KR102607816B1 - Wireless charging device and control method for unmanned aerial vehicle - Google Patents

Wireless charging device and control method for unmanned aerial vehicle Download PDF

Info

Publication number
KR102607816B1
KR102607816B1 KR1020210145366A KR20210145366A KR102607816B1 KR 102607816 B1 KR102607816 B1 KR 102607816B1 KR 1020210145366 A KR1020210145366 A KR 1020210145366A KR 20210145366 A KR20210145366 A KR 20210145366A KR 102607816 B1 KR102607816 B1 KR 102607816B1
Authority
KR
South Korea
Prior art keywords
unmanned aerial
aerial vehicle
charging
charging device
wireless charging
Prior art date
Application number
KR1020210145366A
Other languages
Korean (ko)
Other versions
KR20210134547A (en
Inventor
이원교
이호권
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to KR1020210145366A priority Critical patent/KR102607816B1/en
Publication of KR20210134547A publication Critical patent/KR20210134547A/en
Application granted granted Critical
Publication of KR102607816B1 publication Critical patent/KR102607816B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/30Supply or distribution of electrical power
    • B64U50/34In-flight charging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Navigation (AREA)

Abstract

본 발명은 송전선로의 고장을 감시하는 무인항공기용 충전장치에 있어서, 3D공간정보와 비행속도를 이용하여 무인항공기의 배터리 소모량과 잔량을 실시간으로 비교하는 배터리 제어부, 상기 무인항공기의 비행경로를 설정하는 무인항공기 제어부, 태양광 내지 송전선로 전력을 이용하여 충전이 진행되는 무선충전장치를 포함하며 상기 배터리 제어부가 현재 잔량과 예측 소모량을 비교한 후에 상기 무인항공기 제어부에서 상기 비교값에 따라 비행경로를 설정하는 것을 특징으로 하는 무인항공기용 충전장치 및 제어방법이다.The present invention relates to a charging device for unmanned aerial vehicles that monitors failures in transmission lines, a battery control unit that compares the battery consumption and remaining capacity of the unmanned aerial vehicle in real time using 3D spatial information and flight speed, and a flight path setting for the unmanned aerial vehicle. It includes an unmanned aerial vehicle control unit, a wireless charging device that charges using solar power or transmission line power, and after the battery control unit compares the current remaining amount and predicted consumption, the unmanned aerial vehicle control unit determines a flight path according to the comparison value. A charging device and control method for unmanned aerial vehicles characterized by setting up a charging device and control method.

Description

무인항공기용 충전장치 및 제어방법{WIRELESS CHARGING DEVICE AND CONTROL METHOD FOR UNMANNED AERIAL VEHICLE}Charging device and control method for unmanned aerial vehicle {WIRELESS CHARGING DEVICE AND CONTROL METHOD FOR UNMANNED AERIAL VEHICLE}

본 발명은 무인 항공기용 무선 충전 장치 및 제어방법에 관한 것으로, 특히 송전선로(초고전압 전력이 송전 되는 고압선, 송전탑, 애자 및 클램프 등)의 고장을 감시하는 무인항공기의 무선충전장치 및 제어방법에 관한 것이다. The present invention relates to a wireless charging device and control method for unmanned aerial vehicles, and in particular, to a wireless charging device and control method for unmanned aerial vehicles that monitor failures in transmission lines (high-voltage lines through which ultra-high voltage power is transmitted, transmission towers, insulators, clamps, etc.). It's about.

송전선로(초고전압 전력이 송전 되는 고압선, 송전탑, 애자 및 클램프 등)는 수만 볼트[V]의 고압 전기가 흐르므로 매우 위험해 지상에서 수십 미터의 공중에 설치되는데, 이는 자연환경(낙뢰, 폭우, 태풍 등)에 노출되어 손상의 가능성이 높아 정기적인 검사가 필수적이다. 이전의 선로 감시의 경우, 작업자가 철탑금구에 직접 탑승하여 송전선로를 육안으로 점검하였기 때문에 작업자의 안전 문제와 함께 고비용 저효율적인 점검이 이루어지고, 또한 송전을 정지한 후, 검사 작업을 수행해야 하므로 작업 가능 시기가 제한되는 단점이 있었다.Transmission lines (high-voltage lines, transmission towers, insulators, clamps, etc. that transmit ultra-high voltage power) are very dangerous because tens of thousands of volts [V] of high-voltage electricity flows through them, so they are installed tens of meters above the ground, and are exposed to natural environments (lightning, heavy rain). , typhoons, etc.), regular inspection is essential as there is a high possibility of damage. In the case of previous line monitoring, workers directly boarded the steel tower and visually inspected the transmission line, resulting in safety issues for workers and high-cost, low-efficiency inspection. In addition, inspection work had to be performed after stopping transmission. The downside was that the time in which work could be done was limited.

무인항공기는 별도의 송전선로 감시를 위한 장치(고해상도, 열화상, UV 카메라 등)를 부가적으로 설치하여 송전선로 감시를 위한 시스템 구성이 가능하며 위성 및 관성항법 장치를 통해 GPS기반으로 조종자가 설정한 경로, 고도, 속도로 이동하거나 무인항공기 내에 탑재된 제어시스템에 의하여 위치나 자세, 방향 등을 제어하는 것이 가능하다. 이와 같은 무인 항공기(회전익기) 시스템의 특징들은 저속, 초저속, 공중 정지 비행이 필요한 송전선로 순시 점검에 적합하다고 할 수 있다.The unmanned aerial vehicle can configure a system for transmission line monitoring by additionally installing separate devices for monitoring transmission lines (high-resolution, thermal imaging, UV cameras, etc.), and the pilot can set the system based on GPS through satellite and inertial navigation devices. It is possible to move with a single path, altitude, and speed, or to control the location, attitude, and direction by the control system mounted on the unmanned aerial vehicle. The characteristics of this unmanned aerial vehicle (rotorcraft) system can be said to be suitable for inspection of power transmission lines that require low-speed, ultra-low-speed, and hovering flight.

그러나 무인항공기는 배터리 용량의 한계로 장시간의 지속적인 선로 감시업무에 어려움은 물론, 산이나 바다 등의 넓은 지역의 순시를 진행할 때에는 다수의 예측 불가능한 외부 요인들과 배터리의 용량문제로 전원공급이 더더욱 어려워져 안정적인 선로감시 업무에 차질이 생길 뿐만 아니라 극단적인 상황에서는 불시착할 가능성마저 있다. 이러한 지속성과 안정성의 부족은 송배전선 감시에서의 무인 항공기 도입을 더디게 만들어 왔다.However, due to limitations in battery capacity, unmanned aerial vehicles have difficulty conducting continuous track monitoring tasks for long periods of time, and when patrolling large areas such as mountains or the sea, power supply is even more difficult due to numerous unpredictable external factors and battery capacity issues. Not only will stable track monitoring work be disrupted, but in extreme situations, there is even a possibility of an emergency landing. This lack of continuity and stability has slowed the introduction of unmanned aerial vehicles in transmission and distribution line surveillance.

상술한 문제점을 해결하고자, 송전선로 전력과 자연광을 이용한 무인 항공기로의 지속적인 전원 공급을 통해 무인 항공기 배터리의 용량 한계로 인한 지속성의 부족을 극복하고, 다수의 외부 요인에 의하여 과도한 배터리 소모가 일어나는 상황이 발생하더라도 경로를 수정하여 무인 항공기의 불시착을 방지하면서도 면밀한 감시를 할 수 있는 알고리즘을 포함하여 외부 요인으로 인한 안정성의 부족을 극복할 수 있는 무인항공기용 충전장치 및 제어방법을 제시하고자 한다.In order to solve the above-mentioned problems, the lack of sustainability due to the capacity limit of the unmanned aerial vehicle battery is overcome by continuously supplying power to the unmanned aerial vehicle using power from the transmission line and natural light, and excessive battery consumption occurs due to a number of external factors. Even if this occurs, we would like to present a charging device and control method for unmanned aerial vehicles that can overcome the lack of stability due to external factors, including an algorithm that can correct the path to prevent an emergency landing of the unmanned aerial vehicle and enable close monitoring.

본 발명은 송전선로의 고장을 감시하는 무인항공기용 충전장치에 있어서, 3D공간정보와 비행속도를 이용하여 무인항공기의 배터리 소모량과 잔량을 실시간으로 비교하는 배터리 제어부, 상기 무인항공기의 비행경로를 설정하는 무인항공기 제어부, 태양광 내지 송전선로 전력을 이용하여 충전이 진행되는 무선충전장치를 포함하며 상기 배터리 제어부가 현재 잔량과 예측 소모량을 비교한 후에 상기 무인항공기 제어부에서 상기 비교값에 따라 비행경로를 설정하는 것을 특징으로 하는 무인항공기용 충전장치이다.
본 발명은 송전선로의 고장을 감시하는 무인항공기용 충전장치 제어방법에 있어서, 무인항공기의 배터리 소모량 예측 및 비행경로에 충전소 추가 단계; 상기 무인항공기의 배터리 잔량과 예측 소모량 비교 단계; 비행경로 수정 단계; 및 충전소로 이동 및 착륙 단계;를 포함하고, 상기 충전소로 이동 및 착륙 단계에서 상기 충전소는 송전철탑 위에 설치되며, 상기 비행경로 수정 단계는 현재 상기 무인항공기의 배터리 잔량이 상기 예측 소모량보다 큰 경우에는 설정된 비행경로를 따라 비행하고, 현재 상기 무인항공기의 배터리 잔량이 상기 예측 소모량보다 작은 경우에는 무선충전장치가 설치된 경로점을 다음 경로점으로 수정하고 무선충전이 이루어진 후 상기 설정된 비행경로대로 비행한다. 여기서 상기 충전소는 충전부에서 충전이 진행되는 무선충전장치가 있고, 상기 충전부는 태양광 방식 내지 송전선로 전류 방식 중 어느 한 방식으로 상기 무선충전장치에서 전원공급부의 배터리로부터 전원을 공급받으며, 상기 태양광 방식은 태양광 모듈을 통해 광전효과에 의한 광기전력을 이용하고, 상기 송전선로 전류 방식은 CT변류기를 통해 상기 송전선로 전류를 변류시켜 이용하며, 상기 태양광 방식으로 전원공급이 불가능할 경우에는 상기 송전선로 전류 방식으로 전원공급이 진행된다.
The present invention relates to a charging device for unmanned aerial vehicles that monitors failures in transmission lines, a battery control unit that compares the battery consumption and remaining capacity of the unmanned aerial vehicle in real time using 3D spatial information and flight speed, and a flight path setting for the unmanned aerial vehicle. It includes an unmanned aerial vehicle control unit, a wireless charging device that charges using solar power or transmission line power, and after the battery control unit compares the current remaining amount and predicted consumption, the unmanned aerial vehicle control unit determines a flight path according to the comparison value. It is a charging device for unmanned aerial vehicles characterized by setting.
The present invention provides a method of controlling a charging device for an unmanned aerial vehicle that monitors a transmission line failure, comprising the steps of predicting battery consumption of the unmanned aerial vehicle and adding a charging station to the flight path; Comparing the remaining battery capacity and predicted consumption of the unmanned aerial vehicle; Flight path correction step; and moving to the charging station and landing step; In the moving to the charging station and landing step, the charging station is installed on a transmission pylon, and the flight path modification step is performed when the current remaining battery of the unmanned aerial vehicle is greater than the predicted consumption amount. It flies along the set flight path, and if the current remaining battery capacity of the unmanned aerial vehicle is less than the predicted consumption, the path point where the wireless charging device is installed is modified to the next path point, and after wireless charging is performed, it flies according to the set flight path. Here, the charging station has a wireless charging device in which charging is carried out in a charging unit, and the charging unit receives power from the battery of the power supply unit in the wireless charging device in one of a solar method or a transmission line current method. The method uses photovoltaic power generated by the photoelectric effect through a solar module, and the transmission line current method uses the transmission line current by transforming it through a CT current transformer. If power supply is not possible using the solar method, the transmission line current method uses the transmission line current method. Power is supplied in the form of low current.

상기와 같은 구성의 본 발명은 송전선로 순시를 위한 무인항공기의 본체를 굳이 내리지 않아도 철탑 위에 마련된 무선충전장치에서 무인항공기의 관리가 가능하여 인력낭비 해소는 물론, 배터리 용량의 한계로 장시간, 장거리 선로 감시에 어려움이 있던 이전의 문제점이 배터리가 항상 충전상태를 유지하게 함으로써 해결되어 효율적인 업무가 가능하다.The present invention, configured as described above, allows management of the unmanned aerial vehicle from a wireless charging device provided on a steel tower without having to lower the main body of the unmanned aerial vehicle for patrolling the transmission line, thereby eliminating waste of manpower, as well as eliminating the need for long-term, long-distance transmission due to limitations in battery capacity. The previous problem of monitoring difficulties has been solved by ensuring that the battery is always charged, enabling efficient work.

도 1은 본 발명에 따른 순서도이다.
도 2는 본 발명에 따른 무선 충전장치의 순서도이다.
도 3은 본 발명에 따른 대체 충전소 안내시의 경로 변경의 예시이다.
도 4는 본 발명에 따른 대용량 배터리(106-3) 충전의 순서도이다.
도 5는 본 발명에 따른 무인항공기 배터리의 잔량 부족 시 경로 변경의 예시이다.
도 6은 본 발명에 따른 무선충전지점을 보여주는 그림이다.
도 7은 본 발명에 따른 무인항공기의 배터리장치 구성도이다.
도 8은 본 발명에 따른 무인항공기의 무선충전장치의 구성도이다.
도 9는 본 발명에 따른 무선충전장치의 전원공급부의 구성도이다.
도 10은 본 발명에 따른 무인항공기의 충전방식의 개념도이다.
1 is a flow chart according to the present invention.
Figure 2 is a flow chart of the wireless charging device according to the present invention.
Figure 3 is an example of a route change when providing alternative charging station guidance according to the present invention.
Figure 4 is a flowchart of charging a large capacity battery 106-3 according to the present invention.
Figure 5 is an example of a route change when the remaining battery power of the unmanned aerial vehicle is low according to the present invention.
Figure 6 is a diagram showing a wireless charging point according to the present invention.
Figure 7 is a configuration diagram of a battery device for an unmanned aerial vehicle according to the present invention.
Figure 8 is a configuration diagram of a wireless charging device for an unmanned aerial vehicle according to the present invention.
Figure 9 is a configuration diagram of the power supply unit of the wireless charging device according to the present invention.
Figure 10 is a conceptual diagram of a charging method for an unmanned aerial vehicle according to the present invention.

본 발명을 충분히 이해하기 위해서 본 발명의 바람직한 실시 예를 첨부 도면을 참조하여 설명한다. 본 발명의 실시 예는 여러 가지 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상세히 설명하는 실시 예로 한정되는 것으로 해석되어서는 안 된다. 본 실시 예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다. 따라서 도면에서의 요소의 형상 등은 보다 명확한 설명을 강조하기 위해서 과장되어 표현될 수 있다. 각 도면에서 동일한 구성은 동일한 참조부호로 도시한 경우가 있음을 유의하여야 한다. 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 공지 기능 및 구성에 대한 상세한 기술은 생략된다.In order to fully understand the present invention, preferred embodiments of the present invention will be described with reference to the accompanying drawings. Embodiments of the present invention may be modified in various forms, and the scope of the present invention should not be construed as being limited to the embodiments described in detail below. This example is provided to more completely explain the present invention to those with average knowledge in the art. Therefore, the shapes of elements in the drawings may be exaggerated to emphasize a clearer description. It should be noted that the same configuration may be indicated by the same reference numeral in each drawing. Detailed descriptions of well-known functions and configurations that are judged to unnecessarily obscure the gist of the present invention are omitted.

본 발명은 송전선로의 고장을 감시하는 무인항공기용 충전장치에 있어서, 3D공간정보와 비행속도를 이용하여 무인항공기의 배터리 소모량과 잔량을 실시간으로 비교하는 배터리 제어부 (302), 상기 무인항공기의 비행경로를 설정하는 무인항공기 제어부(305), 태양광 내지 송전선로 전력을 이용하여 충전이 진행되는 무선충전장치(100) 포함하며, 상기 배터리 제어부가 현재 잔량과 예측 소모량을 비교한 후에 상기 무인항공기 제어부에서 상기 비교값에 따라 비행경로를 설정하는 것을 특징으로 한다.The present invention relates to a charging device for an unmanned aerial vehicle that monitors a transmission line failure, a battery control unit 302 that compares the battery consumption and remaining capacity of the unmanned aerial vehicle in real time using 3D spatial information and flight speed, and a flight control unit 302 of the unmanned aerial vehicle. It includes an unmanned aerial vehicle control unit 305 that sets a route, and a wireless charging device 100 that charges using solar or transmission line power. After the battery control unit compares the current remaining amount and predicted consumption, the unmanned aerial vehicle control unit The flight path is set according to the comparison value.

무인항공기의 배터리(301) 방전에 따른 불시착 사고 등의 문제를 방지하기 위해, 상기 배터리 제어부(302)는 3D공간정보와 주어진 비행 속도를 기반으로 기존 비행경로를 따라 다음 충전소까지 가는데 필요한 소모량을 예측하여 실시간으로 현재 잔량과 비교하게 된다. 상기 배터리 제어부(302)에서 상기 무인항공기의 배터리(301) 잔량을 지속적으로 체크 하되 상기 예측 소모량보다 부족하지 않으면 초기에 설정된 비행경로를 따라 비행하여 사전에 비행경로에 포함된 철탑(무선충전장치(100) 설치 장소)의 착륙지점에 착륙하여 상기 무인항공기의 배터리를 충전한다. 그러나 돌풍 및 비행 오차 등에 따라 무인항공기의 배터리(301)가 상기 예측 소모량 보다 부족한 잔량을 보유하게 될 경우, 상기 무인항공기 제어부(305)가 비행경로(경로점 1····n)를 수정하여 다음에 경유할 상기 무선충전장치(100)가 설치된 경로점이 다음 경로점이 되고 상기 무선충전장치가 설치된 경로점의 직후부터 다시 상기 설정된 비행경로대로 비행하도록 한다. In order to prevent problems such as crash landing accidents due to discharge of the battery 301 of the unmanned aerial vehicle, the battery control unit 302 predicts the consumption required to reach the next charging station along the existing flight path based on 3D spatial information and a given flight speed. This compares it with the current remaining amount in real time. The battery control unit 302 continuously checks the remaining battery capacity of the unmanned aerial vehicle (301), and if it is not less than the predicted consumption amount, it flies along the initially set flight path and flies to a pylon (wireless charging device (wireless charging device) included in the flight path in advance). 100) Land at the landing point of the installation site and charge the battery of the unmanned aerial vehicle. However, if the battery 301 of the unmanned aerial vehicle has less remaining power than the predicted consumption due to gusts or flight errors, the unmanned aerial vehicle control unit 305 modifies the flight path (path point 1····n) and The next route point where the wireless charging device 100 is installed becomes the next route point, and the flight begins again according to the set flight path immediately after the route point where the wireless charging device is installed.

본 발명의 무인 항공기는 단순한 비행이 아닌 송전선로의 감시가 목적이기 때문에 모든 비행경로를 거쳐 면밀한 감시를 할 필요가 있다. 따라서 배터리 문제로 거치지 못한 경로점부터 다시 비행하는 위의 알고리즘은 매우 중요하다 할 수 있다.Since the purpose of the unmanned aerial vehicle of the present invention is to monitor power transmission lines rather than simply fly, it is necessary to closely monitor all flight paths. Therefore, the above algorithm of re-flying from a route point that could not be reached due to a battery problem can be said to be very important.

본 발명에 따른 무선충전장치는 송전철탑 위에 설치되며, 제어부(101), 송,수신부(102), 충전부(105), GPS장치(103), 전원공급부(106), 상태표시부(104), DB구축부(107)를 포함한다. 무인항공기는 상기 배터리 제어부(302)가 무인항공기의 운항 중 상기 무인항공기의 배터리(301)의 잔량이 예상보다 부족하다고 판단하여 상기 무인항공기 제어부(305)가 정해진 알고리즘을 통해 비행경로를 수정하거나 기존 비행경로에서 다음 경로점이 충전소일 경우 상기 무선충전장치(100)가 설치된 장소로 착륙하여 배터리를 충전하게 된다. 이때, 무인항공기에는 RFID(Radio Frequency Identification) Tag와 같은 무선 인식이 가능한 태그를 부착하여 각 무인항공기에 대한 ID관리와 함께 충전시간과 충전량에 대한 효율적 데이터 관리가 가능하다.The wireless charging device according to the present invention is installed on a transmission tower and includes a control unit 101, a transmission and reception unit 102, a charging unit 105, a GPS device 103, a power supply unit 106, a status display unit 104, and a DB. Includes a construction unit 107. In the case of an unmanned aerial vehicle, the battery control unit 302 determines that the remaining battery power of the unmanned aerial vehicle 301 is lower than expected during operation of the unmanned aerial vehicle, and the unmanned aerial vehicle control unit 305 modifies the flight path through a predetermined algorithm or modifies the existing flight path. If the next point on the flight path is a charging station, the aircraft lands at a location where the wireless charging device 100 is installed and charges the battery. At this time, tags capable of wireless recognition, such as RFID (Radio Frequency Identification) Tags, are attached to the unmanned aerial vehicles, enabling efficient data management of charging time and charging amount along with ID management for each unmanned aerial vehicle.

상기 전원공급부(106)는 크게 두 가지로 구성되어 있다. 첫째, 태양광 모듈(106-1)을 설치하고, 여기서 발전 되는 전력을 대용량 배터리에 공급하는 방식이다. 상기 태양광 모듈(106-1)은 상기 무선충전장치(100) 주위에 설치된다. 둘째, 철탑의 송전선로 전력을 이용하여 충전하는 방법으로 변류기(CT)(전력유도장치)(200)를 이용하여 철탑에 흐르는 전류로부터 일정 전류를 전력변환 장치(106-2)에서 변류시켜 대용량 배터리(106-3)에 전원을 공급하는 방식이다. 날씨가 흐릴 때나 태양광을 얻을 수 없는 야간에는 태양광발전을 통한 충전의 효율성이 떨어지게 되는데 두 번째 방법에서처럼 송전선로 전력을 이용하여 상시 충전을 하게 되면 연속적인 무선충전장치(100)의 운영이 가능하다. 단, 상기 무선충전장치(100)는 태양광 충전을 우선으로 사용하나 모종의 이유로 태양광 충전의 효율이 떨어질 경우에만 변류기 충전을 이용하여 충전 효율을 유지할 수 있도록 한다. 태양광 충전과 변류기 충전, 두 가지의 충전부가 있으므로 한쪽 충전 방식이 고장 나더라도 지속적인 충전이 가능하여 무선충전의 공급 신뢰도를 높일 수 있다.The power supply unit 106 is largely composed of two parts. First, a solar module (106-1) is installed and the power generated there is supplied to a large capacity battery. The solar module 106-1 is installed around the wireless charging device 100. Second, as a method of charging using the power from the transmission line of the pylon, a current transformer (CT) (power induction device) 200 is used to transform a certain amount of current from the current flowing in the pylon in the power conversion device 106-2 to produce a large capacity battery. This is a method of supplying power to (106-3). When the weather is cloudy or at night when sunlight is not available, the efficiency of charging through solar power generation decreases. However, if continuous charging is performed using transmission line power as in the second method, continuous operation of the wireless charging device (100) is possible. do. However, the wireless charging device 100 uses solar charging as a priority, but uses current transformer charging only when the efficiency of solar charging decreases for some reason to maintain charging efficiency. Since there are two charging parts, solar charging and current transformer charging, continuous charging is possible even if one charging method fails, thereby increasing the supply reliability of wireless charging.

상기 충전부(105)는 현재 적용이 가능한 비접촉방식의 충전기술인 전자기 유도를 이용한 충전 방식, 자기 공명을 이용한 충전방식, 전기에너지를 레이저 빔으로 변환전송 및 수신하여 충전하는 방식, 전기에너지를 마이크로웨이브 변환전송 및 수신하는 방식 등으로 전력 전달이 가능하도록 한다. 이때 전원은 사전에 상기한 두 가지 방식으로 충전해둔 대용량 배터리(106-3)에서 전원을 공급받는다.The charging unit 105 is a charging method using electromagnetic induction, a charging method using magnetic resonance, a method of converting and transmitting and receiving electrical energy into a laser beam, and a method of converting electrical energy into microwaves, which are currently applicable non-contact charging technologies. Enables power transfer through transmission and reception methods. At this time, power is supplied from a large capacity battery (106-3) that has been previously charged in the two ways mentioned above.

또한, 상기 상태표시부(104)를 두어 무선충전장치의 충전량을 숫자(디지털)혹은 색상으로 표시하도록 하고, 상기 DB구축부(107)를 두어 효율적인 충전데이터 관리가 가능하도록 한다. 무인항공기에 따라 충전용량도 다를 것이고, 충전시간도 다르기 때문에 이에 알맞은 충전요금 체계가 필요하다. 무선충전 장치 내 상기 DB 구축부(107)는 상기 충전부(105)에서 무인항공기로 공급되는 전력량을 실시간으로 측정하여 무인항공기의 충전량에 따른 요금을 무인항공기가 소속되어 있는 기관에 청구할 수 있도록 한다. 뿐만 아니라, 무선충전장치에 발생하는 각종 고장에 대한 신호를 소속기관에 발신할 수 있도록 한다.In addition, the status display unit 104 is provided to display the charging amount of the wireless charging device in numbers (digital) or color, and the DB construction unit 107 is provided to enable efficient charging data management. Depending on the unmanned aerial vehicle, the charging capacity will be different and the charging time will also be different, so an appropriate charging fee system is needed. The DB building unit 107 in the wireless charging device measures the amount of power supplied to the unmanned aerial vehicle from the charging unit 105 in real time and allows the organization to which the unmanned aerial vehicle belongs to be charged a fee according to the charging amount of the unmanned aerial vehicle. . In addition, it allows signals about various malfunctions that occur in the wireless charging device to be sent to the relevant organization.

도 1은 본 발명의 전체 순서도이다. 무인항공기 내 상기 배터리 제어부(302)는 상기 배터리(301)의 잔량을 체크하여 전원의 부족여부를 확인하고, 기존 비행경로를 따라 다음 충전소까지 가는데 필요한 상기 무인항공기의 배터리 잔량보다 부족하다고 판단하면 비행경로 변경을 실시한다. 이렇게 비행경로가 변경되었을 경우 혹은, 다음 경로점이 충전소인 경우에는 무인항공기에 내장된 GPS장치(303)와 3D 공간정보 모델링을 통해 선로점검 영역 내의 철탑(무선충전장치(100) 설치 장소)으로 이동하여 착륙지점에 착륙한다. 무인항공기가 충전장소에 안전하게 착륙하였을 경우, 현재 적용이 가능한 비접촉방식의 충전기술을 적용해 전류를 흐르게 하여 상기 무인항공기의 배터리(301)를 충전한다. 충전 후에는 무선충전장치의 상기 DB구축부(107)에서 무인항공기에 부착된 RFID칩과 같은 식별 도구를 이용하여 충전시간과 충전량에 포함되는 충전정보를 저장한 후, 기관에 요금을 정산하여 사용자에게 전송한다.1 is an overall flow chart of the present invention. The battery control unit 302 in the unmanned aerial vehicle checks the remaining battery capacity of the battery 301 to determine whether the power is insufficient, and if it determines that the remaining battery capacity of the unmanned aerial vehicle is insufficient to reach the next charging station along the existing flight path, the unmanned aerial vehicle starts flight. Change the route. If the flight path is changed in this way or if the next route point is a charging station, move to the steel tower (installation location of the wireless charging device 100) within the track inspection area through the GPS device 303 built into the unmanned aerial vehicle and 3D spatial information modeling. and land at the landing point. When the unmanned aerial vehicle lands safely at the charging location, the battery 301 of the unmanned aerial vehicle is charged by flowing current using the currently applicable non-contact charging technology. After charging, the DB building unit 107 of the wireless charging device stores the charging information included in the charging time and charging amount using an identification tool such as an RFID chip attached to the unmanned aerial vehicle, and then settles the fee to the organization to the user. send to

그 후 무인항공기 상기 제어부(305)는 경로점이 남았는지 판단하고 남은 경로점이 있다면 무인 항공기가 기존 경로에 복귀하도록 한다. 남은 경로점이 없다면 소속 기관으로의 복귀 비행을 실시한다.Thereafter, the control unit 305 of the unmanned aerial vehicle determines whether there are any remaining path points and, if there are any remaining path points, causes the unmanned aerial vehicle to return to the existing path. If there are no route points remaining, a return flight to the affiliated organization is conducted.

도 2는 무선 충전장치의 순서도와 대체 충전소 안내 방법을 나타낸다. 우선 대기 상태에서는 무인 항공기의 착륙 신호를 기다린다. 착륙 신호가 잡히면 상기 대용량 배터리(106-3) 잔량과 상기 충전부(105)의 동작 여부를 확인하여 충전 가능 여부를 판단한다. 충전이 가능하면 무인항공기가 착륙하여 충전 후 다시 대기 상태로 돌아간다. 그러나 충전이 불가능하다 판단될 경우, 소속 기관에 문제 신호를 발신한 후 대체 충전소를 안내하게 되는데, 그 방법은 도 3과 같다. 기존 경로가 A-B-C-D-E-F 순일 때, 충전소인 B지점에서 충전 불가 신호가 감지될 경우 다음 충전소인 E와 경로점을 치환한 후 기존 충전소 B는 경로에서 제거한다. 결국 A-E-C-D-F 순의 경로가 되며 G는 F이후의 경로점이다.Figure 2 shows a flowchart of a wireless charging device and a method of guiding alternative charging stations. First, in standby mode, you wait for the landing signal from the unmanned aerial vehicle. When a landing signal is received, the remaining amount of the large capacity battery 106-3 and the operation of the charging unit 105 are checked to determine whether charging is possible. If charging is possible, the unmanned aerial vehicle lands, charges, and returns to standby. However, if it is determined that charging is not possible, a problem signal is sent to the relevant organization and then guidance is given to an alternative charging station, the method of which is shown in FIG. 3. When the existing route is in the order A-B-C-D-E-F, if an uncharging signal is detected at point B, the charging station, the route point is replaced with the next charging station E, and the existing charging station B is removed from the route. Ultimately, it becomes a path in the order A-E-C-D-F, with G being the path point after F.

도 4는 대용량 배터리(106-3) 충전의 순서도를 나타낸다. 무인충전장치의 대용량 배터리 충전 방식은 크게 두 가지로 나눌 수 있다. 첫째, 철탑 상부에 무인항공기의 충전을 위한 태양광 모듈(106-1)을 설치하고, 여기에서 발전되는 전력으로 충전을 하는 방식이다. 상기 태양광 모듈(106-1)은 상기 무선충전장치(100)의 주위에 설치된다. 둘째, 송전선로의 전력을 이용하여 충전하는 방법으로 변류기(CT : Current Transformer)(전류 유도장치)(200)를 이용해 철탑에 흐르는 전류로부터 일정전류를 변류시켜 충전하는 방식이다. 우선 태양광 충전가능 여부를 확인하고, 불가능하다면 선로 이용 변류기 충전 가능 여부를 확인하여 가능한 충전 방식으로 대용량 배터리를 충전한다. 이 과정은 무인항공기의 착륙 여부에 상관없이 계속 진행된다. 한편, 상기한 두 가지 충전 방식이 모두 불가능하여 대용량 배터리(106-3) 충전이 불가능한 경우에는 소속 기관에 문제 신호를 발신하여 문제 해결을 유도한다Figure 4 shows a flowchart of charging the large capacity battery 106-3. The large-capacity battery charging methods of unmanned charging devices can be broadly divided into two types. First, a solar module (106-1) for charging the unmanned aerial vehicle is installed on the top of the steel tower, and charging is done with the power generated there. The solar module 106-1 is installed around the wireless charging device 100. Second, it is a method of charging using the power of the transmission line by converting a certain current from the current flowing in the tower using a current transformer (CT) (current induction device) 200. First, check whether solar charging is possible, and if not, check whether charging by a current transformer using a line is possible and charge the large capacity battery using a possible charging method. This process continues regardless of whether the unmanned aerial vehicle lands or not. On the other hand, if charging the large capacity battery (106-3) is not possible because both of the above charging methods are not possible, a problem signal is sent to the affiliated organization to induce problem solving.

도 5는 무인항공기의 배터리 잔량 부족에 따른 경로 변경의 예시를 나타낸다. 비행기 그림은 무인 항공기를 나타내며 번개 그림은 무선충전장치를 나타낸다. 현재 무선충전장치는 E 경로점에 위치한다고 가정한다. 기존 경로가 A-B-C-D-E-F 순일 때, B지점에서 외부 요인으로 인한 잔량 부족이 감지될 경우 다음 충전소인 E를 다음 경로점으로 하고 기존 다음 경로점인 C는 충전소 이후 경로점으로 변경한다. 나머지 경로점의 순서에 대해서는 변경이 없어 변경 후경로는 A-B-E-C-D-F 가 되어 무인항공기가 모든 경로점을 거칠 수 있게 된다.Figure 5 shows an example of a route change due to insufficient battery power of the unmanned aerial vehicle. The picture of an airplane represents an unmanned aerial vehicle, and the picture of a lightning bolt represents a wireless charging device. It is assumed that the current wireless charging device is located at path point E. When the existing route is in the order A-B-C-D-E-F, if a shortage of remaining power due to external factors is detected at point B, E, the next charging station, is set as the next route point, and C, the existing next route point, is changed to the route point after the charging station. There is no change in the order of the remaining route points, so the route after the change becomes A-B-E-C-D-F, allowing the unmanned aerial vehicle to pass through all route points.

도 6은 무인항공기의 무선충전지점을 나타낸다. 철탑 상부에 무인항공기의 충전을 위한 상기 무선충전장치(100)를 설치하고, 무인항공기에 내장된 상기 GPS장치(303)를 사용하여 3D 공간정보 기반의 설정된 송전탑(무선충전장치(100) 설치 장소)으로 이·착륙을 수행한다. 또한, 송전선(고전압, 대전류)에 의해 전자계가 발생하므로, 무인항공기의 안정성을 확보하기 위해 송전선로와 일정 간격이상 이격하여 이·착륙한다. 무인항공기 주위의 전자계가 센서 내에 인식된 기준치보다 초과시 운영자에게 경보정보를 전송한다.Figure 6 shows the wireless charging point of the unmanned aerial vehicle. The wireless charging device 100 for charging the unmanned aerial vehicle is installed on the top of the steel tower, and the transmission tower (wireless charging device 100) is installed based on 3D spatial information using the GPS device 303 built into the unmanned aerial vehicle. ) to perform takeoff and landing. Additionally, since electromagnetic fields are generated by transmission lines (high voltage, large current), to ensure the stability of the unmanned aerial vehicle, it takes off and lands at a certain distance from the transmission lines. When the electromagnetic field around the unmanned aerial vehicle exceeds the standard recognized within the sensor, alarm information is sent to the operator.

도 7은 본 발명의 무인항공기의 배터리장치 구성도이다. 기존 비행경로에서 다음 경로점이 충전소이거나 상기 배터리 제어부(302)가 무인항공기의 운항 중 상기 배터리(301)의 잔량이 예상보다 부족하다고 판단하여 상기 무인항공기 제어부(305)가 정해진 알고리즘을 통해 비행경로를 수정하면 3D 정보공간 기반의 지정된 철탑(무선충전부(306) 설치 장소)으로 무인항공기가 자동 착륙하게 된다. 그 후, 무선충전부(306)를 통해 무인항공기의 상기 배터리(301)에 충전을 시작한다. 무선 송/수신부(304)는 상기 무선충전부(306)에서 무인항공기의 충전용량을 감시자에게 송신하며, 만약 배터리에 충전이 되지 않을 경우, 선로감시를 중지하고 착륙지점으로 강제 복귀 혹은 그마저도 불가능할 경우 무선충전장치에 대기시킨다.Figure 7 is a configuration diagram of the battery device of the unmanned aerial vehicle of the present invention. In the existing flight path, the next route point is a charging station, or the battery control unit 302 determines that the remaining battery power of the battery 301 is lower than expected during operation of the unmanned aerial vehicle, and the unmanned aerial vehicle control unit 305 determines the flight path through a determined algorithm. If modified, the unmanned aerial vehicle will automatically land at the designated pylon (installation location of the wireless charging unit 306) based on the 3D information space. Afterwards, the battery 301 of the unmanned aerial vehicle begins to be charged through the wireless charging unit 306. The wireless transmitting/receiving unit 304 transmits the charging capacity of the unmanned aerial vehicle to the monitor from the wireless charging unit 306, and if the battery is not charged, track monitoring is stopped and forced to return to the landing point, or if even that is not possible. Put it on standby with the wireless charging device.

도 8은 무선충전장치의 구성도이다. 무인 항공기가 착륙하면 상기 무선충전장치 제어부(101)에서 충전 가능 여부를 확인한다. 상기 충전부(105)는 상기 전원 공급부(106)의 상기 대용량 배터리(106-3)에 전원을 연결하여 무인항공기의 배터리에 비접촉 방식으로 현재 적용이 가능한 비접촉방식의 충전기술인 전자기 유도를 이용한 충전 방식, 자기 공명을 이용한 충전 방식, 전기에너지를 레이저 빔으로 변환전송 및 수신하여 충전하는 방식, 전기에너지를 마이크로웨이브 변환전송 및 수신하는 방식 등으로 전력 전달을 할 수 있도록 한다. Figure 8 is a configuration diagram of a wireless charging device. When the unmanned aerial vehicle lands, the wireless charging device control unit 101 checks whether charging is possible. The charging unit 105 connects power to the large capacity battery 106-3 of the power supply unit 106 and uses electromagnetic induction, which is a non-contact charging technology currently applicable to the battery of an unmanned aerial vehicle. It is possible to transmit power through a charging method using magnetic resonance, a method of charging by converting and transmitting and receiving electrical energy into a laser beam, and a method of converting and receiving electrical energy into a microwave.

상기 DB구축부(107)에서는 무인항공기를 식별하고 전력 공급량을 측정하여 충전금액을 정산해 사용자에게 청구한다. 상기 상태 표시부(104)는 현재 대용량 배터리(106-3)에 공급 가능한 전원 방식과 대용량 배터리 잔량을 표시한다. 무인항공기의 배터리의 충전용량 역시 표시하여 지상통제시스템(GCS)에서도 충전여부를 확인할 수 있도록 한다. 장치 고장 여부 역시 표시할 수 있도록 하고 장치 고장 시 상기 무선 송/수신부(102)에서 소속 기관에 고장 신호를 발신하도록 하며, 다른 무인 항공기에도 대체 충전소의 위치를 발신해 비행에 차질이 없도록 한다.The DB construction unit 107 identifies the unmanned aerial vehicle, measures the power supply, calculates the charging amount, and charges the user. The status display unit 104 displays the power method that can currently be supplied to the large capacity battery 106-3 and the remaining capacity of the large capacity battery. The charging capacity of the unmanned aerial vehicle's battery is also displayed so that the ground control system (GCS) can check whether it is charged. It is also possible to indicate whether the device is malfunctioning, and in the event of a device malfunction, the wireless transmitter/receiver 102 sends a malfunction signal to the affiliated organization, and also transmits the location of an alternative charging station to other unmanned aerial vehicles to prevent disruption in flight.

도 9는 무선충전장치의 전원공급부(106)를 나타내고, 도 10은 본 발명에 따른 무인항공기의 충전방식의 개념도를 나타낸다.Figure 9 shows the power supply unit 106 of the wireless charging device, and Figure 10 shows a conceptual diagram of the charging method for the unmanned aerial vehicle according to the present invention.

전원공급 방식은 크게 두 가지로 나눌 수 있다. 첫째, 철탑 상부에 무인항공기의 충전을 위한 태양광 모듈(SOLAR CELL(106-1))을 설치하고 여기서 발전되는 전력으로 충전을 하는 방식이다. 이 방식은, 빛 에너지를 전기에너지로 변환할 목적으로 제작된 광전지로서 금속과 반도체의 접촉면 또는 반도체의 p-n접합에 빛을 쪼이면 광전효과에 의해 광기전력이 일어나는 현상을 이용한 것이다. 태양전지는 매우 낮은 전압을 유기하므로 태양전지모듈의 Array구성은 적정한 전압 유기를 위해 직렬연결로 전압을 구성하고 병렬연결회로를 통하여 전류량을 증가시킨다. 둘째, 송전선로의 전력을 이용하는 방법으로 CT 변류기(200)(전력유도장치)를 이용하여 철탑에 흐르는 일정전류를 변류시켜 충전하는 방식이다. 이 두 가지 방식을 통해 얻은 전류는 전력변환장치(106-2)를 통해 무인항공기의 충전에 알맞은 전력으로 바뀌어 상기 대용량 배터리(106-3)에 저장된다. 이때 두 가지 전원 공급 방식이 모두 불가능한 경우 고장 신호를 상기 무선 송/수신부(102)를 통해 소속 기관에 발신하도록 한다. Power supply methods can be broadly divided into two types. First, a solar module (SOLAR CELL (106-1)) for charging the unmanned aerial vehicle is installed on the top of the steel tower and charged using the power generated there. This method is a photovoltaic cell manufactured for the purpose of converting light energy into electrical energy. It utilizes the phenomenon of photovoltaic electricity being generated by the photoelectric effect when light is applied to the contact surface between a metal and a semiconductor or the p-n junction of a semiconductor. Since solar cells generate very low voltage, the array configuration of solar cell modules configures the voltage through series connection to generate an appropriate voltage and increases the amount of current through a parallel connection circuit. Second, a method of using the power of the transmission line is to charge by converting a constant current flowing in the tower using a CT current transformer 200 (power induction device). The current obtained through these two methods is converted into power suitable for charging the unmanned aerial vehicle through the power conversion device 106-2 and stored in the large capacity battery 106-3. At this time, if both power supply methods are not possible, a failure signal is transmitted to the affiliated organization through the wireless transmitting/receiving unit 102.

도 10은 본 발명에 따른 무인항공기의 충전방식의 개념도이다.Figure 10 is a conceptual diagram of a charging method for an unmanned aerial vehicle according to the present invention.

본 발명은 GPS 기반의 자동항법이 가능한 무인항공기가 이륙 전 송전선로 순시를 위한 작업범위가 정해지면 감시계획을 생성하기 위해 감시대상의 위치지형정보 및 철탑 정보를 3D 공간정보로 모델링하여, 감시계획에 따라 비행경로(경로점 1····n)를 생성한 후, 비행경로 중간에 무선충전장치를 추가하여 무인항공기가 무선충전장치(100)에 자동으로 착륙할 수 있도록 지원한다. 그리고 무인항공기의 배터리(301) 잔량 문제로 해당 비행경로를 따를 수 없을 경우 비행경로를 수정하여 잔량 문제를 해결한 후 비행경로를 따를 수 있도록 지원한다. 3D 공간정보는 송전선로 감시 비행업무를 수행할 지역의 3차원 수치지도 위에 위성사진을 입혀서 평면상의 거리뿐만 아니라 공간적인 측위를 판단할 수 있다. 이 3D 공간정보에서는 실제 송전탑의 설계도를 기반으로 한 송전구조물의 3D 모델이 적용되어 있어 송전탑 및 송전선의 연결 정보 및 지리 및 공간적 위치관계뿐만 아니라 주어진 비행 속도와 예정 비행 거리를 근거로 예상되는 배터리 소모량을 입체적으로 판단하여 무인충전소를 경로 낭비를 최소화하도록 비행 경로점 사이에 추가하여 무인항공기가 송전선로 감시 업무 수행 시 배터리 방전에 따른 불시착 사고 등의 문제를 회피하는데 효율적으로 활용할 수 있다.The present invention is an unmanned aerial vehicle capable of GPS-based automatic navigation that models the location topographical information and pylon information of the surveillance target with 3D spatial information to generate a surveillance plan when the work range for patrolling the transmission line before takeoff is determined, and creates a surveillance plan. After creating a flight path (path point 1... In addition, if the unmanned aerial vehicle cannot follow the flight path due to a problem with the remaining battery capacity (301), the flight path is modified to resolve the remaining battery issue and then follow the flight path. 3D spatial information can determine spatial positioning as well as distance on a plane by overlaying satellite photos on a 3D digital map of the area where transmission line surveillance flight services will be performed. In this 3D spatial information, a 3D model of the transmission structure based on the design of an actual transmission tower is applied, so it provides not only connection information and geographic and spatial location relationships of transmission towers and transmission lines, but also the expected battery consumption based on the given flight speed and scheduled flight distance. By judging in three dimensions and adding unmanned charging stations between flight path points to minimize route waste, it can be effectively used to avoid problems such as crash landings due to battery discharge when unmanned aerial vehicles perform transmission line monitoring duties.

이상에서 설명된 본 발명의 실시 예는 예시적인 것에 불과하며, 본 발명이 속한 기술분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시 예가 가능하다는 점을 잘 알 수 있을 것이다. 그러므로 본 발명은 상기의 상세한 설명에서 언급되는 형태로만 한정되는 것은 아님을 잘 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다. 또한, 본 발명은 첨부된 청구범위에 의해 정의되는 본 발명의 정신과 그 범위 내에 있는 모든 변형물과 균등물 및 대체물을 포함하는 것으로 이해되어야 한다.The embodiments of the present invention described above are merely illustrative, and those skilled in the art will understand that various modifications and other equivalent embodiments are possible. Therefore, it will be understood that the present invention is not limited to the forms mentioned in the detailed description above. Therefore, the true scope of technical protection of the present invention should be determined by the technical spirit of the attached patent claims. In addition, the present invention should be understood to include all modifications, equivalents and substitutes within the spirit and scope of the present invention as defined by the appended claims.

100 : 무선충전장치
101 : 무선충전장치 제어부
102 : 무선 송/수신부
103 : GPS장치
104 : 상태표시부
105 : 충전부
106 : 전원공급부
106-1 : SOLAR CELL
106-2 : 전력변환장치
106-3 : 대용량 배터리
107 : DB구축부
200 : CT 변류기
301 : 무인항공기의 배터리
302 : 배터리 제어부
303 : GPS장치/ RFID장치
304 : 무선송/수신부
305 : 무인항공기 제어부
306 : 무선 충전부
100: wireless charging device
101: Wireless charging device control unit
102: wireless transmitting/receiving unit
103: GPS device
104: Status display unit
105: charging part
106: power supply unit
106-1 : SOLAR CELL
106-2: Power conversion device
106-3: Large capacity battery
107: DB Construction Department
200: CT current transformer
301: Battery of unmanned aerial vehicle
302: Battery control unit
303: GPS device/RFID device
304: Wireless transmitting/receiving unit
305: Unmanned aerial vehicle control unit
306: wireless charging unit

Claims (1)

송전선로의 고장을 감시하는 무인항공기용 충전장치 제어방법에 있어서,
무인항공기의 배터리 소모량 예측 및 비행경로에 충전소 추가 단계;
상기 무인항공기의 배터리 잔량과 예측 소모량 비교 단계;
비행경로 수정 단계; 및
충전소로 이동 및 착륙 단계;를 포함하고,
상기 충전소로 이동 및 착륙 단계에서 상기 충전소는 송전철탑 위에 설치되며,
상기 비행경로 수정 단계는,
현재 상기 무인항공기의 배터리 잔량이 상기 예측 소모량보다 큰 경우에는 설정된 비행경로를 따라 비행하고,
현재 상기 무인항공기의 배터리 잔량이 상기 예측 소모량보다 작은 경우에는 무선충전장치가 설치된 경로점을 다음 경로점으로 수정하고 무선충전이 이루어진 후 상기 설정된 비행경로대로 비행하며,
상기 충전소는 충전부에서 충전이 진행되는 무선충전장치가 있고,
상기 무선충전장치는 무인항공기의 착륙신호가 잡히면 상기 무선충전장치에서 전원공급부의 배터리 잔량과 충전부의 동작여부를 확인하여 충전 가능여부를 판단하고, 충전이 불가능하다고 판단될 경우에는 소속 기관에 문제 신호를 발신한 후 대체 충전소로 안내하며,
상기 충전부는 태양광 방식 내지 송전선로 전류 방식 중 어느 한 방식으로 상기 무선충전장치에서 전원공급부의 배터리로부터 전원을 공급받으며,
상기 태양광 방식은 태양광 모듈을 통해 광전효과에 의한 광기전력을 이용하고,
상기 송전선로 전류 방식은 CT변류기를 통해 상기 송전선로 전류를 변류시켜 이용하며,
상기 태양광 방식으로 전원공급이 불가능할 경우에는 상기 송전선로 전류 방식으로 전원공급이 진행되는 것을 특징으로 하는 무인항공기용 충전장치 제어방법.
In a method of controlling a charging device for an unmanned aerial vehicle that monitors a failure in a transmission line,
Predicting battery consumption of unmanned aerial vehicles and adding charging stations to the flight path;
Comparing the remaining battery capacity and predicted consumption of the unmanned aerial vehicle;
Flight path correction step; and
Including: moving to the charging station and landing steps;
During the transfer and landing stages to the charging station, the charging station is installed on a transmission tower,
The flight path modification step is,
If the current remaining battery capacity of the unmanned aerial vehicle is greater than the predicted consumption, it flies along the set flight path,
If the current remaining battery capacity of the unmanned aerial vehicle is less than the predicted consumption, the path point where the wireless charging device is installed is modified to the next path point, and after wireless charging is performed, it flies according to the set flight path,
The charging station has a wireless charging device that charges at the charging unit,
When the wireless charging device detects the landing signal of the unmanned aerial vehicle, the wireless charging device determines whether charging is possible by checking the remaining battery capacity of the power supply unit and whether the charging unit is operating. If charging is determined to be impossible, it sends a problem signal to the affiliated organization. After sending the message, you will be guided to an alternative charging station.
The charging unit receives power from the battery of the power supply unit in the wireless charging device in any one of solar power and transmission line current methods,
The solar method uses photovoltaic power generated by the photoelectric effect through a solar module,
The transmission line current method is used by transforming the transmission line current through a CT current transformer,
A method of controlling a charging device for an unmanned aerial vehicle, characterized in that when power supply through the solar method is impossible, power is supplied through the transmission line current method.
KR1020210145366A 2016-09-21 2021-10-28 Wireless charging device and control method for unmanned aerial vehicle KR102607816B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210145366A KR102607816B1 (en) 2016-09-21 2021-10-28 Wireless charging device and control method for unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160120789A KR102338271B1 (en) 2016-09-21 2016-09-21 Wireless charging device and control method for unmanned aerial vehicle
KR1020210145366A KR102607816B1 (en) 2016-09-21 2021-10-28 Wireless charging device and control method for unmanned aerial vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020160120789A Division KR102338271B1 (en) 2016-09-21 2016-09-21 Wireless charging device and control method for unmanned aerial vehicle

Publications (2)

Publication Number Publication Date
KR20210134547A KR20210134547A (en) 2021-11-10
KR102607816B1 true KR102607816B1 (en) 2023-11-30

Family

ID=61907134

Family Applications (7)

Application Number Title Priority Date Filing Date
KR1020160120789A KR102338271B1 (en) 2016-09-21 2016-09-21 Wireless charging device and control method for unmanned aerial vehicle
KR1020210145365A KR20210134546A (en) 2016-09-21 2021-10-28 Wireless charging device and control method for unmanned aerial vehicle
KR1020210145367A KR102607817B1 (en) 2016-09-21 2021-10-28 Wireless charging device and control method for unmanned aerial vehicle
KR1020210145366A KR102607816B1 (en) 2016-09-21 2021-10-28 Wireless charging device and control method for unmanned aerial vehicle
KR1020210146384A KR102487381B1 (en) 2016-09-21 2021-10-29 Wireless charging device and control method for unmanned aerial vehicle
KR1020210146382A KR20210135172A (en) 2016-09-21 2021-10-29 Wireless charging device and control method for unmanned aerial vehicle
KR1020210146383A KR20210135173A (en) 2016-09-21 2021-10-29 Wireless charging device and control method for unmanned aerial vehicle

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020160120789A KR102338271B1 (en) 2016-09-21 2016-09-21 Wireless charging device and control method for unmanned aerial vehicle
KR1020210145365A KR20210134546A (en) 2016-09-21 2021-10-28 Wireless charging device and control method for unmanned aerial vehicle
KR1020210145367A KR102607817B1 (en) 2016-09-21 2021-10-28 Wireless charging device and control method for unmanned aerial vehicle

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020210146384A KR102487381B1 (en) 2016-09-21 2021-10-29 Wireless charging device and control method for unmanned aerial vehicle
KR1020210146382A KR20210135172A (en) 2016-09-21 2021-10-29 Wireless charging device and control method for unmanned aerial vehicle
KR1020210146383A KR20210135173A (en) 2016-09-21 2021-10-29 Wireless charging device and control method for unmanned aerial vehicle

Country Status (1)

Country Link
KR (7) KR102338271B1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102181081B1 (en) * 2018-04-27 2020-11-20 한국전력공사 Apparatus and method for supplying power of drone
CN109062247A (en) * 2018-07-28 2018-12-21 深圳市烽焌信息科技有限公司 A kind of access method of unmanned plane base station
KR102032722B1 (en) * 2018-09-04 2019-10-16 주식회사 아이온커뮤니케이션즈 Method and system for examining solar panel by using drone
KR102149658B1 (en) * 2018-11-21 2020-09-02 한국전력공사 System for charging Drone using power utilities, Method thereof, and Computer readable storage medium having the same
CN109660028B (en) * 2019-01-30 2023-10-20 青岛鲁渝能源科技有限公司 Clamping device and unmanned aerial vehicle
KR102152129B1 (en) * 2019-04-08 2020-09-07 한국전력공사 System and method for non-contract charging
KR102122566B1 (en) * 2019-12-16 2020-06-16 (주)프리뉴 Drone power management device and method
CN111251934B (en) * 2020-01-20 2021-04-27 南京大学 High-voltage line inspection scheduling method based on unmanned aerial vehicle wireless charging
CN111614161B (en) * 2020-05-22 2023-04-18 郑州市泰安电力建设有限公司 Remote monitoring method, system and storage medium for alternating-current 10KV power transmission line
CN111791722A (en) * 2020-08-12 2020-10-20 北京中凯晟天科技发展有限公司 Magnetic induction photoelectric charging platform of power transmission line and power transmission system comprising same
CN112721667A (en) * 2020-12-23 2021-04-30 重庆大学 Single-capacitor coupling mechanism and system for wireless charging of unmanned aerial vehicle and unmanned aerial vehicle
CN113110601B (en) * 2021-04-01 2023-06-16 国网江西省电力有限公司电力科学研究院 Unmanned aerial vehicle power line inspection path optimization method and device
KR102541543B1 (en) * 2021-04-29 2023-06-13 주식회사 웨이브쓰리디 System and apparatus for managing an battery of drones
CN113410916B (en) * 2021-08-20 2021-11-02 成都金迈微科技有限公司 Monitoring system and method for photovoltaic power converter in optical fiber power supply system
CN113997803B (en) * 2021-10-26 2023-11-03 南京壮大智能科技研究院有限公司 Aircraft flight control method based on non-contact network wireless power supply
KR102454726B1 (en) * 2021-12-21 2022-10-14 주식회사 에스테코 Method and System for checking of Solar Photovoltaic Power Station Using Unmanned Flying Object
KR102620458B1 (en) * 2022-01-27 2024-01-05 주식회사 모큐라텍 Battery charging/discharging system to improve flight time of unmanned aerial vehicles
CN114611017B (en) * 2022-03-03 2023-01-13 飞循智航(成都)科技有限公司 Unmanned aerial vehicle honeycomb interaction method and system, intelligent terminal and storage medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140339371A1 (en) 2012-03-30 2014-11-20 W. Morrison Consulting Group, Inc. Long Range Electric Aircraft and Method of Operating Same
KR101564254B1 (en) 2015-06-12 2015-10-30 배종외 Wireless charging system for drone
US20150336677A1 (en) 2012-12-21 2015-11-26 European Aeronautic Defence And Space Company Eads France In-flight refuelling device for electric storage system and aircraft equipped with such a device
US20150371771A1 (en) * 2014-06-24 2015-12-24 Board Of Trustees Of The University Of Alabama Wireless power transfer systems and methods
US20160039300A1 (en) * 2014-08-08 2016-02-11 SZ DJI Technology Co., Ltd Systems and methods for uav battery power backup
US20170366980A1 (en) * 2015-04-14 2017-12-21 ETAK Systems, LLC Unmanned aerial vehicles landing zones at cell sites

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101385312B1 (en) * 2012-08-06 2014-04-16 (주)엔스퀘어 Automatic battery replacement apparatus for automatic guided vehicles
KR20160015713A (en) * 2014-07-31 2016-02-15 한국과학기술원 Unmanned aerial vehicle, charging system of the same and method of charging the same
KR101689264B1 (en) * 2014-07-31 2017-01-02 한국과학기술원 Unmanned aerial vehicle, charging system of the same and method of charging the same
WO2016019567A1 (en) * 2014-08-08 2016-02-11 SZ DJI Technology Co., Ltd. Systems and methods for uav battery exchange
KR20160104385A (en) * 2015-02-26 2016-09-05 경상대학교산학협력단 Unmanned aerial vehicle, unmanned aerial vehicle charging system and control method thereof
KR101873620B1 (en) * 2015-06-10 2018-07-02 한찬희 Charging system for flight flying to charging station

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140339371A1 (en) 2012-03-30 2014-11-20 W. Morrison Consulting Group, Inc. Long Range Electric Aircraft and Method of Operating Same
US20150336677A1 (en) 2012-12-21 2015-11-26 European Aeronautic Defence And Space Company Eads France In-flight refuelling device for electric storage system and aircraft equipped with such a device
US20150371771A1 (en) * 2014-06-24 2015-12-24 Board Of Trustees Of The University Of Alabama Wireless power transfer systems and methods
US20160039300A1 (en) * 2014-08-08 2016-02-11 SZ DJI Technology Co., Ltd Systems and methods for uav battery power backup
US20170366980A1 (en) * 2015-04-14 2017-12-21 ETAK Systems, LLC Unmanned aerial vehicles landing zones at cell sites
KR101564254B1 (en) 2015-06-12 2015-10-30 배종외 Wireless charging system for drone

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Amazon gets patent for Pony Express-like drone delivery(2016.07.19.)*
Inspection of Power Transmission Lines using UAVs(2013.10.31.)*

Also Published As

Publication number Publication date
KR20180032075A (en) 2018-03-29
KR20210135174A (en) 2021-11-12
KR102607817B1 (en) 2023-11-30
KR102487381B1 (en) 2023-01-12
KR102338271B1 (en) 2021-12-14
KR20210134547A (en) 2021-11-10
KR20210134546A (en) 2021-11-10
KR20210135173A (en) 2021-11-12
KR20210134548A (en) 2021-11-10
KR20210135172A (en) 2021-11-12

Similar Documents

Publication Publication Date Title
KR102607816B1 (en) Wireless charging device and control method for unmanned aerial vehicle
CN112297937B (en) Multi-unmanned aerial vehicle and multi-charging base station charging scheduling method and device
CN107394873B (en) Full-automatic environment-friendly wireless charging system of electric power inspection unmanned aerial vehicle
US9421869B1 (en) Deployment and adjustment of airborne unmanned aerial vehicles
US20170032686A1 (en) Drone pad station and managing set of such a drone pad station
US11764553B2 (en) Smart power transmission line inspection system
KR102611821B1 (en) Charging a rechargeable battery of an unmanned aerial vehicle in flight using a high voltage power line
CN112925335A (en) Unmanned aerial vehicle communication method and device, computer readable storage medium and equipment
US20190144112A1 (en) Charging a rechargeable battery of an unmanned aerial vehicle in flight using a high voltage power line
CN112109576B (en) Unmanned aerial vehicle autonomous tracking charging method and device
CN108674681A (en) A kind of dual-purpose self energizing unmanned plane boat guarantor base station in sea land
CN110806230A (en) Ecological environment monitoring method based on unmanned aerial vehicle
CN106998095A (en) A kind of unmanned plane management platform
CN112109577A (en) Unmanned aerial vehicle autonomous tracking wireless charging system
Foudeh et al. An advanced unmanned aerial vehicle (UAV) approach via learning-based control for overhead power line monitoring: A comprehensive review
KR20200051908A (en) Dron wireless charging station, and dron integrated control system having the same
CN114115317A (en) Substation unmanned aerial vehicle inspection method based on artificial intelligence
CN117151437B (en) Distribution system and distribution method for airport platforms in unmanned aerial vehicle tasks
CN103281824A (en) Intelligent solar energy aircraft obstruction beacon system
CN210199580U (en) Unmanned aerial vehicle is patrolled and examined to distribution network
CN112672314A (en) Safe and reliable launching control method for aircraft
WO2021200170A1 (en) Energy supply system
Zhang et al. Design for a fast high precision UAV power emergency relief system
JP2020162391A (en) Wireless power transmission system and wireless power transmission method
CN114637328A (en) Unmanned aerial vehicle wind power plant line inspection system and method based on vehicle-mounted machine nest

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)