KR102608353B1 - 이산화탄소 환원 촉매 복합체 - Google Patents

이산화탄소 환원 촉매 복합체 Download PDF

Info

Publication number
KR102608353B1
KR102608353B1 KR1020210113867A KR20210113867A KR102608353B1 KR 102608353 B1 KR102608353 B1 KR 102608353B1 KR 1020210113867 A KR1020210113867 A KR 1020210113867A KR 20210113867 A KR20210113867 A KR 20210113867A KR 102608353 B1 KR102608353 B1 KR 102608353B1
Authority
KR
South Korea
Prior art keywords
carbon dioxide
dioxide reduction
copper
reduction catalyst
catalyst complex
Prior art date
Application number
KR1020210113867A
Other languages
English (en)
Other versions
KR20230031528A (ko
Inventor
권영국
이호정
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to KR1020210113867A priority Critical patent/KR102608353B1/ko
Priority to PCT/KR2022/002531 priority patent/WO2023027272A1/ko
Publication of KR20230031528A publication Critical patent/KR20230031528A/ko
Application granted granted Critical
Publication of KR102608353B1 publication Critical patent/KR102608353B1/ko

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 이산화탄소 환원 촉매 복합체에 관한 것으로, 보다 상세하게 전기화학적으로 이산화탄소를 환원하여 에틸렌을 생성할 수 있으며, 구리(Cu)의 산화수를 부분 양전하 상태로 유지시킬 수 있는 이산화탄소 환원 촉매 복합체에 관한 것이다.

Description

이산화탄소 환원 촉매 복합체{CATALYST COMPLEX FOR CARBON DIOXIDE REDUCTION}
본 발명은 이산화탄소 환원 촉매 복합체에 관한 것으로, 보다 상세하게 전기화학적으로 이산화탄소를 환원하여 에틸렌을 생성할 수 있으며, 구리(Cu)의 산화수를 부분 양전하 상태로 유지시킬 수 있는 이산화탄소 환원 촉매 복합체에 관한 것이다.
온실가스인 이산화탄소(CO2)를 저감하는 방법으로, 초기에는 CO2를 포집하여 저장하는 CCS(Carbon Capture and Storage) 기술이 연구되었으나, CO2 저장 공간의 한계가 존재하며, 생태계에 영향을 미친다는 단점이 존재한다. 따라서, 이를 대신하여 CO2를 유용한 물질로 전환하는 CCU(Carbon Capture and Utilization) 기술에 대한 연구가 활발히 진행되고 있다. 다양한 CCU 기술 중 전기화학적 CO2 전환 기술은 신재생 에너지와 직접 연계가 가능한고 스케일업(Scale-up)이 용이한 장점을 가지고 있다. 또한, 일산화탄소(CO), 개미산(HCOOH) 뿐 아니라 에틸렌(C2H4)나 에탄올(C2H5OH) 등의 고부가가치 생성물을 수득할 수 있어 주목을 받고 있다.
종래의 실증화된 전기화학적 CO2 전환 기술은 대부분 Syngas(CO)와 수소의 혼합 가스) 또는 HCOOH를 대상으로 하였다. 그러나, 이들은 시장 규모와 확장성이 제한되므로 에틸렌과 같은 고부가가치 생성물을 얻는 실증화된 기술이 필요하다. 에틸렌은 석유화학 산업에서 다양한 고분자 물질을 생산하는데 이용되는 기초 유분으로, '석유화학산업의 쌀'이라는 별칭을 가지고 있다. 그러나, 기존의 에틸렌 생산공정은 대량의 CO2가 생성되므로, 장기적으로 이를 대체할 공정이 필요하다. 전기화학적 CO2 전환 기술을 통해 에틸렌을 생산하면 이산화탄소를 저감할 뿐 아니라, 기존의 환경파괴적인 공정을 대체할 수 있다.
전기화학적 CO2 전환을 통해 에틸렌 등의 C2+ 생성물을 형성하기 위해서는 먼저 CO가 형성된 후, 이들의 이합체화(dimerization) 반응이 일어나야 한다. 구리(Cu)는 전기화학적 CO2 전환을 통해 C2+ 생성물을 얻을 수 있는 유일한 금속 촉매이다. 이는 구리가 전기화학적 CO2 전환 반응의 핵심 중간체인 표면에 흡착된 일산화탄소(*CO)에 대하여 최적의 흡착에너지(binding energy)를 가지고 있기 때문이다. 따라서 Cu 촉매의 여러 특성을 조절하여 고효율로 에틸렌을 생성하는 연구가 진행되고 있다.
대한민국 등록특허 제10-1973002호
본 발명의 목적은 이산화탄소를 환원시켜 전기화학적으로 전환시킬 수 있는 촉매 복합체를 제공하는 것으로, 보다 상세하게는, 산화구리(CuOx) 촉매 입자 내 구리(Cu)의 산화수를 부분 양전하 상태로 유지시킬 수 있는 이산화탄소 환원 촉매를 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 이산화탄소 환원 촉매 복합체는 산화구리 입자; 및 상기 산화구리 입자와 계면 접합된 산화구리알루미늄 입자를 포한다.
상기 이산화탄소 환원 촉매 복합체는 이산화탄소를 에틸렌으로 전기화학적으로 전환시키는 것일 수 있다.
상기 산화구리 입자는 CuO일 수 있다.
상기 산화구리알루미늄 입자는 상기 산화구리 입자 내 구리(Cu)의 산화수를 제어하는 것일 수 있으며, 상기 산화구리알루미늄 입자는 Al2CuO4일 수 있다.
상기 이산화탄소 환원 촉매 복합체는 구리(Cu)와 알루미늄(Al)의 총함량 100 wt%를 기준으로 알루미늄(Al)의 함량이 9 내지 32 wt%일 수 있다.
상기 이산화탄소 환원 촉매 복합체는, CuO/Al2CuO4일 수 있다.
본 발명의 이산화탄소 환원 촉매 복합체는 이산화탄소의 환원을 통한 전기화학전 전환 시 에틸렌을 생성하는 효과가 있다.
또한, 본 발명의 이산화탄소 환원 촉매 복합체는 구리(Cu)의 산화수를 부분 양전하 상태로 유지시킴으로써 이산화탄소의 환원 촉매 활성을 향상시키는 효과가 있다.
도 1은 본 발명의 일 실시예에 따른 이산화탄소 환원 촉매 복합체의 TEM 이미지를 도시한 것이다.
도 2는 본 발명의 일 실시예에 따른 이산화탄소 환원 촉매 복합체의 SEM EDS mapping 이미지 분석 결과를 도시한 것이다.
도 3은 본 발명의 일 실시예에 따른 이산화탄소 환원 촉매 복합체의 XRD(X-Ray powder Diffraction) 분석 결과를 도시한 것이다.
도 4는 본 발명의 일 실시예에 따른 이산화탄소 환원 촉매 복합체의 XPS(X-ray Photoelectron Spectroscopy) 분석 결과를 도시한 것이다.
도 5a 내지 도 5d는 본 발명의 일 실시예에 따른 이산화탄소 환원 촉매 복합체 및 비교예로서 상용 Cu foil에 대한 전기화학적 수계 반응의 분석 결과를 도시한 것이다.
도 6은 본 발명의 일 실시예에 따른 이산화탄소 환원 촉매 복합체의 XANES(X-ray absorption near edge structure) 분석 결과를 도시한 것이다.
도 7a 내지 도 7c는 본 발명의 일 실시예에 따른 이산화탄소 환원 촉매 복합체 및 비교예로서 상용 CuO에 대하여 전기화학적 기상계 반응의 분석 결과를 도시한 것이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
본 발명의 일 실시예에 따른 이산화탄소 환원 촉매 복합체는 산화구리 입자; 및 상기 산화구리 입자와 계면 접합된 산화구리알루미늄 입자를 포한다.
이산화탄소(CO2)는 탄소의 가장 산화된 상태이므로, CO2를 다른 물질로 변환하는 유일한 방법은 환원시키는 것이다. 또한, CO2는 매우 안정적인 물질이므로, 이를 환원시키기 위해서는 큰 에너지가 필요하다. 따라서, 전기화학적 CO2 전환 반응은 상당히 negative한 potential 하에서 진행되며, 이러한 강한 환원 분위기는 전기화학적 CO2 전환 반응 중 촉매 표면을 환원시킬 수 있으며, 산화구리 촉매(CuO 또는 Cu2O) 단독 사용 시 반응 중에 촉매가 Cu(0)으로 환원되어 CO 환원 활성이 감소된다. 따라서, 산화구리 촉매를 기반으로 다양한 방법을 통해 반응 중 Cu의 산화수를 부분 양전하(partially positive) 상태로 유지하는 것이 필요하다.
상기 이산화탄소 환원 촉매 복합체는 이산화탄소를 에틸렌으로 전기화학적으로 전환시키는 것일 수 있다. 상기 이산화탄소 환원 촉매 복합체는 이산화탄소 환원 반응시 에틸렌 페러데이(FE) 효율을 향상시키는 것으로서, 이산화탄소의 환원 시 에틸렌으로 선택도를 향상시키는 것이다.
구리(Cu)의 산화수(oxidation state)는 CO의 환원에 큰 영향을 주는 요소이며, 반응에 참여하는 촉매 표면의 Cu(0)는 residual bridge adsorbed CO (CObridge)를 형성한다. CObridge는 프로톤 부가 반응(protonation)이 잘 일어나지 않아 탄화수소(hydrocarbon)의 형성이 제한되기 때문에 CObridge만 존재한다면 CO가 주요 생성물이 된다. 한편, Cu(1)은 atop adsorbed CO(COatop)을 형성하며, COatop은 프로톤 부가 반응(protonation)이 활발히 일어나기 때문에 COatop만 존재한다면 CH4가 주요 생성물이 된다. Cu(0)와 Cu(1)이 혼재하여 CObridge와 COatop이 동시 형성되면 그들의 시너지 효과(synergetic effect)에 의해 CO-CO 또는 CO-CHO 등의 이합체화(dimerization)반응의 활성화 에너지 장벽(activation energy barrier)이 낮아져 C2+생성물의 선택도가 향상된다. 따라서, 전기화학적 CO2 전환을 통해 에틸렌(C2H4)을 생성하기 위해서는 촉매 표면 Cu의 산화수를 부분 양전하 상태(Cu(0)와 Cu(1)이 혼재한 상태)로 만들필요가 있다.
상기 산화구리 입자는 CuO일 수 있으며, 이산화탄소의 전기화학적 전환을 통해 에틸렌을 형성하기 위하여 구리(Cu) 산화수가 부분 양전하인 상태인 것이며, Cu(0)와 Cu(1)이 혼재된 상태일 수 있다.
상기 산화구리알루미늄 입자는 Al2CuO4일 수 있으며, 상기 산화구리 입자 내 구리(Cu)의 산화수를 제어하는 것일 수 있으며, 보다 상세하게는 상기 산화구리알루미늄 입자는 이산화탄소 환원 촉매 복합체의 구리(Cu)의 산화수를 부분 양전하 상태로 유지시키 위한 것이다.
상기 이산화탄소 환원 촉매 복합체는, CuO/Al2CuO4일 수 있다.
상기 이산화탄소 환원 촉매 복합체는 구리(Cu)와 알루미늄(Al)의 총함량 100 wt%를 기준으로 구리(Cu)의 함량은 68 내지 91 wt%일 수 있으며, 알루미늄(Al)의 함량이 9 내지 32 wt%일 수 있으며, 바람직하게는 구리(Cu)의 함량은 77 wt%이며, 알루미늄(Al) 원소의 함량이 23 wt%일 수 있다.
본 발명의 일 실시예에 따른 이산화탄소 환원 복합체의 경우, 알루미늄(Al)의 함량(wt%)이 너무 적으면 촉매 표면 구리(Cu)의 산화수 유지를 용이하게 할 만큼 알루미늄(Al) 양이 충분치 않아 반응 중 Cu(0)으로 환원되어 CO2 환원 반응의 활성이 감소된다. 또한, 알루미늄(Al) 함량(wt%)이 너무 많으면, 과량의 알루미늄(Al)이 활성점인 Cu와 CO2의 접촉을 방해하여 전기화학적 CO2 전환 반응 보다는 수소 생성 반응 (Hydrogen evolution reaction, HER)을 촉진시킨다. 따라서, 구리(Cu)와 알루미늄(Al)의 비율(wt%)이 최적화된 이산화탄소 환원 촉매 복합체를 제공함으로써 CO2의 환원이 촉진되어 에틸렌 선택도가 향상될 수 있다.
상기 이산화탄소 환원 촉매 복합체는 공동 침전(coprecipitation) 방법에 의하여 제조되는 것일 수 있으며, 구리 전구체와 알루미늄 전구체를 이용하여 이산화탄소 환원 촉매 복합제를 제조하는 것일 수 있다. 상기 구리 전구체는 질산 구리(Cu(NO3)2)일 수 있으며, 상기 알루미늄 전구체는 질산알루미늄(Al(NO3)3)일 수 있다.
이하, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 본 실시예는 본 발명의 이해를 위한 하나의 실시예일 뿐이며, 본 발명의 범위를 제한하는 것은 아니다.
실시예 1.
3 g의 질산구리(Cu(NO3)2)와 1 g의 질산알루미늄(Al(NO3)3)을 과량의 탈이온수(DI water)에 용해시켜 제1 용액을 제조한다. 제1 용액의 질산구리 몰(mol) 수의 2 배에 해당하는 탄산암모늄((NH4)2CO3) 3.1 g을 탈이온 수에 용해시켜 제2 용액을 제조한다. 제1 용액과 제2 용액의 혼합 용액을 핫 플레이트(hot plate)에서 50℃로 3 시간(h) 동안 교반(stirring) 시키면서 반응시킨다. 반응이 완료된 혼합 용액을 상온에서 2 시간(h) 동안 침전시킨 후 여과(filtration)하여 수득된 고체를 60℃의 오븐에서 하루(24h) 동안 건조시킨다. 건조시킨 고체를 관상로(tube furnace)에서 가열속도(ramping rate) 3 ℃/min으로 800 ℃에서 5 시간(h) 동안 하소(calcination)시킨 후, 노냉(furnace cooling) 하여 이산화탄소 환원 촉매 복합체(구리-알루미늄 합금) 분말(powder)을 수득한다.
실시예 2.
실시예 1과 동일하게 실시하되, 3 g의 질산알루미늄을 이용하였다.
실시예 3.
실시예 1과 동일하게 실시하되, 5 g의 질산알루미늄을 이용하였다.
실시예 1 내지 3에 따른 이산화탄소 환원 촉매 복합체의 제조시 질산구리, 질산알루미늄, 탄산암모늄의 혼합비를 하기 표 1에 정리하였다.
질산구리 질산알루미늄 탄산암모늄
실시예 1 3 g 1 g 3.1 g
실시예 2 3 g 3 g 3.1 g
실시예 3 3 g 5 g 3.1 g
실험예 1. 합성촉매 구조 특성 확인
실시예 3에 따른 이산화탄소 환원 촉매 복합체의 TEM 이미지를 분석하여 도 1에 도시하였다.
도 1을 참조하면, CuO와 Al2CuO4가 각각 형성되었음을 확인할 수 있으며, CuO와 Al2CuO4 사이의 계면간 접합된 것을 확인할 수 있으며, 계면을 기준으로 경계를 형성하고 있음을 확인할 수 있다.
실시예 3에 따른 이산화탄소 환원 촉매 복합체의 SEM EDS mapping 이미지 분석 결과를 도 2에 도시하였다.
도 2를 참조하면, Cu, O, Al 각각의 원소가 균일하게 분포되어 있음을 확인할 수 있다.
실험예 2. 원소 질량분석
실시예 1 내지 3에 따른 이산화탄소 환원 촉매 복합체에 대하여 ICP-MS(Inductively Coupled Plasma-Mass Spectrometry) 분석을 통하여 Cu와 Al에 대한 질량을 분석하였으며, 분석 결과를 하기 표 2에 정리하였다.
Cu 함량 Al 함량
실시예 1 91 wt% 9 wt%
실시예 2 77 wt% 23 wt%
실시예 3 68 wt% 32 wt%
실험예 3. XRD 분석
실시예 1 내지 3에 따른 이산화탄소 환원 촉매 복합체의 XRD(X-Ray powder Diffraction) 분석 결과를 도 3에 도시하였다. 도 3에서 실시예 1에 따른 이산화탄소 환원 촉매 복합체는 'CuO/Al2CuO4-9'로 명명하며, 실시예 2에 따른 이산화탄소 환원 촉매 복합체는 'CuO/Al2CuO4-23'로 명명하며, 실시예 3에 따른 이산화탄소 환원 촉매 복합체는 'CuO/Al2CuO4-32'로 명명하였다.
도 3을 참조하면, 비교데이터로서, CuO의 XRD 분석결과를 함께 포함하고 있으며, 실시예 1 내지 3에 따른 이산화탄소 환원 촉매 복합체는 모두 CuO에 해당하는 피크(peak)(2θ) 및 Al2CuO4에 해당하는 피크(peak)(2θ)가 관찰되는 것을 확인할 수 있으며, 실시예 2에 따른 이산화탄소 환원 촉매 복합체('CuO/Al2CuO4-23')는 CuO에 해당하는 피크(peak)(2θ) 35.495˚(d-spacing 0.253 nm; -111 phase) 및 38.686˚ (d-spacing 0.232 nm; 111 phase)가 관찰되는 것을 확인할 수 있으며, Al2CuO4에 해당하는 피크(peak)(2θ) 31.262˚ (d-spacing 0.2863 nm 220 phase) 및 36.835˚ (d-spacing 0.24386 nm; 311 phase))가 관찰되는 것을 확인할 수 있다. 실시예 1 및 3에 따른 이산화탄소 환원 촉매 복합체의 경우에도 실시예 2에 따른 이산화탄소 환원 촉매 복합체와 동일한 CuO 피크와 Al2CuO4 피크를 가지는 것을 확인할 수 있다. 이를 통하여, 실시예 1 내지 3에 따른 이산화탄소 환원 촉매 복합체는 'CuO'와 'Al2CuO4'가 각각 존재하는 복합체임을 확인할 수 있다.
실험예 4. XPS 분석
실시예 1 내지 3에 따른 이산화탄소 환원 촉매 복합체의 XPS(X-ray Photoelectron Spectroscopy) 분석 결과를 도 4에 도시하였다. 도 4에서 실시예 1에 따른 이산화탄소 환원 촉매 복합체는 'CuO/Al2CuO4-9'로 명명하며, 실시예 2에 따른 이산화탄소 환원 촉매 복합체는 'CuO/Al2CuO4-23'로 명명하며, 실시예 3에 따른 이산화탄소 환원 촉매 복합체는 'CuO/Al2CuO4-32'로 명명하며, 비교예로서 산화구리를 'CuO'로 명명하였다.
도 4의 (a)는 Cu 2p 피크(peak)를 도시한 것이며, 도 4의 (b)는 Al 2p 피크(peak)를 도시한 것이다.
도 4의 (a)를 참조하면, Cu 2p 피크에서 실시예 1 내지 3에 따른 이산화탄소 환원 촉매 복합체는 비교예('CuO') 보다 높은 결합 에너지(Binding Energy)에 위치하는 것을 확인할 수 있으며, Al 함량이 높은 수록(실시예 1에서 실시예 3으로 갈수록) 보다 많은 이동(shift)가 일어남을 확인할 수 있다.
도 4의 (b)를 참조하면, Al 2p 피크에서 Al 함량이 낮을수록(실시예 3에서 실시예 1로 갈수록) 낮은 결합 에너지(Binding Energy)에 위치하는 것을 확인할 수 있다.
도 4를 참조하면, Cu 2p과 Al 2p 피크의 결과 모두 Cu에서 Al로 전하 이동(charge transger)이 일어남을 확인할 수 있다. 이는 실시예 1 내지 3에 따른 이산화탄소 환원 촉매 복합체에서의 활성점(active site)은 Cu이며, Al은 Cu의 산화수를 조절하는 역할을 하는 것으로, Cu의 전자를 Al이 받아줌으로써, Cu의 산화수를 부분적 양전하(partially positive) 상태로 만들 수 있음을 알 수 있다.
실험예 5. CO 2 환원 수계 반응
실시예 1 내지 3에 따른 이산화탄소 환원 촉매 복합체 및 비교예로서 상용 Cu foil에 대하여 전기화학적 CO2 전환 반응을 수계 반응으로 수행하였으며, 그 결과를 각각 도 5a 내지 도 5d에 도시하였다. 도 5a는 실시예 1('CuO/Al2CuO4-9')에 대한 결과를 도시한 것이며, 도 5b는 실시예 2('CuO/Al2CuO4-23')에 대한 결과를 도시한 것이며, 도 5c는 실시예 3('CuO/Al2CuO4-32')에 대한 결과를 도시한 것이며, 도 5d는 비교예('Cu Foil')에 대한 결과를 도시한 것이다.
도 5a 내지 도 5c의 수계반응은, 3 전극 H-type cell을 활용하였고, Ag/AgCl을 기준 전극으로, Pt foil을 상대전극으로 사용하였다. 작업 전극으로는 GCE(glassy carbon electrode)를 사용하였으며, 실시예 1 내지 3에 따른 촉매 로딩(loading) 양이 0.6 mg/cm2이 되도록 촉매 잉크(ink)를 작업 전극 위에 드롭 캐스팅(drop-casting) 하였으며, 촉매 잉크는 촉매(실시예 1 내지 3) 분말(powder) 2 mg, 에탄올(ethanol) 1 mL 및 Nafion 117 함유 용액 40 μL를 이용하여 제작하였으며, 제작된 촉매 잉크 300 μL씩 작업 전극 위에 로딩(loading) 하였다. 전해질로는 0.1 M KHCO3를 사용하였으며, 이온교환막으로는 Selemion을 사용하였다. 전기화학적 CO2 전환 반응을 진행하기 전에 약 20분 간 CO2를 purge 하여 전해질을 CO2 saturation 시켰으며, Faradaic efficiency(FE) 분석을 위해서 Chronoamperometry mode(정전압법)로 반응을 진행하였다.
도 5d는 3 전극 H-type cell을 활용하였고, Ag/AgCl을 기준 전극으로, Pt foil을 상대전극으로 사용하였다. 작업 전극으로는 상용 Cu Foil을 이용하였다. 전해질로는 0.1 M KHCO3를 사용하였으며, 이온교환막으로는 Selemion을 사용하였다. 전기화학적 CO2 전환 반응을 진행하기 전에 약 20분 간 CO2를 purge 하여 전해질을 CO2 saturation 시켰으며, Faradaic efficiency(FE) 분석을 위해서 Chronoamperometry mode(정전압법)로 반응을 진행하였다.
기체상 생성물을 분석하기 위해서 Online Gas Chromatography(GC)를 사용하였고, 시간에 따라 3번 분석하여 평균값을 사용하였으며, 최대 값과 최소 값은 error bar로 표시하였다. 또한, 액체상 생성물을 분석하기 위해서 High-Performance Liquid Chromatography(HPLC)를 사용하였고, 반응이 끝난 후 생성물을 3번 분석하여 평균값을 사용하였으며, 최대 값과 최소 값은 error bar로 표시하였다.
도 5a 내지 도 5c를 참조하면, 실시예 1 내지 3에 따른 이산화탄소 환원 촉매 복합체에서 구리(Cu)와 알루미늄(Al)의 비율(중량)을 조절하여 비교한 것으로, 도 5a 내지 도 5d를 참조하면, 상용 Cu foil(비교예)에 비하여, CO2 환원을 통한 C2H4(에틸렌) 전환율이 개선되는 것을 확인할 수 있으며, 보다 상세하게는, 상용 Cu Foil의 에틸렌 FE 25%(도 5d)를 실시예 2('CuO/Al2CuO4-23')을 사용하여 최대 81%로 개선시키는 것을 확인할 수 있다.
또한, 도 5a를 참조하면, 실시예 1에 따른 이산화탄소 환원 촉매 복합체의 경우, Al의 함량이 낮으며, 이에 따라서, 구리의 산화수를 용이하게 유지할 수 있을 정도의 Al의 양이 충분하지 않아 Cu(0)으로 환원되어 CO 환원 반응 활성이 감소된다. 즉, CO가 C2H4로 더 이상 환원되지 않으며 수계반응시 일부가 CO로 방출된다.
또한, 도 5b를 참조하면, 실시예 2에 따른 이산화탄소 환원 촉매 복합체의 경우, 최적의 Cu-Al 비율을 가지는 것이므로 C2H4 선택성이 우수하다.
또한, 도 5c를 참조하면, Al의 함량이 높으며, 이에 따라서 Al이 활성점인 Cu와 CO2의 접촉을 방해하여 HER을 촉진시킨다. 즉, H2의 비율이 상대적(실시예 1 및 2에 비하여)으로 높다.
실험예 6. XANES 분석
실시예 2에 따른 이산화탄소 환원 촉매 복합체의 XANES(X-ray absorption near edge structure) 분석을 수행하였으며, 이와 함께 비교예로서, CuO에 대한 XANES 분석을 함께 수행하였으며, 각각의 분석 결과를 도 6에 도시하였다.
도 6에서, 'Before reaction'은 실시예 2 및 비교예에서의 촉매 복합체 합성 직후의 XAFS(X-ray Absorption Fine Structure) 분석을 통해 얻은 XANES 결과이며, 'After reaction'은 실시예 2 및 비교예에서 합성된 촉매 복합체를 각각 실험예 5의 수계 반응을 90 분(min) 동안 수행한 후의 XAFS 분석을 통해 얻은 XANES 결과이다.
비교예('CuO')에 대한 분석 결과를 도 6의 (a)에 도시하였으며, 실시예 2('CuO/Al2CuO4-23')에 따른 이산화탄소 환원 촉매 복합체의 분석 결과를 도 6의 (b)에 도시하였다.
도 6을 참조하면, 비교예('CuO')의 경우에는 전기화학적 CO2 전환반응 이후 촉매 표면이 Cu(0)으로 환원되는 반면, 실시예 2('CuO/Al2CuO4-23')에 따른 이산화탄소 환원 촉매 복합체는 산화수를 유지하는 것을 확인할 수 있다.
실험예 7. CO 2 환원 기상계 반응
실시예 2에 따른 이산화탄소 환원 촉매 복합체 및 비교예로서 상용 CuO에 대하여 전기화학적 CO2 전환 반응을 기상계 반응으로 수행하였으며, 수행 결과를 도 7a 내지 도 7c에 도시하였다. 도 7a는 실시예 2에 따른 이산화탄소 환원 촉매 복합체('CuO/Al2CuO4-23')에 대한 기상계 반응 분석 결과(페러데이 효율(FE) 계산 결과)를 도시한 것이며, 도 7b는 비교예는 상용 구리산화물('Commercial CuO')에 대한 기상계 반응 분석 결과(페러데이 효율(FE) 계산 결과)를 도시한 것이며, 도 7c는 실시예 2('CuO/Al2CuO4-23') 및 비교예('Commercial CuO')의 분석에 따른 에틸렌(C2H4)의 부분 전류밀도의 비교 결과를 도시한 것이다.
도 7a 및 도 7b의 기상계 반응은, 3 전극 flow-type cell을 활용하였고, Hg/HgO를 기준 전극으로, Ni-Fe-Mo 합금을 상대전극으로 사용하였다. 작업 전극으로는 GDE(gas diffusion electrode)를 사용하였으며, 실시예 2에 따른 촉매 로딩(loading) 양이 0.6 mg/cm2이 되도록 촉매 잉크(ink)를 작업 전극 위에 스프레이 코팅(spray-coating) 하였으며, 촉매 잉크(ink)는 촉매(실시예 2) 분말(powder) 50 mg, 에탄올(ethanol) 20 mL 및 Nafion 117 함유 용액 313 μL를 이용하여 제작하였으며, 제작된 촉매 잉크의 로링(loading) 양이 0.6 mg/cm2이 되도록 작업 전극 위에 로딩 loading 하였다. 전해질로는 1 M KOH를 사용하였으며, 이온교환막으로는 sustanion을 사용하였다. FE 분석을 위해 Chronopotentiometry mode(정전류법)로 전기화학적 CO2 전환 반응을 진행하였다.
기체상 생성물을 분석하기 위해서 Online Gas Chromatography(GC)를 사용하였고, 시간에 따라 3번 분석하여 평균값을 사용하였으며, 최대 값과 최소 값은 error bar로 표시하였다. 또한, 액체상 생성물을 분석하기 위해서 High-Performance Liquid Chromatography (HPLC)를 사용하였고, 반응이 끝난 후 electrolyte를 3번 분석하여 평균값을 사용하였으며, 최대 값과 최소 값은 error bar로 표시하였다.
도 7a 내지 도 7c를 참조하면, 기상계 반응에서는 상용 CuO의 에틸렌 부분 전류밀도 102.06 mA/cm2를 실시예 2('CuO/Al2CuO4-23')을 사용하여 최대 437.68 mA/cm2로 개선하는 것을 확인할 수 있다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.

Claims (10)

  1. 산화구리 입자; 및
    상기 산화구리 입자와 계면 접합된 산화구리알루미늄 입자를 포함하며,
    상기 산화구리알루미늄 입자는 상기 산화구리 입자 내 구리(Cu)의 산화수를 부분 양전하(partially positive) 상태로 유지시키는 것이며,
    상기 산화구리알루미늄 입자는 Al2CuO4인 것
    이산화탄소 환원 촉매 복합체.
  2. 제1항에 있어서,
    이산화탄소를 에틸렌으로 전기화학적으로 전환시키는 것인,
    이산화탄소 환원 촉매 복합체.
  3. 제1항에 있어서,
    상기 산화구리 입자는 CuO인 것인,
    이산화탄소 환원 촉매 복합체.
  4. 제1항에 있어서,
    상기 산화구리 입자는 XRD 회절 피크(peka)로서 35.495° 및 38.686°을 갖는 것이며,
    상기 산화구리알루미늄 입자는 XRD 회절 피크(peka)로서 31.262° 및 36.835°을 갖는 것인,
    이산화탄소 환원 촉매 복합체.
  5. 삭제
  6. 제1항에 있어서,
    상기 이산화탄소 환원 촉매 복합체는 구리(Cu)와 알루미늄(Al)의 총함량 100 wt%를 기준으로 알루미늄(Al)의 함량이 9 내지 32 wt%인 것인,
    이산화탄소 환원 촉매 복합체.
  7. 제1항에 있어서,
    상기 이산화탄소 환원 촉매 복합체는,
    CuO/Al2CuO4인 것인,
    이산화탄소 환원 촉매 복합체.
  8. 구리 전구체와 알루미늄 전구체의 용해시킨 제1 용액을 제조하는 단계;
    탄산암모늄을 용해시킨 제2 용액을 제조하는 단계;
    상기 제1 용액과 상기 제2 용액의 혼합용액을 교반시켜 반응시키는 단계:
    상기 반응이 완료된 상기 혼합용액을 여과하여 고체(soild)의 중간체를 수득하는 단계; 및
    상기 중간체를 하소하여 촉매 분말을 수득하는 단계를 포함하는
    이산화탄소 환원 촉매 복합체의 제조방법.
  9. 제8항에 대하여,
    상기 구리 전구체는 질산구리인 것인,
    이산화탄소 환원 촉매 복합체의 제조방법.
  10. 제8항에 대하여,
    상기 알루미늄 전구체는 질산알루미늄인 것인,
    이산화탄소 환원 촉매 복합체의 제조방법.
KR1020210113867A 2021-08-27 2021-08-27 이산화탄소 환원 촉매 복합체 KR102608353B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210113867A KR102608353B1 (ko) 2021-08-27 2021-08-27 이산화탄소 환원 촉매 복합체
PCT/KR2022/002531 WO2023027272A1 (ko) 2021-08-27 2022-02-21 이산화탄소 환원 촉매 복합체

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210113867A KR102608353B1 (ko) 2021-08-27 2021-08-27 이산화탄소 환원 촉매 복합체

Publications (2)

Publication Number Publication Date
KR20230031528A KR20230031528A (ko) 2023-03-07
KR102608353B1 true KR102608353B1 (ko) 2023-12-01

Family

ID=85323040

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210113867A KR102608353B1 (ko) 2021-08-27 2021-08-27 이산화탄소 환원 촉매 복합체

Country Status (2)

Country Link
KR (1) KR102608353B1 (ko)
WO (1) WO2023027272A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020176575A1 (en) 2019-02-28 2020-09-03 Honda Motor Co., Ltd. Cu/cu2o interface nanostructures for electrochemical co2 reduction

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3187179B2 (ja) * 1992-12-11 2001-07-11 経済産業省産業技術総合研究所長 酸化物系触媒の製造方法
KR101455416B1 (ko) * 2006-10-13 2014-10-27 이데미쓰 고산 가부시키가이샤 일산화탄소 전환용 촉매 및 이를 이용한 일산화탄소 변성 방법
KR101973002B1 (ko) 2017-05-26 2019-04-29 한국과학기술연구원 이산화탄소 환원용 구리 전기촉매의 제조방법
KR102219947B1 (ko) * 2017-08-18 2021-02-26 서울대학교산학협력단 촉매 및 이를 포함하는 전극
US20220111354A1 (en) * 2018-11-29 2022-04-14 Jawaharlal Nehru Centre For Advanced Scientific Research Catalyst and process of preparing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020176575A1 (en) 2019-02-28 2020-09-03 Honda Motor Co., Ltd. Cu/cu2o interface nanostructures for electrochemical co2 reduction

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Cristina W. Li et al, CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films, J. Am. Chem. Soc. 2012, 134, 17, 7231~7234쪽, 2012.4.16.발행
Dan Ren et al, Selective Electrochemical Reduction of Carbon Dioxide to Ethylene and Ethanol on Copper(I) Oxide Catalysts, ACS Catal. 2015, 5, 5, 2814~2821쪽, 2015.3.31.발행
Hemma Mistry et al, Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene, Nature Communications 7, 12123, 2016.6.30.발행
Miao Zhong et al, Accelerated discovery of CO2 electrocatalysts using active machine learning, Nature 581, 178~183, Supplementary information, 2020.5.13.발행*
Si Young Lee et al, Mixed Copper States in Anodized Cu Electrocatalyst for Stable and Selective Ethylene Production from CO2 Reduction, J. Am. Chem. Soc. 2018, 140, 28, 8681~8689쪽, 2018.6.18.발행
Siraj Sultan et al, Interface rich CuO/Al 2 CuO 4 surface for selective ethylene production from electrochemical CO 2 conversion, Energy & Environmental Science, 15(6) 2397~2409쪽, 2022.3.22.발행

Also Published As

Publication number Publication date
KR20230031528A (ko) 2023-03-07
WO2023027272A1 (ko) 2023-03-02

Similar Documents

Publication Publication Date Title
Chen et al. Amination strategy to boost the CO 2 electroreduction current density of M–N/C single-atom catalysts to the industrial application level
Wang et al. Single-atom catalysts for photocatalytic reactions
US9797052B2 (en) Electrolytic water splitting using a carbon-supported MnOx-composite
KR20210137498A (ko) 루테늄 촉진제 촉매 조성물
KR102419093B1 (ko) 층상 이중수산화물 복합체, 이의 제조방법 및 이를 포함하는 산소 발생 반응용 촉매
Zhang et al. Intentional construction of high-performance SnO 2 catalysts with a 3D porous structure for electrochemical reduction of CO 2
WO2020115758A1 (en) Fe/Fe3C ENCAPSULATED N-CNT ELECTRODE FOR ELECTROCHEMICAL APPLICATIONS AND METHOD OF PREPARATION THEREOF
Wang et al. Rational construction of loosely packed nickel nanoparticulates with residual HCOO ligands derived from a Ni-MOF for high-efficiency electrocatalytic overall water splitting
Esquius et al. High entropy materials as emerging electrocatalysts for hydrogen production through low-temperature water electrolysis
De et al. Deciphering the amplification of dual catalytic active sites of Se-doped NiV LDH in water electrolysis: a hidden gem exposure of anion doping at the core-lattice LDH framework
JP2008155111A (ja) 耐酸性電極触媒
Shrestha et al. Metal-ion doping in metal–organic-frameworks: modulating the electronic structure and local coordination for enhanced oxygen evolution reaction activity
Vignesh et al. Interfacial engineering of α-Fe2O3 coupled Co3O4 heterostructures anchored on g-C3N4 structure for enhanced electrocatalytic performance in alkaline oxygen evolution reaction
Gong et al. Heterogeneous single-atom catalysts for energy process: recent progress, applications and challenges
CN113019394B (zh) 氨分解制氢Ni-Pt/CeO2催化剂及其制备方法和应用
Bhunia et al. Recent progress in the development of electrocatalysts for the electrochemical N 2 reduction reaction
KR102608353B1 (ko) 이산화탄소 환원 촉매 복합체
Charles et al. Solid-solutions as supports and robust photocatalysts and electrocatalysts: a review
Leng et al. Polyoxometalates as bifunctional templates: engineering metal oxides with mesopores and reactive surfaces for catalysis
Gómez-Recio et al. Exceptional low-temperature CO oxidation over noble-metal-free iron-doped hollandites: An In-depth analysis of the influence of the defect structure on catalytic performance
Jia et al. Challenges and Opportunities for Single‐Atom Electrocatalysts: From Lab‐Scale Research to Potential Industry‐Level Applications
Santra et al. Tuning Carbon Dioxide Reduction Reaction Selectivity of Bi Single‐Atom Electrocatalysts with Controlled Coordination Environments
Mezzapesa et al. Development of In–Cu binary oxide catalysts for hydrogenating CO 2 via thermocatalytic and electrocatalytic routes
Ma et al. High-density accessible Ru–Se–Ni moieties boost the hydrogen evolution reaction by optimizing H absorption
Nguyen et al. Insights into the state-of-the-art developments in active-sites engineering for electrocatalytic reduction of nitrate (NO3−) to green ammonia (NH3)

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant