KR102623864B1 - 기계용 전기-유압 구동 시스템, 전기-유압 구동 시스템을 갖춘 기계, 및 전기-유압 구동 시스템의 제어 방법 - Google Patents

기계용 전기-유압 구동 시스템, 전기-유압 구동 시스템을 갖춘 기계, 및 전기-유압 구동 시스템의 제어 방법 Download PDF

Info

Publication number
KR102623864B1
KR102623864B1 KR1020217043221A KR20217043221A KR102623864B1 KR 102623864 B1 KR102623864 B1 KR 102623864B1 KR 1020217043221 A KR1020217043221 A KR 1020217043221A KR 20217043221 A KR20217043221 A KR 20217043221A KR 102623864 B1 KR102623864 B1 KR 102623864B1
Authority
KR
South Korea
Prior art keywords
fluid flow
flow line
pump
boost
chamber
Prior art date
Application number
KR1020217043221A
Other languages
English (en)
Other versions
KR20220014888A (ko
Inventor
하오 장
블레이크 칼
데일 반더란
제르마노 프란조니
Original Assignee
파커-한니핀 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 파커-한니핀 코포레이션 filed Critical 파커-한니핀 코포레이션
Publication of KR20220014888A publication Critical patent/KR20220014888A/ko
Application granted granted Critical
Publication of KR102623864B1 publication Critical patent/KR102623864B1/ko

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2239Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance
    • E02F9/2242Control of flow rate; Load sensing arrangements using two or more pumps with cross-assistance including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2289Closed circuit
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2225Control of flow rate; Load sensing arrangements using pressure-compensating valves
    • E02F9/2228Control of flow rate; Load sensing arrangements using pressure-compensating valves including an electronic controller
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2264Arrangements or adaptations of elements for hydraulic drives
    • E02F9/2267Valves or distributors

Abstract

예시적인 유압 시스템이: 실린더 및 피스톤을 포함하는 유압 실린더 작동기로서, 피스톤은 피스톤 헤드 및 피스톤 헤드로부터 연장되는 로드를 포함하고, 피스톤 헤드는 실린더의 내부 공간을 제1 챔버 및 제2 챔버로 분할하고, 유압 실린더 작동기는 불균형화되는, 유압 실린더 작동기; 유압 실린더 작동기의 제1 챔버 또는 제2 챔버에 대한 유체 유동을 제공하여 피스톤을 구동하기 위해서 제1 전기 모터에 의해서 구동되는 제1 펌프; 부스트 유동 라인; 유압 모터 작동기; 및 제2 전기 모터에 의해서 구동되는 제2 펌프로서, 부스트 유동 라인에 유체적으로 커플링되어 부스트 유체 유동을 유압 실린더 작동기에 제공하는, 제2 펌프를 포함한다.

Description

기계용 전기-유압 구동 시스템, 전기-유압 구동 시스템을 갖춘 기계, 및 전기-유압 구동 시스템의 제어 방법
관련 출원에 대한 상호 참조
본원은, 전체가 본원에 참조로 포함되는, 2019년 8월 14일자로 출원된 미국 가출원 제62/886,419호에 대한 우선권을 주장한다.
본 발명은 일반적으로 작업 기계 내에서 적어도 하나의 불균형 유압 실린더 작동기를 연장 및 후퇴시키기 위한 유압 작동 시스템에 관한 것으로서, 여기서 적어도 하나의 불균형 유압 실린더 작동기를 구동하는 정수학적 펌프를 위한 보충 또는 부스트 유동(make-up or boost flow)이, 부가적인 전용 부스트 시스템이 아닌, 작업 기계의 다른 유압 작동기를 구동하는 다른 정수학적 펌프에 의해서 제공된다.
비제한적으로, 유압 굴삭기, 휠 로더(wheel loader), 로딩 셔블(loading shovel), 백호 셔블(backhoe shovel), 광산 장비, 산업용 기계류 등과 같은 작업 기계가, 리프팅 및/또는 틸팅 아암, 붐(boom), 버킷, 조향 및 선회 기능, 이동 수단 등과 같은 하나 이상의 작동 구성요소를 가지는 것이 일반적이다. 일반적으로, 그러한 기계에서, 원동기는 작동기에 유체를 제공하기 위해서 유압 펌프를 구동한다. 중심-개방 또는 폐쇄 중심 밸브가 작동기로의 유체의 유동을 제어한다. 그러한 밸브는, 관통 유동의 스로틀링(throttling)으로 인해서, 큰 파워 손실을 특징으로 한다. 또한, 그러한 통상적인 시스템은, 얼마나 많은 작동기가 사용되는지와 관계 없이, 펌프로부터 일정한 양의 유동을 제공하는 것을 포함할 수 있다. 따라서, 그러한 시스템은 효율이 나쁜 것을 특징으로 한다.
따라서, 작업 기계의 효율을 향상시키는 유압 시스템을 가지는 것이 바람직할 수 있다. 이러한 그리고 다른 고려 사항과 관련하여 본원의 개시 내용이 제공된다.
본 개시 내용은, 기계를 위한 전기-유압 구동 시스템에 관한 구현예를 설명한다.
제1의 예시적인 구현예에서, 본 개시 내용은 유압 시스템을 설명한다. 유압 시스템은: (i) 실린더 및 실린더 내에 활주 가능하게 수용된 피스톤을 포함하는 유압 실린더 작동기로서, 피스톤은 피스톤 헤드 및 피스톤 헤드로부터 연장되는 로드(rod)를 포함하고, 피스톤 헤드는 실린더의 내부 공간을 제1 챔버 및 제2 챔버로 분할하고, 유압 실린더 작동기는, 주어진 방향으로 피스톤을 구동하기 위해서 제1 챔버 또는 제2 챔버로 제공되는 유체의 제1 유체 유량이, 피스톤이 이동할 때 다른 챔버로부터 방출되는 유체의 제2 유체 유량과 상이하도록, 불균형화되는, 유압 실린더 작동기; (ii) 유체 유동을 유압 실린더 작동기의 제1 챔버 또는 제2 챔버로 제공하여 피스톤을 구동하기 위해서, 제1 전기 모터에 의해서 반대되는 회전 방향으로 구동되는 양-방향 유체 유동 공급원이 되도록 구성된 제1 펌프; (iii) 부스트 유체 유동을 제공하도록 또는 제1 유체 유량과 제2 유체 유량 사이의 차이를 포함하는 과다 유체 유동을 수용하도록 구성되는 부스트 유동 라인; (iv) 유압 모터 작동기; 및 (v) 제2 전기 모터에 의해서 구동되는 각각의 양-방향 유체 유동 공급원이 되도록 구성되고 유체 유동을 유압 모터 작동기에 제공하기 위해서 제2 전기 모터에 의해서 반대 방향으로 회전될 수 있는 제2 펌프로서, 제2 펌프가 부스트 유동 라인에 유체적으로 커플링되어 부스트 유체 유동을 유압 실린더 작동기에 제공하는, 제2 펌프를 포함한다.
제2의 예시적인 구현예에서, 본 개시 내용은 기계를 설명한다. 기계는: (i) 복수의 유압 실린더 작동기로서, 복수의 유압 실린더 작동기의 각각의 유압 실린더 작동기가: 실린더 및 실린더 내에 활주 가능하게 수용된 피스톤을 포함하고, 피스톤은 피스톤 헤드 및 피스톤 헤드로부터 연장되는 로드를 포함하고, 피스톤 헤드는 실린더의 내부 공간을 제1 챔버 및 제2 챔버로 분할하고, 각각의 유압 실린더 작동기는, 주어진 방향으로 피스톤을 구동하기 위해서 제1 챔버 또는 제2 챔버로 제공되는 유체의 제1 유체 유량이, 피스톤이 이동할 때 다른 챔버로부터 방출되는 유체의 제2 유체 유량과 상이하도록, 불균형화되며, 복수의 유압 실린더 작동기의 각각의 유압 실린더 작동기는 전기-정수학적 작동 시스템(EHA)에 의해서 작동되고, 전기-정수학적 작동 시스템은, 각각의 유압 실린더 작동기의 제1 챔버 또는 제2 챔버에 유체 유동을 제공하여 피스톤을 구동하기 위해서, 각각의 전기 모터에 의해서 반대되는 회전 방향으로 구동되는 양-방향 유체 유동 공급원이 되도록 구성된 각각의 펌프를 포함하는, 복수의 유압 실린더 작동기; (ii) 부스트 유체 유동을 제공하도록 또는 제1 유체 유량과 제2 유체 유량 사이의 차이를 포함하는 과다 유체 유동을 수용하도록 구성되는 부스트 유동 라인; 및 (iii) 유압 모터 EHA에 의해서 동작되는 유압 모터 작동기로서: 전기 모터에 의해서 구동되는 각각의 양-방향 유체 유동 공급원이 되도록 구성되고 유체 유동을 유압 모터 작동기에 제공하기 위해서 전기 모터에 의해서 반대 방향으로 회전될 수 있는 펌프로서, 펌프는 부스트 유동 라인에 유체적으로 커플링되어 부스트 유체 유동을 각각의 유압 실린더 작동기에 제공하는, 모터 작동기를 포함한다.
제3의 예시적인 구현예에서, 본 개시 내용은 방법을 설명한다. 그러한 방법은: (i) 유압 시스템의 제어기에서, 유압 실린더 작동기의 피스톤을 연장시키는 요청을 수신하는 단계로서, 유압 실린더 작동기는 피스톤이 내부에 활주 가능하게 수용되는 실린더를 포함하고, 피스톤은 피스톤 헤드 및 피스톤 헤드로부터 연장되는 로드를 포함하고, 피스톤 헤드는 실린더의 내부 공간을 헤드 측 챔버 및 로드 측 챔버로 분할하는, 단계; (ii) 그에 응답하여, 제1 펌프를 구동하여 유체 유동을 제1 유체 유동 라인을 통해서 헤드 측 챔버로 제공하고 피스톤을 연장시키기 위해서, 제1 전기 모터에 제1 명령 신호를 송신하는 단계로서, 유압 실린더 작동기는, 피스톤을 연장시키기 위해서 제1 유체 유동 라인을 통해서 헤드 측 챔버로 제공되는 유체의 제1 유체 유량이, 피스톤이 연장될 때 로드 측 챔버로부터 방출되는 유체의 제2 유체 유량보다 크도록 그리고 제2 유체 유동 라인을 통해서 제1 펌프로 역으로 제공하도록, 불균형화되는, 단계; (iii) 제2 펌프를 구동하기 위해서 제2 명령 신호를 제2 전기 모터에 송신하는 단계로서, 제2 펌프는 제2 전기 모터에 의해서 구동되는 양-방향 유체 유동 공급원이 되도록 구성되고 유압 모터 작동기를 구동하기 위해서 제2 전기 모터에 의해서 반대 방향으로 회전될 수 있는, 단계; 및 (iv) 부스트 유체 유동이 제2 유체 유동 라인을 통해서 제1 펌프로 복귀되는 유체와 합쳐지도록 그리고 제1 유체 유량과 제2 유체 유량 사이의 차이를 보충하도록, 부스트 유체 유동을 제2 펌프로부터, 제2 펌프를 제2 유체 유동 라인에 유체적으로 커플링시키는 부스트 유동 라인을 통해서 제공하는 단계를 포함한다.
전술한 요지는 단지 예시적인 것이고 어떠한 방식으로 제한하기 위한 것이 아니다. 전술한 예시적인 양태, 구현예, 및 특징에 더하여, 도면 및 이하의 상세한 설명을 참조할 때 추가적인 양태, 구현예, 및 특징이 명확해질 것이다.
예시적인 예의 특성인 것으로 생각되는 신규 특징이 첨부된 청구항에서 기술된다. 그러나, 예시적인 예뿐만 아니라 그 바람직한 사용 모드, 추가적인 목적 및 설명은, 첨부 도면과 함께 읽을 때, 본 개시 내용의 예시적인 예에 관한 이하의 상세한 설명을 참조하는 것에 의해서 가장 잘 이해될 것이다.
도 1은 예시적인 구현예에 따른, 굴삭기를 도시한다.
도 2는 예시적인 구현예에 따른, 유압 실린더 작동기를 구동하기 위한 전기-정수학적 작동기 시스템을 도시한다.
도 3은 예시적인 구현예에 따른, 굴삭기의 유압 시스템을 도시한다.
도 4는 예시적인 구현예에 따른, 유압 시스템 동작 방법의 흐름도이다.
굴삭기와 같은 예시적인 유압 기계가 다양한 과제를 달성하기 위해서 다수의 유압 작동기를 이용한다. 통상적인 시스템에서, 엔진은 하나 이상의 펌프를 구동하고, 그러한 펌프는 이어서 가압 유체를 작동기 내의 챔버들에 제공한다. 작동기(예를 들어, 피스톤) 표면에 작용하는 가압 유체 힘은 작동기 및 그에 연결된 작업 도구의 이동을 유발한다. 유압 에너지가 이용되면, 유체가 챔버로부터 배액되어(drained) 저압 저장용기로 복귀된다.
통상적인 시스템은, 작동기에 제공되는 유체 및 작동기로부터 저장용기로 복귀되는 유체를 스로틀링하는 밸브를 포함한다. 밸브를 통한 유체 스로틀링은, 기계 듀티 사이클의 과정에 걸쳐 유압 시스템의 효율을 감소시키는 에너지 손실을 유발한다. 유체 스로틀링의 다른 바람직하지 못한 영향은 유압 유체의 가열이고, 이는 냉각 요건 및 비용을 증가시키는 결과를 초래한다. 또한, 중심-개방 밸브를 포함하는 일부 통상적인 시스템에서, 하나 이상의 펌프가, 듀티 사이클 내의 특정 지점에서 얼마나 많은 작동기가 기계의 조작자에 의해서 이용되는 지와 관계 없이, 모든 작동기를 이동시키는데 충분한 많은 양의 유체 유동을 제공한다. 작동기에 의해서 소비되지 않는 과다 유체는 저장용기로 "덤핑된다(dumped)". 예로서, 그러한 유압 시스템의 효율은 20% 정도로 낮을 수 있다. 유압 기계가 듀티 사이클마다 연료를 덜 사용할 수 있게 하기 위해서, 유압 기계의 효율을 향상시키는 것이 바람직할 수 있다. 더 효율적인 유압 기계를 가지는 것은 또한, 통상적인 내연기관-구동형 유압 기계가 아닌, 재충전 가능 배터리를 가지는 전기 시스템의 이용을 가능하게 할 수 있다.
유압 기계의 효율을 향상시키기 위해서, 전술한 통상적인 유압 시스템이 전기-정수학적 작동기 시스템으로 대체될 수 있다. 전기-정수학적 작동기 시스템은, 유체를 유압 실린더와 같은 작동기에 제공하여 작동기의 이동을 제어하기 위해서 정수학적 펌프에 연결되는 양-방향의 가변 속력 전기 모터를 포함할 수 있다. 전기 모터의 속력 및 방향은 작동기에 대한 유체의 유동을 제어한다.
내부에서 이동하도록 구성된 피스톤을 가지는 전형적인 불균형(차동) 유압 실린더에서, 피스톤의 헤드 측에서의 피스톤의 횡단면 면적은 피스톤의 로드 측에서의 피스톤의 횡단면 면적보다 크다. 피스톤이 연장될 때, 피스톤의 헤드 측을 가지는 유압 실린더 챔버를 충진하는데 있어서, 피스톤의 로드 측을 가지는 유압 실린더 챔버로부터 방출되는 것보다 많은 유체가 필요하다. 역으로, 피스톤이 수축될 때, 로드 측 챔버를 충진하는데 있어서, 헤드 측 챔버로부터 방출되는 것보다 적은 유체가 필요하다.
유동 차이를 보충하기 위해서, 전용의 부가적인 유동 부스트 펌프를 이용하여 유동 차이를 제공할 수 있다. 전용의 부가적인 펌프를 가지는 것은 유압 시스템의 비용 및 복잡성을 증가시킬 수 있다. 따라서, 본원에서 설명된 바와 같은 부가적인 부스트 펌프를 이용하는 것을 방지하는 유압 시스템을 가지는 것이 바람직할 수 있다.
도 1은 예시적인 구현예에 따른, 굴삭기(100)를 도시한다. 굴삭기(100)는 붐(102), 아암(104), 버킷(106), 및 회전 플랫폼(110)에 장착된 캡(108)을 포함할 수 있다. 회전 플랫폼(110)은 바퀴 또는 궤도(112)와 같은 궤도를 가지는 하부 캐리지의 상단에 안착될 수 있다. 아암(104)은 또한 디퍼(dipper) 또는 스틱으로 지칭될 수 있다.
붐(102), 아암(104), 버킷(106), 및 회전 플랫폼(110)의 이동은, 유압 실린더 및 유압 모터와 함께, 유압 유체의 이용을 통해서 달성될 수 있다. 특히, 붐(102)은 붐 유압 실린더 작동기(114)로 이동될 수 있고, 아암(104)은 아암 유압 실린더 작동기(116)로 이동될 수 있고, 버킷(106)은 버킷 유압 실린더 작동기(118)로 이동될 수 있다.
회전 플랫폼(110)은 스윙 구동부에 의해서 회전될 수 있다. 스윙 구동부는, 회전 플랫폼(110)이 장착되는 슬루 링(slew ring) 또는 스윙 기어를 포함할 수 있다. 스윙 구동부는 또한, 회전 플랫폼(110) 아래에 배치되고 기어 박스에 커플링되는 스윙 유압 모터 작동기(120)(또한 도 3 참조)를 포함할 수 있다. 기어 박스는, 스윙 기어의 치형부와 결합되는 피니언을 갖도록 구성될 수 있다. 따라서, 가압 유체로 스윙 유압 모터 작동기(120)를 작동시키는 것은 스윙 유압 모터 작동기(120)가 기어 박스의 피니언을 회전시키게 하고, 그에 의해서 회전 플랫폼(110)을 회전시킨다.
캡(108)은 굴삭기(100)의 조작자를 위한 제어 도구를 포함할 수 있다. 예를 들어, 굴삭기(100)는, 굴삭기(100)의 제어기에 전기 신호를 제공하기 위해서 조작자가 이용할 수 있는 우측 조이스틱(122) 및 좌측 조이스틱(124)을 가지는 와이어-구동 시스템을 포함할 수 있다. 이어서, 제어기는, 전술한 다양한 작동기를 구동하고 굴삭기(100)를 동작시키기 위해서, 굴삭기(100)의 다양한 전기-작동 구성요소에 전기 명령 신호를 제공한다. 예로서, 좌측 조이스틱(124)은 아암 유압 실린더 작동기(116) 및 스윙 유압 모터 작동기(120)를 동작시킬 수 있는 반면, 우측 조이스틱(122)은 붐 유압 실린더 작동기(114) 및 버킷 유압 실린더 작동기(118)를 동작시킬 수 있다.
굴삭기(100)의 작동기를 구동하는 유압 시스템의 효율을 향상시키기 위해서, 통상적인 펌프 및 스로틀 밸브 시스템 대신, 본원에서 개시된 전기-정수학적 시스템이 이용될 수 있다.
도 2는 예시적인 구현예에 따른, 전기-정수학적 작동기 시스템(EHA)(200)을 도시한다. EHA(200)는, 도 2에 도시된 바와 같은 유압 실린더 작동기(202)와 같은 임의의 유형의 작동기를 구동하기 위해서 이용될 수 있다. 유압 실린더 작동기(202)는, 예를 들어, 붐 유압 실린더 작동기(114), 아암 유압 실린더 작동기(116), 또는 버킷 유압 실린더 작동기(118)의 임의의 실린더 작동기를 나타낼 수 있다. 그러나, EHA(200)는 또한 스윙 유압 모터 작동기(120)와 같은 유압 모터 작동기를 구동하기 위해서 사용될 수 있다.
유압 실린더 작동기(202)는 실린더(204), 및 실린더(204) 내에 활주 가능하게 수용되고 그 내부에서 선형 방향으로 이동하도록 구성된 피스톤(206)을 포함한다. 피스톤(206)은 피스톤 헤드(208), 및 실린더(204)의 중앙 길이방향 축 방향을 따라서 피스톤 헤드(208)로부터 연장되는 로드(210)를 포함한다. 로드(210)는 (예를 들어, 붐(102), 아암(104), 또는 버킷(106) 그리고 그에 인가되는 임의의 힘을 나타내는) 부하(load)(212)에 커플링된다. 피스톤 헤드(208)는 실린더(204)의 내부 공간을 제1 챔버(214) 및 제2 챔버(216)로 분할한다.
제1 챔버(214)는, 내부의 유체가 피스톤 헤드(208)와 상호 작용함에 따라, 헤드 측 챔버로 지칭될 수 있고, 제2 챔버(216)는, 로드(210)가 내부에 부분적으로 배치됨에 따라, 로드 측 챔버로 지칭될 수 있다. 유체는 작업포트(215)를 통해서 제1 챔버(214)로 그리고 그로부터 유동할 수 있고, 작업포트(217)를 통해서 제2 챔버(216)로 그리고 그로부터 유동할 수 있다.
피스톤 헤드(208)는 직경(D H )을 가지는 한편, 로드(210)는 직경(D R )을 가질 수 있다. 따라서, 제1 챔버(214) 내의 유체는 피스톤 헤드 면적으로 지칭될 수 있고 와 동일한 피스톤 헤드(208)의 횡단면 표면적과 상호 작용한다. 다른 한편으로, 제2 챔버(216) 내의 유체는 피스톤 환형 면적 ()으로 지칭될 수 있는 피스톤(206)의 환형 표면적과 상호 작용한다.
면적(A Annular )은 피스톤 헤드 면적(A H )보다 작다. 따라서, 피스톤(206)이 실린더(204) 내에서 연장되거나(예를 들어, 도 2의 좌측으로 이동하거나) 후퇴될 때(예를 들어, 도 2의 우측으로 이동할 때), 제1 챔버(214) 내로 진행하거나 그로부터 방출되는 유체 유동의 양(Q H )은 제2 챔버(216)로부터 방출되거나 그 내부로 진행하는 유체 유동의 양(Q Annular )보다 많다. 특히, 피스톤(206)이 특정 속도(V)로 이동하는 경우에, 보다 크다. 유동의 차이는 로 결정될 수 있고, 여기에서 AR은 로드(210)의 횡단면 면적이고 와 동일하다. 이러한 구성에서, 유압 실린더 작동기(202)는, 그 하나의 챔버로의/로부터의 유체 유동이 다른 챔버로의/로부터의 유체 유동과 동일하지 않음에 따라, 불균형 작동기로 지칭될 수 있다.
EHA(200)는 유압 실린더 작동기(202)에 대한 유압 유체 유동의 유량 및 방향을 제어하도록 구성된다. 그러한 제어는, 양-방향 유체 유동 공급원으로 구성된 펌프(220)를 구동하기 위해서 이용되는 전기 모터(218)의 속력 및 방향을 제어하는 것에 의해서 달성된다. 펌프(220)는 유체 유동 라인(224)에 의해서 유압 실린더 작동기(202)의 제1 챔버(214)에 연결된 제1 펌프 포트(222), 및 유체 유동 라인(228)에 의해서 유압 실린더 작동기(202)의 제2 챔버(216)에 연결된 제2 펌프 포트(226)를 갖는다. "유체 유동 라인"이라는 용어는 본원 전체를 통해서, 표시된 연결을 제공하는 하나 이상의 유체 통로, 도관 또는 기타를 나타내기 위해서 사용된다.
제1 펌프 포트(222) 및 제2 펌프 포트(226)는 전기 모터(218) 및 펌프(220)의 회전 방향을 기초로 유입구 포트 및 배출구 포트 모두가 되도록 구성된다. 따라서, 전기 모터(218) 및 펌프(220)는 제1 펌프 포트(222)로부터 유체를 끌어 들이고 유체를 제2 펌프 포트(226)로 펌핑하기 위해서 제1 회전 방향으로 회전될 수 있거나, 제2 펌프 포트(226)로부터 유체를 끌어 들이고 유체를 제1 펌프 포트(222)로 펌핑하기 위해서 제2 회전 방향으로 반대로 회전될 수 있다.
도 2에 도시된 바와 같이, 펌프(220) 및 유압 실린더 작동기(202)는 폐쇄 루프 유압 회로로 구성된다. 특히, 유체는, 펌프가 유체를 저장용기로부터 인출하고 이어서 유체를 저장용기로 복귀시키는 개방 루프 회로 대신, 펌프(220)와 유압 실린더 작동기(202) 사이의 루프 내에서 재순환된다. 그 대신, EHA(200)에서, 펌프(220)는 유체를 제1 펌프 포트(222)를 통해서 작업포트(215)로 또는 제2 펌프 포트(226)를 통해서 작업포트(217)로 제공하고, 다른 작업포트로부터 방출되는 유체는 펌프(220)의 상응 포트로 복귀된다. 따라서, 유체는 펌프(220)와 유압 실린더 작동기(202) 사이에서 재순환된다.
예에서, 펌프(220)는 고정 변위 펌프일 수 있고, 펌프(220)에 의해서 제공되는 유체 유동의 양은 전기 모터(218)의 속력에 의해서(즉, 펌프(220)의 입력 샤프트에 커플링된 전기 모터(218)의 출력 샤프트의 회전 속력에 의해서) 제어된다. 예를 들어, 펌프(220)는, 예를 들어 회전 당 입방 인치(in3/rev)로, 펌프(220)에 의해서 생성되거나 제공되는 유체의 양을 결정하는 특정 펌프 변위(P D )를 갖도록 구성될 수 있다. 전기 모터(218)는 분당 회전수(RPM) 단위를 가지는 명령된 속력에서 작동될 수 있다. 따라서, 전기 모터(218)의 속력에 P D 를 곱하는 것은 펌프(220)에 의해서 유압 실린더 작동기(202)에 제공되는 유체 유량(Q)을 분당 입방 인치(in3/min)로 결정한다.
유량(Q)은 다시 피스톤(206)의 선형 속력을 결정한다. 예를 들어, 유체를 제1 챔버(214)에 제공하기 위해서 전기 모터(218)가 펌프(220)를 제1 회전 방향으로 회전시키는 경우에, 피스톤(206)은 속력()으로 연장될 수 있다. 다른 한편으로, 예를 들어, 유체를 제2 챔버(216)에 제공하기 위해서 전기 모터(218)가 펌프(220)를 제2 회전 방향으로 회전시키는 경우에, 피스톤(206)은 속력()으로 후퇴될 수 있다.
도 2에 도시된 바와 같이, 펌프(220)의 하우징 또는 케이스가, 저장용기(232)에 유체적으로 커플링된 배액 누출 라인(230)을 통해서 배액될 수 있다. 따라서, 특히 펌프(220)가 빠른 회전 속력으로 빨리 회전될 때, 펌프(220)의 케이스가 배액 누출 라인(230)을 통해서 자유롭게 배액되어 펌프(220)의 내부 압력을 감소시킬 수 있고, 그에 의해서 펌프 샤프트 밀봉부의 긴 수명을 보장할 수 있다.
EHA(200)는 제1 펌프 포트(222)와 작업포트(215) 사이에서 유체 유동 라인(224) 내에 배치된 제1 부하-유지 밸브(234)를 더 포함한다. EHA(200)는 또한 제2 펌프 포트(226)와 작업포트(217) 사이에서 유체 유동 라인(228) 내에 배치된 제2 부하-유지 밸브(236)를 포함한다. 부하-유지 밸브(234, 236)는, 피스톤(206)이 제어되지 않는 방식으로 이동하는 것을 방지하는(즉, 부하(212)가 떨어지는 것(dropping)을 방지하는) 압력 제어 밸브로서 구성된다. 특히, 부하-유지 밸브(234, 236)는, 펌프(220)로부터 챔버(214, 216)로의 자유로운 유동을 허용하는 한편 작동될 때까지 유체가 챔버(214, 216)로부터 다시 펌프(220)로 유동하는 것을 차단하는 체크 밸브로서 동작하도록 구성된다. "차단"이라는 용어는 본원 전체를 통해서, 예를 들어, 분당 몇 방울의 최소 또는 누출 유동을 제외하고, 유체 유동을 실질적으로 방지한다는 것을 나타내기 위해서 사용된다.
예로서, 부하-유지 밸브(234, 236)는, 에너지화될(energized) 때 각각의 부하-유지 밸브(234, 236) 내의 이동 요소(예를 들어, 포핏)가 이동하게 하고 각각의 챔버(214, 216)로부터 펌프(220)로의 유체 유동을 허용하는, 솔레노이드 코일(235, 237)을 각각 포함하는 솔레노이드 작동기를 가질 수 있다. 예를 들어, 피스톤(206)을 연장시키기 위해서, 펌프(220)는 유체 유동을 (작동되지 않는) 부하-유지 밸브(234)를 통해서 제1 펌프 포트(222)로부터, 작업포트(215)를 통해서 제1 챔버(214)로 제공할 수 있다. 제2 챔버(216)로부터 방출되는 유체는, 제2 챔버(216)로부터 제2 펌프 포트(226)로의 유체 유동 경로를 개방하기 위해서 솔레노이드 코일(237)을 에너지화하는 것에 의해서 부하-유지 밸브(236)가 작동될 때까지, 부하-유지 밸브(236)에 의해서 차단된다.
역으로, 피스톤(206)을 후퇴시키기 위해서, 펌프(220)는 유체 유동을 (작동되지 않는) 부하-유지 밸브(236)를 통해서 제2 펌프 포트(226)로부터, 작업포트(217)를 통해서 제2 챔버(216)로 제공할 수 있다. 제1 챔버(214)로부터 방출되는 유체는, 제1 챔버(214)로부터 제1 펌프 포트(222)로의 유체 유동 경로를 개방하기 위해서 솔레노이드 코일(235)을 에너지화하는 것에 의해서 부하-유지 밸브(234)가 작동될 때까지, 부하-유지 밸브(234)에 의해서 차단된다.
예에서, 부하-유지 밸브(234, 236)는, 작동 시에 완전히 개방되는 온/오프 밸브일 수 있다. 다른 예에서, 유체가 방출되는 챔버(챔버(216, 216) 중 하나) 내의 유체의 압력 레벨을 제어하는 것이 바람직할 수 있다. 이러한 예에서, 부하-유지 밸브(236, 236)는, 유체가 방출되는 각각의 챔버 내에서 특정 배압을 달성하는 특정 크기의 관통 개구부를 갖도록 변경될 수 있는 비례 밸브로서 구성될 수 있다.
일부 경우에, 유압 실린더 작동기(202)는 부하(212)에 의해서 유발되는 큰 힘을 받을 수 있고(예를 들어, 버킷(106)이 굴착 사이클 중에 단단한 바위를 타격하는 것), 이는, 부하-유지 밸브(234, 236)가 챔버(214, 216)로부터의 유체 유동을 차단함에 따라, 양 챔버(216, 216) 내에서 과다-가압을 유발한다. 과다한 외부 과부하가 피스톤(206)에 인가되는 경우에 발생 가능한 과다-가압으로부터 실린더(204)를 보호하기 위해서, EHA(200)는 부하-유지 밸브(234, 236)와 유압 실린더 작동기(202) 사이에 배치되는 작업 포트 압력 릴리프 밸브 조립체(238)를 포함한다.
작업 포트 압력 릴리프 밸브 조립체(238)는, 제1 챔버(214)를 보호하도록 구성되고 유체 유동 라인(224)과 공통 유체 유동 라인(241) 사이에 연결되는 압력 릴리프 밸브(240)를 포함할 수 있다. 작업 포트 압력 릴리프 밸브 조립체(238)는 또한, 제2 챔버(216)를 보호하도록 구성되고 유체 유동 라인(228)과 공통 유체 유동 라인(241) 사이에 연결되는 압력 릴리프 밸브(242)를 포함할 수 있다. 압력 릴리프 밸브(240, 242)는, 각각의 챔버(214, 216) 내의 유체의 압력 레벨이 300 바아(bar) 또는 4350 평방 인치 당 파운드(psi)와 같은 임계 압력 값을 초과할 때, 개방되도록 그리고 (후술되는 바와 같이 부스트 유동 라인(256)에 유체적으로 커플링되는) 공통 유체 유동 라인(241)으로의 유체 유동 경로를 제공하도록 구성된다.
작업 포트 압력 릴리프 밸브 조립체(238)는, 각각 압력 릴리프 밸브(240, 242)와 병렬로 배치되는 캐비테이션-방지 체크 밸브(243, 244)를 더 포함할 수 있다. 캐비테이션-방지 체크 밸브(243, 244)는 챔버(214, 216) 중 하나 내의 캐비테이션 가능성을 방지하거나 감소시키도록 구성된다. 특히, 캐비테이션-방지 체크 밸브(243, 244)는, 챔버(214, 216) 내의 유체의 압력 레벨이 공통 유체 유동 라인(241) 내의 유체의 압력 레벨 미만으로 떨어질 때, 공통 유체 유동 라인(241)으로부터 챔버(214, 216)로의 유체 유동 경로를 제공한다.
추가적으로, 펌프(220)는 또한 펌프 포트(222, 226)에서 과다-가압을 받을 수 있다. 예를 들어, 펌프(220)가 작동되는 동안 양 부하-유지 밸브(234, 236)가 일시적으로 함께 작동되는 경우에 또는 상응 부하-유지 밸브가 작동되는 동안 과다 부하 상황으로 인해서 챔버(214, 216) 중 하나 내의 압력 레벨이 상당히 증가되는 경우에, 펌프 포트(222, 226)는 과다-가압을 받을 수 있다. 과다-가압 가능성으로부터 펌프(220)를 보호하기 위해서, EHA(200)는 또한 펌프(220)와 부하-유지 밸브(234, 236) 사이에 배치된 펌프 압력 릴리프 밸브 조립체(246)를 포함할 수 있다.
펌프 압력 릴리프 밸브 조립체(246)는, 제1 펌프 포트(222)를 보호하도록 구성되고 유체 유동 라인(224)과 공통 유체 유동 라인(241) 사이에 연결되는 압력 릴리프 밸브(248)를 포함할 수 있다. 펌프 압력 릴리프 밸브 조립체(246)는 또한, 제2 펌프 포트(226)를 보호하도록 구성되고 유체 유동 라인(228)과 공통 유체 유동 라인(241) 사이에 연결되는 압력 릴리프 밸브(250)를 포함할 수 있다. 압력 릴리프 밸브(248, 250)는, 유체 유동 라인(224, 228) 내의 유체의 압력 레벨이 250 바아 또는 3625 psi와 같은 임계 압력 값을 초과할 때, 개방되도록 그리고 공통 유체 유동 라인(241)으로의 유체 유동 경로를 제공하도록 구성된다. 따라서, 예에서, 압력 릴리프 밸브(248, 250)의 압력 설정은 압력 릴리프 밸브(240, 242)의 각각의 압력 설정보다 낮을 수 있다.
펌프 압력 릴리프 밸브 조립체(246)는, 각각 압력 릴리프 밸브(248, 250)와 병렬로 배치되는 캐비테이션-방지 체크 밸브(251, 252)를 더 포함할 수 있다. 캐비테이션-방지 체크 밸브(251, 252)는 펌프 포트(222, 226) 중 하나 내의 캐비테이션 가능성을 방지하거나 감소시키도록 구성된다. 특히, 캐비테이션-방지 체크 밸브(251, 252)는, 펌프 포트(222, 226)에서의 압력 레벨이 공통 유체 유동 라인(241) 내의 유체의 압력 레벨 미만일 때, 유체 유동 라인(224, 228)을 통해서 공통 유체 유동 라인(241)으로부터 펌프 포트(222, 226)로의 유체 유동 경로를 제공한다.
전술한 바와 같이, 유압 실린더 작동기(202)는 불균형화되고, 그에 따라 제1 챔버(214)에 제공되거나 그로부터 방출되는 유체 유량의 양은 제2 챔버(216)에 제공되거나 그로부터 방출되는 유체 유량의 양보다 많다. 따라서, 제1 펌프 포트(222)로부터 또는 제1 펌프 포트(222)에서 제1 챔버(214)로부터 또는 제1 챔버(214)에 제공되거나 수용되는 유체 유량의 양은, 제2 펌프 포트(226)로부터 또는 제2 펌프 포트(226)에서 제2 챔버(216)로부터 또는 제2 챔버(216)에 제공되거나 수용되는 유체 유량의 양보다 많다. 펌프(220)에 의해서 제공되는 유체 유량과 그 곳에서 수용되는 유체 유량 사이의 그러한 불일치는 캐비테이션을 유발할 수 있고 펌프(220)가 적절히 동작하지 못할 수 있다. EHA(200)는 유체 유량의 그러한 불일치를 보상하기 위해서 유체 유량을 부스팅하기 위한 구성을 제공한다.
특히, EHA(200)는, 보충 또는 부스트 유동 라인(256)에 연결된, 실린더(204)의 챔버(214, 216)를 공통 유체 유동 라인(241)에 유체적으로 커플링시키도록 구성된 리버스 셔틀 밸브(254)를 포함할 수 있다. 리버스 셔틀 밸브(254)는 펌프(220)에 걸친 압력차(즉, 제1 유체 유동 라인(224)과 제2 유체 유동 라인(228) 사이의 압력차)에 응답하도록 구성된다.
예에서, 리버스 셔틀 밸브(254)는, 위치가 펌프(220)에 걸친 차압에 의해서 결정되는 셔틀 요소(예를 들어, 포핏 또는 스풀)를 내부에 가지는, 파일롯-동작형(pilot-operated), 3-위치 셔틀 밸브로서 구성될 수 있다. 리버스 셔틀 밸브(254)는 유체 유동 라인(224)에 유체적으로 커플링된 제1 파일롯 포트(258) 및 유체 유동 라인(228)에 유체적으로 커플링된 제2 파일롯 포트(260)를 가질 수 있다.
리버스 셔틀 밸브(254)는 또한, 공통 유체 유동 라인(241)을 통해서 부스트 유동 라인(256)에 유체적으로 커플링된 제3 또는 부스트 포트(262)를 갖는다. 리버스 셔틀 밸브(254)는 유체 유동 라인들(224 및 228) 사이의 차압에 의해서 동작되어: (i) 유체 유동 라인(224) 내의 압력이 미리 결정된 양만큼 유체 유동 라인(228) 내의 압력 레벨을 초과할 때, 유체 유동 라인(228)을 공통 유체 유동 라인(241)에 연결하여, 공통 유체 유동 라인(241)을 통해서 유체 유동 라인(228)으로 보충 또는 부스트 유체를 공급하고, (ii) 유체 유동 라인(228) 내의 압력이 미리 결정된 양만큼 유체 유동 라인(224) 내의 압력 레벨을 초과할 때, 제1 챔버(214)로부터의 과다 유체가 공통 유체 유동 라인(241)에 의해서 수용될 수 있도록 그리고 부스트 유동 라인(256)에 제공될 수 있도록, 유체 유동 라인(224)을 공통 유체 유동 라인(241)에 연결한다.
구체적으로, 피스톤(206)의 연장을 위해 유체를 유체 유동 라인(224)에 공급하기 위해서 펌프(220)가 전기 모터(218)에 의해서 구동되는 경우에, 펌프(220)에 걸친 압력차는 리버스 셔틀 밸브(254)의 셔틀 요소를 이동시켜 부스트 포트(262)를 파일롯 포트(260)에 연결하고, 그에 의해서 유체 유동 라인(228)을 공통 유체 유동 라인(241)(그리고 부스트 유동 라인(256))에 유체적으로 커플링시키는 한편 유체 유동 라인(224)으로부터 공통 유체 유동 라인(241)으로의 유동을 차단한다. 따라서, 리버스 셔틀 밸브(254)는 부스트 유동 라인(256)으로부터 펌프 포트(226)로의 유체 유동 경로를 제공하고, 그에 따라 제1 챔버(214)에 제공되는 유체의 유량과 유체 유동 라인(228)을 통해서 제2 챔버(216)로부터 복귀되는 유체의 유량 사이의 차이를 보충한다.
역으로, 피스톤(206)의 후퇴를 위해 펌프(220)가 반대 방향으로 구동되는 경우에, 펌프(220)에 걸친 압력차는 리버스 셔틀 밸브(254)의 셔틀 요소를 이동시켜 파일롯 포트(258)를 부스트 포트(262)에 연결하고, 그에 의해서 유체 유동 라인(224)을 공통 유체 유동 라인(241)에 유체적으로 커플링시키는 한편 유체 유동 라인(228)으로부터 공통 유체 유동 라인(241)으로의 유동을 차단한다. 이러한 방식으로, 리버스 셔틀 밸브(254)는 유체 유동 라인(224)을 통해서 제1 챔버(214)로부터 부스트 유동 라인(256)으로 복귀되는 유체의 과다 유동을 위한 유체 유동 경로를 제공한다.
이러한 구성에서, 리버스 셔틀 밸브(254)는, 유체 유동 라인(224, 228) 중 하나가 공통 유체 유동 라인(241)으로부터 분리될 때, 다른 유체 유동 라인이 연결되도록, 그에 의해서 피스톤(206)의 유압 록-업(hydraulic lock-up) 가능성을, 제거하지는 못하더라도, 감소시키도록, 구성된다.
"리버스"라는 용어는 리버스 셔틀 밸브(254)로부터 기인하는데, 이는 리버스 셔틀 밸브가 통상적인 셔틀 밸브와 상이하기 때문이다. 통상적인 셔틀 밸브는 제1 유입구, 제2 유입구, 및 배출구를 가질 수 있다. 밸브 요소가 그러한 통상적인 셔틀 밸브 내에서 자유롭게 이동하고, 그에 따라 유체로부터의 압력이 특정 유입구를 통해서 가해질 때, 이는 밸브 요소를 대향 유입구를 향해서 민다. 이러한 이동은, 유체가 특정 유입구로부터 배출구까지 유동할 수 있게 허용하면서, 대향 유입구를 막을 수 있다. 이러한 방식으로, 하나의 공급원으로부터 다른 공급원으로의 역류가 없이, 2개의 상이한 유체 공급원이 가압 유체를 배출구에 제공할 수 있다. 리버스 셔틀 밸브(254)는 전용 배출구 포트를 가지지 않고, 그 대신 유체 유동을 부스트 포트(262)로부터 파일롯 포트(260)로 제공하거나 유체 유동을 파일롯 포트(258)로부터 부스트 포트(262)로 제공한다.
전술한 예시적인 구성에서, 리버스 셔틀 밸브(254)는 파일롯-동작형 밸브이고, 여기에서 셔틀 요소는 유체 유동 라인들(224, 228) 사이의 차압에 응답하여 이동한다. 다른 예에서, EHA(200)의 전기 제어기(예를 들어, 후술되는 제어기(282))가 유체 유동 라인(224, 228) 내의 감지된 압력 레벨을 기초로 셔틀 요소를 이동시키는 전기 신호를 제공할 수 있도록, 리버스 셔틀 밸브(254)가 전기-작동될 수 있다.
일부 예에서, 펌프(220)는, 전기 모터(218)에 의해서 특정 임계 속력 초과로(예를 들어, 500 RPM 초과로) 작동될 때, 더 효율적일 수 있다. 그러나, 일부 동작 조건 하에서, 펌프(220)가 특정 임계 속력에서 공급하는 양 미만의 적은 양의 유량으로 달성될 수 있는 선형 속력에서 피스톤(206)을 연장 또는 후퇴시키는 것이 바람직할 수 있다. 이러한 예 및 동작 조건에서, 유압 실린더 작동기(202)에 의해서 소비되지 않은 과다 유동을 저장용기(232)에 제공하면서, 펌프(220)를 효율적으로 동작시키기 위한 특정 임계 속력에서 펌프(220)를 동작시키는 것이 바람직할 수 있다.
예를 들어, EHA(200)는, 펌프(220)와 병렬로 배치되는 셔틀 밸브(264)를 포함할 수 있다. 셔틀 밸브(264)는 유체 유동 라인(224)에 유체적으로 커플링된 제1 유입구 포트(266), 유체 유동 라인(228)에 유체적으로 커플링된 제2 유입구 포트(268), 및 배출구 포트(270)를 가질 수 있다. 셔틀 밸브(264)는, 유입구 포트들(266, 268) 사이의 압력차를 기초로 이동될 수 있는 셔틀 요소를 내부에 가질 수 있다. 유체 유동 라인(224) 내의 압력 레벨이 유체 유동 라인(228) 내의 압력 레벨보다 높은 경우에, 유체는 유입구 포트(266)로부터 배출구 포트(270)로 제공될 수 있다. 역으로, 유체 유동 라인(224) 내의 압력 레벨이 유체 유동 라인(228) 내의 압력 레벨보다 낮은 경우에, 유체는 유입구 포트(268)로부터 배출구 포트(270)로 제공될 수 있다.
EHA(200)는 우회 밸브(272)를 더 포함할 수 있다. 우회 밸브(272)는, 예를 들어, 전기-작동되는 상시-폐쇄형 밸브(electrically-actuated normally-closed valve)로서 구성될 수 있다. 우회 밸브(272)가 작동되지 않을 때, 우회 밸브는 유체가 셔틀 밸브(264)의 배출구 포트(270)로부터 유동하는 것을 차단한다. 다른 한편으로, 우회 밸브(272)의 솔레노이드 코일(274)에 명령 신호가 제공되는 경우에, 우회 밸브(272)가 개방되어 배출구 포트(270)로부터 저장용기(232)로의 유체 유동 경로를 제공한다.
따라서, 피스톤(206)을 위한 느린 연장 속력 명령을 달성하는 유체 유량의 양보다 많은 유체 유동을 펌프(220)가 공급하는 예 및 동작 조건에서, 우회 밸브(272)는, 과다 유동이 유체 유동 라인(224)으로부터 유입구 포트(266)를 통해서 배출구 포트(270)에, 이어서 우회 밸브(272)를 통해서 저장용기(232)에 제공될 수 있도록, 작동된다. 유사하게, 피스톤(206)을 위한 느린 후퇴 속력 명령을 달성하는 유체 유량의 양보다 많은 유체 유동을 펌프(220)가 공급하는 예 및 동작 조건에서, 우회 밸브(272)는, 과다 유동이 유체 유동 라인(228)으로부터 유입구 포트(268)를 통해서 배출구 포트(270)에, 이어서 우회 밸브(272)를 통해서 저장용기(232)에 제공될 수 있도록, 작동된다.
예에서, EHA(200)는, 유체 유동 라인(275)을 통해서 우회 밸브(272)에 유체적으로 커플링된 열 릴리프 밸브(276)를 포함할 수 있다. 유체 유동 라인(275) 내의 유체의 온도가 상승되어 유체 유동 라인(275) 내의 유체의 압력이 특정 값을 초과하는 경우에, 열 릴리프 밸브(276)가 개방되어 유체 유동 라인(275) 내의 유체를 경감할 수 있고 그에 따라 내부의 압력 레벨을 낮출 수 있다. 예에서, EHA(200)는 또한 유압 유체로부터 열을 추출하기 위한 열 교환기(278), 및 저장용기(232)로의 복귀 전에 유체를 필터링하기 위한 필터 조립체(280)를 포함할 수 있다.
도 2에 도시된 바와 같이, EHA(200)는 제어기(282)를 포함할 수 있다. 제어기(282)는 하나 이상의 프로세서 또는 마이크로프로세서를 포함할 수 있고, 데이터 저장부(예를 들어, 메모리, 일시적 컴퓨터-판독 가능 매체, 비-일시적 컴퓨터-판독 가능 매체 등)를 포함할 수 있다. 데이터 저장부는 그에 저장된 명령어를 가질 수 있고, 그러한 명령어는, 제어기(282)의 하나 이상의 프로세서에 의해서 실행될 때, 제어기(282)가 본원에서 설명된 동작을 수행하게 한다.
제어기(282)는 다양한 센서 또는 입력 장치로부터 신호를 통해서 센서 정보를 포함하는 입력 정보를 수신할 수 있고, 그에 응답하여, EHA(200)의 여러 구성요소에 전기 신호를 제공할 수 있다. 예를 들어, 제어기(282)는 (예를 들어, 굴삭기(100)의 조이스틱(122, 124)으로부터) 명령 또는 입력을 수신하여 (예를 들어, 피스톤(206)을 연장 또는 수축시키기 위해서) 피스톤(206)을 주어진 방향으로 특정 희망 속력으로 이동시킬 수 있다. 제어기(282)는 또한 피스톤(206)의 속력의 하나 이상의 위치, EHA(200)의 여러 유압 라인, 챔버 또는 포트 내의 압력 레벨, 부하(212)의 크기 등을 나타내는 센서 정보를 수신할 수 있다. 그에 응답하여, 제어기(282)는 명령 신호를 전력 전자 모듈(284)을 통해서 전기 모터(218)에 그리고 솔레노이드 코일(235) 또는 솔레노이드 코일(237)에 제공하여, 피스톤(206)을 제어 방식으로 명령된 방향으로 그리고 희망하는 명령된 속력으로 이동시킬 수 있다. 도면 내의 시각적 차단을 줄이기 위해서, 제어기(282)로부터 솔레노이드 코일(235, 237, 및 274)까지의 명령 신호 라인을 도 2에 도시하지 않았다. 그러나, 제어기(282)가 EHA(200) 및 굴삭기(100)의 다양한 솔레노이드 코일, 입력 장치, 센서 등에 (예를 들어, 유선 또는 무선을 통해) 전기적으로-커플링된다는 것을 이해하여야 한다.
전력 전자 모듈(284)은, 예를 들어, 굴삭기(100)의 배터리(286)로부터 제공되는 직류(DC) 전력을 전기 모터(218)를 구동할 수 있는 3-상 전력으로 변환하는 것을 지원할 수 있는 반도체 스위칭 요소(트랜지스터)의 배열체를 가지는 인버터를 포함할 수 있다. 배터리(286)는 또한 제어기(282)에 전기적으로-커플링되어, 전력을 그에 제공할 수 있고 그로부터 명령을 수신할 수 있다. 다른 예에서, 굴삭기(100)가, 배터리(286)를 통해서 전기적으로 추진되는 대신, 내연기관(ICE)에 의해서 추진되는 경우에, 전기 발전기가 ICE에 커플링되어 전력 전자 모듈(284)에 대한 전력을 생산할 수 있다.
피스톤(206)을 연장시키기 위해서(즉, 피스톤(206)을 도 2의 좌측으로 이동시키기 위해서), 제어기(282)는 명령 신호를 전력 전자 모듈(284)에 송신하여 전기 모터(218)를 동작시킬 수 있고 펌프(220)를 제1 회전 방향으로 회전시킬 수 있다. 그에 따라, 유체가 펌프 포트(222)로부터 유체 유동 라인(224)을 통해서 그리고 (작동되지 않은) 부하-유지 밸브(234)를 통해서 제1 챔버(214)에 제공되어 피스톤(206)을 연장시킨다.
유체가 제2 챔버(216)로부터 펌프 포트(226)까지 유동할 수 있도록, 제어기(282)는 명령 신호를 부하-유지 밸브(236)의 솔레노이드 코일(237)로 송신하여 이를 작동시키고 제2 챔버(216)로부터 펌프 포트(226)까지의 유체 유동 경로를 개방한다. 펌프(220)에 의해서 유체 유동 라인(224)을 통해서 제공된 가압 유체는 리버스 셔틀 밸브(254)의 셔틀 요소를 이동시켜 부스트 유동 라인(256)을 유체 유동 라인(228)에 연결하고, 그에 따라, 펌프 포트(226)로 함께 유동하기 전에, 제2 챔버(216)로부터 방출된 유체와 합쳐지는 보충 또는 부스트 유동을 제공한다. 부스트 유동의 보충()은 로서 결정되고, 여기에서 A R 은 로드(210)의 횡단면 면적이고, V는 전술한 바와 같은 피스톤(206)의 속력이다.
따라서, 펌프 포트(226)에 제공되는 유량의 양은, 펌프(220)에 의해서 펌프 포트(222) 및 유체 유동 라인(224)을 통해서 제1 챔버(214)에 제공되는 유량의 양과 실질적으로 동일하다. 특히, 유체 유동 라인(228)을 통해서 챔버(216)로부터 펌프 포트(226)로 복귀되는 유체는 낮은 압력 레벨을 가지고, 그에 따라 부스트 유동이, 펌프 포트(226)로 복귀되는 유동의 낮은 압력 레벨과 매칭되는 낮은 압력 레벨로 제공될 수 있다. 예를 들어, 부스트 유동은, 부하(212)(부하(212)는 저항인 것으로 가정된다)에 대항하여(against) 피스톤(206)을 연장시키기 위해서 펌프(220)에 의해서 제1 챔버(214)에 제공될 수 있는 4500 psi와 같은 높은 압력 레벨에 대비되는, 10 내지 35 바아 또는 145 내지 500 psi 범위 내의 압력 레벨을 가질 수 있다.
피스톤(206)을 후퇴시키기 위해서(즉, 피스톤(206)을 도 2의 우측으로 이동시키기 위해서), 제어기(282)는 명령 신호를 전력 전자 모듈(284)에 송신하여 전기 모터(218)를 동작시킬 수 있고 펌프(220)를, 제1 회전 방향에 반대되는, 제2 회전 방향으로 회전시킬 수 있다. 그에 따라, 유체가 펌프 포트(226)로부터 유체 유동 라인(228)을 통해서 그리고 (작동되지 않은) 부하-유지 밸브(236)를 통해서 제2 챔버(216)에 제공되어 피스톤(206)을 후퇴시킨다.
유체가 제1 챔버(214)로부터 펌프 포트(222)까지 유동할 수 있도록, 제어기(282)는 명령 신호를 부하-유지 밸브(234)의 솔레노이드 코일(235)로 송신하여 이를 작동시키고 제1 챔버(214)로부터 펌프 포트(222)까지의 유체 경로를 개방한다. 펌프(220)에 의해서 유체 유동 라인(228)을 통해서 제공된 가압 유체는 리버스 셔틀 밸브(254)의 셔틀 요소를 이동시켜 유체 유동 라인(224)을 부스트 유동 라인(256)에 연결하고, 그에 의해서 제1 챔버(214)로부터 복귀되는 과다 유동을 부스트 유동 라인(256)에 제공한다. 과다 유동은 로서 결정될 수 있다. 따라서, 제1 챔버(214)로부터 펌프 포트(222)로 복귀되는 유체의 유량의 양은 펌프(220)에 의해서 펌프 포트(226) 및 유체 유동 라인(228)을 통해서 제2 챔버(216)로 제공되는 유동의 양과 실질적으로 동일한 한편, 제1 챔버(214)로부터의 과다 유동은 부스트 유동 라인(256)에 제공된다.
예에서, 부가적인 부스트 펌프 및 연관된 유체 연결부를 포함할 수 있는 전용 부스트 시스템을 이용하여 유체를 부스트 유동 라인(256)에 제공할 수 있고 그로부터 과다 유체 유동을 수용할 수 있다. 그러한 전용 부스트 시스템은 비용 및 복잡성을 유압 시스템에 부가한다.
또한, ICE에 의해서 구동되는 통상적인 기계에서, ICE는 일반적으로 일정 속력으로 작동되고, 부스트 펌프는 ICE에 직접적으로 커플링될 수 있고, 그에 의해서, 작동기가 필요로 하지 않을 때에도, 유체 유동을 계속적으로 제공할 수 있다. 그러한 불필요한 유체 유동은 에너지를 낭비하여, 기계가 비효율적이 되게 한다.
전기 모터에 의해서 구동되는 부스트 펌프를 가지는 (예를 들어, 배터리에 의해서 구동되는) 전기 기계에서, 부스트 펌프와 연관된 전용 전기 모터 및 전력 전자기기의 비용이 기계의 비용에 부가된다. 따라서, 전용 부스트 시스템이 없는 기계의 유압 시스템을 구성하는 것, 그러나 그보다는 부스트 유동을 제공하기 위해서 기존 펌프 및 모터를 이용하는 방식으로 유압 시스템을 구성하는 것, 그에 의해서 시스템의 비용을 감소시키고 그 효율을 높이는 것이 바람직할 수 있다.
도 3은 예시적인 구현예에 따른, 굴삭기(100)의 유압 시스템(300)을 도시한다. 유압 시스템(300)은, 굴삭기(100)의 여러 작동기를 제어하는 EHA(200A, 200B, 200C, 및 200D)를 포함한다. 특히, EHA(200A 내지 200C)는 유압 실린더 EHA이고, 그에 따라 EHA(200A)는 붐 유압 실린더 작동기(114)를 제어하고, EHA(200B)는 아암 유압 실린더 작동기(116)를 제어하고, EHA(200C)는 버킷 유압 실린더 작동기(118)를 제어하는 반면, EHA(200D)는 스윙 유압 모터 작동기(120)를 제어하는 유압 모터 EHA이다.
EHA(200A, 200B, 200C, 및 200D)는 도 2에 대해서 전술한 EHA(200)의 구성요소와 동일한 구성요소를 포함한다. 그에 따라, EHA(200A, 200B, 200C, 및 200D)의 구성요소 또는 요소는, EHA(200A, 200B, 200C, 및 200D)에 각각 상응하도록 접미어 "A", "B", "C,", 또는 "D"를 갖는, EHA(200)에 대해서 사용된 것과 동일한 참조 번호로 표시된다. EHA(200A, 200B, 200C, 및 200D)의 구성요소는 전술한 바와 같은 EHA(200)의 구성요소와 유사한 방식으로 동작된다.
또한, 도면 내의 시각적 차단을 줄이기 위해서, 제어기(282), 전력 전자 모듈(284), 및 배터리(286)를 도 3에 도시하지 않았다. 그러나, 유압 시스템(300)이, 제어기(282)와 유사한 방식으로 유압 시스템(300)의 여러 구성요소를 동작시키고 작동시키도록 구성된 제어기(282)와 같은 제어기를 포함한다는 것을 이해하여야 한다. 또한, 전기 모터(218A, 218B, 218C, 및 218D)가, 전력 전자 모듈(284)과 유사한 각각의 전력 전자 모듈에 의해서 구동되거나 제어된다는 것을 이해하여야 한다. 배터리(286)와 유사한 배터리가 또한 유압 시스템(300)의 여러 구성요소 및 모듈에 전력을 공급할 수 있다.
불균형 작동기들에 부스트 유동을 제공할 수 있는 전용 부스트 시스템을 가지는 대신, 스윙 펌프(220D)가 부스트 시스템을 동작시켜 부스트 유동을 제공하도록, 유압 시스템(300)이 구성된다. 특히, EHA(200A, 200B, 200C)의 우회 밸브(272A, 272B, 272C)가 유체 유동 라인(275)을 통해서 저장용기(232)에 유체적으로 커플링되는 한편, 스윙 유압 모터 작동기(120)의 EHA(200D)의 우회 밸브(272 D)는 부스트 유동 라인(256)에 유체적으로 커플링된다.
이러한 구성에서, 임의의 불균형 작동기에 의해서 부스트 유동이 요청되는 경우에, 굴삭기(100)의 제어기는 우회 밸브(272D)에 개방을 명령할 수 있으며, 전기 모터(218D)에 명령하여 스윙 펌프(220D)를 회전시킬 수 있고 부스트 유체 유동을 셔틀 밸브(264D) 및 우회 밸브(272D)를 통해서 부스트 유동 라인(256)에 제공할 수 있다. 특히, 제어기는 불균형 작동기에 의해서 요청된 유량의 양을 결정할 수 있고, 전기 모터(218D)에 명령하여, 요청된 유체 유량의 요청된 양을 생성하는 특정 속력으로 회전되게 할 수 있다.
또한, 유압 시스템(300)은, 피스톤이 후퇴되는 불균형 작동기의 일부로부터 복귀되는 과다 유동이, 피스톤이 연장되는 다른 불균형 작동기에 의해서 사용될 수 있게 한다. 예를 들어, 제1 작동기의 제1 피스톤이 후퇴되고 그에 따라 과다 유동이 제1 작동기로부터 부스트 유동 라인(256)으로 제공되는 한편, 제2 작동기의 제2 피스톤이 연장되고 그에 따라 부스트 유동 라인(256)으로부터의 부스트 유동을 소비하는 경우에, 제1 작동기로부터의 과다 유동이 부스트 유동 라인(256)을 통해서 제2 작동기에 제공될 수 있다.
전술한 바와 같이, 부스트 유체 유동은 낮은 압력 레벨(예를 들어, 10 내지 35 바아)을 가지는 복귀 유동과 합쳐진다. 예에서, 복귀 유동 내의 압력 레벨과 실질적으로 동일한 특정 압력 레벨에서 부스트 유체 유동을 제공하기 위해서, 유압 시스템(300)은, 부스트 유동 라인(256) 내의 유체의 압력 레벨을 제어하도록 구성된 전기-유압 압력 릴리프 밸브(EHPRV)(302)를 포함할 수 있다.
EHPRV(302)는 도 3에 도시된 바와 같이 부스트 유동 라인(256)을 저장용기(232)에 유체적으로 커플링시킨다. EHPRV(302)는, 예를 들어, 기계적 릴리프 부분, 및 솔레노이드 코일(304)를 가지는 전기유압 비례 부분을 포함할 수 있다. 예로서, 기계적 릴리프 부분은, EHPRV(302) 내의 밸브 본체 또는 슬리브 내에 형성된 안착부(seat)에 안착되는 스프링에 의해서 편향되는 이동 가능 요소(예를 들어, 포핏)을 가질 수 있다. 스프링은 EHPRV(302)의 압력 설정을 결정한다.
부스트 유동 라인(256) 내의 유체의 압력 레벨이 특정 압력 레벨, 즉 EHPRV(302)의 압력 설정을 초과할 때, 이동 가능 부재가 스프링을 극복하고 안착부로부터 상승되며, 그에 의해서 유체가 부스트 유동 라인(256)으로부터 저장용기(232)로 유동하게 한다. 결과적으로, 부스트 유동 라인(256) 내의 압력 레벨은 EHPRV(302)의 압력 설정을 초과하지 않는다.
EHPRV(302)의 전기유압 비례 부분은, 예를 들어, 비례 2-방향 밸브를 포함할 수 있다. 전기 신호가 솔레노이드 코일(304)에 제공될 때, 전기유압 비례 부분 내의 스풀 또는 이동 가능 요소가 이동하고, 유체 신호가 기계적 릴리프 부분에 제공될 수 있게 한다. 유체 신호는 솔레노이드 코일(304)에 공급되는 전기 신호의 크기를 기초로 기계적 릴리프 부분의 스프링에 의해서 결정된 압력 설정을 변경한다. 예를 들어, 신호의 크기가 증가됨에 따라, 압력 설정이 증가되고, 그 반대의 경우도 마찬가지이다. 이러한 구성에서, 스윙 펌프(220D)에 의해서 부스트 유동 라인(256)에 제공되는 부스트 유체 유동의 압력 레벨이, 솔레노이드 코일(304)에 대한 전기 신호에 의해서, 제어 및 변경될 수 있다.
유압 시스템(300)의 동작을 설명하기 위한 예시적인 시나리오로서, 굴삭기(100)의 조작자가 조이스틱(122, 124)을 이용하여 붐 유압 실린더 작동기(114)의 피스톤(206A)의 연장 및 아암 유압 실린더 작동기(116)의 피스톤(206B)의 수축을 요청하는 것을 가정한다. 유압 시스템(300)의 제어기(예를 들어, 제어기(282))는 조이스틱(122, 124)으로부터 조작자의 명령을 나타내는 신호를 수신한다. 그에 응답하여, 제어기는 조이스틱 명령 신호의 크기를 피스톤(206A, 206B)을 위한 요청 속력으로 변환할 수 있고, 그에 따라 요청 속력을 달성하는 유체 유량의 양을 결정할 수 있다.
제어기의 메모리에 저장될 수 있는 펌프(220A, 220B)의 변위를 기초로, 제어기는 모터 명령 신호를 전기 모터(218A, 218B)에 제공하여 각각의 회전 속력으로 회전시키고, 그에 따라 펌프(220A, 220B)를 각각의 회전 속력으로 회전시켜 결정된 양의 유체 유량을 제공한다. 전기 모터(218A, 218B)는, 피스톤들(206A, 206B)이 반대 방향으로 이동할 때, 반대 방향으로 회전될 수 있다.
제어기는 EHA(200A)의 부하-유지 밸브(236A)를 더 작동시켜, 붐 유압 실린더 작동기(114)의 로드 측 챔버로부터 방출되는 유체가 역으로 붐 펌프(220A)로 통과 유동하게 할 수 있다. 제어기는 또한 EHA(200B)의 부하-유지 밸브(234B)를 작동시켜, 아암 유압 실린더 작동기(116)의 헤드 측 챔버로부터 방출되는 유체가 역으로 펌프(220B)로 통과 유동하게 할 수 있다.
피스톤(206A)이 연장되기 때문에, 부스트 유동은 부스트 유동 라인(256)으로부터 리버스 셔틀 밸브(254A)를 통해서 인출되어, 함께 붐 펌프(220A)로 유동하기 전에, 로드 측 챔버로부터의 복귀 유체와 합쳐진다. 피스톤(206A)에 대한 명령된 속도가 V Boom 이고 피스톤(206A)의 로드의 횡단면 면적이 A Rod_Boom 인 것으로 가정하면, 부스트 유량은 제어기에 의해서 V Boom .A Rod_Boom 이 되도록 결정될 수 있다. 다른 한편으로, 피스톤(206B)이 후퇴되기 때문에, 과다 유동이 리버스 셔틀 밸브(254B)를 통해서 부스트 유동 라인(256)에 제공된다. 피스톤(206B)에 대한 명령된 속도가 V Arm 이고 피스톤(206B)의 로드의 횡단면 면적이 A Rod_Arm 인 것으로 가정하면, 과다 유량은 제어기에 의해서 V Arm .A Rod_Arm 이 되도록 결정될 수 있다.
제어기는, 아암 유압 실린더 작동기(116)로부터의 과다 유량이 붐 유압 실린더 작동기(114)에 의해서 요청되는 부스트 유량 이상인지, 그에 따라 부스트 유동 라인(256)에 제공되는 과다 유량이 붐 유압 실린더 작동기(114)에 의해서 요청되는 부스트 유량을 만족시키는데 있어서 충분한지의 여부를 결정할 수 있다. 과다 유량이 요청된 부스트 유량 이상이 아닌 경우에, 제어기는 전기 모터(218D)를 작동시켜 스윙 펌프(220D)를 구동시킬 수 있고 유동 차이를 제공할 수 있다.
특히, 조작자가 조이스틱(122, 124)을 통해서 회전 플랫폼(110)의 회전을 명령하지 않은 경우에, EHA(200D)의 부하-유지 밸브(234D, 236D)는 작동되지 않는다. 따라서, 제어기는 전기 모터(218D)를 작동시켜 어느 한 방향으로 회전시킬 수 있고 스윙 펌프(220D)를 구동하여 V Boom .A Rod_Boom V Arm .A Rod_Arm 사이의 차이와 동일한 유체 유동을 제공할 수 있다.
스윙 펌프(220D)로부터 유동하는 유체는 스윙 유압 모터 작동기(120)에 의해서 소비되지 않는데, 이는 부하-유지 밸브(234D, 236D)가 작동되지 않기 때문이다. 따라서, 스윙 펌프(220D)로부터 유동하는 유체가 셔틀 밸브(264D)의 유입구 포트 중 하나에 제공되어, 그 셔틀 요소를 이동시키고 그 배출구 포트로 유동한다. 제어기는 추가적으로 EHA(200D)의 우회 밸브(272D)를 작동시켜 유체가 셔틀 밸브(264D)의 배출구 포트로부터 부스트 유동 라인(256)으로, 이어서 EHA(200A)의 리버스 셔틀 밸브(254A)로 유동할 수 있게 하고, 그에 따라 V Boom .A Rod_Boom V Arm .A Rod_Arm 사이의 차이를 보충할 수 있게 한다. 이어서, 제어기는 추가적으로 전기 명령 신호를 EHPRV(302)에 제공할 수 있고, 그에 따라 붐 펌프(220A)로 복귀되는 유체의 압력 레벨과 실질적으로 동일한 부스트 유동 라인(256) 내의 특정 압력 레벨을 유지할 수 있다.
대안적인 시나리오에서, 조작자는, 붐 유압 실린더 작동기(114) 및 아암 유압 실린더 작동기(116)의 이동을 명령하는 것과 동시에, 회전 플랫폼(110)의 회전을 명령할 수 있다. 예를 들어, 조작자는 조이스틱(122, 124)을 이용하여 특정 회전 속력(ωSwing)의 회전 플랫폼(110)의 회전을 명령할 수 있다. 스윙 유압 모터 작동기(120)의 변위 및 명령된 속력(ωSwing)을 기초로, 제어기는, 스윙 유압 모터 작동기(120)에 제공하고자 하는 그리고 속력(ωSwing)을 달성하기 위한 유체 유량의 양(Q Swing )을 결정하고, 회전 플랫폼(110)의 회전의 명령된 방향을 기초로, 부하-유지 밸브(234D, 236D) 중 하나를 작동시킨다.
이러한 경우에, 제어기는, V Boom .A Rod_Boom V Arm .A Rod_Arm 사이의 유동의 차이에 더하여, ωSwing과 같아지도록, 스윙 펌프(220D)에 의해서 공급될 유체 유량의 총량(Q Total )을 결정한다. 이어서, 제어기는, 제어기에 의해서 결정된 유체 유량의 총량(Q Total )을 스윙 펌프(220D)가 제공하게 하는 속력으로 회전되도록 전기 모터(218D)에 명령한다. 제어기는 또한 우회 밸브(272D) 및 부하-유지 밸브(234D 또는 236D)를 작동 및 조작하여, 스윙 펌프(220D)로부터의 유체 유동을 스윙 유압 모터 작동기(120)와 붐 유압 실린더 작동기(114)를 위한 부스트 유동 사이(즉, V Boom .A Rod_Boom V Arm .A Rod_Arm 사이의 차이)에서 배분한다. 이러한 방식으로, 스윙 펌프(220D)에 의해서 제공되는 유체의 일부가 스윙 유압 모터 작동기(120)에 의해서 소비되어 회전 플랫폼(110)을 구동하고, 다른 부분은 셔틀 밸브(264D) 및 우회 밸브(272D)를 통해서 부스트 유동 라인(256)에 제공되어 붐 유압 실린더 작동기(114)에 의해서 소비된다.
특히, 붐(102), 아암(104), 및 버킷(106)의 불균형 작동기들과 달리, 회전 플랫폼(110)의 스윙 유압 모터 작동기(120)는 균형을 이루고, 동작될 때 부스트 유동을 요청하지 않거나 과다 유동을 제공하지 않는다. 따라서, 스윙 펌프(220D)의 하나의 포트를 통해서 제공되는 유체 유동은 스윙 펌프(220D)의 다른 포트로 역으로 제공되는 유체 유동과 동일하다.
일부 경우에, 속력(ωSwing)을 달성하기 위해서 스윙 유압 모터 작동기(120)에 의해서 요청되는 유체 유량에 더하여 부스트 유동 라인(256)을 위해서 요청되는 총 유량(Q Total )은, 펌프 변위를 기초로 스윙 펌프(220D)가 공급할 수 있는 최대 허용 유체 유량(Q Max ) 및 전기 모터(218D)의 최대 허용 모터 속력을 초과할 수 있다. 이러한 경우에, 제어기는, 1 미만의 값을 초래하는, 와 동일한 속력 감소 인자를 결정할 수 있다. 이어서, 제어기는 피스톤(206A)을 위한 속력 명령(V Boom ) 및 스윙 유압 모터 작동기(120)를 위한 스윙 명령(ωSwing)에 속력 감소 인자를 곱하여, 각각 원래의 명령(V Boom 및 ωSwing)보다 작은, 수정된 명령(V Boom_Modified 및 ωSwing _Modified )을 결정할 수 있다. 이어서, 제어기는 수정된 명령을 이용하여, 부스트 유동 라인(256) 및 스윙 유압 모터 작동기(120)를 위해서 요청된 유체 유량의 양을 결정할 수 있고, 그에 따라 이러한 양들은 스윙 펌프(220D)의 최대 허용 유량(Q Max )을 초과하지 않을 것이다.
앞서 제공된 시나리오는 설명을 위한 예이다. 다른 방식의 붐(102), 아암(104), 버킷(106), 및 회전 플랫폼(110)의 작동을 포함하는 다른 시나리오가, 전술한 시나리오와 유사한 방식으로, 제어기에 의해서 관리될 수 있다는 것을 이해하여야 한다.
이러한 구성에서, 굴삭기(100)를 동작시키는 것은 전용 부스트 시스템의 이용을 포함하지 않는다. 그 대신, 회전 플랫폼(110)의 EHA(200D), 그리고 특히 스윙 펌프(220D)는, 스윙 유압 모터 작동기(120)를 동작시키도록 구성되는 것에 더하여, 부스트 시스템으로서 동작할 수 있다. 이러한 방식으로, 각각의 펌프, 모터, 밸브, 및 유압 라인을 포함하는 부가적인 전용 부스트 시스템을 포함하는 다른 시스템보다, 유압 시스템(300)의 비용 및 복잡성이 낮아질 수 있다.
도 4는 예시적인 구현예에 따른, 유압 시스템(300) 동작 방법(400)의 흐름도이다.
방법(400)은, 블록(402 내지 408)의 하나 이상에 의해서 도시된 바와 같은 하나 이상의 동작, 또는 행위를 포함할 수 있다. 비록 블록들이 순차적인 순서로 도시되었지만, 이러한 블록들은 또한 병렬로 및/또는 본원에서 설명된 것과 다른 순서로 실시될 수 있다. 또한, 희망하는 구현예를 기초로, 여러 블록들이 더 적은 블록들로 조합될 수 있고, 부가적인 블록들로 분할될 수 있고, 및/또는 제거될 수 있다. 본원에서 개시된 이러한 그리고 다른 프로세스 및 방법에서, 흐름도는 본 예의 하나의 가능한 구현예의 기능 및 동작을 보여준다는 것을 이해하여야 한다. 당업자에 의해서 합리적으로 이해될 수 있는 바와 같이, 대안적인 구현예가 본 개시 내용의 예의 범위 내에 포함되고, 여기에서, 관련 기능에 따라, 실질적으로 동시적인 것 또는 반대 순서를 포함하여, 도시되거나 설명된 것과 다른 순서로 실행될 수 있다.
블록(402)에서, 방법(400)은, 유압 시스템(예를 들어, 유압 시스템(300))의 제어기(예를 들어, 제어기(282))에서, 유압 실린더 작동기(예를 들어, 붐 유압 실린더 작동기(114))의 피스톤(예를 들어, 피스톤(206A)을 연장시키기 위한 요청을 수신하는 단계를 포함하고, 유압 실린더 작동기는 피스톤이 내부에 활주 가능하게 수용되는 실린더(예를 들어, 실린더(204))를 포함하고, 피스톤은 피스톤 헤드(예를 들어, 피스톤 헤드(208)), 및 피스톤 헤드로부터 연장되는 로드(예를 들어, 로드(210))를 포함하고, 피스톤 헤드는 실린더의 내부 공간을 헤드 측 챔버(예를 들어, 챔버(214)) 및 로드 측 챔버(예를 들어, 챔버(216))로 분할한다.
블록(404)에서, 방법(400)은, 그에 응답하여, 제1 펌프(예를 들어, 붐 펌프(220A)를 구동하여 유체 유동을 제1 유체 유동 라인(예를 들어, 유체 유동 라인(224))을 통해서 헤드 측 챔버로 제공하고 피스톤을 연장시키기 위해서, 제1 전기 모터(예를 들어, 전기 모터(218A))에 제1 명령 신호를 송신하는 단계를 포함하고, 유압 실린더 작동기는, 피스톤을 연장시키기 위해서 제1 유체 유동 라인을 통해서 헤드 측 챔버로 제공되는 유체의 제1 유체 유량이, 피스톤이 연장될 때 로드 측 챔버로부터 방출되는 유체의 제2 유체 유량보다 크도록 그리고 제2 유체 유동 라인(예를 들어, 유체 유동 라인(228))을 통해서 제1 펌프로 역으로 제공하도록, 불균형화된다.
블록(406)에서, 방법(400)은 제2 펌프(예를 들어, 스윙 펌프(220D))를 구동하기 위해서 제2 명령 신호를 제2 전기 모터(예를 들어, 전기 모터(218D))에 송신하는 단계를 포함하고, 제2 펌프는 제2 전기 모터에 의해서 구동되는 양-방향 유체 유동 공급원이 되도록 구성되고 유압 모터 작동기(예를 들어, 스윙 유압 모터 작동기(120))를 구동하기 위해서 제2 전기 모터에 의해서 반대 방향으로 회전될 수 있다.
블록(408)에서, 방법(400)은, 부스트 유체 유동이 제2 유체 유동 라인을 통해서 제1 펌프로 복귀되는 유체와 합쳐지도록 그리고 제1 유체 유량과 제2 유체 유량 사이의 차이를 보충하도록, 부스트 유체 유동을 제2 펌프로부터, 제2 펌프를 제2 유체 유동 라인에 유체적으로 커플링시키는 부스트 유동 라인(256)을 통해서 제공하는 단계를 포함한다. 제어기는 또한 제3 명령 신호를 우회 밸브(272D)에 송신하여 우회 밸브(272D)를 개방할 수 있고 유체가 제2 펌프로부터 부스트 유동 라인을 통해서 제2 유체 유동 라인으로 유동하게 할 수 있다.
전술한 설명은 개시된 시스템의 여러 가지 특징 및 동작을 첨부 도면을 참조하여 설명한다. 본원에서 설명된 예시적인 구현예는 제한적인 것을 의미하지 않는다. 개시된 시스템의 특정 양태가 매우 다양한 상이한 구성들로 배열되고 조합될 수 있으며, 그러한 구성 모두는 본원에서 고려된다.
또한, 문맥에서 달리 제시하지 않는 한, 각각의 도면에 도시된 특징부들이 서로 조합되어 사용될 수 있다. 따라서, 도면은 일반적으로 하나 이상의 구현예의 구성요소의 양태로서 간주되어야 하고, 모든 도시된 특징부가 각각의 구현예에 필수적이지 않다는 것을 이해하여야 한다.
또한, 본 명세서 또는 청구범위 내의 요소, 블록 또는 단계의 임의의 나열은 명료함을 위한 것이다. 따라서, 그러한 나열은, 이러한 요소, 블록 또는 단계가 특정 배열을 지켜야 하거나 특정 순서로 실행되어야 할 것을 요구하거나 암시하는 것으로 해석되지 않아야 한다.
또한, 장치 또는 시스템은 도면에 제시된 기능을 실시하도록 이용되거나 구성될 수 있다. 일부 경우에, 장치 및/또는 시스템의 구성요소가 기능을 실시하도록 구성될 수 있고, 그에 따라 구성요소들은 그러한 기능을 가능하게 하도록 (하드웨어 및/또는 소프트웨어로) 실제로 구성 및 구조화된다. 다른 예에서, 장치 및/또는 시스템의 구성요소가, 예를 들어 특정 방식으로 동작될 때, 기능을 실시하도록, 실시할 수 있도록, 또는 실시에 적합하도록 배열될 수 있다.
"실질적으로" 또는 "약"이라는 용어는, 인용된 특성, 매개변수, 또는 값이 정확하게 달성될 필요가 없고, 그 대신, 예를 들어, 공차, 측정 오류, 측정 정확도 한계, 및 당업자에게 알려진 다른 인자를 포함하는, 편차 또는 변경이, 특성이 제공하고자 하는 효과에 방해가 되지 않는 양으로 이루어질 수 있다는 것을 의미한다.
본원에서 설명된 배열은 단지 예시를 위한 것이다. 따라서, 당업자는, 다른 배열 및 다른 요소(예를 들어, 기계, 인터페이스, 동작, 순서, 및 동작들의 그룹화 등)가 대신 이용될 수 있다는 것, 그리고 일부 요소가 희망 결과에 따라 전부 생략될 수 있다는 것을 이해할 수 있을 것이다. 또한, 설명된 많은 요소는, 구분되거나 분산된 구성요소로서, 또는, 임의의 적합한 조합으로 그리고 위치에서, 다른 구성요소와 함께 구현될 수 있는 기능적 개체이다.
비록 여러 가지 양태 및 구현예가 본원에서 개시되었지만, 다른 양태 및 구현예가 관련 기술 분야의 통상의 기술자에게 자명할 것이다. 본원에서 개시된 여러 가지 양태 및 구현예는 설명을 위한 것이고 제한적으로 의도된 것이 아니며, 진정한 범위는, 이하의 청구항들에 의해서 제공되는 균등물의 전체 범위와 함께, 이하의 청구항에 의해서 결정된다. 또한, 본원에서 사용된 용어는 단지 특별한 구현예를 설명하기 위한 것이고 제한을 위한 것이 아니다.

Claims (20)

  1. 유압 시스템이며:
    실린더 및 실린더 내에 활주 가능하게 수용된 피스톤을 포함하는 유압 실린더 작동기로서, 피스톤은 피스톤 헤드 및 피스톤 헤드로부터 연장되는 로드를 포함하고, 피스톤 헤드는 실린더의 내부 공간을 제1 챔버 및 제2 챔버로 분할하고, 유압 실린더 작동기는, 주어진 방향으로 피스톤을 구동하기 위해서 제1 챔버 또는 제2 챔버로 제공되는 유체의 제1 유체 유량이, 피스톤이 이동할 때 다른 챔버로부터 방출되는 유체의 제2 유체 유량과 상이하도록, 불균형화되는, 유압 실린더 작동기;
    유체 유동을 유압 실린더 작동기의 제1 챔버 또는 제2 챔버에 제공하여 피스톤을 구동하기 위해서, 제1 전기 모터에 의해서 반대되는 회전 방향으로 구동되는 양-방향 유체 유동 공급원이 되도록 구성된 제1 펌프;
    부스트 유체 유동을 제공하도록 또는 제1 유체 유량과 제2 유체 유량 사이의 차이를 포함하는 과다 유체 유동을 수용하도록 구성되는 부스트 유동 라인;
    유압 모터 작동기; 및
    제2 전기 모터에 의해서 구동되는 각각의 양-방향 유체 유동 공급원이 되도록 구성되고 유체 유동을 유압 모터 작동기에 제공하기 위해서 제2 전기 모터에 의해서 반대 방향으로 회전될 수 있는 제2 펌프로서, 제2 펌프가 부스트 유동 라인에 유체적으로 커플링되어 부스트 유체 유동을 유압 실린더 작동기에 제공하는, 제2 펌프를 포함하는, 유압 시스템.
  2. 제1항에 있어서,
    제1 펌프는 (i) 제1 유체 유동 라인을 통해서 제1 챔버에 유체적으로 커플링된 제1 펌프 포트, 및 (ii) 제2 유체 유동 라인을 통해서 제2 챔버에 유체적으로 커플링된 제2 펌프 포트를 가지고, 유압 시스템은:
    (i) 제1 유체 유동 라인에 유체적으로 커플링된 제1 파일롯 포트, (ii) 제2 유체 유동 라인에 유체적으로 커플링된 제2 파일롯 포트, 및 (iii) 부스트 유동 라인에 유체적으로 커플링된 부스트 포트를 가지는 리버스 셔틀 밸브로서, 제1 유체 유동 라인과 제2 유체 유동 라인 사이의 압력차에 응답하는, 리버스 셔틀 밸브를 더 포함하는, 유압 시스템.
  3. 제2항에 있어서,
    제1 유체 유동 라인 내의 압력 레벨이 제2 유체 유동 라인 내의 압력 레벨보다 높을 때, 리버스 셔틀 밸브의 셔틀 요소가 내부에서 이동하여 부스트 포트를 제2 파일롯 포트에 유체적으로 커플링시켜 부스트 유체 유동을 제2 유체 유동 라인에 제공하고, 그리고
    제2 유체 유동 라인 내의 압력 레벨이 제1 유체 유동 라인 내의 압력 레벨보다 높을 때, 리버스 셔틀 밸브의 셔틀 요소가 내부에서 이동하여 제1 파일롯 포트를 부스트 포트에 유체적으로 커플링시켜 과다 유체 유동을 제1 유체 유동 라인으로부터 부스트 유동 라인에 제공하는, 유압 시스템.
  4. 제2항에 있어서,
    제1 펌프 포트와 유압 실린더 작동기의 제1 챔버 사이의 제1 유체 유동 라인 내에 배치된 제1 부하-유지 밸브로서, 작동될 때까지 제1 챔버로부터 제1 펌프 포트로의 유체 유동을 차단하면서 제1 펌프 포트로부터 제1 챔버로의 유체 유동을 허용하도록 구성되는, 제1 부하-유지 밸브; 및
    제2 펌프 포트와 유압 실린더 작동기의 제2 챔버 사이의 제2 유체 유동 라인 내에 배치된 제2 부하-유지 밸브로서, 작동될 때까지 제2 챔버로부터 제2 펌프 포트로의 유체 유동을 차단하면서 제2 펌프 포트로부터 제2 챔버로의 유체 유동을 허용하도록 구성되는, 제2 부하-유지 밸브를 더 포함하는, 유압 시스템.
  5. 제4항에 있어서,
    작업 포트 압력 릴리프 밸브 조립체를 더 포함하고, 작업 포트 압력 릴리프 밸브 조립체는 (i) 제1 부하-유지 밸브와 제1 챔버 사이에 배치되고 제1 챔버 내의 유체의 압력 레벨이 임계 압력 값을 초과할 때 제1 챔버로부터 부스트 유동 라인으로의 유체 유동 경로를 제공하도록 구성되는 제1 압력 릴리프 밸브, 및 (ii) 제2 부하-유지 밸브와 제2 챔버 사이에 배치되고 제2 챔버 내의 유체의 압력 레벨이 임계 압력 값을 초과할 때 제2 챔버로부터 부스트 유동 라인으로의 각각의 유체 유동 경로를 제공하도록 구성되는 제2 압력 릴리프 밸브를 포함하는, 유압 시스템.
  6. 제4항에 있어서,
    펌프 압력 릴리프 밸브 조립체를 더 포함하고, 펌프 압력 릴리프 밸브 조립체는: (i) 제1 펌프 포트와 제1 부하-유지 밸브 사이에 배치되고 제1 펌프 포트에서 유체의 압력 레벨이 임계 압력 값을 초과할 때 제1 펌프 포트로부터 부스트 유동 라인으로의 유체 유동 경로를 제공하도록 구성되는 제1 압력 릴리프 밸브, 및 (ii) 제2 펌프 포트와 제2 부하-유지 밸브 사이에 배치되고 제2 펌프 포트에서 유체의 압력 레벨이 임계 압력 값을 초과할 때 제2 펌프 포트로부터 부스트 유동 라인으로의 각각의 유체 유동 경로를 제공하도록 구성되는 제2 압력 릴리프 밸브를 포함하는, 유압 시스템.
  7. 제1항에 있어서,
    제2 펌프는 (i) 제1 유체 유동 라인을 통해서 유압 모터 작동기에 유체적으로 커플링된 제1 펌프 포트, 및 (ii) 제2 유체 유동 라인을 통해서 유압 모터 작동기에 유체적으로 커플링된 제2 펌프 포트를 가지고, 유압 시스템은:
    셔틀 밸브를 더 포함하고, 셔틀 밸브는 제2 펌프와 병렬로 배치되고, (i) 제1 유체 유동 라인에 유체적으로 커플링된 제1 유입구 포트, (ii) 제2 유체 유동 라인에 유체적으로 커플링된 제2 유입구 포트, 및 (iii) 부스트 유동 라인에 유체적으로 커플링된 배출구 포트를 가지며, 셔틀 밸브는 제1 유입구 포트와 제2 유입구 포트 사이의 압력차에 응답하고, 그에 따라 제2 펌프가 제1 회전 방향으로 회전되어 유체를 제1 유체 유동 라인에 제공하든지 또는 제2 회전 방향으로 회전되어 유체를 제2 유체 유동 라인에 제공하든지 간에, 유체는 셔틀 밸브의 배출구 포트로, 이어서 부스트 유동 라인으로 유동하는, 유압 시스템.
  8. 제7항에 있어서,
    부스트 유동 라인 내에 배치된 우회 밸브를 더 포함하고, 우회 밸브는, 전기 명령 신호에 의해서 작동될 때까지, 셔틀 밸브의 배출구 포트로부터의 유체 유동을 차단하도록 구성된 전기-작동되는 상시-폐쇄형 밸브인, 유압 시스템.
  9. 기계이며:
    복수의 유압 실린더 작동기로서, 복수의 유압 실린더 작동기의 각각의 유압 실린더 작동기가: 실린더 및 실린더 내에 활주 가능하게 수용된 피스톤을 포함하고, 피스톤은 피스톤 헤드 및 피스톤 헤드로부터 연장되는 로드를 포함하고, 피스톤 헤드는 실린더의 내부 공간을 제1 챔버 및 제2 챔버로 분할하고, 각각의 유압 실린더 작동기는, 주어진 방향으로 피스톤을 구동하기 위해서 제1 챔버 또는 제2 챔버로 제공되는 유체의 제1 유체 유량이, 피스톤이 이동할 때 다른 챔버로부터 방출되는 유체의 제2 유체 유량과 상이하도록, 불균형화되며, 복수의 유압 실린더 작동기의 각각의 유압 실린더 작동기는 전기-정수학적 작동 시스템(EHA)에 의해서 작동되고, 전기-정수학적 작동 시스템은, 각각의 유압 실린더 작동기의 제1 챔버 또는 제2 챔버에 유체 유동을 제공하여 피스톤을 구동하기 위해서, 각각의 전기 모터에 의해서 반대되는 회전 방향으로 구동되는 양-방향 유체 유동 공급원이 되도록 구성된 각각의 펌프를 포함하는, 복수의 유압 실린더 작동기;
    부스트 유체 유동을 제공하도록 또는 제1 유체 유량과 제2 유체 유량 사이의 차이를 포함하는 과다 유체 유동을 수용하도록 구성되는 부스트 유동 라인; 및
    유압 모터 EHA에 의해서 동작되는 유압 모터 작동기로서: 전기 모터에 의해서 구동되는 각각의 양-방향 유체 유동 공급원이 되도록 구성되고 유체 유동을 유압 모터 작동기에 제공하기 위해서 전기 모터에 의해서 반대 방향으로 회전될 수 있는 펌프로서, 펌프는 부스트 유동 라인에 유체적으로 커플링되어 부스트 유체 유동을 각각의 유압 실린더 작동기에 제공하는, 유압 모터 작동기를 포함하는, 기계.
  10. 제9항에 있어서,
    기계는 붐, 아암, 버킷, 및 회전 플랫폼을 가지는 굴삭기이고, 복수의 유압 실린더 작동기는: 붐 유압 실린더 작동기, 아암 유압 실린더 작동기, 및 버킷 유압 실린더 작동기를 포함하고, 유압 모터 작동기는 회전 플랫폼을 회전시키도록 구성된 스윙 유압 모터 작동기인, 기계.
  11. 제9항에 있어서,
    각각의 펌프는 (i) 제1 유체 유동 라인을 통해서 제1 챔버에 유체적으로 커플링된 제1 펌프 포트, 및 (ii) 제2 유체 유동 라인을 통해서 제2 챔버에 유체적으로 커플링된 제2 펌프 포트를 가지고, 각각의 유압 실린더 작동기의 EHA는:
    (i) 제1 유체 유동 라인에 유체적으로 커플링된 제1 파일롯 포트, (ii) 제2 유체 유동 라인에 유체적으로 커플링된 제2 파일롯 포트, 및 (iii) 부스트 유동 라인에 유체적으로 커플링된 부스트 포트를 가지는 리버스 셔틀 밸브로서, 제1 유체 유동 라인과 제2 유체 유동 라인 사이의 압력차에 응답하는, 리버스 셔틀 밸브를 더 포함하고;
    제1 유체 유동 라인 내의 압력 레벨이 제2 유체 유동 라인 내의 압력 레벨보다 높을 때, 리버스 셔틀 밸브의 셔틀 요소가 내부에서 이동하여 부스트 포트를 제2 파일롯 포트에 유체적으로 커플링시켜 부스트 유체 유동을 제2 유체 유동 라인에 제공하고, 그리고
    제2 유체 유동 라인 내의 압력 레벨이 제1 유체 유동 라인 내의 압력 레벨보다 높을 때, 리버스 셔틀 밸브의 셔틀 요소가 내부에서 이동하여 제1 파일롯 포트를 부스트 포트에 유체적으로 커플링시켜 과다 유체 유동을 제1 유체 유동 라인으로부터 부스트 유동 라인에 제공하는, 기계.
  12. 제11항에 있어서,
    EHA는:
    제1 펌프 포트와 각각의 유압 실린더 작동기의 제1 챔버 사이의 제1 유체 유동 라인 내에 배치된 제1 부하-유지 밸브로서, 작동될 때까지 제1 챔버로부터 제1 펌프 포트로의 유체 유동을 차단하면서 제1 펌프 포트로부터 제1 챔버로의 유체 유동을 허용하도록 구성되는, 제1 부하-유지 밸브; 및
    제2 펌프 포트와 각각의 유압 실린더 작동기의 제2 챔버 사이의 제2 유체 유동 라인 내에 배치된 제2 부하-유지 밸브로서, 작동될 때까지 제2 챔버로부터 제2 펌프 포트로의 유체 유동을 차단하면서 제2 펌프 포트로부터 제2 챔버로의 유체 유동을 허용하도록 구성되는, 제2 부하-유지 밸브를 더 포함하는, 기계.
  13. 제12항에 있어서,
    EHA는:
    작업 포트 압력 릴리프 밸브 조립체를 더 포함하고, 작업 포트 압력 릴리프 밸브 조립체는 (i) 제1 부하-유지 밸브와 제1 챔버 사이에 배치되고 제1 챔버 내의 유체의 압력 레벨이 임계 압력 값을 초과할 때 제1 챔버로부터 부스트 유동 라인으로의 유체 유동 경로를 제공하도록 구성되는 제1 압력 릴리프 밸브, 및 (ii) 제2 부하-유지 밸브와 제2 챔버 사이에 배치되고 제2 챔버 내의 유체의 압력 레벨이 임계 압력 값을 초과할 때 제2 챔버로부터 부스트 유동 라인으로의 각각의 유체 유동 경로를 제공하도록 구성되는 제2 압력 릴리프 밸브를 포함하는, 기계.
  14. 제12항에 있어서,
    EHA는:
    펌프 압력 릴리프 밸브 조립체를 더 포함하고, 펌프 압력 릴리프 밸브 조립체는: (i) 제1 펌프 포트와 제1 부하-유지 밸브 사이에 배치되고 제1 펌프 포트에서 유체의 압력 레벨이 임계 압력 값을 초과할 때 제1 펌프 포트로부터 부스트 유동 라인으로의 유체 유동 경로를 제공하도록 구성되는 제1 압력 릴리프 밸브, 및 (ii) 제2 펌프 포트와 제2 부하-유지 밸브 사이에 배치되고 제2 펌프 포트에서 유체의 압력 레벨이 임계 압력 값을 초과할 때 제2 펌프 포트로부터 부스트 유동 라인으로의 각각의 유체 유동 경로를 제공하도록 구성되는 제2 압력 릴리프 밸브를 포함하는, 기계.
  15. 제9항에 있어서,
    유압 모터 작동기를 구동하는 펌프는 (i) 제1 유체 유동 라인을 통해서 유압 모터 작동기에 유체적으로 커플링된 제1 펌프 포트, 및 (ii) 제2 유체 유동 라인을 통해서 유압 모터 작동기에 유체적으로 커플링된 제2 펌프 포트를 가지고, 유압 모터 EHA는:
    셔틀 밸브를 더 포함하고, 셔틀 밸브는 펌프와 병렬로 배치되고, (i) 제1 유체 유동 라인에 유체적으로 커플링된 제1 유입구 포트, (ii) 제2 유체 유동 라인에 유체적으로 커플링된 제2 유입구 포트, 및 (iii) 부스트 유동 라인에 유체적으로 커플링된 배출구 포트를 가지며, 셔틀 밸브는 제1 유입구 포트와 제2 유입구 포트 사이의 압력차에 응답하고, 그에 따라 펌프가 제1 회전 방향으로 회전되어 유체를 제1 유체 유동 라인에 제공하든지 또는 제2 회전 방향으로 회전되어 유체를 제2 유체 유동 라인에 제공하든지 간에, 유체는 셔틀 밸브의 배출구 포트로, 이어서 부스트 유동 라인으로 유동하는, 기계.
  16. 제15항에 있어서,
    부스트 유동 라인 내에 배치된 우회 밸브를 더 포함하고, 우회 밸브는, 전기 명령 신호에 의해서 작동될 때까지, 셔틀 밸브의 배출구 포트로부터의 유체 유동을 차단하도록 구성된 전기-작동되는 상시-폐쇄형 밸브인, 기계.
  17. 제9항에 있어서,
    복수의 유압 실린더 작동기 중 하나로부터의 과다 유체 유동은 부스트 유동 라인을 통해서 복수의 유압 실린더 작동기의 다른 유압 실린더 작동기를 위한 부스트 유체 유동의 일부로서 제공되는, 기계.
  18. 제9항에 있어서,
    전력을 기계의 각각의 전기 모터에 제공하도록 구성된 각각의 전력 전자 모듈;
    복수의 유압 실린더 작동기의 각각의 피스톤을 위한 요청 속력을 나타내는 명령 신호를 수신하도록, 그리고 그에 응답하여 상응 명령 신호를 각각의 전력 전자 모듈에 제공하도록 구성되는 제어기; 및
    각각의 전력 전자 모듈에 직류 전력을 제공하도록 구성된 배터리를 더 포함하는, 기계.
  19. 방법이며:
    유압 시스템의 제어기에서, 유압 실린더 작동기의 피스톤을 연장시키는 요청을 수신하는 단계로서, 유압 실린더 작동기는 피스톤이 내부에 활주 가능하게 수용되는 실린더를 포함하고, 피스톤은 피스톤 헤드 및 피스톤 헤드로부터 연장되는 로드를 포함하고, 피스톤 헤드는 실린더의 내부 공간을 헤드 측 챔버 및 로드 측 챔버로 분할하는, 단계;
    그에 응답하여, 제1 펌프를 구동하여 유체 유동을 제1 유체 유동 라인을 통해서 헤드 측 챔버로 제공하고 피스톤을 연장시키기 위해서, 제1 전기 모터에 제1 명령 신호를 송신하는 단계로서, 유압 실린더 작동기는, 피스톤을 연장시키기 위해서 제1 유체 유동 라인을 통해서 헤드 측 챔버로 제공되는 유체의 제1 유체 유량이, 피스톤이 연장될 때 로드 측 챔버로부터 방출되는 유체의 제2 유체 유량보다 크도록 그리고 제2 유체 유동 라인을 통해서 제1 펌프로 역으로 제공하도록, 불균형화되는, 단계;
    제2 펌프를 구동하기 위해서 제2 명령 신호를 제2 전기 모터에 송신하는 단계로서, 제2 펌프는 제2 전기 모터에 의해서 구동되는 양-방향 유체 유동 공급원이 되도록 구성되고 유압 모터 작동기를 구동하기 위해서 제2 전기 모터에 의해서 반대 방향으로 회전될 수 있는, 단계; 및
    부스트 유체 유동이 제2 유체 유동 라인을 통해서 제1 펌프로 복귀되는 유체와 합쳐지도록 그리고 제1 유체 유량과 제2 유체 유량 사이의 차이를 보충하도록, 부스트 유체 유동을 제2 펌프로부터, 제2 펌프를 제2 유체 유동 라인에 유체적으로 커플링시키는 부스트 유동 라인을 통해서 제공하는 단계를 포함하는, 방법.
  20. 제19항에 있어서,
    유압 시스템은 부스트 유동 라인 내에 배치된 우회 밸브를 포함하고, 우회 밸브는, 우회 밸브가 작동되지 않을 때, 제2 펌프로부터 부스트 유동 라인을 통한 유체 유동을 차단하도록 구성된 전기-작동되는 상시-폐쇄형 밸브이고, 방법은:
    제3 명령 신호를 우회 밸브에 송신하여 우회 밸브를 개방하고 유체가 제2 펌프로부터 부스트 유동 라인을 통해서 제2 유체 유동 라인으로 유동하게 할 수 있게 하는 단계를 더 포함하는, 방법.
KR1020217043221A 2019-08-14 2020-06-04 기계용 전기-유압 구동 시스템, 전기-유압 구동 시스템을 갖춘 기계, 및 전기-유압 구동 시스템의 제어 방법 KR102623864B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962886419P 2019-08-14 2019-08-14
US62/886,419 2019-08-14
PCT/US2020/036030 WO2021029940A1 (en) 2019-08-14 2020-06-04 Electro-hydraulic drive system for a machine, machine with an electro-hydraulic drive system and method for controlling an electro-hydraulic drive system

Publications (2)

Publication Number Publication Date
KR20220014888A KR20220014888A (ko) 2022-02-07
KR102623864B1 true KR102623864B1 (ko) 2024-01-11

Family

ID=71842845

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020217043221A KR102623864B1 (ko) 2019-08-14 2020-06-04 기계용 전기-유압 구동 시스템, 전기-유압 구동 시스템을 갖춘 기계, 및 전기-유압 구동 시스템의 제어 방법

Country Status (6)

Country Link
US (1) US11781289B2 (ko)
EP (1) EP4013916A1 (ko)
JP (1) JP7397891B2 (ko)
KR (1) KR102623864B1 (ko)
CN (1) CN114269993B (ko)
WO (1) WO2021029940A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230114531A (ko) * 2022-01-25 2023-08-01 볼보 컨스트럭션 이큅먼트 에이비 유압기계
CN114232720A (zh) * 2022-01-29 2022-03-25 山东临工工程机械有限公司 液压系统及挖掘机
DE102022201577A1 (de) * 2022-02-16 2023-08-17 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Betreiben einer Hydraulikanordnung einer Arbeitsmaschine und Arbeitsmaschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105226A (ja) * 2004-10-04 2006-04-20 Kayaba Ind Co Ltd オペレートチェック弁、油圧駆動ユニット
JP3862256B2 (ja) * 2000-05-19 2006-12-27 株式会社小松製作所 油圧駆動装置付きハイブリッド機械
WO2010028100A1 (en) 2008-09-03 2010-03-11 Parker Hannifin Corporation Velocity control of unbalanced hydraulic actuator subjected to over-center load conditions
WO2017192303A1 (en) 2016-05-03 2017-11-09 Parker-Hannifin Corporation Auxiliary system for vehicle implements

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5986704A (ja) * 1982-11-11 1984-05-19 Hitachi Constr Mach Co Ltd 油圧閉回路の容量補償装置
JPS6041602U (ja) * 1983-08-31 1985-03-23 株式会社小松製作所 ブレ−キ弁装置
DE102011056894B4 (de) 2011-05-06 2013-09-05 Bucher Hydraulics Gmbh Hydraulischer Linearantrieb
US20130081382A1 (en) 2011-09-30 2013-04-04 Bryan E. Nelson Regeneration configuration for closed-loop hydraulic systems
US8910474B2 (en) * 2011-10-21 2014-12-16 Caterpillar Inc. Hydraulic system
DE112012005636T5 (de) * 2012-01-11 2014-10-09 Hitachi Construction Machinery Co., Ltd. Antriebssystem für geschlossenen Hydraulikkreislauf
JP2013245787A (ja) * 2012-05-28 2013-12-09 Hitachi Constr Mach Co Ltd 作業機械の駆動装置
US9290912B2 (en) 2012-10-31 2016-03-22 Caterpillar Inc. Energy recovery system having integrated boom/swing circuits
WO2014142562A1 (ko) * 2013-03-14 2014-09-18 두산인프라코어 주식회사 건설기계의 유압시스템
KR102154663B1 (ko) 2013-04-22 2020-09-11 파커-한니핀 코포레이션 전기 정유압 액추에이터 피스톤 속도 증가 방법
JP6134614B2 (ja) 2013-09-02 2017-05-24 日立建機株式会社 作業機械の駆動装置
KR101763000B1 (ko) * 2014-03-11 2017-07-28 두산인프라코어 주식회사 건설 기계의 폐회로 유압 시스템
WO2015093791A1 (ko) 2013-12-20 2015-06-25 두산인프라코어 주식회사 건설 기계의 폐회로 유압 시스템
JP6328548B2 (ja) 2014-12-23 2018-05-23 日立建機株式会社 作業機械
US10119556B2 (en) 2015-12-07 2018-11-06 Caterpillar Inc. System having combinable transmission and implement circuits
CN107420357B (zh) 2017-07-21 2019-01-01 广西柳工机械股份有限公司 闭式液压系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3862256B2 (ja) * 2000-05-19 2006-12-27 株式会社小松製作所 油圧駆動装置付きハイブリッド機械
JP2006105226A (ja) * 2004-10-04 2006-04-20 Kayaba Ind Co Ltd オペレートチェック弁、油圧駆動ユニット
WO2010028100A1 (en) 2008-09-03 2010-03-11 Parker Hannifin Corporation Velocity control of unbalanced hydraulic actuator subjected to over-center load conditions
WO2017192303A1 (en) 2016-05-03 2017-11-09 Parker-Hannifin Corporation Auxiliary system for vehicle implements

Also Published As

Publication number Publication date
CN114269993A (zh) 2022-04-01
US11781289B2 (en) 2023-10-10
CN114269993B (zh) 2023-02-21
JP7397891B2 (ja) 2023-12-13
JP2022539184A (ja) 2022-09-07
KR20220014888A (ko) 2022-02-07
WO2021029940A1 (en) 2021-02-18
EP4013916A1 (en) 2022-06-22
US20220259828A1 (en) 2022-08-18

Similar Documents

Publication Publication Date Title
KR102623864B1 (ko) 기계용 전기-유압 구동 시스템, 전기-유압 구동 시스템을 갖춘 기계, 및 전기-유압 구동 시스템의 제어 방법
EP2417363B1 (en) Hydraulic circuit with multiple pumps
US8720197B2 (en) Flow management system for hydraulic work machine
US8997476B2 (en) Hydraulic energy recovery system
WO2007044130A1 (en) Hybrid hydraulic system and work machine using same
EP2557239A1 (en) Combined closed loop hydraulic circuit and hydraulic energy storage system
US11186967B2 (en) Hydraulic systems for construction machinery
CN107893788B (zh) 用于工程机械的液压系统
US11788256B2 (en) Dual architecture for an electro-hydraulic drive system
US10724554B2 (en) Auxiliary system for vehicle implements
WO2021225645A1 (en) Hydraulic dissipation of electric power
JP2013044399A (ja) 油圧駆動システム
WO2013096096A1 (en) Hydraulic system with standby power reclamation
US9644649B2 (en) Void protection system
WO2015196041A2 (en) Independently controlled hydraulic circuits
JP2013044398A (ja) 油圧駆動システム

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant