KR102615736B1 - Heat reflective insulation panel and manufacturing method thereof - Google Patents

Heat reflective insulation panel and manufacturing method thereof Download PDF

Info

Publication number
KR102615736B1
KR102615736B1 KR1020210106091A KR20210106091A KR102615736B1 KR 102615736 B1 KR102615736 B1 KR 102615736B1 KR 1020210106091 A KR1020210106091 A KR 1020210106091A KR 20210106091 A KR20210106091 A KR 20210106091A KR 102615736 B1 KR102615736 B1 KR 102615736B1
Authority
KR
South Korea
Prior art keywords
flame retardant
weight
formula
organic
workpiece
Prior art date
Application number
KR1020210106091A
Other languages
Korean (ko)
Other versions
KR20230024481A (en
Inventor
한희준
Original Assignee
세진하이텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세진하이텍(주) filed Critical 세진하이텍(주)
Priority to KR1020210106091A priority Critical patent/KR102615736B1/en
Publication of KR20230024481A publication Critical patent/KR20230024481A/en
Application granted granted Critical
Publication of KR102615736B1 publication Critical patent/KR102615736B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0012Combinations of extrusion moulding with other shaping operations combined with shaping by internal pressure generated in the material, e.g. foaming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/56After-treatment of articles, e.g. for altering the shape
    • B29C44/5681Covering the foamed object with, e.g. a lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • C08K5/5419Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0026Flame proofing or flame retarding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2007/00Flat articles, e.g. films or sheets
    • B29L2007/002Panels; Plates; Sheets

Abstract

본 발명은 a) 폴리에틸렌 수지, 기능성 난연제, 유무기 복합난연제를 포함하는 난연성 조성물을 준비하는 단계; b) 상기 난연성 조성물에 발포제를 첨가한 후, 혼합하여 혼합물을 형성하는 단계; c) 상기 혼합물을 압출시킨 후, 발포하여 발포체를 형성하는 단계; d) 상기 발포체를 성형 및 가공하여, 가공물을 제조하는 단계; e) 상기 가공물의 일면 또는 양면에 외피재를 접착시키는 단계;를 포함하여 제조되는 것 특징으로 하는 열반사 단열재 판넬 제조방법에 관한 것이다.The present invention includes the steps of a) preparing a flame retardant composition containing a polyethylene resin, a functional flame retardant, and an organic-inorganic composite flame retardant; b) adding a foaming agent to the flame retardant composition and then mixing to form a mixture; c) extruding the mixture and then foaming to form a foam; d) forming and processing the foam to produce a workpiece; It relates to a method of manufacturing a heat reflective insulation panel, characterized in that it is manufactured including the step of adhering the outer covering material to one or both sides of the workpiece.

Description

열반사 단열재 판넬 및 이의 제조방법{Heat reflective insulation panel and manufacturing method thereof}Heat reflective insulation panel and manufacturing method thereof}

본 발명은 연소과정에서 적은연기, 무독성 등의 특징을 갖고, 가공성이 용이하며, 난연성 및 내열성이 우수한 열반사 단열재 판넬 및 이의 제조방법에 관한 것이다.The present invention relates to a heat reflective insulation panel that has characteristics such as low smoke and non-toxicity during the combustion process, is easy to process, and has excellent flame retardancy and heat resistance, and a method of manufacturing the same.

이하에 기술되는 내용은 단순히 본 발명과 관련되는 배경 정보만을 제공할 뿐 종래기술을 구성하는 것이 아니다.The content described below simply provides background information related to the present invention and does not constitute prior art.

최근 대형 화재사고로 많은 인명피해와 재산피해가 발생하였는데, 이 화재사고의 경우 건물의 외벽을 난연 성능 및 불연성능이 없는 단열재, 접착몰탈, 마감재로 시공을 하는 일명 '드라이비트 공법'으로 시공을 하여 화재 확산 속도가 빨랐고 이로 인해 피해가 더욱 커진 것이 원인으로 지목되고 있다.Recently, large-scale fire accidents have resulted in many casualties and property damage. In the case of this fire accident, the exterior walls of the building were constructed using the so-called 'Drybit method', which involves constructing the exterior wall of the building with insulation, adhesive mortar, and finishing materials without flame retardant or non-combustible properties. This is believed to be the cause of the rapid spread of the fire, resulting in greater damage.

이에 정부에서는 '건축물의 피난/방화구조 등의 기준에 관한 규칙'을 개정하여 건축물 마감재료의 화재안전성 기준을 대폭 강화하였으며, 2016년 4월부터 시행되고 있다.Accordingly, the government revised the 'Rules on standards for building evacuation/fire protection structures, etc.' to significantly strengthen fire safety standards for building finishing materials, and has been in effect since April 2016.

종래 단열 시공에 사용되는 단열재의 대표적인 예로는, 스티로폼, 발포 폴리우레탄, 발포 폴리에틸렌이 주종을 이루고 있다. 발포 폴리에틸렌의 경우, 난연성을 강화시키기 위하여, 할로겐계, 무기계, 인계로 구분되는 난연제를 첨가하여, 화염이나 불꽃에 의해 연소되는 것을 방지하고자 하였다.Representative examples of insulation materials used in conventional insulation construction mainly include styrofoam, expanded polyurethane, and expanded polyethylene. In the case of expanded polyethylene, in order to enhance flame retardancy, flame retardants classified into halogen-based, inorganic-based, and phosphorus-based were added to prevent combustion by flame or flame.

그러나, 상기 할로겐계 난연제의 경우, 난연성 확보는 용이하지만, 폴리에틸렌 수지와의 좋지 못한 상용성, 압출기내의 체류로 인한 분해로 탄화물 발생, 가공 및 연소 시 하이드로 브롬산, 다이옥신, 벤조 퓨란 등과 같은 유해한 독성가스의 발생하는 등의 문제점이 있었다. 이와 같이 할로겐계 난연제는 인체에 유해하여 제품물성, 제조공정 및 안정성에 좋지 않은 영향을 준다는 문제가 있었다.However, in the case of the above halogen-based flame retardants, although it is easy to secure flame retardancy, they have poor compatibility with polyethylene resin, generate carbides due to decomposition due to retention in the extruder, and produce harmful toxic substances such as hydrobromic acid, dioxin, and benzofuran during processing and combustion. There were problems such as the generation of gas. As such, there is a problem that halogen-based flame retardants are harmful to the human body and have a negative effect on product properties, manufacturing processes, and stability.

또한, 무기계 난연제의 경우, 충분한 난연효과를 발휘하기 위하여, 과량의 무기계 난연제를 사용해야하는 문제 때문에, 성형 가공성이 용이하지 못해 단열재로 용이하게 제조되지 못하는 문제가 있었다.In addition, in the case of inorganic flame retardants, in order to exhibit sufficient flame retardant effect, an excessive amount of inorganic flame retardants must be used, and thus molding processability is not easy, so there is a problem that they cannot be easily manufactured into insulation materials.

한편, 인계 난연제의 경우, 상기한 할로겐계 난연제보다 독성의 지속성이 짧고, 연소과정에서 적은 연기가 발생하며, 사용 시에는 친환경적이라는 장점이 있어, 각광받아 왔으나, 수지의 기본 물성을 저하시킬 우려가 있다는 점, 제품 사용 중에 휘발, 마모, 침출, 침전, 침투 및 용해 등을 통해 쉽게 환경으로 누출될 수 있고, 누출된 인계 난연제가 인체 내부에 축적되면 독성, 생식 기능 손상, 내분비 장애 및 발암 등의 여러 가지 건강상의 악영향을 유발할 수 있는 문제가 있었다.Meanwhile, in the case of phosphorus-based flame retardants, they have been in the spotlight because they have the advantage of having a shorter toxicity duration than the above-mentioned halogen-based flame retardants, generating less smoke during the combustion process, and being environmentally friendly when used, but there is a risk of deteriorating the basic physical properties of the resin. During use of the product, it can easily leak into the environment through volatilization, abrasion, leaching, precipitation, penetration, and dissolution. If the leaked phosphorus-based flame retardant accumulates inside the human body, it can cause toxicity, damage to reproductive function, endocrine disorders, and carcinogenesis. There were problems that could cause various adverse health effects.

이에 따라서, 상기의 문제점들을 해결하면서, 내열성, 난연성, 친환경성을 극대화 시킬 수 있는 단열재 판넬의 개발이 시급한 실정이다.Accordingly, there is an urgent need to develop an insulation panel that can solve the above problems while maximizing heat resistance, flame retardancy, and eco-friendliness.

(선행문헌1) 한국등록특허공보 제10-1843630호(Prior Document 1) Korean Patent Publication No. 10-1843630 (선행문헌2) 한국공개특허공보 제 2019-0022089호(Prior Document 2) Korean Patent Publication No. 2019-0022089

본 발명은 내열성 뿐만 아니라 화염 확산의 직접적인 원인이 되는 산소를 차단·격리하고, 주위 열을 흡수하여 냉각 효과를 갖는 동시에 친환경성과 난연성 및 내열성을 등 복합적으로 개선할 수 있는 열반사 단열재 판넬을 제공하는 것을 목적으로 한다.The present invention provides a heat-reflecting insulation panel that not only has heat resistance, but also blocks and isolates oxygen, which is a direct cause of flame spread, and has a cooling effect by absorbing surrounding heat, while simultaneously improving eco-friendliness, flame retardancy, and heat resistance. The purpose is to

본 발명의 열반사 단열재 판넬은 a) 폴리에틸렌 수지, 기능성 난연제, 유무기 복합난연제를 포함하는 난연성 조성물을 준비하는 단계; b) 상기 난연성 조성물에 발포제를 첨가한 후, 혼합하여 혼합물을 형성하는 단계; c) 상기 혼합물을 압출시킨 후, 발포하여 발포체를 형성하는 단계; d) 상기 발포체를 성형 및 가공하여, 가공물을 제조하는 단계; e) 상기 가공물의 일면 또는 양면에 외피재를 접착시키는 단계;를 포함하여 제조되는 것 특징으로 한다.The heat reflective insulation panel of the present invention includes the steps of a) preparing a flame retardant composition containing a polyethylene resin, a functional flame retardant, and an organic-inorganic composite flame retardant; b) adding a foaming agent to the flame retardant composition and then mixing to form a mixture; c) extruding the mixture and then foaming to form a foam; d) forming and processing the foam to produce a workpiece; e) adhering the outer covering material to one or both sides of the workpiece;

상기 난연성 조성물은 폴리에틸렌 수지 45~70 중량%, 기능성 난연제 15~40 중량%, 유무기 복합 난연제 1~25 중량%를 포함하여 구성되는 것을 특징으로 한다.The flame retardant composition is characterized by comprising 45 to 70% by weight of polyethylene resin, 15 to 40% by weight of a functional flame retardant, and 1 to 25% by weight of an organic-inorganic composite flame retardant.

상기 기능성 난연제는 팽창성 흑연 30~45중량%, 탈크 25~40중량%, 징크보레이트(Zinc Borate) 20~35중량%를 포함하여 구성되는 것을 특징으로 한다.The functional flame retardant is characterized in that it contains 30 to 45% by weight of expanded graphite, 25 to 40% by weight of talc, and 20 to 35% by weight of zinc borate.

상기 유무기 복합난연제는 유기 인계 화합물과 무기계 난연제를 반응시켜 제조된 것을 사용하는 것을 특징으로 한다.The organic-inorganic composite flame retardant is characterized in that it is manufactured by reacting an organic phosphorus compound and an inorganic flame retardant.

상기 유기 인계 화합물은 하기 화학식 1의 DOPO(9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide)와 하기 화학식 2의 실란 화합물을 반응시켜 제조되는 것을 특징으로 한다.The organophosphorus compound is characterized in that it is prepared by reacting DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) of the formula 1 below and a silane compound of the formula 2 below.

[화학식 1][Formula 1]

[화학식 2][Formula 2]

(여기서, 은 C2~C6의 비닐기이고, 는 C1~C8의 선형, 분지형 또는 지환형 알킬기이다.)(here, is a vinyl group of C 2 to C 6 , is a C 1 to C 8 linear, branched or alicyclic alkyl group.)

상기 무기계 난연제는 수산화알루미늄(Al(OH)3), 수산화마그네슘,(Mg(OH)2) 중에서 선택된 어느 하나 이상인 인 것을 특징으로 한다.The inorganic flame retardant is characterized in that it is at least one selected from aluminum hydroxide (Al(OH)3), magnesium hydroxide, and (Mg(OH)2).

상기 단계 d)와 단계 e) 사이에는, 상기 가공물의 일면 또는 양면에는 기능성 코팅액을 도포하는 단계;를 더 포함하여 구성되는 것을 특징으로 한다.Between step d) and step e), the method further includes applying a functional coating solution to one or both sides of the workpiece.

또한 본 발명은 앞서 기재된 어느 하나의 제조방법으로 제조되는 것을 특징으로 하는 열반사 단열재 판넬을 제공할 수 있다.In addition, the present invention can provide a heat reflective insulation panel, which is manufactured by any of the manufacturing methods described above.

본 발명은 유무기 복합난연제를 포함하는 난연성 조성물에 의해 단열재가 제조됨으로써, 친환경성과 난연성 및 내열성을 등 복합적으로 개선할 수 있는 열반사 단열재 판넬을 제공할 수 있는 효과가 있다.The present invention has the effect of providing a heat-reflecting insulation panel that can comprehensively improve eco-friendliness, flame retardancy, and heat resistance by manufacturing an insulation material using a flame-retardant composition containing an organic-inorganic composite flame retardant.

도 1은 본 발명의 열반사 단열재 판넬의 제조방법을 도시한 공정도이다.Figure 1 is a process diagram showing a method of manufacturing a heat reflective insulation panel of the present invention.

이하에서는 본 발명의 구체적 실시 예를 도면을 참조하여 보다 상세히 설명한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Hereinafter, specific embodiments of the present invention will be described in more detail with reference to the drawings. However, this is not intended to limit the present invention to specific embodiments, and should be understood to include all transformations, equivalents, and substitutes included in the spirit and technical scope of the present invention. In describing the present invention, if it is determined that a detailed description of related known technologies may obscure the gist of the present invention, the detailed description will be omitted.

또한, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, '포함하다' 또는 '가지다' 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Additionally, singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as 'comprise' or 'have' are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the specification, but are not intended to indicate the presence of one or more other features. It should be understood that it does not exclude in advance the possibility of the existence or addition of elements, numbers, steps, operations, components, parts, or combinations thereof.

또한 제1, 제2 등의 용어는 다양한 구성 요소들을 구분하여 설명하기 위해 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용되었음을 일러둔다.Additionally, terms such as first and second may be used to separately describe various components, but the components should not be limited by the terms. Please note that the above terms are used only for the purpose of distinguishing one component from another component.

본 발명의 열반사 단열재 판넬 제조방법은 a) 폴리에틸렌 수지, 기능성 난연제, 유무기 복합난연제를 포함하는 난연성 조성물을 준비하는 단계; b) 상기 난연성 조성물에 발포제를 첨가한 후, 혼합하여 혼합물을 형성하는 단계; c) 상기 혼합물을 압출시킨 후, 발포하여 발포체를 형성하는 단계; d) 상기 발포체를 성형 및 가공하여, 가공물을 제조하는 단계; e) 상기 가공물의 일면 또는 양면에 외피재를 접착시키는 단계;를 포함하여 제조되는 것 특징으로 한다.The method for manufacturing a heat reflective insulation panel of the present invention includes the steps of a) preparing a flame retardant composition containing a polyethylene resin, a functional flame retardant, and an organic-inorganic composite flame retardant; b) adding a foaming agent to the flame retardant composition and then mixing to form a mixture; c) extruding the mixture and then foaming to form a foam; d) forming and processing the foam to produce a workpiece; e) adhering the outer covering material to one or both sides of the workpiece;

먼저, a) 폴리에틸렌 수지, 기능성 난연제, 유무기 복합난연제를 포함하는 난연성 조성물을 준비하는 단계;에 있어서, 상기 난연성 조성물은 폴리에틸렌 수지 45~70 중량%, 기능성 난연제 15~40 중량%, 유무기 복합 난연제 1~25 중량%를 포함하여 구성되는 것을 특징으로 한다.First, a) preparing a flame retardant composition containing a polyethylene resin, a functional flame retardant, and an organic-inorganic composite flame retardant; wherein the flame retardant composition contains 45 to 70% by weight of polyethylene resin, 15 to 40% by weight of a functional flame retardant, and an organic-inorganic composite. It is characterized in that it contains 1 to 25% by weight of a flame retardant.

상기 폴리에틸렌 수지(PE; PolyEthylene Resin)는 에틸렌으로 만든 합성수지로서, 현저한 단열특성을 갖는다.The polyethylene resin (PE; PolyEthylene Resin) is a synthetic resin made from ethylene and has remarkable heat insulating properties.

상기 기능성 난연제는 팽창성 흑연, 탈크, 징크보레이트(Zinc Borate), 를 포함하여 구성되는 것을 특징으로 한다.The functional flame retardant is characterized in that it includes expanded graphite, talc, and zinc borate.

상기 기능성 난연제는 최종 제조되는 단열 판넬의 난연성을 보조하고, 내수성을 개선하기 위해 사용되는 성분으로서, 필요시 요구되는 수준을 고려하여, 적절한 양으로 사용할 수 있다. 가장 바람직하게, 상기 기능성 난연제는 팽창성 흑연 30~45중량%, 탈크 25~40중량%, 징크보레이트(Zinc Borate) 20~35중량%를 포함하여 구성되는 것 사용할 수 있다.The functional flame retardant is a component used to assist the flame retardancy of the final manufactured insulation panel and improve water resistance, and can be used in an appropriate amount, taking into account the level required when necessary. Most preferably, the functional flame retardant may be used containing 30 to 45% by weight of expanded graphite, 25 to 40% by weight of talc, and 20 to 35% by weight of zinc borate.

상기 기능성 난연제에 사용되는 팽창성 흑연의 경우, 층상의 결정구조를 갖는다. 이와 같은 구조의 팽창성 흑연은 연소에 의해 형성된 화염, 물 및 산화 화합물에 의해 20~350배까지 발포되어, 다공성 구조를 형성함으로써, 열이 이동하는 것을 방지한다. 뿐만 아니라, 다공성 구조에 독성 가스를 가두는 역할을 하여, 우수한 난연효과를 나타낼 수 있게 된다.The expanded graphite used in the functional flame retardant has a layered crystal structure. Expandable graphite with this structure is expanded 20 to 350 times by the flame, water, and oxidizing compounds formed by combustion, forming a porous structure, preventing heat from moving. In addition, it plays a role in trapping toxic gases in the porous structure, resulting in excellent flame retardant effects.

상기 팽창성 흑연은 당업자에 의해 통상적으로 사용되는 것을 이용할 수 있으나, 기능성 난연제에 포함된 다른 성분들과의 혼합 균일성을 증진시키고, 물리적 특성의 저하를 방지하기 위하여, 평균 입자의 크기가 400~600mesh 인 것을 사용하는 것이 바람직하다.The expanded graphite may be one commonly used by those skilled in the art, but in order to improve the uniformity of mixing with other components included in the functional flame retardant and to prevent deterioration of physical properties, the average particle size is 400 to 600 mesh. It is desirable to use .

상기 탈크(talc)의 경우, 활석광석을 미분쇄 또는 초미분쇄하여 제조된 입자 형상이 판상인 백색 분말로서, 무기 광산물 중 가장 경도가 낮고, 내열성 및 화학적 안정성이 우수하여, 난연제로서 활용될 수 있을 뿐만 아니라, 내수성이 우수하여, 기능성 난연제로서 용이하게 사용될 수 있다.In the case of talc, it is a white powder with a plate-shaped particle shape manufactured by finely or ultrafinely grinding talc ore. It has the lowest hardness among inorganic mineral products and has excellent heat resistance and chemical stability, so it can be used as a flame retardant. In addition, it has excellent water resistance and can be easily used as a functional flame retardant.

상기 징크보레이트의 경우, 내열성, 전기특성, 내수성이 우수하며, 고온에서 탈수반응이 일어나면서 흡열현상을 보이며, 530J/g의 흡열량에 의해 우수한 난연효과를 나타낼 수 있다.In the case of the zinc borate, it has excellent heat resistance, electrical properties, and water resistance, and exhibits an endothermic phenomenon as a dehydration reaction occurs at high temperature, and can exhibit an excellent flame retardant effect due to an endothermic amount of 530 J/g.

한편, 상기 기능성 난연제의 경우, 난연성을 보다 강화시키기 위하여, 친환경적이고, 독성이 거의 없는 인계 난연제 1~3중량%를 더 포함할 수 있고, 상기 인계 난연제는 트리크레실 포스페이트(TCP, Tricresyl Phosphate), 비스페놀A 비스(diphenyl phosshate), 트리에틸포스페이트(TEP, Triethyl Phosphate), 리소시놀 비스 디페닐포스페이트(Resorcinol bis diphenyl phosphate, RDP), 펜타에리트리톨 포스페이트(Pentaerythritol  phosphate) 중 어느 하나 이상일 수 있고, 가장 바람직하게는 트리크레실 포스페이트(TCP, Tricresyl Phosphate)일 수 있다.Meanwhile, in the case of the functional flame retardant, in order to further strengthen the flame retardancy, it may further include 1 to 3% by weight of an eco-friendly, almost non-toxic phosphorus-based flame retardant, and the phosphorus-based flame retardant is tricresyl phosphate (TCP). , bisphenol A bis (diphenyl phosshate), triethyl phosphate (TEP, Triethyl Phosphate), Resorcinol bis diphenyl phosphate (RDP), and pentaerythritol phosphate (Pentaerythritol phosphate). Most preferably, it may be tricresyl phosphate (TCP).

이하에서는 단계 a)의 유무기 복합 난연제에 관하여 상세히 설명하도록 한다.Hereinafter, the organic-inorganic composite flame retardant of step a) will be described in detail.

상기 유무기 복합난연제는 유기 인계 화합물과 무기계 난연제를 반응시켜 제조된 것을 사용하는 것을 특징으로 한다.The organic-inorganic composite flame retardant is characterized in that it is manufactured by reacting an organic phosphorus compound and an inorganic flame retardant.

먼저, 무기계 난연제의 경우, 상기 무기계 난연제는 수산화알루미늄(Al(OH)3), 수산화마그네슘,(Mg(OH)2) 중에서 선택된 어느 하나 이상일 수 있다.First, in the case of an inorganic flame retardant, the inorganic flame retardant may be one or more selected from aluminum hydroxide (Al(OH) 3 ), magnesium hydroxide, and (Mg(OH) 2 ).

상기 수산화마그네슘,(Mg(OH)2)의 경우, 주변에서 열이 발생하면 수산화마그네슘의 반응기인 수산화기(-OH)가 열을 흡수하여 물을 발생시키면서 난연 효과가 발생하게 될 수 있을 뿐만 아니라, 기계적 강성을 개선할 수 있다. 또한, 이는 고온에 노출되어도, 유독 가스를 배출되지 않아 친환경적으로 이용될 수 있는 장점이 있다.In the case of the magnesium hydroxide (Mg(OH) 2 ), when heat is generated in the surroundings, the hydroxyl group (-OH), which is a reactive group of magnesium hydroxide, absorbs the heat and generates water, thereby producing a flame retardant effect. Mechanical rigidity can be improved. In addition, it has the advantage of being environmentally friendly because it does not emit toxic gases even when exposed to high temperatures.

상기 수산화알루미늄(Al(OH)3),의 경우, 알칼리에 쉽게 반응하여 용해하고 200℃까지 안정적으로 유지하며 더 높은 온도에서 결정수가 탈수하는 과정으로 인해 많은 양의 열을 흡수하게 되므로 냉각효과가 있으며, 연소 시 발생하는 다이옥신, 염화수소가스 등 유해물질을 흡착할 수 있다. 즉 내열성, 내산성 및 난연성을 동시에 기대할 수 있으며, 화재 시에 연기와 유독성 가스의 발생을 줄여줄 수 있다.In the case of aluminum hydroxide (Al(OH) 3 ), it easily reacts and dissolves in alkali and remains stable up to 200°C, and absorbs a large amount of heat due to the process of dehydration of crystal water at a higher temperature, thereby providing a cooling effect. It can absorb harmful substances such as dioxin and hydrogen chloride gas generated during combustion. In other words, heat resistance, acid resistance, and flame retardancy can be expected at the same time, and the generation of smoke and toxic gases can be reduced in the event of a fire.

방법에 따라서, 상기 무기계 난연제는 칼슘, 안티몬, 주석, 게르마늄, 티탄, 철, 지르코늄, 세슘, 비스무스, 스트론튬, 망간, 리튬, 나트륨, 칼륨 중 어느 하나를 수산화 금속으로 형성하여 상기 수산화마그네슘 또는 상기 수산화알루미늄을 대체하도록 구성할 수 있다.Depending on the method, the inorganic flame retardant forms any one of calcium, antimony, tin, germanium, titanium, iron, zirconium, cesium, bismuth, strontium, manganese, lithium, sodium, and potassium into a metal hydroxide to form the magnesium hydroxide or the hydroxide. It can be configured to replace aluminum.

한편, 상기 유기 인계 화합물은 하기 화학식 1의 DOPO(9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide)와 하기 화학식 2의 실란 화합물을 반응시켜 제조되는 것을 특징으로 한다.Meanwhile, the organophosphorus compound is characterized in that it is prepared by reacting DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) of the formula 1 below and a silane compound of the formula 2 below.

더욱 구체적으로, 화학식 1의 DOPO(9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide)와 하기 화학식 2의 실란 화합물은 벤젠을 용매로하여, 과산화벤조일, 다이메탈아닐린 및 톨루엔 중 어느 하나 이상을 드롭와이즈 방식으로 더하여 합성한다. 과산화벤조일은 카복실기의 라디칼 개시제로써, 중합 반응용 촉매로 사용되었다. 이때, 다이메틸아닐린은 유기화합물의 전구체로 사용되는 물질로 사용되었다.More specifically, DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) of Chemical Formula 1 and the silane compound of Chemical Formula 2 below are dissolved in benzoyl peroxide, dimetalaniline, and toluene using benzene as a solvent. It is synthesized by adding one or more items in a dropwise manner. Benzoyl peroxide is a radical initiator of carboxyl group and was used as a catalyst for polymerization reaction. At this time, dimethylaniline was used as a substance used as a precursor for organic compounds.

[화학식 1][Formula 1]

[화학식 2][Formula 2]

(여기서, 은 C2~C6의 비닐기이고, 는 C1~C8의 선형, 분지형 또는 지환형 알킬기이다.)(here, is a vinyl group of C 2 to C 6 , is a C 1 to C 8 linear, branched or alicyclic alkyl group.)

상기 화학식 1의 DOPO의 경우, 양호한 난연 성능을 보일 뿐만 아니라, 지속성 측면에서 가장 안전한 난연제 중 하나에 해당된다. 특히, DOPO는 다른 난연제와 동일한 농도 및 기타 조건에서 HepG2 세포에 대한 세포독성이 거의 없는 것으로 밝혀졌다(Toxicol. Res., 2018, 7, 492)In the case of DOPO of Formula 1, not only does it exhibit good flame retardant performance, but it is also one of the safest flame retardants in terms of sustainability. In particular, DOPO was found to have little cytotoxicity against HepG2 cells at the same concentration and other conditions as other flame retardants (Toxicol. Res., 2018, 7, 492)

또한, 제 2의 난연제와 반응되더라도, 가용성이 높아 상기 제 2의 난연제와 결합 내지 반응한 후에도, 난연성을 저하시키지 않는 특징이 있다.In addition, even when reacted with a second flame retardant, it has the characteristic of not deteriorating flame retardancy even after combining or reacting with the second flame retardant due to its high solubility.

상기 화학식 2의 실란 화합물의 경우, 단열재의 단위면적당 셀 공극을 작게 하여, 고온에 의한 직접 열 침투성을 줄일 수 있으므로, 단열재에 우수한 난연 성능 및 내열 성능을 부여할 수 있게된다. 또한, 상기 실란 화합물의 경우, 바인딩 효과를 갖게 되므로 난연성 조성물의 가용성 및 혼합 반응성을 개선할 수 있다.In the case of the silane compound of Formula 2, direct heat permeability due to high temperature can be reduced by reducing the cell gap per unit area of the insulation material, thereby providing excellent flame retardant performance and heat resistance performance to the insulation material. In addition, the silane compound has a binding effect, so it can improve the solubility and mixing reactivity of the flame retardant composition.

이에 따라서, DOPO와 실란화합물을 반응시켜 제조되는 유기 인계 화합물의 경우, 활성산염을 흡수하여, 유리 기체를 방출하여, 화염 억제 효과를 일으키게 됨으로써, 난연제로서의 역할을 수행할 수 있고, 할로겐물질을 포함하지 않게 되므로, 친환경적인 효과가 있다.Accordingly, in the case of an organophosphorus compound produced by reacting DOPO and a silane compound, it can act as a flame retardant by absorbing activated salts, releasing free gas, and producing a flame suppression effect, and contains halogenated substances. Since it is not used, it has an environmentally friendly effect.

일예로, 상기 화학식 2로 표현되는 실란 화합물은 하기 화학식3으로 표현되는 화합물을 포함할 수 있고, 하기 화학식 3로 표시된 화합물과 화학식 1의DOPO(9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide)를 반응시킬 경우, 하기 화학식 4로 표시된 화합물을 수득할 수 있으며, 화학식 4로 표시된 화합물과 상기 무기계 난연제(수산화알루미늄Al(OH)3) 또는 수산화마그네슘,(Mg(OH)2)반응시켜, 최종적으로 화학식 5 내지 화학식 6으로 표시된 유무기계 복합 난연제를 수득할 수 있게 된다.For example, the silane compound represented by Formula 2 may include a compound represented by Formula 3 below, and a compound represented by Formula 3 below and DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene) of Formula 1. When reacting -10-oxide), a compound represented by the following formula 4 can be obtained. The compound represented by formula 4 and the inorganic flame retardant (aluminum hydroxide Al(OH) 3 ) or magnesium hydroxide (Mg(OH) 2 ) Through the reaction, it is finally possible to obtain an organic-inorganic composite flame retardant represented by Chemical Formula 5 to Chemical Formula 6.

[화학식 3][Formula 3]

(여기서, 화학식 3의 화합물은 아크릴산(acrylic acid)과 트리에톡시실란(triethoxysilane)을 반응시킨 것으로서, 트리에톡시실란(triethoxysilane)에 황산을 더하며 탈수축합 반응시켜 수득된 것이다.)(Here, the compound of Formula 3 is obtained by reacting acrylic acid and triethoxysilane, and is obtained by adding sulfuric acid to triethoxysilane and performing a dehydration condensation reaction.)

[화학식 4][Formula 4]

(여기서, 화학식 4의 화합물은 화학식 1의 화합물과 화학식3의 화합물을 반응시킨 것으로서, DOPO를 벤젠 용매에 용해하고, 과산화벤조일, 다이메틸아닐린 및 톨루엔을 드롭와이즈 방식으로 더하며 반응시켜 수득된 것이다.)(Here, the compound of Formula 4 is obtained by reacting the compound of Formula 1 with the compound of Formula 3, and is obtained by dissolving DOPO in a benzene solvent and adding benzoyl peroxide, dimethylaniline, and toluene in a dropwise manner. .)

[화학식 5][Formula 5]

(여기서, 화학식 5의 화합물은 화학식 4의 화합물과 수산화알루미늄Al(OH)3)을 반응시켜 수득된 것으로서, 화학식 4의 화합물과 수산화알루미늄을 에틸알코올과 탈염수를 포함하는 혼합액에서 환류를 통해 1차 합성시킨 후, 1차 합성된 합성물을 진공여과기로 여과하고 여과된 케이크를 탈염수로 여러 번 세척하는 과정 거침으로써, 수득된 것이다.)(Here, the compound of Formula 5 is obtained by reacting the compound of Formula 4 and aluminum hydroxide Al(OH) 3 ), and the compound of Formula 4 and aluminum hydroxide are first refluxed in a mixed solution containing ethyl alcohol and demineralized water. After synthesis, the first synthesized composite was filtered through a vacuum filter and the filtered cake was washed several times with demineralized water.)

[화학식 6][Formula 6]

(여기서, 화학식 5의 화합물은 화학식 4의 화합물과 수산화마그네슘Mg(OH)2)을 반응시켜 수득된 것이다. 화학식 4의 화합물과 수산화마그네슘을 에틸알코올과 탈염수를 포함하는 혼합액에서 환류를 통해 1차 합성시킨 후, 1차 합성된 합성물을 진공여과기로 여과하고 여과된 케이크를 탈염수로 여러 번 세척하는 과정 거침으로써, 수득된 것이다.)(Here, the compound of Formula 5 is obtained by reacting the compound of Formula 4 with magnesium hydroxide Mg(OH) 2 ). After first synthesizing the compound of Formula 4 and magnesium hydroxide through reflux in a mixed solution containing ethyl alcohol and demineralized water, the first synthesized composite is filtered using a vacuum filter, and the filtered cake is washed with demineralized water several times. , obtained.)

유기 인계 화합물과 무기계 난연제를 반응시켜 제조되는 상기 유무기 복합 난연제는 화재 내지 화염 발생 시 주변의 열을 흡수하며, 유기 인계 화합물과 무기계 난연제로 분해되므로, 열전달을 위축 및 저하시킬 수 있는 효과가 있다. 즉, 상기 유무기 복합 난연제가 흡열반응에 의해 분해되는 과정에서 쿨링효과 또는 냉각효과를 유발할 수 있게 된다.The organic-inorganic composite flame retardant, which is manufactured by reacting an organophosphorus compound and an inorganic flame retardant, absorbs surrounding heat in the event of a fire or flame, and is decomposed into the organophosphorus compound and the inorganic flame retardant, so it has the effect of shrinking and reducing heat transfer. . That is, the organic-inorganic composite flame retardant can cause a cooling effect or cooling effect in the process of decomposition through an endothermic reaction.

또한, 유무기 복합 난연제가 유기 인계 화합물과 무기계 난연제로 분해된 후에는 상기 유기 인계 화합물과 무기계 난연제가 각각 산소포집과 질식효과를 유발함으로써, 화염의 확산을 2차적으로 차단할 수 있는 효과가 있다.In addition, after the organic-inorganic composite flame retardant is decomposed into the organic phosphorus compound and the inorganic flame retardant, the organic phosphorus compound and the inorganic flame retardant cause oxygen capture and suffocation effects, respectively, which has the effect of secondaryly blocking the spread of flame.

또한, 상기 유무기 복합 난연제는 가용성이 높은 유기 인계 화합물과 무기계 화합물이 가교결합된 형태이므로, 현저한 난연성을 갖는 동시에 무기계 난연제를 단독으로 사용하는 경우 보다 난연성 조성물에 포함되는 기타 다른 성분들과 용이하게 혼합되어, 바인더의 역할까지 수행할 수 있는 효과가 있다.In addition, since the organic-inorganic composite flame retardant is a cross-linked form of a highly soluble organic phosphorus compound and an inorganic compound, it has remarkable flame retardancy and is easily combined with other components included in the flame retardant composition than when the inorganic flame retardant is used alone. When mixed, it has the effect of performing the role of a binder.

상기 유무기 복합난연제의 경우, 25 중량%를 초과하여 함유될 경우, 물성이 변하여 가공성이 떨어질 수 있게 되는 문제가 있고, 1 중량%미만으로 함유될 경우, 난연성이 크게 저하되어, 단열재용 난연성 조성물로서의 사용에 적합하지 않다.In the case of the organic-inorganic composite flame retardant, if it is contained in excess of 25% by weight, there is a problem in that the physical properties change and processability may be reduced, and if it is contained in less than 1% by weight, the flame retardancy is greatly reduced, resulting in a flame retardant composition for insulation materials. It is not suitable for use as a

b) 상기 난연성 조성물에 발포제를 첨가한 후, 혼합하여 혼합물을 형성하는 단계;에 있어서, 상기 발포제의 경우, 물, 탄산암모늄, 아조디카본아미드(Azodicarbonamide)를 예로 들 수 있다. 상기의 발포제의 경우, 상기 난연성 조성물을 발포시킴에 있어, 가스의 유출을 극소화시키면서도, 서로 가교 융합되도록 하여, 안정적인 발포력을 보일 수 있도록 한다. b) adding a foaming agent to the flame retardant composition and then mixing to form a mixture; examples of the foaming agent include water, ammonium carbonate, and azodicarbonamide. In the case of the above foaming agent, when foaming the flame retardant composition, it minimizes the outflow of gas and allows them to crosslink and fuse with each other, thereby showing stable foaming power.

이때, 상기 발포제는 혼합물의 필요 물성에 따라 첨가량이 달라질 수 있으나, 상기 난연선 조성물 100 중량부에 대해 상기 발포제가 1 중량부 미만으로 첨가되어 혼합될 경우, 혼합물의 발포력이 떨어지게 될 우려가 있고, 35 중량부를 초과하여 혼합될 경우, 혼합물이 지나치게 발포되어, 강도가 저하도고 물성이 떨어지게 되는 문제점이 나타나 바람직하지 않게 되므로, 기 발포제는 상기 난연성 조성물 100 중량부에 대해 1~35 중량부가 첨가될 수 있다.At this time, the amount of foaming agent added may vary depending on the necessary physical properties of the mixture, but if the foaming agent is added and mixed in an amount of less than 1 part by weight relative to 100 parts by weight of the flame retardant wire composition, there is a risk that the foaming power of the mixture may decrease. , When mixed in excess of 35 parts by weight, the mixture foams excessively, causing problems such as lower strength and lower physical properties, which is undesirable. Therefore, the foaming agent should be added in an amount of 1 to 35 parts by weight based on 100 parts by weight of the flame retardant composition. You can.

c) 상기 혼합물을 압출시킨 후, 발포하여 발포체를 형성하는 단계;에 있어서, 상기 혼합물은 압출된 후에, 120℃~200℃의 온도조건의 발포로에서 가교, 발포되어, 화학적으로 가교된 발포체로 제조될 수 있도록 함이 바람직하다.c) extruding the mixture and then foaming to form a foam; in which, after the mixture is extruded, it is crosslinked and foamed in a foaming furnace under temperature conditions of 120°C to 200°C to form a chemically crosslinked foam. It is desirable to allow it to be manufactured.

더욱 바람직하게, 단계 b)와 단계 c) 사이에는, 상기 혼합물에 안정제를 투입한 후, 혼합하는 단계;를 더 포함하여 구성될 수 있다. 이때, 상기 안정제는 난연성 조성물이 발포제와 혼합된 후에도 물리적 및 화학적 성질을 안정적으로 유지할 수 있도록 함으로써, 난연 상승 효과와 더불어 열방출 효과를 돕고, 화염으로부터 발생되는 연기를 감소시킬 수 있게 하기 위함이다. 상기 안정제로서는 4,000~10,000cs의 점도를 갖는 실리콘 오일이 사용될 수 있다. 상기 안정제는 혼합물의 필요 물성에 따라 첨가량이 달라질 수 있으나, 난연성 조성물 100 중량부에 대하여, 상기 안정제가 1~5 중량부 첨가되는 것이 바람직하다.More preferably, between step b) and step c), a step of adding a stabilizer to the mixture and then mixing may be further included. At this time, the stabilizer is intended to ensure that the flame retardant composition maintains its physical and chemical properties stably even after being mixed with the foaming agent, thus assisting the heat release effect as well as the flame retardant synergistic effect, and reducing smoke generated from the flame. Silicone oil having a viscosity of 4,000 to 10,000 cs may be used as the stabilizer. The amount of the stabilizer added may vary depending on the required physical properties of the mixture, but it is preferable to add 1 to 5 parts by weight of the stabilizer per 100 parts by weight of the flame retardant composition.

d) 상기 발포체를 성형 및 가공하여, 가공물을 제조하는 단계;에 있어서, 상기 발포체는 금형틀에 넣어 원하는 형상이나 모양으로 성형 및 가공할 수 있다.d) forming and processing the foam to produce a workpiece; in the step, the foam can be placed in a mold and molded and processed into a desired shape or shape.

e) 상기 가공물의 일면 또는 양면에 외피재를 접착시키는 단계;에 있어서, 통상적으로 사용되는 알루미늄 시트를 외피재로 이용하여, 상기 가공물의 일면 또는 양면에 열접착시킬 수 있고, 더욱 바람직하게는, 유리섬유포(glass fiber cloth)가 포함된 알루미늄 시트를 열 접착시켜, 고온에 의한 열 침투성을 더욱 개선시킬 수 있게 구성 할 수 있다. 상기 외피재의 두께는 당업자에 의해 용이하게 구성될 수 있으며, 가장 바람직하게는 0.3mm~10mm으로 구성될 수 있다.e) adhering a shell material to one or both sides of the workpiece; in the step, a commonly used aluminum sheet can be used as a shell material and heat-bonded to one side or both sides of the workpiece, more preferably, An aluminum sheet containing glass fiber cloth can be heat bonded to further improve heat permeability at high temperatures. The thickness of the outer covering material can be easily determined by a person skilled in the art, and is most preferably 0.3 mm to 10 mm.

방법에 따라서, 단계 d)와 단계 e) 사이에는, 상기 가공물의 일면 또는 양면에 기능성 코팅액을 도포하는 단계;를 더 포함할 수 있다.Depending on the method, between step d) and step e), a step of applying a functional coating liquid to one or both sides of the workpiece may be further included.

이때, 상기 기능성 코팅액은 액상의 규산나트륨(Sodium Silicates), 액상의 규산칼륨(Potassium Silicate)을 포함하여 구성될 수 있다.At this time, the functional coating liquid may include liquid sodium silicates and liquid potassium silicate.

상기 액상의 규산나트륨(Sodium Silicates), 액상의 규산칼륨(Potassium Silicate)의 경우, 접착력을 가지므로, 가공물과 외피재가 더욱 견고히 접착될 수 있게 할 수 있고, 화재 시 부풀어 오르면서 난연성을 더욱 개선시킬 수 있게 되므로, 상기 가공물의 일면 또는 양면에 도포되는 코팅액으로서 적합하다.In the case of the liquid sodium silicates and liquid potassium silicate, since they have adhesive strength, they can allow the workpiece and the outer covering material to be more firmly bonded, and can further improve flame retardancy by swelling in the event of a fire. Therefore, it is suitable as a coating liquid applied to one or both sides of the workpiece.

이때, 규산나트륨(Sodium Silicates), 규산나트륨(Sodium Silicates)의 경우, 수분에 의하여 강도가 저하될 수 있으므로, 이를 방지하기 위하여, 상기 기능성 코팅액은 황산알루미늄을 더 포함할 수 있다.At this time, in the case of sodium silicates, the strength may decrease due to moisture, so to prevent this, the functional coating liquid may further include aluminum sulfate.

또한, 상기 기능성 코팅액의 결합력을 보다 증진시키기 위하여, 대마 추출물을 더 포함할 수 있다. 상기 대마 추출물의 경우, 대마를 물에 넣고 일정시간 이상 가열한 후, 얻을 수 있는 점액성 물질에 해당된다. 또한, 천연 물질이므로 화재시 유독가스를 유발하지 않으며, 가공물과 외피재의 견고한 결합력을 유도할 수 있게 된다.Additionally, in order to further improve the binding force of the functional coating liquid, hemp extract may be further included. In the case of the hemp extract, it corresponds to a mucous substance that can be obtained after putting hemp in water and heating it for a certain period of time. In addition, since it is a natural material, it does not cause toxic gases in case of fire, and can induce a strong bond between the processed product and the outer covering material.

본 발명은 앞서 언급된 제조방법으로 제조되는 것을 특징으로 하는 열반사 단열재 판넬을 제공할 수 있다.The present invention can provide a heat reflective insulation panel, which is manufactured by the above-mentioned manufacturing method.

이하에서, 본 발명의 바람직한 실시예에 따른 열반사 단열재 판넬에 관하여 더욱 상세하게 설명한다. 그러나, 본 발명의 범위가 하기의 실시예에 의해 제한되는 것은 아니다.Hereinafter, a heat reflective insulation panel according to a preferred embodiment of the present invention will be described in more detail. However, the scope of the present invention is not limited by the following examples.

■ 실시예: 열반사 단열재 판넬의 제조■ Example: Manufacturing of heat reflective insulation panel

<실시예 1><Example 1>

a) 폴리에틸렌 수지 65 중량%, 기능성 난연제 20 중량%, 유무기 복합난연제 15중량%를 포함하는 난연성 조성물을 준비하였다.a) A flame retardant composition containing 65% by weight of polyethylene resin, 20% by weight of a functional flame retardant, and 15% by weight of an organic-inorganic composite flame retardant was prepared.

이때, 상기 기능성 난연제는 500mesh의 팽창성 흑연 35중량%, 탈크 35중량%, 징크보레이트 30중량%로 구성된 것을 사용하였고, 상기 유무기 복합 난연제는 하기 화학식 5로 표시된 화합물을 이용하였다.At this time, the functional flame retardant was used consisting of 35% by weight of expanded graphite of 500 mesh, 35% by weight of talc, and 30% by weight of zinc borate, and the organic-inorganic composite flame retardant was used as a compound represented by the following formula (5).

[화학식 5][Formula 5]

b) 이후, 상기 난연제 조성물 100 중량부에 대해 아조디카본아미드(Azodicarbonamide) 25 중량부를 첨가하여 혼합물을 형성하였다.b) Afterwards, 25 parts by weight of azodicarbonamide was added to 100 parts by weight of the flame retardant composition to form a mixture.

c) 다음으로, 상기 혼합물을 압출기에 투입하여, 압출시킨 후, 100~140 bar 압력에서 발포하여 발포체를 형성하였다.c) Next, the mixture was put into an extruder, extruded, and foamed at a pressure of 100 to 140 bar to form a foam.

d) 상기 발포체를 금형틀에 넣어 성형한 후, 이를 45℃의 온도에서 24시간 건조하고, 규격화된 형태의 단열재로 재단하는 가공 과정을 거침으로써, 가공물을 제조하였다.d) After molding the foam in a mold, it was dried at a temperature of 45°C for 24 hours, and a processed product was manufactured by cutting it into a standardized insulating material.

e) 상기 가공물의 양면에 알루미늄시트를 1mm 두께로 접착시킴으로써, 열반사 단열재 판넬을 제조하였다.e) A heat reflective insulation panel was manufactured by adhering aluminum sheets to a thickness of 1 mm on both sides of the workpiece.

<실시예 2><Example 2>

실시예 1의 제조방법에 있어서, 상기 단계 a)의 기능성 난연제는 500mesh의 팽창성 흑연 32중량%, 탈크 35중량%, 징크보레이트 30중량%, 트리크레실 포스페이트 3중량%(TCP, Tricresyl Phosphate)로 구성된 것을 사용하였다는 점을 제외하고는 실시예 1과 동일하게 제조하였다.In the manufacturing method of Example 1, the functional flame retardant in step a) is composed of 32% by weight of expanded graphite of 500 mesh, 35% by weight of talc, 30% by weight of zinc borate, and 3% by weight of tricresyl phosphate (TCP, Tricresyl Phosphate). It was prepared in the same manner as Example 1, except that the composition was used.

<실시예 3><Example 3>

실시예 1의 제조방법에 있어서, 상기 단계 b)와 단계 c) 사이에, 상기 혼합물에 4,000~10,000cs의 점도를 갖는 실리콘 오일을 더 투입한 후, 혼합하되, 상기 실리콘 오일은 난연성 조성물 100 중량부에 대하여 3중량부가 첨가되었다는 점을 제외하고는 실시예 1과 동일하게 제조하였다.In the manufacturing method of Example 1, between step b) and step c), silicone oil having a viscosity of 4,000 to 10,000 cs is further added to the mixture and mixed, wherein the silicone oil is added to 100 weight of the flame retardant composition. It was prepared in the same manner as Example 1, except that 3 parts by weight were added.

<실시예 4><Example 4>

실시예 1의 제조방법에 있어서, 상기 단계 d)와 단계 e) 사이에, 상기 가공물의 일면 또는 양면에 기능성 코팅액을 도포하되, 상기 코팅액은 액상의 규산나트륨 40중량%, 액상의 규산칼륨 40중량%, 황산알루미늄 15 중량%. 대마추출물 5 중량%로 구성된 것을 이용하였다는 점을 제외하고는 실시예 1과 동일하게 제조하였다.In the manufacturing method of Example 1, between step d) and step e), a functional coating solution is applied to one or both sides of the workpiece, wherein the coating solution contains 40% by weight of liquid sodium silicate and 40% by weight of liquid potassium silicate. %, aluminum sulfate 15% by weight. It was prepared in the same manner as Example 1, except that 5% by weight of hemp extract was used.

<실시예 5><Example 5>

실시예 1의 제조방법에 있어서, 상기 단계 a)의 기능성 난연제는 500mesh의 팽창성 흑연 32중량%, 탈크 35중량%, 징크보레이트 30중량%, 트리크레실 포스페이트 3중량%(TCP, Tricresyl Phosphate)로 구성된 것을 사용하였다는 점, 상기 단계 b)와 단계 c) 사이에, 상기 혼합물에 4,000~10,000cs의 점도를 갖는 실리콘 오일을 더 투입한 후, 혼합하되, 상기 실리콘 오일은 난연성 조성물 100 중량부에 대하여 3중량부가 첨가되었다는 점, 상기 단계 d)와 단계 e) 사이에, 상기 가공물의 일면 또는 양면에 기능성 코팅액을 도포하되, 상기 코팅액은 액상의 규산나트륨 40중량%, 액상의 규산칼륨 40중량%, 황산알루미늄 15 중량%. 대마추출물 5 중량%로 구성된 것을 이용하였다는 점을 제외하고 실시예 1과 동일하게 제조하였다.In the manufacturing method of Example 1, the functional flame retardant in step a) is composed of 32% by weight of expanded graphite of 500 mesh, 35% by weight of talc, 30% by weight of zinc borate, and 3% by weight of tricresyl phosphate (TCP, Tricresyl Phosphate). In that the composition was used, between step b) and step c), silicone oil having a viscosity of 4,000 to 10,000 cs was further added to the mixture and mixed, wherein the silicone oil was added to 100 parts by weight of the flame retardant composition. Regarding the fact that 3 parts by weight were added, between step d) and step e), a functional coating solution was applied to one or both sides of the workpiece, wherein the coating solution contained 40% by weight of liquid sodium silicate and 40% by weight of liquid potassium silicate. , 15% by weight of aluminum sulfate. It was prepared in the same manner as Example 1, except that 5% by weight of hemp extract was used.

<비교예 1><Comparative Example 1>

a) 폴리에틸렌 수지 80 중량%, 기능성 난연제 20%를 포함하는 난연성 조성물을 준비하였다.(상기 난연성 조성물에는 유무기 복합 난연제가 포함되지 않음)a) A flame retardant composition containing 80% by weight of polyethylene resin and 20% of a functional flame retardant was prepared. (The flame retardant composition does not contain an organic-inorganic composite flame retardant.)

이때, 상기 기능성 난연제는 500mesh의 팽창성 흑연 35중량%, 탈크 35중량%, 징크보레이트 30중량%로 구성된 것을 사용하였다.At this time, the functional flame retardant was used consisting of 35% by weight of 500 mesh expanded graphite, 35% by weight of talc, and 30% by weight of zinc borate.

b) 이후, 상기 난연제 조성물 100 중량부에 대해 아조디카본아미드(Azodicarbonamide) 25 중량부를 첨가하여 혼합물을 형성하였다.b) Afterwards, 25 parts by weight of azodicarbonamide was added to 100 parts by weight of the flame retardant composition to form a mixture.

c) 다음으로, 상기 혼합물을 압출기에 투입하여, 압출시킨 후, 100~140 bar 압력에서 발포하여 발포체를 형성하였다.c) Next, the mixture was put into an extruder, extruded, and foamed at a pressure of 100 to 140 bar to form a foam.

d) 상기 발포체를 금형틀에 넣어 성형한 후, 이를 45℃의 온도에서 24시간 건조하고, 규격화된 형태의 단열재로 재단하는 가공 과정을 거침으로써, 가공물을 제조하였다.d) After molding the foam in a mold, it was dried at a temperature of 45°C for 24 hours, and a processed product was manufactured by cutting it into a standardized insulating material.

e) 상기 가공물의 양면에 알루미늄시트를 1mm 두께로 접착시킴으로써, 열재 판넬을 제조하였다.e) A thermal material panel was manufactured by adhering aluminum sheets to a thickness of 1 mm on both sides of the workpiece.

<비교예 2><Comparative Example 2>

단열재로서 폴리에틸렌 수지를 사용하고, 상기 폴리에틸렌 수지의 양면에 알루미늄시트를 1mm 두께로 접착시킴으로써, 단열재 판넬을 제조하였다.An insulating panel was manufactured by using polyethylene resin as an insulating material and attaching aluminum sheets to a thickness of 1 mm on both sides of the polyethylene resin.

■ 시험예: 열방출 시험 및 가스유해성 시험■ Test example: heat release test and gas toxicity test

1) 실험방법1) Experiment method

상기 실시예 1 내지 5, 비교예 1 내지 2 각각에 대한 열방출 시험은 KS F ISO 5660-1에 의하여 측정하였으며, 가스 유해성은 KS F 2771에 의거하여 측정하였다. 표 1은 시험규격을 나타낸 것이고, 표 2는 가스 유해성 시험에 사용된 시험체를 나타낸 것이다.The heat release test for each of Examples 1 to 5 and Comparative Examples 1 to 2 was measured according to KS F ISO 5660-1, and gas toxicity was measured according to KS F 2771. Table 1 shows the test specifications, and Table 2 shows the test specimens used in the gas toxicity test.

구분division 시험규격Test specifications 시험방법Test Methods 난연 2급
(준불연재)
Flame retardant level 2
(Semi-non-smoking material)
열방출 시험
KS F ISO 5660-1
heat release test
KS F ISO 5660-1
가열시험 개시 후 10분간 총방출열량이 8MJ/㎡ 이하이며, 10분간 최대 열방출률이 10초 이상 연속으로
200kW/㎡를 초과하지 않으며, 10분간 가열 후 시험체를 관통하는 방화상 유해한 균열, 구멍 및 용융(복합자재의 경우 심재가 전부 용융, 소멸되는 것을 포함한다) 등이 없어야 한다.
The total heat release rate for 10 minutes after the start of the heating test is 8MJ/㎡ or less, and the maximum heat release rate for 10 minutes is continuous for more than 10 seconds.
It should not exceed 200kW/㎡, and after heating for 10 minutes, there should be no cracks, holes, or melting harmful to fire protection penetrating the test specimen (in the case of composite materials, this includes the core material completely melting or disappearing).
가스 유해성 시험
KS F 2271
gas hazard test
KS F 2271
실험용 쥐의 평균행동정지 시간이 9분 이상The average behavioral suspension time of laboratory rats is more than 9 minutes.
난연 3급
(난연재)
Flame retardant level 3
(flame retardant)
열방출 시험
KS F ISO 5660-1
heat release test
KS F ISO 5660-1
가열시험 개시 후 5분간 총방출열량이 8MJ/㎡ 이하이며, 5분간 최대 열방출률이 10초 이상 연속으로200kW/㎡를 초과하지 않으며, 5분간 가열 후 시험체를 관통하는 방화상 유해한 균열, 구멍 및 용융(복합자재의 경우 심재가 전부 용융, 소멸되는 것을 포함한다)등이 없어야 한다.The total heat release rate for 5 minutes after the start of the heating test is 8MJ/㎡ or less, and the maximum heat release rate for 5 minutes does not exceed 200kW/㎡ for more than 10 consecutive seconds. After heating for 5 minutes, there are no cracks, holes, or cracks harmful to fire prevention that penetrate the test specimen. There must be no melting (including the complete melting or disappearance of the core material in the case of composite materials).
가스 유해성 시험
KS F 2271
gas hazard test
KS F 2271
실험용 쥐의 평균행동정지 시간이 9분 이상The average behavioral suspension time of laboratory rats is more than 9 minutes.

마우스 혈통mouse pedigree 마우스 성별mouse gender 마우스 평균무게(g)Average mouse weight (g) ICRICR 암컷female 1919

2) 실험결과2) Experiment results

하기 표 3에 상기 실시예 1 내지 5, 비교예 1 내지 2의 3회 실험 평균값을 나타내었다.Table 3 below shows the average values of three experiments of Examples 1 to 5 and Comparative Examples 1 to 2.

시험항목Test Items 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 실시예5Example 5 비교예1Comparative Example 1 비교예2Comparative example 2 열방출
시험
heat emission
test
총방출열량
(MJ/㎡)2
Total heat released
(MJ/㎡)2
2.12.1 1.61.6 1.71.7 1.61.6 1.31.3 7.57.5 1111
열방출율이 연속으로 200 kW/㎡
초과하는 시간(초)
Heat release rate continuously 200 kW/㎡
Time to exceed (seconds)
00 00 00 00 00 8.58.5 1515
시험체를 관통하는 방화상 유해한
균열, 구멍 및 용융 등
Harmful fire hazard penetrating the test object
Cracks, holes and melting etc.
없 음doesn't exist 없 음doesn't exist 없 음doesn't exist 없 음doesn't exist 없 음doesn't exist 있 음has exist 있 음has exist
가스
유해성
시험
gas
Harmful
test
행동정지시간
(분:초)
Action stoppage time
(minute:second)
15:2115:21 17:3817:38 17:1117:11 18:1218:12 19:1219:12 8:128:12 5:115:11

상기 표 3에 나타난바와 같이, 실시예 1 내지 실시예 5는 우수한 난연성을 갖고, 가스유해성이 적음을 확인할 수 있다.As shown in Table 3, it can be confirmed that Examples 1 to 5 have excellent flame retardancy and low gas toxicity.

Claims (8)

a) 폴리에틸렌 수지, 기능성 난연제, 유무기 복합난연제를 포함하는 난연성 조성물을 준비하는 단계;
b) 상기 난연성 조성물에 발포제를 첨가한 후, 혼합하여 혼합물을 형성하는 단계;
c) 상기 혼합물을 압출시킨 후, 발포하여 발포체를 형성하는 단계;
d) 상기 발포체를 성형 및 가공하여, 가공물을 제조하는 단계;
e) 상기 가공물의 일면 또는 양면에 알루미늄 시트 또는 유리섬유포가 포함된 알루미늄 시트를 열 접착시키는 단계;를 포함하고,
상기 난연성 조성물은 폴리에틸렌 수지 45~70 중량%, 기능성 난연제 15~40 중량%, 유무기 복합 난연제 1~25 중량%를 포함하여 구성되고,
상기 유무기 복합난연제는 유기 인계 화합물과 무기계 난연제를 반응시켜 제조된 것을 사용하고,
상기 유기 인계 화합물은,
하기 화학식 1의 DOPO(9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide)와 아크릴산과 트리에톡시실란을 반응시켜 제조한 하기 화학식 3에 황산을 더하고 탈수축합 반응시켜 수득한 실란 화합물에 벤젠을 용매로 과산화벤조일, 다이메탈아닐린 및 톨루엔 중 어느 하나 이상을 드롭와이즈 방식으로 더하여 제조한 것을 특징으로 하고,
[화학식 1]

[화학식 3]

상기 무기계 난연제는 수산화알루미늄(Al(OH)3), 수산화마그네슘,(Mg(OH)2) 중에서 선택된 어느 하나 이상인 것을 특징으로 하고,
상기 유무기 복합난연제는,
상기 유기 인계 화합물과 상기 무기계 난연제를 에틸알코올과 탈염수를 포함하는 혼합액에서 환류를 통해 1차 합성시킨 후, 1차 합성된 합성물을 진공여과기로 여과하고 여과된 케이크를 탈염수로 여러 번 세척하는 과정을 거쳐 수득되는 것을 특징으로 하는 열반사 단열재 판넬 제조방법
a) preparing a flame retardant composition containing polyethylene resin, a functional flame retardant, and an organic-inorganic composite flame retardant;
b) adding a foaming agent to the flame retardant composition and then mixing to form a mixture;
c) extruding the mixture and then foaming to form a foam;
d) forming and processing the foam to produce a workpiece;
e) heat-adhering an aluminum sheet or an aluminum sheet containing glass fiber cloth to one or both sides of the workpiece;
The flame retardant composition includes 45 to 70% by weight of polyethylene resin, 15 to 40% by weight of a functional flame retardant, and 1 to 25% by weight of an organic-inorganic composite flame retardant,
The organic-inorganic composite flame retardant is manufactured by reacting an organic phosphorus compound with an inorganic flame retardant,
The organophosphorus compound is,
Silane obtained by adding sulfuric acid to the formula 3 prepared by reacting DOPO (9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide) of the formula 1 below with acrylic acid and triethoxysilane and performing a dehydration condensation reaction It is characterized in that it is prepared by adding any one or more of benzoyl peroxide, dimetalaniline, and toluene to the compound using benzene as a solvent in a dropwise manner,
[Formula 1]

[Formula 3]

The inorganic flame retardant is characterized in that it is at least one selected from aluminum hydroxide (Al(OH)3), magnesium hydroxide, and (Mg(OH)2),
The organic-inorganic composite flame retardant,
After first synthesizing the organophosphorus compound and the inorganic flame retardant through reflux in a mixed solution containing ethyl alcohol and deionized water, the first synthesized compound is filtered using a vacuum filter, and the filtered cake is washed several times with demineralized water. A method of manufacturing a heat reflective insulation panel, characterized in that obtained through
삭제delete 제 1항에 있어서,
상기 기능성 난연제는 팽창성 흑연 30~45중량%, 탈크 25~40중량%, 징크보레이트(Zinc Borate) 20~35중량%를 포함하여 구성되는 것을 특징으로 하는 열반사 단열재 판넬 제조방법
According to clause 1,
A method of manufacturing a heat reflective insulation panel, wherein the functional flame retardant includes 30 to 45% by weight of expanded graphite, 25 to 40% by weight of talc, and 20 to 35% by weight of zinc borate.
삭제delete 삭제delete 삭제delete 제 1항에 있어서,
상기 단계 d)와 단계 e) 사이에는, 상기 가공물의 일면 또는 양면에는 기능성 코팅액을 도포하는 단계;를 더 포함하여 구성되는 것을 특징으로 하는 열반사 단열재 판넬 제조방법
According to clause 1,
Between step d) and step e), applying a functional coating liquid to one or both sides of the workpiece. A method of manufacturing a heat reflective insulation panel, characterized in that it further comprises the step of applying a functional coating liquid to one or both sides of the workpiece.
제 1항, 제 3항 및 제 7항 중 어느 한 항의 제조방법으로 제조되는 것을 특징으로 하는 열반사 단열재 판넬A heat reflective insulation panel manufactured by the manufacturing method according to any one of claims 1, 3, and 7.
KR1020210106091A 2021-08-11 2021-08-11 Heat reflective insulation panel and manufacturing method thereof KR102615736B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210106091A KR102615736B1 (en) 2021-08-11 2021-08-11 Heat reflective insulation panel and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210106091A KR102615736B1 (en) 2021-08-11 2021-08-11 Heat reflective insulation panel and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20230024481A KR20230024481A (en) 2023-02-21
KR102615736B1 true KR102615736B1 (en) 2023-12-20

Family

ID=85327945

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210106091A KR102615736B1 (en) 2021-08-11 2021-08-11 Heat reflective insulation panel and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102615736B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101607058B1 (en) * 2015-05-22 2016-03-30 문성철 An eco-friendly plastic foam composition having a high flame retardancy and a process for the preparation thereof
JP2016529205A (en) 2013-05-03 2016-09-23 アルベマール・コーポレーシヨン Butadiene 2,3-diyl bonded DI-DOPO derivatives as flame retardants
KR101976417B1 (en) * 2018-10-22 2019-05-09 강지숙 Flame resistance insulating panel and manufacturing method thereof
JP2020125366A (en) * 2019-02-01 2020-08-20 大和化学工業株式会社 Flame-retardant polyethylene resin composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006502881A (en) * 2002-10-18 2006-01-26 サーフェース スペシャリティーズ、エス.エイ. Flame retardant composition
KR102235854B1 (en) * 2015-08-13 2021-04-05 주식회사 휴비스 Foamed article containing functional coating layer and method of preparing the same
CN105368002B (en) 2015-11-30 2017-11-10 广东广山新材料股份有限公司 DOPO is etherified preparation method, flame-retardant composition and the application of phenol composition
KR20190022089A (en) 2017-08-25 2019-03-06 (주)하이코리아 Rubber foam reflecting adiabatic material and manufacturing thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016529205A (en) 2013-05-03 2016-09-23 アルベマール・コーポレーシヨン Butadiene 2,3-diyl bonded DI-DOPO derivatives as flame retardants
KR101607058B1 (en) * 2015-05-22 2016-03-30 문성철 An eco-friendly plastic foam composition having a high flame retardancy and a process for the preparation thereof
KR101976417B1 (en) * 2018-10-22 2019-05-09 강지숙 Flame resistance insulating panel and manufacturing method thereof
JP2020125366A (en) * 2019-02-01 2020-08-20 大和化学工業株式会社 Flame-retardant polyethylene resin composition

Also Published As

Publication number Publication date
KR20230024481A (en) 2023-02-21

Similar Documents

Publication Publication Date Title
EP1641895B1 (en) Flame-retarding fire protection element
EP1773955B1 (en) Fire retardant composition
CN101565625B (en) Silicone rubber fireproof sealing material and preparation method thereof
DE10007977B4 (en) Additive mixture to increase the fire resistance of plastic moldings, plastic moldings and a two-component system for their manufacture
KR101976417B1 (en) Flame resistance insulating panel and manufacturing method thereof
DE3917518A1 (en) FIRE PROTECTION ELEMENTS
DE3625080C2 (en) Thermally expandable mass, process for its production and use
DE4135678A1 (en) Thermally expandable fire protection materials - contain expanded graphite, polymeric binders, substances which form carbon skeleton when exposed to fire, and hollow microspheres, etc.
KR20160061608A (en) Fire Sealing Composition and Intumescent FireSealing Belt
JP2002356574A (en) Foamable thermoplastic resin composition, thermoplastic resin foamed material and laminated composite
KR101963166B1 (en) Flame resistance insulating foam metal panel and manufacturing method thereof
EP3732147A1 (en) Method for producing fireproof materials based on sodium silicate
EP2457976B1 (en) Intumescent fire retardant item
DE102010005800A1 (en) Treatment of thermal insulation panels or molded body based on microporous silicic acid with organosilicon compound to hydrophobic insulation materials
Ali et al. Eco-friendly flame-retardant additives for polyurethane foams: a short review
KR102615736B1 (en) Heat reflective insulation panel and manufacturing method thereof
JP5121924B2 (en) Processing method of polyester resin molded body, polyester resin molded body, and NVH parts for automobile
KR20080094134A (en) Foamed plastic body having excellent flame retardancy and fire resistance, which using multistage hardening mechanism
KR101489583B1 (en) Non-Flammable composite for expanded polystyrene foam and manufacturing method thereof
KR20090019407A (en) Fire retardant polystyrene foam and sandwich panel using thereof
KR102237988B1 (en) Method for preparing flame retardant expanded polystyrene beads and flame retarded expanded polystyrene beads prepared using the same
KR20120075821A (en) Anti-flammable composite
KR102666785B1 (en) Flame-retardant foam insulation using triazine-based flame retardant and manufacturing method thereof
KR20140083361A (en) Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same
CN114750480B (en) Fireproof compound containing heat absorption layer

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant