KR20140083361A - Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same - Google Patents

Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same Download PDF

Info

Publication number
KR20140083361A
KR20140083361A KR1020120153020A KR20120153020A KR20140083361A KR 20140083361 A KR20140083361 A KR 20140083361A KR 1020120153020 A KR1020120153020 A KR 1020120153020A KR 20120153020 A KR20120153020 A KR 20120153020A KR 20140083361 A KR20140083361 A KR 20140083361A
Authority
KR
South Korea
Prior art keywords
weight
parts
polyvinyl chloride
resin
foaming
Prior art date
Application number
KR1020120153020A
Other languages
Korean (ko)
Inventor
김효린
이장훈
박완용
오흥식
Original Assignee
영보화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영보화학 주식회사 filed Critical 영보화학 주식회사
Priority to KR1020120153020A priority Critical patent/KR20140083361A/en
Priority to PCT/KR2013/010805 priority patent/WO2014104592A1/en
Publication of KR20140083361A publication Critical patent/KR20140083361A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0019Use of organic additives halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2323/28Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/26Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment
    • C08J2423/28Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers modified by chemical after-treatment by reaction with halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2427/06Homopolymers or copolymers of vinyl chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

The present invention relates to a polyvinylchloride-based fire-resistant foam insulation cross-linked by an electron beam and a method for manufacturing the same. More specifically, the present invention relates to a polyvinylchloride-based fire-resistant foam insulation cross-linked by an electron beam, including a extrusion-foamed raw material composition including: a resin mixture including 30-70 weight parts of polyvinylchloride (PVC) resin and 30-70 weight parts of chlorinated polyethylene (CPE) resin; and 10-100 weight parts of chlorinated paraffin oil (CPO), based on total 100 weight parts of the resin mixture, and a method for manufacturing the same. The polyvinylchloride-based fire-resistant foam insulation cross-linked by an electron beam includes a highly fire-resistant polyvinylchloride and chlorinated polyethylene resins, thus can be used as a construction insulation material. Since the chlorinated polyethylene resin can be easily mixed with the polyvinylchloride, the degree of cross-linking can be increased to have a high-resolution foam and enhanced insulation thereby.

Description

전자선가교 폴리비닐클로라이드계 난연 발포단열재 및 그의 제조방법{Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electron beam crosslinked polyvinyl chloride based flame retardant foaming insulating material,

본 발명은 발포단열재 및 그의 제조방법에 관한 것으로서, 더욱 상세하게는 고배율의 발포체 제조를 통한 우수한 단열성으로 인해, 건축용 단열재로의 사용이 가능한 전자선가교 폴리비닐클로라이드계 난연 발포단열재 및 그의 제조방법에 관한 것이다.More particularly, the present invention relates to an electron beam crosslinked polyvinyl chloride-based flame retardant foamed insulation material which can be used as a heat insulating material for construction due to excellent heat insulating properties through the production of a high-expansion foam, and a method for manufacturing the same will be.

에너지의 효율적인 이용과 절약의 관점에서 단열재의 개발과 효과적 이용 방안도 매우 중요한 의미를 갖고 있다. 현재 단열재는 유기 고분자 수지계와 무기계로 크게 구분되며, 각각의 물성과 특성에 따라 이용방법도 달라진다. 일반적으로 유기 단열재가 무기 단열재에 비해 단열성, 경량성, 내수성, 가공성, 내충격성이 좋은 반면, 내열성 또는 내구성이 떨어지는 편이다. 따라서 각각의 특성이 보완된 다기능성 단열재가 개발될 경우 사용 범위의 제한이 크게 완화될 수 있고, 보다 새로운 활용이 가능하게 된다.From the viewpoint of efficient use and conservation of energy, the development and effective use of the insulation material is also very important. Currently, insulating materials are largely classified into organic polymer resin and inorganic materials, and their utilization methods are also changed depending on their physical properties and properties. Generally, organic insulation has better heat insulation, lighter weight, water resistance, processability and impact resistance than inorganic insulation, but is less resistant to heat or durability. Therefore, when multifunctional insulation materials complementary to each characteristic are developed, the limitation of the use range can be greatly alleviated and new applications can be realized.

한편, 가교 폴리비닐클로라이드(Polyvinyl Chloride, PVC)계 발포체는, 유기 단열재가 가지는 일반적인 특성 외에 내열성, 내저온성, 내약품성 그리고 기계적 강도가 훨씬 보강된 새로운 기능성 단열재로서 보다 광범위하고 가혹한 조건에서도 충분히 기능을 발휘할 수 있는 유기 단열재로 평가되고 있다. 따라서 이러한 가교 폴리비닐클로라이드계 발포체는 주택, 건설, 냉장, 냉동, LNG 저장용 탱크, 항공기, 선박 등 산업 전반에 단일구조재로 다양하게 이용되고 있으며 그 용도가 계속 개발됨에 따라 사용범위의 지속적인 확대가 이루어지고 있는 제품이다.On the other hand, the polyvinyl chloride (PVC) based foam is a new functional insulation material which is further improved in heat resistance, low temperature resistance, chemical resistance and mechanical strength as well as the general characteristics of the organic insulation material. Which is an organic insulating material capable of exerting an effect. Therefore, such crosslinked polyvinyl chloride-based foam is widely used as a single structural material in various industries such as housing, construction, refrigeration, freezing, LNG storage tanks, aircraft, and ships, and its application is continuously developed. It is a product that is being done.

특히, 건축물에 화재가 발생하면 연소시 발생하는 연기나 가스에 의해 인명피해가 발생하는데, 연소가 활발해지면서 주변의 산소가 부족해져, 유해성 가스가 발생하고 불완전 연소에 의해 발생하는 연기는 다량의 인명피해를 발생시킬 수 있다. 따라서, 건축용 단열재는, 화재발생시 위험요인의 발생을 최소화하기 위해 우수한 난연성을 가질 것이 요구되는데, 폴리비닐클로라이드는 난연성 원소인 염소를 포함하고 있어, 기본적으로 난연성이 우수한 재료이다.In particular, when a fire occurs in a building, it causes damage due to smoke or gas generated during combustion. As the combustion becomes active, oxygen around the area becomes insufficient and harmful gas is generated. The smoke generated by incomplete combustion is a large amount of human injury Can be generated. Therefore, it is required that the heat insulating material for construction has excellent flame retardancy in order to minimize the occurrence of a risk factor in the event of a fire. Polyvinyl chloride contains chlorine, which is a flame retardant element, and is basically excellent in flame retardancy.

한편, 발포단열재의 내부에 존재하는 공기가 열의 출입을 차단시킴으로써 열의 손실을 막아주기 때문에, 내부에 기공을 많이 포함할수록 단열성이 좋아진다. 발포단열재의 내부에 기공을 많이 형성시키기 위해서는 고배율로 발포가 이루어져야 한다. 하지만, 종래의 폴리비닐클로라이드계 발포단열재는, 가교도가 낮아서 고배율의 발포가 어려워 일정 수준 이상의 단열성을 확보하기가 어렵다는 한계가 있다.On the other hand, since the air existing inside the foam insulating material blocks the heat loss by preventing the heat from entering and leaving, the more the pores are contained therein, the better the heat insulating property. In order to form a lot of pores inside the foam insulation, it is necessary to foam at a high magnification. However, the conventional polyvinyl chloride-based foam insulation has a low degree of crosslinking and is difficult to foam at a high magnification, which makes it difficult to secure a certain level of heat insulation.

본 발명이 해결하고자 하는 과제는, 우수한 난연성을 유지하면서, 고배율의 발포로 인해 단열성을 향상시킨 전자선가교 폴리비닐클로라이드계 난연 발포단열재 및 그의 제조방법을 제공하는 것이다.An object of the present invention is to provide an electron beam crosslinked polyvinyl chloride-based flame retardant foamed insulating material which is improved in heat insulating property due to high-expansion foaming while maintaining excellent flame retardancy, and a method for producing the same.

상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 폴리비닐클로라이드(PVC) 수지 30 내지 70 중량부 및 염소화 폴리에틸렌(CPE) 수지 30 내지 70 중량부를 포함하는 수지 혼합물; 및 상기 수지 혼합물 100 중량부를 기준으로, 10 내지 100 중량부의 염소화 파라핀오일(CPO);을 포함하는 원료 조성물이 압출 발포 성형된 전자선가교 폴리비닐클로라이드계 난연 발포단열재가 제공된다.According to an aspect of the present invention, there is provided a resin composition comprising 30 to 70 parts by weight of a polyvinyl chloride (PVC) resin and 30 to 70 parts by weight of a chlorinated polyethylene (CPE) resin; And 10 to 100 parts by weight of chlorinated paraffin oil (CPO), based on 100 parts by weight of the resin mixture, is extrusion-foam-molded and provided with an electron beam crosslinked polyvinyl chloride-based fire retardant foamed insulation.

이때, 상기 염소화 파라핀오일(CPO)은, 상기 수지 혼합물 100 중량부를 기준으로 20 내지 80 중량부일 수 있다.The chlorinated paraffin oil (CPO) may be 20 to 80 parts by weight based on 100 parts by weight of the resin mixture.

그리고, 상기 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 한계산소지수는, 28 이상일 수 있다.The limiting oxygen index of the electron beam crosslinked polyvinyl chloride-based flame retardant foamed insulation material may be 28 or more.

그리고, 상기 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 밀도는, 0.025 g/cm3 내지 0.500 g/cm3일 수 있다.The density of the electron beam cross-linked polyvinyl chloride-based flame retardant foamed insulating material may be 0.025 g / cm 3 to 0.500 g / cm 3 .

그리고, 상기 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 열전도율은, 0.04 W/mK 이하일 수 있다.The thermal conductivity of the electron beam crosslinked polyvinyl chloride-based flame retardant foamed insulation material may be 0.04 W / mK or less.

한편, 상기 원료 조성물은, 상기 수지 혼합물 100 중량부를 기준으로, 난연제 5 내지 50 중량부; 및 열안정제 1 내지 5 중량부;를 더 포함할 수 있다.On the other hand, the raw material composition may contain 5 to 50 parts by weight of a flame retardant based on 100 parts by weight of the resin mixture; And 1 to 5 parts by weight of a heat stabilizer.

여기서, 상기 난연제는, 삼산화안티몬, 데카브로모페닐옥사이드 및 수산화마그네슘으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.Here, the flame retardant may be any one selected from the group consisting of antimony trioxide, decabromophenyl oxide, and magnesium hydroxide, or a mixture of two or more thereof.

그리고, 상기 열안정제는, 주석 말레이트, 주석 라우레이트 및 분말주석 말레이트 에스테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 유기주석계 열안정제일 수 있다.The heat stabilizer may be any one selected from the group consisting of tin maleate, tin laurate, and powder tin maleate esters, or two or more of them.

한편, 본 발명의 다른 측면에 따르면, (S1) 폴리비닐클로라이드(PVC) 수지 30 내지 70 중량부 및 염소화 폴리에틸렌(CPE) 수지 30 내지 70 중량부를 포함하는 수지 혼합물, 상기 수지 혼합물 100 중량부를 기준으로, 10 내지 100 중량부의 염소화 파라핀오일(CPO), 난연제 5 내지 50 중량부, 열안정제 1 내지 5 중량부, 발포제 5 내지 50 중량부, 및 발포조제 0.1 내지 3 중량부를 혼련하여 원료 조성물을 제조하는 단계; (S2) 상기 원료 조성물을 압출기에 투입하고 용융압출하여 압출시트를 제조하는 단계; (S3) 상기 압출시트에 전자선을 조사하여 상기 수지 혼합물을 가교시키는 단계; 및 (S4) 상기 (S3)단계 이후의 결과물을 가열하여 상기 발포제를 발포시켜 발포체를 형성하는 단계;를 포함하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 제조방법이 제공된다.(S1) 30 to 70 parts by weight of a polyvinyl chloride (PVC) resin and 30 to 70 parts by weight of a chlorinated polyethylene (CPE) resin, 100 parts by weight of the resin mixture , 10 to 100 parts by weight of chlorinated paraffin oil (CPO), 5 to 50 parts by weight of a flame retardant, 1 to 5 parts by weight of a heat stabilizer, 5 to 50 parts by weight of a foaming agent and 0.1 to 3 parts by weight of a foaming auxiliary step; (S2) feeding the raw material composition into an extruder and melt extruding the extruded material to produce an extruded sheet; (S3) crosslinking the resin mixture by irradiating the extruded sheet with an electron beam; And (S4) heating the resultant product after the step (S3) to foam the foaming agent to form a foamed body. The method for manufacturing an electronically crosslinked polyvinyl chloride-based fire retardant foamed insulating material is also provided.

여기서, 상기 (S1)단계는, 폴리비닐클로라이드(PVC) 수지 30 내지 70 중량부 및 염소화 폴리에틸렌(CPE) 수지 30 내지 70 중량부를 포함하는 수지 혼합물, 상기 수지 혼합물 100 중량부를 기준으로, 10 내지 100 중량부의 염소화 파라핀오일(CPO), 및 열안정제 1 내지 5 중량부를 70 내지 150 ℃에서 5 내지 20 분간 혼합하는 혼합단계; 상기 혼합단계 후의 결과물에, 상기 수지 혼합물 100 중량부를 기준으로, 난연제 5 내지 50 중량부를 첨가하여 70 내지 150 ℃에서 2 내지 10 분간 분산시키는 제1 분산단계; 및 상기 제1 분산단계 후의 결과물에, 상기 수지 혼합물 100 중량부를 기준으로, 발포제 5 내지 50 중량부, 및 발포조제 0.1 내지 3 중량부를 첨가하여 70 내지 150 ℃에서 2 내지 10 분간 분산시키는 제2 분산단계;를 포함하는 것일 수 있다.Wherein the step (S1) comprises: mixing 30 to 70 parts by weight of a polyvinyl chloride (PVC) resin and 30 to 70 parts by weight of a chlorinated polyethylene (CPE) resin, 10 to 100 parts by weight By weight of chlorinated paraffin oil (CPO), and 1 to 5 parts by weight of a heat stabilizer at 70 to 150 캜 for 5 to 20 minutes; A first dispersion step in which 5 to 50 parts by weight of a flame retardant is added to the resulting product after the mixing step based on 100 parts by weight of the resin mixture and the dispersion is carried out at 70 to 150 DEG C for 2 to 10 minutes; And 5 to 50 parts by weight of a foaming agent and 0.1 to 3 parts by weight of a foaming auxiliary are added to the resultant product after the first dispersion step based on 100 parts by weight of the resin mixture and a second dispersion which is dispersed at 70 to 150 DEG C for 2 to 10 minutes Step; < / RTI >

여기서, 상기 발포제는, 탄산수소암모늄, 탄산수소나트륨, 보로수소화나트륨, 아조디카본아미드, 디니트로소펜타메틸렌 테트라민, 벤젠설포닐 하이드라지드, 톨루엔설포닐 하이드라지드, 톨루엔설포닐 세미카바자이드 및 옥시비스(벤젠설포닐 하이드라지드)로 이루어진 군으로부터 선택된 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.The blowing agent may be at least one selected from the group consisting of ammonium bicarbonate, sodium hydrogencarbonate, sodium borohydride, azodicarbonamide, dinitrosopentamethylenetetramine, benzenesulfonylhydrazide, toluenesulfonylhydrazide, Zein and oxybis (benzenesulfonyl hydrazide), or a mixture of two or more thereof.

그리고, 상기 발포조제는, 카드뮴 화합물, 칼슘 화합물, 아연 화합물, 마그네슘 화합물, 철 화합물 및 구리 화합물로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.The foaming aid may be any one selected from the group consisting of a cadmium compound, a calcium compound, a zinc compound, a magnesium compound, an iron compound and a copper compound, or a mixture of two or more thereof.

그리고, 상기 압출기는, 싱글 압출기 또는 트윈 압출기이며, 압출온도는 90 내지 140 ℃로 유지되는 것일 수 있다.The extruder may be a single extruder or a twin extruder, and the extrusion temperature may be maintained at 90 to 140 캜.

그리고 상기 (S3)단계는, 100 내지 1,500 kV의 전압과 0.5 내지 10 Mrad의 전자선량으로 가속전자선을 조사하는 것일 수 있다.In the step (S3), the accelerating electron beam may be irradiated with a voltage of 100 to 1,500 kV and an electron dose of 0.5 to 10 Mrad.

그리고, 상기 (S4)단계는, 상기 (S3)단계 이후의 결과물을 150 내지 250 ℃의 온도로 가열하여 상기 발포제를 발포시켜 발포체를 형성하는 것일 수 있다.In the step (S4), the resultant product obtained after the step (S3) may be heated to a temperature of 150 to 250 ° C to foam the foaming agent to form a foam.

본 발명에 따른 전자선가교 폴리비닐클로라이드계 난연 발포단열재는, 난연성이 우수한 폴리비닐클로라이드 수지와 염소화 폴리에틸렌 수지를 포함하고 있어, 건축용 단열재로의 사용이 가능하다.The electron beam crosslinked polyvinyl chloride-based fire retardant foamed insulating material according to the present invention includes a polyvinyl chloride resin excellent in flame retardancy and a chlorinated polyethylene resin, and can be used as a heat insulating material for construction.

그리고, 본 발명에 따른 전자선가교 폴리비닐클로라이드계 난연 발포단열재는, 폴리비닐클로라이드 수지와 혼용성이 우수한 염소화 폴리에틸렌 수지를 포함하고 있어, 가교도를 상승시켜, 고배율의 발포가 가능하며, 이로써 단열성이 향상된다.The electron beam crosslinked polyvinyl chloride-based flame retardant foaming insulating material according to the present invention comprises a chlorinated polyethylene resin excellent in compatibility with polyvinyl chloride resin, and can increase the degree of crosslinking and enable foaming at a high magnification, thereby improving the heat insulation property do.

또한, 본 발명에 따른 전자선가교 폴리비닐클로라이드계 난연 발포단열재는, 가소제로서 염소화 파라핀오일을 포함하여, 난연성을 더욱 향상시킬 수 있다.In addition, the electron beam crosslinked polyvinyl chloride-based flame retardant foamed insulating material according to the present invention can contain chlorinated paraffin oil as a plasticizer to further improve the flame retardancy.

이하, 본 발명을 상세히 설명하기로 한다. 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, the present invention will be described in detail. The terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms and the inventor may appropriately define the concept of the term in order to best describe its invention It should be construed as meaning and concept consistent with the technical idea of the present invention.

또한, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.It is to be understood that both the foregoing general description and the following detailed description of the present invention are exemplary and explanatory only and are not to be construed as limiting of the invention, And the like.

본 발명에 따른 전자선가교 폴리비닐클로라이드계 난연 발포단열재는, 폴리비닐클로라이드(PVC) 수지 30 내지 70 중량부 및 염소화 폴리에틸렌(CPE) 수지 30 내지 70 중량부를 포함하는 수지 혼합물; 및 상기 수지 혼합물 100 중량부를 기준으로, 10 내지 100 중량부의 염소화 파라핀오일(CPO);을 포함하는 원료 조성물이 압출 발포 성형되어 형성된다.The electron beam crosslinked polyvinyl chloride-based fire retardant foaming insulating material according to the present invention is a resin mixture comprising 30 to 70 parts by weight of a polyvinyl chloride (PVC) resin and 30 to 70 parts by weight of a chlorinated polyethylene (CPE) resin; And 10 to 100 parts by weight of chlorinated paraffin oil (CPO) based on 100 parts by weight of the resin mixture.

이때, 상기 폴리비닐클로라이드 수지의 함량이 30 중량부 미만이고, 상기 염소화 폴리에틸렌 수지의 함량이 70 중량부를 초과하면, 후술하는 한계산소지수가 낮아지게 되어, 난연성 확보에 불리하며, 상기 폴리비닐클로라이드 수지의 함량이 70 중량부를 초과하고, 상기 염소화 폴리에틸렌 수지의 함량이 30 중량부 미만이면, 상기 수지 혼합물의 시편상태가 불량해져서 가교 및 발포가 잘 이루어지지 않는다.When the content of the polyvinyl chloride resin is less than 30 parts by weight and the content of the chlorinated polyethylene resin is more than 70 parts by weight, the limit oxygen index to be described later is lowered, which is disadvantageous in ensuring the flame retardancy. Is more than 70 parts by weight, and when the content of the chlorinated polyethylene resin is less than 30 parts by weight, the state of the test piece of the resin mixture becomes poor, and crosslinking and foaming are not performed well.

그리고, 폴리비닐클로라이드 수지로 구성된 발포체는 잘 부러지는 특성이 있기 때문에, 일정량의 가소제가 포함되어야 하며, 본 발명에서는 상기 수지 혼합물 100 중량부를 기준으로, 10 내지 100 중량부, 또는 20 내지 80 중량부의 염소화 파라핀오일이 가소제로서 포함된다. 상기 수치범위를 벗어나면, 한계산소지수가 낮아지게 되어, 난연성 확보에 불리하다. 또한, 상기 염소화 파라핀오일은, 후술하는 바와 같이 본 발명의 발포단열재의 난연성을 우수하게 하며, 추후 열안정제가 첨가되더라도 분해가 잘 일어나지 않기 때문에, 발포단열재로서의 성능 저하가 발생하지 않는다.Since the foam made of a polyvinyl chloride resin has a good breaking property, a certain amount of plasticizer should be included. In the present invention, 10 to 100 parts by weight, or 20 to 80 parts by weight, based on 100 parts by weight of the resin mixture, Chlorinated paraffin oil is included as plasticizer. If the value is out of the above range, the limit oxygen index becomes low, which is disadvantageous in ensuring flame retardancy. In addition, as described later, the chlorinated paraffin oil is excellent in flame retardancy of the foamed thermal insulation material of the present invention, and degradation does not occur even if a heat stabilizer is added in the future, so that performance deterioration as a foamed thermal insulation material does not occur.

한편, 단열재가 건축용으로 사용되기 위해서는, 기본적으로 난연성 및 단열성이 우수해야 한다.On the other hand, in order for a heat insulating material to be used as a construction material, it should have excellent flame retardancy and heat insulation.

국토해양부에서 제정한 건축기계설비공사 표준시방서에는, 단열재의 난연성과 관련된 시험방법인 KS M ISO 4589-2에 의해 측정되는 난연성 측정지수인 한계산소지수(limiting oxygen index, L.O.I)가 28 이상이 될 것을 요구하고 있다.The standard specification for building machinery facilities established by the Ministry of Land, Transport and Maritime has a limiting oxygen index (LOI) of 28 or more, which is a flammability measurement index measured by KS M ISO 4589-2, a test method relating to flame retardancy of insulation .

본 발명에 따르면, 상기 폴리비닐클로라이드 수지, 염소화 폴리에틸렌 수지 및 염소화 파라핀오일은, 난연성 원소인 염소를 포함하고 있어, 난연성이 우수하며, 상기 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 한계산소지수는 적어도 28 이상이다.According to the present invention, the polyvinyl chloride resin, the chlorinated polyethylene resin and the chlorinated paraffin oil contain chlorine as a flame-retardant element and have excellent flame retardancy, and the limiting oxygen index of the electron-beam crosslinked polyvinyl chloride- 28 or more.

한편, 발포단열재의 단열성은, 발포단열재의 내부에 존재하는 공기가 열의 출입을 차단시켜 열의 손실을 막아주는 정도를 의미한다. 따라서, 발포단열재의 내부에 존재하는 공기가 많을수록 단열성이 우수해지는데, 종래 폴리비닐클로라이드 수지로 구성된 발포단열재는, 고분자의 체인구조상 가교도가 낮기 때문에, 20 배 정도의 발포가 이루어져, 일정 수준 이상의 단열성을 확보하기가 어려웠다.On the other hand, the heat insulating property of the foamed heat insulating material means the degree of the air existing inside the foamed heat insulating material blocks the heat from entering and leaving to prevent heat loss. Therefore, the foamed heat insulating material composed of the polyvinyl chloride resin conventionally has a low degree of crosslinking due to the chain structure of the polymer, so that foaming of about 20 times is performed, and a certain level of heat insulating property .

그러나, 본 발명에서는, 폴리비닐클로라이드(PVC) 수지 30 내지 70 중량부에, 상기 폴리비닐클로라이드 수지와 혼용성이 우수한 염소화 폴리에틸렌(CPE) 수지 30 내지 70 중량부를 포함하는 수지 혼합물을 기본 수지로 함으로써, 가교도를 상승시키며, 30 내지 40 배 정도의 고배율의 발포가 가능하여, 단열성이 향상된다. 이때 본 발명의 발포단열재의 열전도율은, 0.04 W/mK 이하일 수 있다.However, in the present invention, a resin mixture comprising 30 to 70 parts by weight of a polyvinyl chloride (PVC) resin and 30 to 70 parts by weight of a chlorinated polyethylene (CPE) resin excellent in compatibility with the polyvinyl chloride resin is used as a base resin , The crosslinking degree is increased, foaming at a high magnification of about 30 to 40 times is possible, and the heat insulating property is improved. At this time, the thermal conductivity of the foamed insulating material of the present invention may be 0.04 W / mK or less.

그리고, 상기 고배율의 발포로 인해, 본 발명의 발포단열재는, 0.025 g/cm3 내지 0.500 g/cm3의 비교적 작은 밀도를 나타냄으로써 경량성이 달성된다.And, due to the high expansion rate foaming, the foam insulation of the present invention achieves lightness by showing a relatively small density of 0.025 g / cm 3 to 0.500 g / cm 3 .

한편, 상기 원료 조성물은, 상기 수지 혼합물 100 중량부를 기준으로, 난연제 5 내지 50 중량부; 및 열안정제 1 내지 5 중량부;를 더 포함할 수 있다.On the other hand, the raw material composition may contain 5 to 50 parts by weight of a flame retardant based on 100 parts by weight of the resin mixture; And 1 to 5 parts by weight of a heat stabilizer.

상기 난연제의 함량이 5 중량부 미만이면, 난연제 첨가의 효과가 미미하며, 50 중량부를 초과하면, 상기 발포단열재의 내구성이 저하될 수 있다.If the content of the flame retardant is less than 5 parts by weight, the effect of addition of the flame retardant is insignificant. If the content of the flame retardant exceeds 50 parts by weight, the durability of the foamed heat insulating material may be deteriorated.

그리고, 상기 열안정제의 함량이 1 중량부 미만이면, 압출 및 발포시 가공성이 저하되고 수지가 분해되어 물성이 저하되며, 5 중량부를 초과하면, 필요 이상의 첨가로 인해, 경제성이 저하됨은 물론 제품의 기계적 특성이 저하될 수 있다.If the content of the heat stabilizer is less than 1 part by weight, the processability at the time of extrusion and foaming is lowered and the resin is decomposed to deteriorate the physical properties. When the amount is more than 5 parts by weight, The mechanical properties may be deteriorated.

여기서, 상기 난연제는, 삼산화안티몬, 데카브로모페닐옥사이드 및 수산화마그네슘으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물일 수 있다.Here, the flame retardant may be any one selected from the group consisting of antimony trioxide, decabromophenyl oxide, and magnesium hydroxide, or a mixture of two or more thereof.

그리고, 상기 열안정제는, 주석 말레이트, 주석 라우레이트 및 분말주석 말레이트 에스테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 유기주석계 열안정제일 수 있다.The heat stabilizer may be any one selected from the group consisting of tin maleate, tin laurate, and powder tin maleate esters, or two or more of them.

이하에서는, 본 발명에 따른 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 제조방법에 대해 설명하도록 한다.Hereinafter, a method for producing an electron beam crosslinked polyvinyl chloride-based flame retardant foamed insulating material according to the present invention will be described.

우선, 폴리비닐클로라이드(PVC) 수지 30 내지 70 중량부 및 염소화 폴리에틸렌(CPE) 수지 30 내지 70 중량부를 포함하는 수지 혼합물, 상기 수지 혼합물 100 중량부를 기준으로, 10 내지 100 중량부의 염소화 파라핀오일(CPO), 난연제 5 내지 50 중량부, 열안정제 1 내지 5 중량부, 발포제 5 내지 50 중량부, 및 발포조제 0.1 내지 3 중량부를 혼련하여 원료 조성물을 제조한다 (S1).First, a resin mixture comprising 30 to 70 parts by weight of a polyvinyl chloride (PVC) resin and 30 to 70 parts by weight of a chlorinated polyethylene (CPE) resin, 10 to 100 parts by weight of chlorinated paraffin oil (CPO 5 to 50 parts by weight of a flame retardant, 1 to 5 parts by weight of a heat stabilizer, 5 to 50 parts by weight of a blowing agent, and 0.1 to 3 parts by weight of a foaming auxiliary are mixed to prepare a raw material composition (S1).

이때 상기 (S1)단계는, 원료의 효율적인 혼합 및 제품의 물성저하를 방지하기 위해 아래와 같은 단계를 거쳐 수행될 수 있다.In this case, step (S1) may be performed through the following steps to prevent efficient mixing of raw materials and deterioration of physical properties of the product.

우선, 폴리비닐클로라이드(PVC) 수지 30 내지 70 중량부 및 염소화 폴리에틸렌(CPE) 수지 30 내지 70 중량부를 포함하는 수지 혼합물, 상기 수지 혼합물 100 중량부를 기준으로, 10 내지 100 중량부의 염소화 파라핀오일(CPO), 및 열안정제 1 내지 5 중량부를 70 내지 150 ℃에서 5 내지 20 분간 혼합한다. 이러한 혼합과정은 습식의 니더 (kneader)기 내에서 수행될 수 있다.First, a resin mixture comprising 30 to 70 parts by weight of a polyvinyl chloride (PVC) resin and 30 to 70 parts by weight of a chlorinated polyethylene (CPE) resin, 10 to 100 parts by weight of chlorinated paraffin oil (CPO ) And 1 to 5 parts by weight of a heat stabilizer are mixed at 70 to 150 캜 for 5 to 20 minutes. This mixing process can be performed in a wet kneader.

그 후, 상기 혼합단계 후의 결과물에, 상기 수지 혼합물 100 중량부를 기준으로, 난연제 5 내지 50 중량부를 첨가하여 70 내지 150 ℃에서 2 내지 10 분간 분산시키는 제1 분산단계가 수행된다.Thereafter, a first dispersion step in which 5 to 50 parts by weight of a flame retardant is added to the resultant product after the mixing step, based on 100 parts by weight of the resin mixture, is dispersed at 70 to 150 DEG C for 2 to 10 minutes.

이어서, 상기 제1 분산단계 후의 결과물에, 상기 수지 혼합물 100 중량부를 기준으로, 발포제 5 내지 50 중량부, 및 발포조제 0.1 내지 3 중량부를 첨가하여 70 내지 150 ℃에서 2 내지 10 분간 분산시키는 제2 분산단계가 수행된다.Next, 5 to 50 parts by weight of the foaming agent and 0.1 to 3 parts by weight of the foaming auxiliary are added to the resultant product after the first dispersion step, based on 100 parts by weight of the resin mixture, and the second A dispersion step is performed.

이때, 상기 제2 분산단계 이후의 결과물은, 추후 압출기로의 투입이 용이하도록, 펠릿 (pellet) 형태로 제조될 수도 있다.At this time, the product after the second dispersion step may be produced in the form of a pellet so that it can be easily injected into the extruder.

한편, 상기 폴리비닐클로라이드 수지, 상기 염소화 폴리에틸렌 수지 및 상기 염소화 파라핀오일이 상기 수치범위를 만족해야 하는 이유는 전술한 바와 같다.On the other hand, the reason why the polyvinyl chloride resin, the chlorinated polyethylene resin and the chlorinated paraffin oil should satisfy the above-described numerical range is as described above.

그리고, 상기 발포제 및 상기 발포조제가 상기 수치범위를 만족함으로써, 발포가 충분히 이루어짐과 동시에, 제품의 물성 저하가 발생하지 않게 된다.When the foaming agent and the foaming auxiliary satisfy the above-described numerical ranges, foaming is sufficiently performed, and the physical properties of the product do not decrease.

여기서, 상기 발포제는, 다양한 종류가 이미 공지되어 있지만 미세하고 균일한 기포를 형성할 수 있어야 하며, 압출시에 발생될 수 있는 조기분해를 최소화할 수 있는 것이 사용되어야 한다. 이러한 발포제의 비제한적인 예로는, 탄산수소암모늄, 탄산수소나트륨, 보로수소화나트륨 등의 무기 발포제가 있고, 아조디카본아미드(azodicarbonamide), 디니트로소펜타메틸렌 테트라민(N,N'-dinitrosopentamethylene tetramine), 벤젠설포닐 하이드라지드(benzenesulfonyl hydrazide), 톨루엔설포닐 하이드라지드(toluenesulfonyl hydrazide), 톨루엔설포닐 세미카바자이드(toluenesulfonyl semicarbazide), 옥시비스(벤젠설포닐 하이드라지드)(P,P'-oxybis(benzenesulfonyl hydrazide)) 등의 유기 발포제가 있다.Although various kinds of foaming agents are already known, they should be able to form fine and uniform bubbles and should be used so as to minimize the early decomposition which may occur during extrusion. Non-limiting examples of such foaming agents include inorganic foaming agents such as ammonium bicarbonate, sodium hydrogencarbonate, sodium borohydride, and the like; and azo compounds such as azodicarbonamide, N, N'-dinitrosopentamethylene tetramine Benzenesulfonyl hydrazide, toluenesulfonyl hydrazide, toluenesulfonyl semicarbazide, oxybis (benzenesulfonylhydrazide) (P, P '), benzenesulfonyl hydrazide, -oxybis (benzenesulfonyl hydrazide)).

그리고, 상기 발포조제로서 카드뮴 화합물(cadmium compound), 칼슘 화합물(calsium compound), 아연 화합물(zinc compound), 마그네슘 화합물(magnesium compound), 철 화합물(iron compound), 구리 화합물(copper compound) 등이 사용되는 것이 바람직하며, 특히 아연 화합물 중 산화아연을 사용하는 것이 바람직하다.A cadmium compound, a calsium compound, a zinc compound, a magnesium compound, an iron compound, a copper compound and the like are used as the foaming auxiliary agent , And it is particularly preferable to use zinc oxide among the zinc compounds.

이어서, 상기 원료 조성물을 압출기에 투입하고 용융압출하여 압출시트를 제조한다 (S2).Subsequently, the raw material composition is introduced into an extruder and melt-extruded to produce an extruded sheet (S2).

여기서, 상기 (S2) 단계는, 상기 (S1) 단계에서 제조된 원료 조성물을 일정의 넓이와 두께를 갖는 압출시트로 압출성형하는 공정으로서, 일반적인 싱글 압출기(single extruder) 또는 발포제로 인한 압출시트의 조기발포를 더욱 방지하기 위하여, 발포제를 별도의 스크류를 이용하여 사이드 피딩방식으로 투입하는 트윈 압출기(twin extruder)를 이용하여 공정처리가 가능하고, 스크류를 내재하며 90 내지 140 ℃의 온도를 갖는 실린더 및 90 내지 140℃의 온도를 갖는 다이스를 구비한 압출기로서 원료 조성물을 혼련하여 압출성형하기 때문에, 상기 (S1) 단계에서 준비된 원료 조성물에 포함된 전체 조성물을 균일하게 혼합하는 효과가 있다. 또한 실린더 및 다이스의 온도를 90 ℃ 미만으로 유지하면 수지 혼합물이 미미하게 용융되어 발포체 혼합물의 혼련성이 감소하는 문제가 발생하고, 140 ℃를 초과하도록 유지하면 발포제의 조기분해가 발생하는 문제가 발생하기 때문에, 압출기의 실린더 및 다이스의 온도를 90 내지 140 ℃로 유지하는 것이 바람직하다. 그리고, 이때, 상기 압출시트의 너비와 두께는 당업자의 판단에 따라 다양하게 조절이 가능함은 자명하다.The step (S2) is a step of extruding the raw material composition produced in the step (S1) into an extruded sheet having a predetermined width and thickness, and the extruded sheet is extruded by using a single extruder or an extruded sheet In order to further prevent premature foaming, a twin extruder, which is a twin extruder in which a foaming agent is introduced in a side feeding manner by using a separate screw, is used, and a cylinder having a screw inside and having a temperature of 90 to 140 ° C And a die having a temperature of 90 to 140 DEG C, the raw material composition is kneaded and extrusion-molded, thereby uniformly mixing the entire composition contained in the raw material composition prepared in the step (S1). When the temperature of the cylinder and the die is kept below 90 ° C, the resin mixture is slightly melted and the kneading property of the foam mixture is reduced. If the temperature is higher than 140 ° C, there arises a problem of premature decomposition of the foaming agent , It is preferable to maintain the temperature of the cylinder and the die of the extruder at 90 to 140 占 폚. At this time, it is apparent that the width and thickness of the extruded sheet can be variously adjusted according to the judgment of a person skilled in the art.

이어서, 상기 압출시트에 전자선을 조사하여 상기 수지 혼합물을 가교시킨다 (S3).Subsequently, the extruded sheet is irradiated with an electron beam to crosslink the resin mixture (S3).

여기서, 상기 전자선 조사를 통한 가교 방식은, 종래의 화학가교 방식에 비해 친환경적이며, 경제성이 우수하고 공정 안정성을 더욱 확보할 수 있다.Here, the crosslinking method through electron beam irradiation is more environment-friendly than the conventional chemical crosslinking method, and is excellent in economy and further securing process stability.

이때, 100 내지 1,500 kV의 전압과 0.5 내지 10 Mrad의 전자선량으로 가속전자선을 조사하는 것이 바람직하며, 이러한 상기 가교 전압의 조절은 상기 (S2) 단계를 통해 얻어진 압출시트의 두께에 따라 적절하게 조절되며, 상기 가교전자선량은 앞서 투입된 발포제의 밀도와 물성에 따라 적절하게 조절될 수 있다.At this time, it is preferable to irradiate the accelerated electron beam with a voltage of 100 to 1,500 kV and an electron dose of 0.5 to 10 Mrad. The control of the cross-linking voltage may be appropriately adjusted according to the thickness of the extruded sheet obtained in the step (S2) And the crosslinking electron dose can be appropriately adjusted according to the density and physical properties of the previously introduced blowing agent.

상기 전압이, 100 kV 미만이면, 상기 압출시트에 대해 충분한 깊이까지 가교가 이루어지지 않게 되며, 1,500 kV를 초과하면 과도한 조사량에 따른 에너지 낭비와 방사선 유출로 인해, 경제성과 안전성이 저하된다.If the voltage is less than 100 kV, the extrusion sheet will not be crosslinked to a sufficient depth. If the voltage is more than 1,500 kV, economical efficiency and safety are deteriorated due to energy waste and radiation leakage due to excessive irradiation amount.

그리고, 상기 전자선량이, 0.5 Mrad 미만이면, 상기 압출시트에 대해 충분한 가교가 이루어지지 않게 되어, 추후 발포가 제대로 이루어지지 않으며, 10 Mrad을 초과하면, 과도한 가교 전자선량 때문에 가교반응이 과포화상태에 이르러 추후 발포시 심각한 문제가 발생하게 되며, 경제성도 저하된다.If the electron dose is less than 0.5 Mrad, sufficient crosslinking is not achieved with respect to the extruded sheet, and subsequent foaming is not properly performed. If the electron dose exceeds 10 Mrad, the crosslinking reaction becomes supersaturated This will lead to serious problems in subsequent foaming and lowering of economic efficiency.

전술한 바와 같은 조건하에서 진행되는 전자선 조사를 이용한 가교방법은 가교의 대상물인 압출시트에 가속전자선이 조사되어, 상기 압출시트 내에 포함된 수소가 제거되며, 이로 인하여 수지 혼합물 내에 라디칼이 생성된다. 이렇게 생성된 라디칼은 높은 반응성을 갖게 되며, 수지 혼합물 내에서 가교반응이 유발되는 것이 특징이다.In the crosslinking method using electron beam irradiation conducted under the above-described conditions, accelerated electron beams are irradiated to an extruded sheet, which is an object of crosslinking, to remove hydrogen contained in the extruded sheet, thereby generating radicals in the resin mixture. The radicals thus formed are highly reactive and are characterized in that a crosslinking reaction is induced in the resin mixture.

이어서, 상기 (S3)단계 이후의 결과물을 가열하여 상기 발포제를 발포시켜 발포체를 형성한다 (S4).Subsequently, the product obtained after the step (S3) is heated to foam the foaming agent to form a foam (S4).

여기서, 상기 (S4)단계는, 상기 (S3)단계 이후의 결과물을 150 내지 250 ℃의 온도로 가열하여 상기 발포제를 발포시켜 발포체를 형성하며, 이때의 온도가 150 ℃ 미만이면, 발포제가 활성화되지 않아, 발포가 제대로 이루어지지 않고, 250 ℃를 초과하면, 발포제가 분해되어 제품 형성에 문제가 발생한다.In the step (S4), the result of the step (S3) is heated to a temperature of 150 to 250 ° C to foam the foaming agent to form a foam. When the temperature is lower than 150 ° C, the foaming agent is activated If the temperature is higher than 250 ° C, the foaming agent decomposes and problems occur in product formation.

이때, 상기 (S4)단계는, 발포로를 수평으로 설치하는 수평발포방법, 발포로를 수직으로 설치하는 수직발포방법 및 열전달 매체로 액상의 설트를 이용하는 설트발포방법 중 선택된 어느 하나의 방법으로 진행될 수 있다.At this time, the step (S4) is carried out by any one method selected from a horizontal foaming method for horizontally installing the foaming furnace, a vertical foaming method for vertically installing the foaming furnace, and a foaming method for the foaming using a liquid-phase sludge as a heat transfer medium .

이때, 상기 3가지의 발포방법은 모두 상압 상태에서 이루어지며, 발포로의 설치 방법과 열전달 매체에 따라 상호 구분된다. 첫 번째의 상기 수평발포방법은 발포로가 수평으로 설치되어 발포시 발포체가 수평으로 생산되며, 모든 공정이 수평으로 진행된다. 이러한 수평발포방법은 발포로의 배치 및 공정 진행 과정에서 중력에 의한 영향이 거의 없으므로 발포시 길이 방향의 팽창비가 작으므로 길이 방향과 폭 방향의 물성 변화가 작은 장점이 있다. 두 번째의 상기 수직발포방법은 발포로를 수직으로 설치하여, 상기 (S3)단계 이후의 결과물인 마더시트(mother sheet)를 하강시키면서 발포시키는 방법이다. 이러한 수직발포방법은 발포시 공기중에서 발포가 이루어지므로 외관이 우수하고 아울러 폭 방향으로의 편차가 작게 발생하여 수율면에서 우수한 장점이 있다. 세 번째의 상기 설트발포방법은 열전달매체로 액상 설트를 사용하는 점에서 전술한 두 가지의 발포방법과는 공정상 큰 차이를 보이고 있으며, 수직발포방법과는 달리 공기를 열전달체로 사용하지 않고 액상의 설트를 사용하기 때문에 열전달 효과가 우수하며 시트상에서 균일하게 발포가 이루어지는 장점이 있으며, 특히 전술한 수평 또는 수직발포방법에 의해 생산된 발포제품에 비해 길이 방향이나 폭 방향에서의 물성 편차가 매우 작아 제품 특성이 우수하게 평가되는 장점을 갖는다.At this time, all of the three foaming methods are performed at normal pressure, and are classified according to the method of installing the foaming furnace and the heat transfer medium. In the first horizontal foaming method, the foaming furnace is installed horizontally so that the foams are produced horizontally at the time of foaming, and all processes proceed horizontally. Such a horizontal foaming method is advantageous in that the physical properties in the longitudinal direction and the width direction are small because the expansion ratio in the longitudinal direction is small at the time of foaming since there is little influence by the gravity in the arrangement and the process progress of the foaming furnace. In the second vertical foaming method, the foaming furnace is vertically installed, and the resulting mother sheet is foamed while descending. Such a vertical foaming method is advantageous in appearance because it is foamed in air at the time of foaming, and the deviation in the width direction is small. In the third method, the liquid phase sulphate is used as a heat transfer medium. In the third method, the liquid phase sulphate is used. However, unlike the vertical firing method, the air is not used as a heat transfer material, The heat transfer effect is excellent and the foaming can be performed uniformly on the sheet. Especially, since the physical property deviation in the longitudinal direction and the width direction is very small as compared with the foam product produced by the above-described horizontal or vertical foaming method, And the characteristic is evaluated excellent.

이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail with reference to examples. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention should not be construed as being limited to the embodiments described below. The embodiments of the present invention are provided to enable those skilled in the art to more fully understand the present invention.

1. One. 실시예Example - 수지 혼합물의 제조 - Preparation of resin mixture

폴리비닐클로라이드 (PVC) 수지와 염소화 폴리에틸렌(CPE) 수지의 배합비를 조절하여, 밀롤(mill roll)로 140 ℃의 온도에서 15 분간 배합하여 각각의 수지 혼합물을 제조하였으며, 각 배합비에 따른 수지 혼합물의 한계산소지수 및 시편상태에 대해, 하기 표 1에 나타내었다.The mixture ratio of polyvinyl chloride (PVC) resin and chlorinated polyethylene (CPE) resin was adjusted by mill roll at a temperature of 140 ° C for 15 minutes to prepare resin mixtures. The limit oxygen index and the specimen state are shown in Table 1 below.

구분division 시료 1Sample 1 시료 2Sample 2 시료 3Sample 3 시료 4Sample 4 시료 5Sample 5 PVC 중량부PVC weight part 7070 6060 5050 4040 3030 CPE 중량부CPE weight part 3030 4040 5050 6060 7070 합계Sum 100100 100100 100100 100100 100100 한계산소지수Marginal oxygen index 3838 3636 3434 3131 2929 시편상태Psalm state

(시편상태 표시: ◎ 매우 양호, ○ 양호, △ 보통, ×불량)
(Specimen status indication: ⊚ very good, good good, △ fair, poor)

상기 각 배합에 따른 시료 1 내지 5 는 모두 한계산소지수가 28이 넘는 것으로 측정되어 난연성에는 문제가 없었지만, 시편상태가 가장 양호한 시료 3을 이용하여 하기 실험들을 수행하였다.
The samples 1 to 5 according to the respective formulations were measured to have a limit oxygen index exceeding 28, so that there was no problem in flame retardancy. However, the following experiment was conducted using Sample 3 having the best specimen condition.

2. 2. 실시예Example -  - 전자선가교Electron beam bridge 폴리비닐클로라이드계Polyvinyl chloride system 난연 발포단열재의 제조 Manufacture of flame retardant foam insulation

(1) (One) 실시예Example 1 One

상기 시료 3의 배합을 갖는 수지 혼합물 100 중량부, 가소제로 염소화 파라핀오일(CPO) 50 중량부 및 열안정제로 주석 말레이트 2 중량부를 70 ℃의 습식의 니더 (kneader)기 내에서 10 분간 혼합하였다.100 parts by weight of a resin mixture having the composition of the sample 3, 50 parts by weight of chlorinated paraffin oil (CPO) as a plasticizer and 2 parts by weight of tin maleate as a heat stabilizer were mixed in a wet kneader at 70 캜 for 10 minutes .

그 후, 난연제로서 수산화마그네슘 10 중량부를 투입하여, 90 ℃에서 5 분간 분산시키고, 이어서, 발포제로서 아조디카본아미드 25 중량부 및 발포조제로서 산화아연 1 중량부를 첨가하여, 110 ℃에서 5 분간 분산시킨 후, 이를 펠릿 (pellet)화하였다.Thereafter, 10 parts by weight of magnesium hydroxide was added as a flame retardant and dispersed at 90 DEG C for 5 minutes. Subsequently, 25 parts by weight of azodicarbonamide as a foaming agent and 1 part by weight of zinc oxide as a foaming assistant were added and dispersed at 110 DEG C for 5 minutes And then pelletized.

이어서, 상기 펠릿화된 발포체 원료 조성물을, 120 ℃로 유지되는 싱글 압출기에 투입한 후, 용융압출하여 압출시트를 제조한 후, 500 kV의 전압과 2.0 Mrad의 전자선을 조사하여 수지 혼합물을 가교시킨 다음, 200 ℃로 유지되는 오븐에 투입하여 발포시킴으로써 발포단열재를 제조하였다.Subsequently, the pelletized foam raw material composition was put into a single extruder maintained at 120 ° C, and melt extruded to produce an extruded sheet. Then, a resin mixture was crosslinked by irradiating a voltage of 500 kV and an electron beam of 2.0 Mrad Then, it was charged into an oven maintained at 200 ° C and foamed to produce a foamed insulating material.

(2) (2) 실시예Example 2 2

상기 난연제로서 수산화마그네슘 10 중량부, 삼산화안티몬 2 중량부 및 데카브로모페닐옥사이드 6 중량부를 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 발포단열재를 제조하였다.A foaming insulation material was prepared in the same manner as in Example 1, except that 10 parts by weight of magnesium hydroxide, 2 parts by weight of antimony trioxide and 6 parts by weight of decabromophenyl oxide were added as flame retardants.

(3) (3) 실시예Example 3 3

상기 난연제로서 수산화마그네슘 10 중량부, 삼산화안티몬 3 중량부 및 데카브로모페닐옥사이드 9 중량부를 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 발포단열재를 제조하였다.A foaming insulation material was prepared in the same manner as in Example 1, except that 10 parts by weight of magnesium hydroxide, 3 parts by weight of antimony trioxide and 9 parts by weight of decabromophenyl oxide were added as flame retardants.

(4) (4) 실시예Example 4 4

상기 난연제로서 수산화마그네슘 10 중량부, 삼산화안티몬 4 중량부 및 데카브로모페닐옥사이드 16 중량부를 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 발포단열재를 제조하였다.A foaming insulation material was prepared in the same manner as in Example 1, except that 10 parts by weight of magnesium hydroxide, 4 parts by weight of antimony trioxide and 16 parts by weight of decabromophenyl oxide were added as flame retardants.

(5) (5) 실시예Example 5 5

상기 난연제로서 수산화마그네슘 10 중량부, 삼산화안티몬 3 중량부 및 데카브로모페닐옥사이드 9 중량부를 투입하고, 상기 발포제로서 아조디카본아미드 10 중량부를 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 발포단열재를 제조하였다.Except that 10 parts by weight of magnesium hydroxide, 3 parts by weight of antimony trioxide and 9 parts by weight of decabromophenyl oxide were added as the flame retardant and 10 parts by weight of azodicarbonamide was added as the foaming agent. A heat insulating material was prepared.

(6) (6) 실시예Example 6 6

상기 난연제로서 수산화마그네슘 10 중량부, 삼산화안티몬 3 중량부 및 데카브로모페닐옥사이드 9 중량부를 투입하고, 상기 발포제로서 아조디카본아미드 20 중량부를 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 발포단열재를 제조하였다.Except that 10 parts by weight of magnesium hydroxide, 3 parts by weight of antimony trioxide and 9 parts by weight of decabromophenyl oxide were added as the flame retarder and 20 parts by weight of azodicarbonamide was added as the foaming agent. A heat insulating material was prepared.

(7) (7) 실시예Example 7 7

상기 난연제로서 수산화마그네슘 10 중량부, 삼산화안티몬 3 중량부 및 데카브로모페닐옥사이드 9 중량부를 투입하고, 상기 발포제로서 아조디카본아미드 30 중량부를 투입하는 것을 제외하고는 실시예 1과 동일한 방법으로 발포단열재를 제조하였다.Except that 10 parts by weight of magnesium hydroxide, 3 parts by weight of antimony trioxide and 9 parts by weight of decabromophenyl oxide were added as flame retardants and 30 parts by weight of azodicarbonamide was added as the foaming agent. A heat insulating material was prepared.

상기 실시예 1 내지 7에 의해 제조된 발포단열재의 조성에 대해 정리하여 하기 표 2에 나타내었고, 각 실시예의 밀도, 한계산소지수, 열전도율 및 제품상태에 대해 정리하여 하기 표 3에 나타내었다.The compositions of the foamed insulating materials prepared in Examples 1 to 7 are summarized in Table 2, and the density, the limiting oxygen index, the thermal conductivity and the product state of each example are summarized in Table 3 below.

배합물Compound 종류Kinds 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 실시예 7Example 7 수지Suzy PVCPVC 5050 5050 5050 5050 5050 5050 5050 CPECPE 5050 5050 5050 5050 5050 5050 5050 가소제Plasticizer CPOCPO 5050 5050 5050 5050 5050 5050 5050 난연제Flame retardant 삼산화안티몬Antimony trioxide -- 22 33 44 33 33 33 데카브로모페닐옥사이드Decabromobiphenyl oxide -- 66 99 1616 99 99 99 수산화마그네슘Magnesium hydroxide 1010 1010 1010 1010 1010 1010 1010 열안정제Heat stabilizer 주석 말레이트Comment Mal Rate 22 22 22 22 22 22 22 발포제blowing agent 아조디카본아미드Azodicarbonamide 2525 2525 2525 2525 1010 2020 3030 발포조제Foaming auxiliary 산화 아연zinc oxide 1One 1One 1One 1One 1One 1One 1One 총 중량부Gross weight 188188 196196 200200 208208 185185 195195 205205

특성characteristic 실시예 1Example 1 실시예 2Example 2 실시예 3Example 3 실시예 4Example 4 실시예 5Example 5 실시예 6Example 6 실시예 7Example 7 밀도(g/cm3)Density (g / cm 3) 0.050.05 0.050.05 0.050.05 0.060.06 0.100.10 0.070.07 0.040.04 한계산소지수Marginal oxygen index 2828 3030 3232 3434 3434 3434 3434 열전도율(W/mK)Thermal conductivity (W / mK) 0.0350.035 0.0350.035 0.0350.035 0.0350.035 0.0400.040 0.0360.036 0.0340.034 제품상태Product Status 양호Good 양호Good 양호Good 양호Good 양호Good 양호Good 양호Good

상기 표 3에 나타낸 바와 같이, 실시예에서 제조된 모든 발포단열재는 양호한 상태로 제조되었으며, 적절한 밀도와 열전도율을 나타내었고, 한계산소지수는 28 이상으로 측정되어 건축기계설비공사 표준시방서의 요구치를 모두 만족하였다.As shown in Table 3, all of the foamed insulation materials prepared in the Examples were manufactured in a good condition, exhibited proper density and thermal conductivity, and the limit oxygen index was measured to be 28 or more. Satisfaction.

특히, 실시예 2 내지 4에서, 난연제의 함량만을 달리하여 발포단열재를 제조하였는데, 난연재의 양이 증가할수록 제품의 열전도율에는 크게 변화가 없었으나, 한계산소지수가 증가되는 것으로 미루어, 난연성이 향상되었음을 알 수 있었다.Particularly, in Examples 2 to 4, the foaming insulation material was prepared by varying the content of the flame retardant agent. However, as the amount of the flame retardant agent was increased, the thermal conductivity of the product was not significantly changed. However, since the limit oxygen index was increased, Could know.

그리고, 실시예 5 내지 7에서, 발포제의 함량만을 달리하여 발포단열재를 제조하였는데, 발포제의 양이 증가할수록 제품의 밀도는 작아졌지만, 열전도율이 감소하여 단열성이 향상되었음을 알 수 있었다.
In Examples 5 to 7, the foaming insulation material was prepared by varying the amount of the foaming agent only. As the amount of foaming agent was increased, the density of the product was decreased, but the thermal conductivity was decreased and the adiabatic property was improved.

3. 3. 비교예Comparative Example -  - 전자선가교Electron beam bridge 폴리비닐클로라이드계Polyvinyl chloride system 난연 발포단열재의 제조 Manufacture of flame retardant foam insulation

(1) (One) 비교예Comparative Example 1 One

폴리비닐클로라이드 (PVC) 수지 100 중량부, 가소제로 염소화 파라핀오일(CPO) 40 중량부 및 열안정제로 주석 말레이트 2 중량부를 70 ℃의 습식의 니더 (kneader)기 내에서 10 분간 혼합하였다.100 parts by weight of a polyvinyl chloride (PVC) resin, 40 parts by weight of chlorinated paraffin oil (CPO) as a plasticizer and 2 parts by weight of tin maleate as a heat stabilizer were mixed in a wet kneader at 70 캜 for 10 minutes.

그 후, 난연제로서 수산화마그네슘 10 중량부, 삼산화안티몬 3 중량부 및 데카브로모페닐옥사이드 9 중량부를 투입하여, 90 ℃에서 5 분간 분산시키고, 이어서, 발포제로서 아조디카본아미드 25 중량부 및 발포조제로서 산화아연 1 중량부를 첨가하여, 110 ℃에서 5 분간 분산시킨 후, 이를 펠릿 (pellet)화하였다.Thereafter, 10 parts by weight of magnesium hydroxide, 3 parts by weight of antimony trioxide and 9 parts by weight of decabromophenyl oxide as flame retardants were added and dispersed at 90 DEG C for 5 minutes. Subsequently, 25 parts by weight of azodicarbonamide as a foaming agent, , 1 part by weight of zinc oxide was added and dispersed at 110 DEG C for 5 minutes and then pelletized.

이어서, 상기 펠릿화된 발포체 원료 조성물을, 120 ℃로 유지되는 싱글 압출기에 투입한 후, 용융압출하여 압출시트를 제조한 후, 500 kV의 전압과 2.0 Mrad의 전자선을 조사하여 수지 혼합물을 가교시킨 다음, 200 ℃로 유지되는 오븐에 투입하여 발포시킴으로써 발포단열재를 제조하였다.Subsequently, the pelletized foam raw material composition was put into a single extruder maintained at 120 ° C, and melt extruded to produce an extruded sheet. Then, a resin mixture was crosslinked by irradiating a voltage of 500 kV and an electron beam of 2.0 Mrad Then, it was charged into an oven maintained at 200 ° C and foamed to produce a foamed insulating material.

(2) (2) 비교예Comparative Example 2 2

폴리비닐클로라이드 (PVC) 수지 100 중량부 대신, 상기 시료 3의 배합을 갖는 수지 혼합물 100 중량부를 사용하고, 상기 가소제로서 염소화 파라핀오일 40 중량부 대신 디이소노닐프탈레이트 (DINP) 50 중량부가 혼합되는 것을 제외하고는 비교예 1과 동일한 방법으로 발포단열재를 제조하였다.Instead of 100 parts by weight of a polyvinyl chloride (PVC) resin, 100 parts by weight of a resin mixture having the composition of the above-mentioned Sample 3 was used and 50 parts by weight of diisononyl phthalate (DINP) was mixed in place of 40 parts by weight of chlorinated paraffin oil as the plasticizer , A foamed insulating material was prepared in the same manner as in Comparative Example 1.

(3) (3) 비교예Comparative Example 3 3

폴리비닐클로라이드 (PVC) 수지 100 중량부 대신, 상기 시료 3의 배합을 갖는 수지 혼합물 100 중량부를 사용하고, 상기 가소제로서 염소화 파라핀오일 40 중량부 대신 디옥틸프탈레이트 (DOP) 50 중량부가 혼합되는 것을 제외하고는 비교예 1과 동일한 방법으로 발포단열재를 제조하였다.Except that 100 parts by weight of the resin mixture having the compounding of the sample 3 was used instead of 100 parts by weight of the polyvinyl chloride (PVC) resin and 50 parts by weight of dioctyl phthalate (DOP) was mixed instead of 40 parts by weight of chlorinated paraffin oil as the plasticizer And a foaming insulation material was prepared in the same manner as in Comparative Example 1.

상기 비교예 1 내지 3에 의해 제조된 발포단열재의 조성에 대해 정리하여 하기 표 4에 나타내었고, 각 비교예의 밀도, 한계산소지수, 열전도율 및 제품상태에 대해 정리하여 하기 표 5에 나타내었다.The compositions of the foamed insulation materials prepared in Comparative Examples 1 to 3 are summarized in Table 4, and the density, the limiting oxygen index, the thermal conductivity and the product state of each Comparative Example are summarized in Table 5 below.

배합물Compound 종류Kinds 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 수지Suzy PVCPVC 100100 5050 5050 CPECPE -- 5050 5050 가소제Plasticizer CPOCPO 4040 -- -- DINPDINP -- 5050 -- DOPDOP -- -- 5050 난연제Flame retardant 삼산화안티몬Antimony trioxide 33 33 33 데카브로모페닐옥사이드Decabromobiphenyl oxide 99 99 99 수산화마그네슘Magnesium hydroxide 1010 1010 1010 열안정제Heat stabilizer 주석 말레이트Comment Mal Rate 22 22 22 발포제blowing agent 아조디카본아미드Azodicarbonamide 2525 2525 2525 발포조제Foaming auxiliary 산화 아연zinc oxide 1One 1One 1One 총 중량부Gross weight 190190 200200 200200

특성characteristic 비교예 1Comparative Example 1 비교예 2Comparative Example 2 비교예 3Comparative Example 3 밀도(g/cm3)Density (g / cm 3) -- 0.060.06 0.060.06 한계산소지수Marginal oxygen index -- 2525 2424 열전도율(W/mK)Thermal conductivity (W / mK) -- 0.0500.050 0.0500.050 제품상태Product Status 가소성 부족, 가교 불가, 발포 불가Lack of plasticity, no crosslinking, no foaming 가소성 양호, 발포시 다량의 가스 발생, 난연성 저하Good plasticity, a large amount of gas generated at the time of foaming, 가소성 양호, 발포시 다량의 가스 발생, 난연성 저하Good plasticity, a large amount of gas generated at the time of foaming,

상기 표 5에 나타낸 바와 같이, 비교예 1에서처럼 폴리비닐클로라이드가 100 %인 경우에는, 가교 및 발포가 제대로 이루어지지 않았다.As shown in Table 5, when polyvinyl chloride was 100% as in Comparative Example 1, crosslinking and foaming were not properly performed.

또한, 비교예 2 및 비교예 3과 같이 가소제로서, 염소화 파라핀오일이 아닌, 프탈레이트계가 사용된 경우에는 가소성은 양호하나, 발포시 다량의 가스가 발생하였으며, 특히, 한계산소지수가 25 이하로 측정되어 기준치에 미달하였다.When the phthalate system was used as a plasticizer instead of the chlorinated paraffin oil as in the case of Comparative Example 2 and Comparative Example 3, plasticity was good, but a large amount of gas was generated at the time of foaming. In particular, .

한편, 본 명세서에 개시된 본 발명의 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다.It should be noted that the embodiments of the present invention disclosed herein are merely examples of specific examples for the purpose of understanding and are not intended to limit the scope of the present invention. It will be apparent to those skilled in the art that other modifications based on the technical idea of the present invention are possible in addition to the embodiments disclosed herein.

Claims (15)

폴리비닐클로라이드(PVC) 수지 30 내지 70 중량부 및 염소화 폴리에틸렌(CPE) 수지 30 내지 70 중량부를 포함하는 수지 혼합물; 및
상기 수지 혼합물 100 중량부를 기준으로, 10 내지 100 중량부의 염소화 파라핀오일(CPO);을 포함하는 원료 조성물이 압출 발포 성형된 전자선가교 폴리비닐클로라이드계 난연 발포단열재.
30 to 70 parts by weight of a polyvinyl chloride (PVC) resin and 30 to 70 parts by weight of a chlorinated polyethylene (CPE) resin; And
And 10 to 100 parts by weight of chlorinated paraffin oil (CPO) based on 100 parts by weight of the resin mixture is extrusion-foam-molded.
제1항에 있어서,
상기 염소화 파라핀오일(CPO)은, 상기 수지 혼합물 100 중량부를 기준으로 20 내지 80 중량부인 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재.
The method according to claim 1,
The chlorinated paraffin oil (CPO) is 20 to 80 parts by weight based on 100 parts by weight of the resin mixture.
제1항에 있어서,
상기 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 한계산소지수는, 28 이상인 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재.
The method according to claim 1,
The electron beam cross-linked polyvinyl chloride-based flame retardant foamed insulation material according to claim 1, wherein the electron beam cross-linked polyvinyl chloride-based fire retardant foamed insulation material has a critical oxygen index of 28 or more.
제1항에 있어서,
상기 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 밀도는, 0.025 g/cm3 내지 0.500 g/cm3인 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재.
The method according to claim 1,
The electron beam cross-linked polyvinyl chloride type density of the foam insulation is fire retardant, an electron beam cross-linked polyvinyl chloride-based flame-retardant foam insulation, characterized in that 0.025 g / cm 3 to 0.500 g / cm 3.
제1항에 있어서,
상기 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 열전도율은, 0.04 W/mK 이하인 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재.
The method according to claim 1,
Crosslinked polyvinyl chloride-based flame-retardant foamed thermal insulating material has a thermal conductivity of 0.04 W / mK or less.
제1항에 있어서,
상기 원료 조성물은, 상기 수지 혼합물 100 중량부를 기준으로, 난연제 5 내지 50 중량부; 및 열안정제 1 내지 5 중량부;를 더 포함하는 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재.
The method according to claim 1,
Wherein the raw material composition contains, based on 100 parts by weight of the resin mixture, 5 to 50 parts by weight of a flame retardant; And 1 to 5 parts by weight of a heat stabilizer, based on 100 parts by weight of the total amount of the heat-resistant polyvinyl chloride-based flame retardant foamed insulation material.
제6항에 있어서,
상기 난연제는, 삼산화안티몬, 데카브로모페닐옥사이드 및 수산화마그네슘으로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재.
The method according to claim 6,
Wherein said flame retardant is any one selected from the group consisting of antimony trioxide, decabromophenyl oxide, and magnesium hydroxide, or a mixture of two or more thereof.
제6항에 있어서,
상기 열안정제는, 주석 말레이트, 주석 라우레이트 및 분말주석 말레이트 에스테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 유기주석계 열안정제인 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재.
The method according to claim 6,
Characterized in that the heat stabilizer is at least one selected from the group consisting of tin maleate, tin laurate and powder tin maleate ester, or at least two kinds of organic stabilizers based on the same, wherein the heat stabilizer is an electronically crosslinked polyvinyl chloride- .
(S1) 폴리비닐클로라이드(PVC) 수지 30 내지 70 중량부 및 염소화 폴리에틸렌(CPE) 수지 30 내지 70 중량부를 포함하는 수지 혼합물, 상기 수지 혼합물 100 중량부를 기준으로, 10 내지 100 중량부의 염소화 파라핀오일(CPO), 난연제 5 내지 50 중량부, 열안정제 1 내지 5 중량부, 발포제 5 내지 50 중량부, 및 발포조제 0.1 내지 3 중량부를 혼련하여 원료 조성물을 제조하는 단계;
(S2) 상기 원료 조성물을 압출기에 투입하고 용융압출하여 압출시트를 제조하는 단계;
(S3) 상기 압출시트에 전자선을 조사하여 상기 수지 혼합물을 가교시키는 단계; 및
(S4) 상기 (S3)단계 이후의 결과물을 가열하여 상기 발포제를 발포시켜 발포체를 형성하는 단계;를 포함하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 제조방법.
(S1) 30 to 70 parts by weight of a polyvinyl chloride (PVC) resin and 30 to 70 parts by weight of a chlorinated polyethylene (CPE) resin, 10 to 100 parts by weight of a chlorinated paraffin oil 5 to 50 parts by weight of a flame retardant, 1 to 5 parts by weight of a heat stabilizer, 5 to 50 parts by weight of a blowing agent and 0.1 to 3 parts by weight of a foaming auxiliary to prepare a raw material composition;
(S2) adding the raw material composition to an extruder and melt extruding the extruded material to produce an extruded sheet;
(S3) crosslinking the resin mixture by irradiating the extruded sheet with an electron beam; And
(S4) heating the resultant product obtained in the step (S3) and foaming the foaming agent to form a foamed product.
제9항에 있어서,
상기 (S1)단계는, 폴리비닐클로라이드(PVC) 수지 30 내지 70 중량부 및 염소화 폴리에틸렌(CPE) 수지 30 내지 70 중량부를 포함하는 수지 혼합물, 상기 수지 혼합물 100 중량부를 기준으로, 10 내지 100 중량부의 염소화 파라핀오일(CPO), 및 열안정제 1 내지 5 중량부를 70 내지 150 ℃에서 5 내지 20 분간 혼합하는 혼합단계;
상기 혼합단계 후의 결과물에, 상기 수지 혼합물 100 중량부를 기준으로, 난연제 5 내지 50 중량부를 첨가하여 70 내지 150 ℃에서 2 내지 10 분간 분산시키는 제1 분산단계; 및
상기 제1 분산단계 후의 결과물에, 상기 수지 혼합물 100 중량부를 기준으로, 발포제 5 내지 50 중량부, 및 발포조제 0.1 내지 3 중량부를 첨가하여 70 내지 150 ℃에서 2 내지 10 분간 분산시키는 제2 분산단계;를 포함하는 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 제조방법.
10. The method of claim 9,
Wherein the step (S1) comprises: mixing a resin mixture comprising 30 to 70 parts by weight of a polyvinyl chloride (PVC) resin and 30 to 70 parts by weight of a chlorinated polyethylene (CPE) resin, 10 to 100 parts by weight 1 to 5 parts by weight of chlorinated paraffin oil (CPO) and heat stabilizer at 70 to 150 DEG C for 5 to 20 minutes;
A first dispersion step in which 5 to 50 parts by weight of a flame retardant is added to the resulting product after the mixing step based on 100 parts by weight of the resin mixture and the dispersion is carried out at 70 to 150 DEG C for 2 to 10 minutes; And
5 to 50 parts by weight of a foaming agent and 0.1 to 3 parts by weight of a foaming auxiliary are added to the resulting product after the first dispersion step based on 100 parts by weight of the resin mixture and then dispersed for 2 to 10 minutes at 70 to 150 캜 Based on the total weight of the crosslinked polyvinyl chloride-based fire retardant foamed insulation material.
제9항에 있어서,
상기 발포제는, 탄산수소암모늄, 탄산수소나트륨, 보로수소화나트륨, 아조디카본아미드, 디니트로소펜타메틸렌 테트라민, 벤젠설포닐 하이드라지드, 톨루엔설포닐 하이드라지드, 톨루엔설포닐 세미카바자이드 및 옥시비스(벤젠설포닐 하이드라지드)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 제조방법.
10. The method of claim 9,
The foaming agent may be selected from the group consisting of ammonium bicarbonate, sodium hydrogencarbonate, sodium borohydride, azodicarbonamide, dinitrosopentamethylenetetramine, benzenesulfonylhydrazide, toluenesulfonylhydrazide, toluenesulfonylsemicarbazide and (Benzenesulfonyl hydrazide), or a mixture of two or more thereof. [Claim 6] The method according to claim 1, wherein the heat-resistant polyvinyl chloride resin is a polyvinyl chloride resin.
제9항에 있어서,
상기 발포조제는, 카드뮴 화합물, 칼슘 화합물, 아연 화합물, 마그네슘 화합물, 철 화합물 및 구리 화합물로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물인 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 제조방법.
10. The method of claim 9,
Wherein the foaming aid is any one selected from the group consisting of a cadmium compound, a calcium compound, a zinc compound, a magnesium compound, an iron compound and a copper compound, or a mixture of two or more thereof, Method of manufacturing insulation.
제9항에 있어서,
상기 압출기는, 싱글 압출기 또는 트윈 압출기이며, 압출온도는 90 내지 140 ℃로 유지되는 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 제조방법.
10. The method of claim 9,
Wherein the extruder is a single extruder or a twin extruder and the extrusion temperature is maintained at 90 to 140 占 폚.
제9항에 있어서,
상기 (S3)단계는, 100 내지 1,500 kV의 전압과 0.5 내지 10 Mrad의 전자선량으로 가속전자선을 조사하는 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 제조방법.
10. The method of claim 9,
Wherein the step (S3) comprises irradiating accelerated electron beams at a voltage of 100 to 1,500 kV and an electron dose of 0.5 to 10 Mrad.
제9항에 있어서,
상기 (S4)단계는, 상기 (S3)단계 이후의 결과물을 150 내지 250 ℃의 온도로 가열하여 상기 발포제를 발포시켜 발포체를 형성하는 것을 특징으로 하는 전자선가교 폴리비닐클로라이드계 난연 발포단열재의 제조방법.
10. The method of claim 9,
Wherein the step (S4) is performed by heating the result of the step (S3) and subsequent steps to a temperature of 150 to 250 ° C to foam the foaming agent to form a foamed product. .
KR1020120153020A 2012-12-26 2012-12-26 Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same KR20140083361A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120153020A KR20140083361A (en) 2012-12-26 2012-12-26 Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same
PCT/KR2013/010805 WO2014104592A1 (en) 2012-12-26 2013-11-26 Flame-retardant foam insulating material based on electron beam cross-linked polyvinyl chloride and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120153020A KR20140083361A (en) 2012-12-26 2012-12-26 Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020140158187A Division KR101580651B1 (en) 2014-11-13 2014-11-13 Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same

Publications (1)

Publication Number Publication Date
KR20140083361A true KR20140083361A (en) 2014-07-04

Family

ID=51021590

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120153020A KR20140083361A (en) 2012-12-26 2012-12-26 Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same

Country Status (2)

Country Link
KR (1) KR20140083361A (en)
WO (1) WO2014104592A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006491B1 (en) 2014-10-08 2016-12-07 Armacell Enterprise GmbH & Co. KG Low smoke, flexible insulation foam

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109503983A (en) * 2018-10-22 2019-03-22 江苏理工学院 A kind of environmental protection flame retardant PVC foam material and preparation method thereof
CN111138851B (en) * 2019-12-18 2022-08-30 南京聚隆科技股份有限公司 Flame-retardant reinforced micro-foaming nylon material and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572343A (en) * 1980-06-04 1982-01-07 Furukawa Electric Co Ltd:The Foam of crosslinked vinyl chloride resin and its preparation
JPH0753819A (en) * 1993-08-10 1995-02-28 Mitsubishi Chem Mkv Co Vinyl chloride resin-based elastomer composition
KR100361561B1 (en) * 1999-10-28 2003-01-24 동방산업주식회사 A Blowing Composition of Polyolefins with Flame-Retardantivity and Method Thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3006491B1 (en) 2014-10-08 2016-12-07 Armacell Enterprise GmbH & Co. KG Low smoke, flexible insulation foam

Also Published As

Publication number Publication date
WO2014104592A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
KR101763744B1 (en) Fire retardant elastic foam material
KR101496218B1 (en) Non-halogen flame retardant foam and manufacturing method thereof
JP2008201825A (en) Method for producing organically treated filler
ES2760551T3 (en) Expansion system for flexible insulation foams
JP2005068203A (en) Composition for polyolefin-based resin foam, its foam and method for producing foam
KR20010038861A (en) A Blowing Composition of Polyolefins with Flame-Retardantivity and Method Thereof
JP5170865B2 (en) Expandable polyolefin-based resin composition and polyolefin-based flame retardant foam containing intercalation compound filler
KR20160041817A (en) Low smoke, flexible insulation foam
CN1277874C (en) Dimensionally-stable propylene polymer foam with improved thermal aging
JP2004196907A (en) Method for producing polystyrene-based resin extruded foam plate and polystyrene-based resin extruded foam plate
JP2020136100A (en) Fireproof sheet and battery
KR101772761B1 (en) Flame retardant master batch of expanded polystyrene with enhanced cell uniformity and flame-resistance, and a method of the manufacturing
KR20140083361A (en) Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same
KR20180103527A (en) Non-halogen flame retardant foam for automobile and manufacturing method thereof
JP5128143B2 (en) Polyolefin flame retardant foam composition and olefin flame retardant foam
KR20140083360A (en) Flame-retarded thermal insulating foam of chemical cross-linked polyvinyl chloride based and manufacturing method of the same
KR100415682B1 (en) A composition for flame retarding polyolefin foams with ground tire rubber and its manufacturing method
JP5877023B2 (en) Polyolefin resin foam
KR101580651B1 (en) Flame-retarded thermal insulating foam of irradiation cross-linked polyvinyl chloride based and manufacturing method of the same
JP4459494B2 (en) Flame retardant resin foam
KR101975285B1 (en) Rubber foam composition having a high tensile strength and high elongation, and a processe for the preparation of ruber foam using thereof
KR101552322B1 (en) Flame-retarded thermal insulating foam of chemical cross-linked polyvinyl chloride based and manufacturing method of the same
KR101977818B1 (en) Flame retardant master batch composition for extruded polystyrene foam and extruded polystyrene foam using the same
KR101919751B1 (en) Flame-resistant master batch composition for a formed insulating material
JP2021195461A (en) Thermally expansive fire resistant material

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
A107 Divisional application of patent