웨어, 펌웨어, 수동 프로세싱, 또는 그 조합을 이용하여 구현될 수 있다. 따라서, 전술한 개시내용에서 설명된 블록은 일반적으로 하드웨어(예를 들어, 집적 회로와 같은 고정 로직 회로망), 소프트웨어, 펌웨어, 또는 그 조합을 나타낸다. 하드웨어 구성의 경우에, 전술한 개시내용에서 설명된 다양한 블록은 다른 기능과 함께 집적 회로로서 구현될 수 있다. 그러한 집적 회로는 주어진 블록, 시스템, 또는 회로의 기능, 또는 블록, 시스템, 또는 회로의 기능의 일부의 모두를 포함할 수 있다. 또한, 블록, 시스템, 또는 회로의 요소가 다수의 집적 회로에 걸쳐 구현될 수 있다. 그러한 집적 회로는, 비제한적으로: 모놀리식(monolithic) 집적 회로, 플립 칩 집적 회로, 멀티칩 모듈 집적 회로 및/또는 혼합 신호 집적 회로를 포함하는 다양한 집적 회로를 포함할 수 있다. 소프트웨어 구현예의 경우에, 전술한 개시내용에서 설명된 다양한 블록은, 프로세서에서 실행될 때 특정 과제를 실시하는 실행 가능 명령어(예를 들어, 프로그램 코드)를 나타낸다. 이러한 실행 가능 명령어는 하나 이상의 유형적인 컴퓨터 판독 가능 매체에 저장될 수 있다. 일부 그러한 경우에, 전체 시스템, 블록, 또는 회로는 그 소프트웨어 또는 펌웨어 등가물을 이용하여 구현될 수 있다. 다른 경우에, 주어진 시스템, 블록, 또는 회로의 일 부분이 소프트웨어 또는 펌웨어로 구현될 수 있는 한편, 다른 부분은 하드웨어로 구현된다.
비록 청구 대상이 구조적 특징 및/또는 프로세스 동작에 대해서 특정한 언어로 기술되었지만, 첨부된 청구 범위에서 규정된 청구 대상이 상술한 구체적인 특징 또는 작용으로 반드시 제한되는 것이 아님을 이해하여야 한다. 오히려, 상술한 구체적인 특징 및 동작은 청구 범위를 구현하는 예시적인 형태로서 개시된 것이다.

Claims (20)

  1. 유도-결합 플라즈마 (ICP) 분석 기구를 캘리브레이트하기 위한 시스템이며:
    원격 샘플링 시스템으로부터 샘플을 수용하도록 그리고 수용된 샘플 내의 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 농도를 결정하도록 구성된 샘플 분석 장치; 및
    샘플 분석 장치에 동작 가능하게 커플링된 제어기를 포함하고, 제어기는:
    샘플 분석 장치에 의해서 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 일차 캘리브레이션 커브를 생성하도록,
    샘플 분석 장치에 의해서 제2 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 이차 캘리브레이션 커브를 생성하도록,
    이차 캘리브레이션 커브를 일차 캘리브레이션 커브와 연관시키는 매트릭스 보정 인자를 결정하되, 일차 캘리브레이션 커브는 일차 커브 기울기를 가지고, 이차 캘리브레이션 커브는 제2 커브 기울기를 가지며, 매트릭스 보정 인자는 제2 커브 기울기를 일차 커브 기울기로 나누는 것에 의해서 결정되도록
    구성되는, 시스템.
  2. 제1항에 있어서,
    샘플 분석 장치가 제1 위치에 배치되고 원격 샘플링 시스템은 제2 위치에 배치되며, 제1 위치는 제2 위치로부터 이격되는, 시스템.
  3. 제1항에 있어서,
    제1 샘플 매트릭스는, 제2 샘플 매트릭스보다, 샘플 분석 장치에서 감쇠 및 변동 중 적어도 하나에 대해서 비교적 더 민감한, 시스템.
  4. 제1항에 있어서,
    제어기는 샘플 분석 장치에 의해서 제2 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 주기적인 분석을 기초로 일차 캘리브레이션 커브를 업데이트하도록 구성되는, 시스템.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 유도-결합 플라즈마 (ICP) 분석 기구를 캘리브레이트하기 위한 방법이며:
    샘플 분석 장치에 의해서 제1 샘플 매트릭스를 가지는 관심 대상 화학적 종의 제1 표준 용액의 분석을 기초로 일차 캘리브레이션 커브를 생성하는 단계;
    샘플 분석 장치에 의해서 제2 샘플 매트릭스를 가지는 관심 대상 화학적 종의 제2 표준 용액의 분석을 기초로 이차 캘리브레이션 커브를 생성하는 단계;
    이차 캘리브레이션 커브의 기울기를 일차 캘리브레이션 커브의 기울기로 나누는 것에 의해서, 이차 캘리브레이션 커브를 일차 캘리브레이션 커브와 연관시키기 위한 이차 캘리브레이션 커브에 대한 매트릭스 보정 인자를 결정하는 단계를 포함하는, 방법.
  9. 제8항에 있어서,
    일차 캘리브레이션 커브를 생성하는 단계는 샘플 분석 장치에 의해서 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 일차 캘리브레이션 커브를 생성하는 단계를 포함하는, 방법.
  10. 제8항에 있어서,
    이차 캘리브레이션 커브를 생성하는 단계는 샘플 분석 장치에 의해서 제2 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 이차 캘리브레이션 커브를 생성하는 단계를 포함하는, 방법.
  11. 제8항에 있어서,
    제1 샘플 매트릭스는, 제2 샘플 매트릭스보다, 샘플 분석 장치에서 감쇠 및 변동 중 적어도 하나에 대해서 비교적 더 민감한, 방법.
  12. 제8항에 있어서,
    샘플 분석 장치에 의해서 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 주기적인 분석을 기초로 일차 캘리브레이션 커브를 업데이트하는 단계를 더 포함하는, 방법.
  13. 삭제
  14. 유도-결합 플라즈마 (ICP) 분석 기구를 캘리브레이트하기 위한 시스템이며:
    샘플 분석 장치에 통신 가능하게 커플링되도록 구성된 적어도 하나의 프로세서; 및
    컴퓨터 프로그램 코드를 포함하는 적어도 하나의 메모리를 포함하고, 적어도 하나의 메모리 및 컴퓨터 프로그램 코드는, 적어도 하나의 프로세서로, ICP 분석 기구가:
    샘플 분석 장치에 의해서 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 일차 캘리브레이션 커브를 생성하게 하고,
    ICP 분석 기구에 의해서 제2 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 이차 캘리브레이션 커브를 생성하게 하고, 그리고
    이차 캘리브레이션 커브의 기울기를 일차 캘리브레이션 커브의 기울기로 나누는 것에 의해서, 이차 캘리브레이션 커브를 일차 캘리브레이션 커브와 연관시키는 매트릭스 보정 인자를 결정하게 하도록
    구성되는, 시스템.
  15. 제14항에 있어서,
    적어도 하나의 프로세서는 추가적으로, ICP 분석 기구가, ICP 분석 기구에 의해서 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 일차 캘리브레이션 커브를 생성하게 하는, 시스템.
  16. 제14항에 있어서,
    적어도 하나의 프로세서는 추가적으로, ICP 분석 기구가, ICP 분석 기구에 의해서 제2 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 분석을 기초로 이차 캘리브레이션 커브를 생성하게 하는, 시스템.
  17. 제14항에 있어서,
    제1 샘플 매트릭스는, 제2 샘플 매트릭스보다, ICP 분석 기구에서 감쇠 및 변동 중 적어도 하나에 대해서 비교적 더 민감한, 시스템.
  18. 제14항에 있어서,
    적어도 하나의 프로세서는 추가적으로, ICP 분석 기구가, ICP 분석 기구에 의해서 제1 샘플 매트릭스 내의 관심 대상 화학적 종의 상이한 농도의 주기적인 분석을 기초로 일차 캘리브레이션 커브를 업데이트하게 하는, 시스템.
  19. 삭제
  20. 삭제
KR1020180173493A 2017-12-29 2018-12-31 Icpms 매트릭스 오프셋 캘리브레이션을 위한 시스템 및 방법 KR102626747B1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762612033P 2017-12-29 2017-12-29
US62/612,033 2017-12-29
US16/234,935 US10978280B2 (en) 2017-12-29 2018-12-28 Systems and methods for ICPMS matrix offset calibration
US16/234,935 2018-12-28

Publications (2)

Publication Number Publication Date
KR20190082154A KR20190082154A (ko) 2019-07-09
KR102626747B1 true KR102626747B1 (ko) 2024-01-17

Family

ID=67058494

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180173493A KR102626747B1 (ko) 2017-12-29 2018-12-31 Icpms 매트릭스 오프셋 캘리브레이션을 위한 시스템 및 방법

Country Status (5)

Country Link
US (1) US10978280B2 (ko)
JP (1) JP7233083B2 (ko)
KR (1) KR102626747B1 (ko)
CN (1) CN110034006B (ko)
TW (1) TWI801481B (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220359178A1 (en) * 2019-08-30 2022-11-10 Dh Technologies Development Pte. Ltd. Method for Mass Spectrometry
DE112020004718T5 (de) * 2019-10-01 2022-07-21 Elemental Scientific, Inc. Automatisierte Inline-Aufbereitung und Entgasung flüchtiger Proben zur Inline-Analyse
JP7382508B2 (ja) 2019-12-17 2023-11-16 エフ. ホフマン-ラ ロシュ アーゲー 少なくとも1つの質量分析装置を較正するための方法
WO2021159225A1 (en) * 2020-02-10 2021-08-19 Yangtze Memory Technologies Co., Ltd. Metal contamination test apparatus and method
DE102020113317A1 (de) * 2020-05-15 2021-11-18 Endress+Hauser Conducta Gmbh+Co. Kg Automatische Probennahmevorrichtung und Verfahren zum automatisierten Bereitstellen einer Probe für eine qualitative und/oder quantitative Bestimmung eines Analyten
CN114002424A (zh) * 2021-12-31 2022-02-01 深圳市帝迈生物技术有限公司 一种样本分析仪及其检测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011569A1 (en) 1997-01-14 2002-01-31 Otsuka Pharmaceutical Co., Ltd. Stable isotope measurement method and apparatus by spectroscopy
US20020157458A1 (en) 2001-04-27 2002-10-31 Schell Michael B. Carbon dioxide sensor for controlling exhaust gas recirculation in diesel engines
US20080198359A1 (en) 2007-02-16 2008-08-21 Hiroshi Sawai Direct icp emission spectral analysis method of solid sample
US20140158881A1 (en) 2011-06-06 2014-06-12 Waters Technologies Corporation Compositions, methods, and kits for quantifying target analytes in a sample
US20150185225A1 (en) 2013-12-27 2015-07-02 Becton, Dickinson And Company System and method for dynamically calibrating and measuring analyte concentration in diabetes management monitors

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159975A (ja) * 1994-12-02 1996-06-21 Procter & Gamble Co:The 洗剤または洗剤原料中のアルミノ珪酸塩、珪酸塩およびリン酸塩の分析方法
US20040171034A1 (en) * 2002-05-03 2004-09-02 Brian Agnew Compositions and methods for detection and isolation of phosphorylated molecules
US6902646B2 (en) * 2003-08-14 2005-06-07 Advanced Energy Industries, Inc. Sensor array for measuring plasma characteristics in plasma processing environments
DE102005054443B4 (de) 2005-11-15 2013-09-26 Fachhochschule Münster Standardsatz zur Kalibrierung, Verfahren zur Herstellung und Verwendung von Standardsätzen
US8143580B1 (en) * 2009-04-14 2012-03-27 Jacob Y Wong Crossed biased filtering NDIR gas sensing methodology
US9121793B2 (en) * 2012-03-21 2015-09-01 Li-Cor, Inc. Semi-open-path gas analysis systems and methods
GB201500377D0 (en) 2015-01-09 2015-02-25 Micromass Ltd Lock mass using chromatographic peaks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020011569A1 (en) 1997-01-14 2002-01-31 Otsuka Pharmaceutical Co., Ltd. Stable isotope measurement method and apparatus by spectroscopy
US20020157458A1 (en) 2001-04-27 2002-10-31 Schell Michael B. Carbon dioxide sensor for controlling exhaust gas recirculation in diesel engines
US20080198359A1 (en) 2007-02-16 2008-08-21 Hiroshi Sawai Direct icp emission spectral analysis method of solid sample
US20140158881A1 (en) 2011-06-06 2014-06-12 Waters Technologies Corporation Compositions, methods, and kits for quantifying target analytes in a sample
US20150185225A1 (en) 2013-12-27 2015-07-02 Becton, Dickinson And Company System and method for dynamically calibrating and measuring analyte concentration in diabetes management monitors

Also Published As

Publication number Publication date
KR20190082154A (ko) 2019-07-09
CN110034006A (zh) 2019-07-19
JP7233083B2 (ja) 2023-03-06
CN110034006B (zh) 2024-03-22
TWI801481B (zh) 2023-05-11
US20190206663A1 (en) 2019-07-04
US10978280B2 (en) 2021-04-13
JP2019144231A (ja) 2019-08-29
TW201937155A (zh) 2019-09-16

Similar Documents

Publication Publication Date Title
US11249101B2 (en) System for collecting liquid samples
KR102626747B1 (ko) Icpms 매트릭스 오프셋 캘리브레이션을 위한 시스템 및 방법
US11041835B2 (en) System for collecting liquid sample
KR102630607B1 (ko) 순수 화학물질 내의 초-저 농축물의 원격 인라인 농축을 위한 자동화된 시스템
US11933698B2 (en) System for collecting liquid samples from a distance
US11761860B2 (en) System for collecting liquid samples and transporting over distances while maintaining a liquid sample segment
KR102604158B1 (ko) 인산 내에서 규소 종을 검출하기 위한 자동화된 시스템
KR20210095216A (ko) 순수 화학물질 내의 초-저 농축물의 원격 인라인 농축 및 균질화를 위한 자동화된 시스템
US11348773B2 (en) Systems and methods for ICPMS matrix offset calibration
KR20210010634A (ko) 액체 샘플의 수집 및 분석에 우선순위를 할당하기 위한 시스템
KR20240037895A (ko) 순수 화학물질 내의 초-저 농축물의 원격 인라인 농축을 위한 자동화된 시스템

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant