KR102604680B1 - 선택적 변환에 기반한 영상 코딩 방법 및 그 장치 - Google Patents

선택적 변환에 기반한 영상 코딩 방법 및 그 장치 Download PDF

Info

Publication number
KR102604680B1
KR102604680B1 KR1020237001151A KR20237001151A KR102604680B1 KR 102604680 B1 KR102604680 B1 KR 102604680B1 KR 1020237001151 A KR1020237001151 A KR 1020237001151A KR 20237001151 A KR20237001151 A KR 20237001151A KR 102604680 B1 KR102604680 B1 KR 102604680B1
Authority
KR
South Korea
Prior art keywords
transformation
transform
target block
transform coefficients
vector
Prior art date
Application number
KR1020237001151A
Other languages
English (en)
Other versions
KR20230010067A (ko
Inventor
살레히파메흐디
김승환
구문모
임재현
파루리시탈
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020237039521A priority Critical patent/KR20230161537A/ko
Publication of KR20230010067A publication Critical patent/KR20230010067A/ko
Application granted granted Critical
Publication of KR102604680B1 publication Critical patent/KR102604680B1/ko

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/132Sampling, masking or truncation of coding units, e.g. adaptive resampling, frame skipping, frame interpolation or high-frequency transform coefficient masking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/18Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a set of transform coefficients
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding

Abstract

본 발명에 따른 디코딩 장치에 의하여 수행되는 영상 디코딩 방법은 비트스트림으로부터 대상 블록의 변환 계수들을 도출하는 단계, 상기 변환 계수들에 대한 선택적 변환을 기반으로 상기 대상 블록에 대한 레지듀얼 샘플들을 도출하는 단계, 및 상기 대상 블록에 대한 상기 레지듀얼 샘플들 및 상기 대상 블록에 대한 예측 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함하되, 상기 선택적 변환은 수정된 변환 매트릭스를 기반으로 수행되고, 상기 수정된 변환 매트릭스는 수정된 베이시스 벡터를 포함하는 매트릭스이고, 상기 수정된 베이시스 벡터는 N개의 요소들 중 선택된 특정 개수의 요소들을 포함하는 것을 특징으로 한다.

Description

선택적 변환에 기반한 영상 코딩 방법 및 그 장치 {METHOD FOR CODING IMAGE ON BASIS OF SELECTIVE TRANSFORM AND DEVICE THEREFOR}
본 발명은 영상 코딩 기술에 관한 것으로서 보다 상세하게는 영상 코딩 시스템에서 선택적 변환에 따른 영상 디코딩 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 다양한 분야에서 증가하고 있다. 영상 데이터가 고해상도, 고품질이 될수록 기존의 영상 데이터에 비해 상대적으로 전송되는 정보량 또는 비트량이 증가하기 때문에 기존의 유무선 광대역 회선과 같은 매체를 이용하여 영상 데이터를 전송하거나 기존의 저장 매체를 이용해 영상 데이터를 저장하는 경우, 전송 비용과 저장 비용이 증가된다.
이에 따라, 고해상도, 고품질 영상의 정보를 효과적으로 전송하거나 저장하고, 재생하기 위해 고효율의 영상 압축 기술이 요구된다.
본 발명의 기술적 과제는 영상 코딩 효율을 높이는 방법 및 장치를 제공함에 있다.
본 발명의 다른 기술적 과제는 변환 효율을 높이는 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 변환을 통하여 레지듀얼 코딩의 효율을 높이는 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 선택적 변환(selective transform)에 기반한 영상 코딩 방법 및 장치를 제공함에 있다.
본 발명의 일 실시예에 따르면, 디코딩 장치에 의하여 수행되는 영상 디코딩 방법이 제공된다. 상기 방법은 비트스트림으로부터 대상 블록의 변환 계수들을 도출하는 단계, 상기 변환 계수들에 대한 선택적 변환을 기반으로 상기 대상 블록에 대한 레지듀얼 샘플들을 도출하는 단계, 및 상기 대상 블록에 대한 상기 레지듀얼 샘플들 및 상기 대상 블록에 대한 예측 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함하되, 상기 선택적 변환은 수정된 변환 매트릭스를 기반으로 수행되고, 상기 수정된 변환 매트릭스는 수정된 베이시스 벡터를 포함하는 매트릭스이고, 상기 수정된 베이시스 벡터는 N개의 요소들 중 선택된 특정 개수의 요소들을 포함하는 것을 특징으로 한다.
본 발명의 다른 일 실시예에 따르면, 영상 디코딩을 수행하는 디코딩 장치가 제공된다. 상기 디코딩 장치는 비트스트림으로부터 대상 블록의 변환 계수들을 도출하는 엔트로피 디코딩부, 상기 변환 계수들에 대한 선택적 변환(selective transform)을 기반으로 상기 대상 블록에 대한 레지듀얼 샘플들을 도출하는 역변환부, 및 상기 대상 블록에 대한 상기 레지듀얼 샘플들 및 상기 대상 블록에 대한 예측 샘플들을 기반으로 복원 픽처를 생성하는 가산부를 포함하되, 상기 선택적 변환은 수정된(modified) 변환 매트릭스(transform matrix)를 기반으로 수행되고, 상기 수정된 변환 매트릭스는 수정된 베이시스 벡터를 포함하는 매트릭스이고, 상기 수정된 베이시스 벡터는 N개의 요소들 중 선택된 특정 개수의 요소들을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 일 실시예에 따르면, 인코딩 장치에 의하여 수행되는 비디오 인코딩 방법을 제공한다. 상기 방법은 대상 블록의 레지듀얼 샘플들을 도출하는 단계, 상기 레지듀얼 샘플들에 대한 선택적 변환(selective transform)을 기반으로 상기 대상 블록의 변환 계수들을 도출하는 단계, 및 상기 변환 계수들에 대한 정보를 인코딩하는 단계를 포함하되, 상기 선택적 변환은 수정된(modified) 변환 매트릭스(transform matrix)를 기반으로 수행되고, 상기 수정된 변환 매트릭스는 수정된 베이시스 벡터를 포함하는 매트릭스이고, 상기 수정된 베이시스 벡터는 N개의 요소들 중 선택된 특정 개수의 요소들을 포함하는 것을 특징으로 한다.
본 발명의 또 다른 일 실시예에 따르면, 비디오 인코딩 장치를 제공한다. 상기 인코딩 장치는 대상 블록의 레지듀얼 샘플들을 도출하는 가산부, 상기 레지듀얼 샘플들에 대한 선택적 변환(selective transform)을 기반으로 상기 대상 블록의 변환 계수들을 도출하는 변환부, 및 상기 변환 계수들에 대한 정보를 인코딩하는 엔트로피 인코딩부를 포함하되, 상기 선택적 변환은 수정된(modified) 변환 매트릭스(transform matrix)를 기반으로 수행되고, 상기 수정된 변환 매트릭스는 수정된 베이시스 벡터를 포함하는 매트릭스이고, 상기 수정된 베이시스 벡터는 N개의 요소들 중 선택된 특정 개수의 요소들을 포함하는 것을 특징으로 한다.
본 발명에 따르면 효율적인 변환을 통하여 레지듀얼 처리를 위해 전송되어야 하는 데이터량을 줄일 수 있고, 레지듀얼 코딩 효율을 높일 수 있다.
본 발명에 따르면 선택된 특정 개수의 요소들을 포함하는 베이시스 벡터로 구성된 변환 매트릭스를 기반으로 비분리 변환을 수행할 수 있고, 이를 통하여 비분리 변환을 위한 메모리 로드 및 계산 복잡도를 줄일 수 있고, 레지듀얼 코딩 효율을 높일 수 있다.
본 발명에 따르면 단순화된 구조의 변환 매트릭스를 기반으로 비분리 변환을 수행할 수 있고, 이를 통하여 레지듀얼 처리를 위해 전송되어야 하는 데이터량을 줄일 수 있고, 레지듀얼 코딩 효율을 높일 수 있다.
도 1은 본 발명이 적용될 수 있는 비디오 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 2는 본 발명이 적용될 수 있는 비디오 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 3은 본 발명에 따른 다중 변환 기법을 개략적으로 나타낸다.
도 4는 65개의 예측 방향의 인트라 방향성 모드들을 예시적으로 나타낸다.
도 5a 내지 도 5c는 본 발명의 일 실시예에 따른 선택적 변환(selective transform)을 설명하기 위한 도면이다.
도 6은 상기 선택적 변환을 2차 변환으로 적용한 다중 변환 기법을 개략적으로 나타낸다.
도 7은 본 발명의 실시예에 따른 대상 블록을 기반으로 변환 계수의 배열을 설명하기 위한 도면이다.
도 8은 상기 간소화 변환 및 상기 선택적 변환이 결합된 변환을 통하여 변환 계수들을 도출하는 일 예를 나타낸다.
도 9는 상기 선택적 변환을 통하여 변환 계수들을 도출하는 일 예를 나타낸다.
도 10은 연관 벡터에 대한 2개의 팩터들을 기반으로 상기 연관 벡터를 도출하여 선택적 변환을 수행하는 일 예를 나타낸다.
도 11은 본 발명에 따른 인코딩 장치에 의한 영상 인코딩 방법을 개략적으로 나타낸다.
도 12는 본 발명에 따른 영상 인코딩 방법을 수행하는 인코딩 장치를 개략적으로 나타낸다.
도 13은 본 발명에 따른 디코딩 장치에 의한 영상 디코딩 방법을 개략적으로 나타낸다.
도 14는 본 발명에 따른 영상 디코딩 방법을 수행하는 디코딩 장치를 개략적으로 나타낸다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정 실시예에 한정하려고 하는 것이 아니다. 본 명세서에서 상용하는 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명의 기술적 사상을 한정하려는 의도로 사용되는 것은 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서 "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부품 도는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
한편, 본 발명에서 설명되는 도면상의 각 구성들은 서로 다른 특징적인 기능들에 관한 설명의 편의를 위해 독립적으로 도시된 것으로서, 각 구성들이 서로 별개의 하드웨어나 별개의 소프트웨어로 구현된다는 것을 의미하지는 않는다. 예컨대, 각 구성 중 두 개 이상의 구성이 합쳐져 하나의 구성을 이룰 수도 있고, 하나의 구성이 복수의 구성으로 나뉘어질 수도 있다. 각 구성이 통합 및/또는 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 이하, 도면상의 동일한 구성 요소에 대해서는 동일한 참조 부호를 사용하고 동일한 구성 요소에 대해서 중복된 설명은 생략한다.
한편, 본 발명은 비디오/영상 코딩에 관한 것이다. 예를 들어, 본 발명에서 개시된 방법/실시예는 VVC (versatile video coding) 표준 또는 차세대 비디오/이미지 코딩 표준에 개시된 방법에 적용될 수 있다.
본 명세서에서 픽처(picture)는 일반적으로 특정 시간대의 하나의 영상을 나타내는 단위를 의미하며, 슬라이스(slice)는 코딩에 있어서 픽처의 일부를 구성하는 단위이다. 하나의 픽처는 복수의 슬라이스로 구성될 수 있으며, 필요에 따라서 픽처 및 슬라이스는 서로 혼용되어 사용될 수 있다.
픽셀(pixel) 또는 펠(pel)은 하나의 픽처(또는 영상)을 구성하는 최소의 단위를 의미할 수 있다. 또한, 픽셀에 대응하는 용어로서 '샘플(sample)'이 사용될 수 있다. 샘플은 일반적으로 픽셀 또는 픽셀의 값을 나타낼 수 있으며, 휘도(luma) 성분의 픽셀/픽셀값만을 나타낼 수도 있고, 채도(chroma) 성분의 픽셀/픽셀 값만을 나타낼 수도 있다.
유닛(unit)은 영상 처리의 기본 단위를 나타낸다. 유닛은 픽처의 특정 영역 및 해당 영역에 관련된 정보 중 적어도 하나를 포함할 수 있다. 유닛은 경우에 따라서 블록(block) 또는 영역(area) 등의 용어와 혼용하여 사용될 수 있다. 일반적인 경우, MxN 블록은 M개의 열과 N개의 행으로 이루어진 샘플들 또는 변환 계수(transform coefficient)들의 집합을 나타낼 수 있다.
도 1은 본 발명이 적용될 수 있는 비디오 인코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 1을 참조하면, 비디오 인코딩 장치(100)는 픽처 분할부(105), 예측부(110), 레지듀얼 처리부(120), 엔트로피 인코딩부(130), 가산부(140), 필터부(150) 및 메모리(160)을 포함할 수 있다. 레지듀얼 처리부(120)는 감산부(121), 변환부(122), 양자화부(123), 재정렬부(124), 역양자화부(125) 및 역변환부(126)를 포함할 수 있다.
픽처 분할부(105)는 입력된 픽처를 적어도 하나의 처리 유닛(processing unit)으로 분할할 수 있다.
일 예로, 처리 유닛은 코딩 유닛(coding unit, CU)이라고 불릴 수 있다. 이 경우 코딩 유닛은 최대 코딩 유닛(largest coding unit, LCU)으로부터 QTBT (Quad-tree binary-tree) 구조에 따라 재귀적으로(recursively) 분할될 수 있다. 예를 들어, 하나의 코딩 유닛은 쿼드 트리 구조 및/또는 바이너리 트리 구조를 기반으로 하위(deeper) 뎁스의 복수의 코딩 유닛들로 분할될 수 있다. 이 경우 예를 들어 쿼드 트리 구조가 먼저 적용되고 바이너리 트리 구조가 나중에 적용될 수 있다. 또는 바이너리 트리 구조가 먼저 적용될 수도 있다. 더 이상 분할되지 않는 최종 코딩 유닛을 기반으로 본 발명에 따른 코딩 절차가 수행될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 여기서 코딩 절차라 함은 후술하는 예측, 변환, 및 복원 등의 절차를 포함할 수 있다.
다른 예로, 처리 유닛은 코딩 유닛(coding unit, CU) 예측 유닛(prediction unit, PU) 또는 변환 유닛(transform unit, TU)을 포함할 수도 있다. 코딩 유닛은 최대 코딩 유닛(largest coding unit, LCU)으로부터 쿼드 트리 구조를 따라서 하위(deeper) 뎁스의 코딩 유닛들로 분할(split)될 수 있다. 이 경우 영상 특성에 따른 코딩 효율 등을 기반으로, 최대 코딩 유닛이 바로 최종 코딩 유닛으로 사용될 수 있고, 또는 필요에 따라 코딩 유닛은 재귀적으로(recursively) 보다 하위 뎁스의 코딩 유닛들로 분할되어 최적의 사이즈의 코딩 유닛이 최종 코딩 유닛으로 사용될 수 있다. 최소 코딩 유닛(smallest coding unit, SCU)이 설정된 경우 코딩 유닛은 최소 코딩 유닛보다 더 작은 코딩 유닛으로 분할될 수 없다. 여기서 최종 코딩 유닛이라 함은 예측 유닛 또는 변환 유닛으로 파티셔닝 또는 분할되는 기반이 되는 코딩 유닛을 의미한다. 예측 유닛은 코딩 유닛으로부터 파티셔닝(partitioning)되는 유닛으로서, 샘플 예측의 유닛일 수 있다. 이 때, 예측 유닛은 서브 블록(sub block)으로 나뉠 수도 있다. 변환 유닛은 코딩 유닛으로부터 쿼드 트리 구조를 따라서 분할 될 수 있으며, 변환 계수를 유도하는 유닛 및/또는 변환 계수로부터 레지듀얼 신호(residual signal)를 유도하는 유닛일 수 있다. 이하, 코딩 유닛은 코딩 블록(coding block, CB), 예측 유닛은 예측 블록(prediction block, PB), 변환 유닛은 변환 블록(transform block, TB) 으로 불릴 수 있다. 예측 블록 또는 예측 유닛은 픽처 내에서 블록 형태의 특정 영역을 의미할 수 있고, 예측 샘플의 어레이(array)를 포함할 수 있다. 또한, 변환 블록 또는 변환 유닛은 픽처 내에서 블록 형태의 특정 영역을 의미할 수 있고, 변환 계수 또는 레지듀얼 샘플의 어레이를 포함할 수 있다.
예측부(110)는 처리 대상 블록(이하, 현재 블록이라 함)에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부(110)에서 수행되는 예측의 단위는 코딩 블록일 수 있고, 변환 블록일 수도 있고, 예측 블록일 수도 있다.
예측부(110)는 현재 블록에 인트라 예측이 적용되는지 인터 예측이 적용되는지를 결정할 수 있다. 일 예로, 예측부(110)는 CU 단위로 인트라 예측 또는 인터 예측이 적용되는지를 결정할 수 있다.
인트라 예측의 경우에, 예측부(110)는 현재 블록이 속하는 픽처(이하, 현재 픽처) 내의 현재 블록 외부의 참조 샘플을 기반으로 현재 블록에 대한 예측 샘플을 유도할 수 있다. 이 때, 예측부(110)는 (i) 현재 블록의 주변(neighboring) 참조 샘플들의 평균(average) 혹은 인터폴레이션(interpolation)을 기반으로 예측 샘플을 유도할 수 있고, (ii) 현재 블록의 주변 참조 샘플들 중 예측 샘플에 대하여 특정 (예측) 방향에 존재하는 참조 샘플을 기반으로 상기 예측 샘플을 유도할 수도 있다. (i)의 경우는 비방향성 모드 또는 비각도 모드, (ii)의 경우는 방향성(directional) 모드 또는 각도(angular) 모드라고 불릴 수 있다. 인트라 예측에서 예측 모드는 예를 들어 33개의 방향성 예측 모드와 적어도 2개 이상의 비방향성 모드를 가질 수 있다. 비방향성 모드는 DC 예측 모드 및 플래너 모드(Planar 모드)를 포함할 수 있다. 예측부(110)는 주변 블록에 적용된 예측 모드를 이용하여, 현재 블록에 적용되는 예측 모드를 결정할 수도 있다.
인터 예측의 경우에, 예측부(110)는 참조 픽처 상에서 움직임 벡터에 의해 특정되는 샘플을 기반으로, 현재 블록에 대한 예측 샘플을 유도할 수 있다. 예측부(110)는 스킵(skip) 모드, 머지(merge) 모드, 및 MVP(motion vector prediction) 모드 중 어느 하나를 적용하여 현재 블록에 대한 예측 샘플을 유도할 수 있다. 스킵 모드와 머지 모드의 경우에, 예측부(110)는 주변 블록의 움직임 정보를 현재 블록의 움직임 정보로 이용할 수 있다. 스킵 모드의 경우, 머지 모드와 달리 예측 샘플과 원본 샘플 사이의 차(레지듀얼)가 전송되지 않는다. MVP 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(Motion Vector Predictor)로 이용하여 현재 블록의 움직임 벡터 예측자로 이용하여 현재 블록의 움직임 벡터를 유도할 수 있다.
인터 예측의 경우에, 주변 블록은 현재 픽처 내에 존재하는 공간적 주변 블록(spatial neighboring block)과 참조 픽처(reference picture)에 존재하는 시간적 주변 블록(temporal neighboring block)을 포함할 수 있다. 상기 시간적 주변 블록을 포함하는 참조 픽처는 동일 위치 픽처(collocated picture, colPic)라고 불릴 수도 있다. 움직임 정보(motion information)는 움직임 벡터와 참조 픽처 인덱스를 포함할 수 있다. 예측 모드 정보와 움직임 정보 등의 정보는 (엔트로피) 인코딩되어 비트스트림 형태로 출력될 수 있다.
스킵 모드와 머지 모드에서 시간적 주변 블록의 움직임 정보가 이용되는 경우에, 참조 픽처 리스트(reference picture list) 상의 최상위 픽처가 참조 픽처로서 이용될 수도 있다. 참조 픽처 리스트(Picture Order Count)에 포함되는 참조 픽처들은 현재 픽처와 해당 참조 픽처 간의 POC(Picture order count) 차이 기반으로 정렬될 수 있다. POC는 픽처의 디스플레이 순서에 대응하며, 코딩 순서와 구분될 수 있다.
감산부(121)는 원본 샘플과 예측 샘플 간의 차이인 레지듀얼 샘플을 생성한다. 스킵 모드가 적용되는 경우에는, 상술한 바와 같이 레지듀얼 샘플을 생성하지 않을 수 있다.
변환부(122)는 변환 블록 단위로 레지듀얼 샘플을 변환하여 변환 계수(transform coefficient)를 생성한다. 변환부(122)는 해당 변환 블록의 사이즈와, 해당 변환 블록과 공간적으로 겹치는 코딩 블록 또는 예측 블록에 적용된 예측 모드에 따라서 변환을 수행할 수 있다. 예컨대, 상기 변환 블록과 겹치는 상기 코딩 블록 또는 상기 예측 블록에 인트라 예측이 적용되었고, 상기 변환 블록이 4×4의 레지듀얼 어레이(array)라면, 레지듀얼 샘플은 DST(Discrete Sine Transform) 변환 커널을 이용하여 변환되고, 그 외의 경우라면 레지듀얼 샘플은 DCT(Discrete Cosine Transform) 변환 커널을 이용하여 변환할 수 있다.
양자화부(123)는 변환 계수들을 양자화하여, 양자화된 변환 계수를 생성할 수 있다.
재정렬부(124)는 양자화된 변환 계수를 재정렬한다. 재정렬부(124)는 계수들 스캐닝(scanning) 방법을 통해 블록 형태의 양자화된 변환 계수들을 1차원 벡터 형태로 재정렬할 수 있다. 여기서 재정렬부(124)는 별도의 구성으로 설명하였으나, 재정렬부(124)는 양자화부(123)의 일부일 수 있다.
엔트로피 인코딩부(130)는 양자화된 변환 계수들에 대한 엔트로피 인코딩을 수행할 수 있다. 엔트로피 인코딩은 예를 들어 지수 골롬(exponential Golomb), CAVLC(context-adaptive variable length coding), CABAC(context-adaptive binary arithmetic coding) 등과 같은 인코딩 방법을 포함할 수 있다. 엔트로피 인코딩부(130)는 양자화된 변환 계수 외 비디오 복원에 필요한 정보들(예컨대 신택스 요소(syntax element)의 값 등)을 함께 또는 별도로 인코딩할 수도 있다. 엔트로피 인코딩된 정보들은 비트스트림 형태로 NAL(network abstraction layer) 유닛 단위로 전송 또는 저장될 수 있다.
역양자화부(125)는 양자화부(123)에서 양자화된 값(양자화된 변환 계수)들을 역양자화하고, 역변환부(126)는 역양자화부(125)에서 역양자화된 값들을 역변환하여 레지듀얼 샘플을 생성한다.
가산부(140)는 레지듀얼 샘플과 예측 샘플을 합쳐서 픽처를 복원한다. 레지듀얼 샘플과 예측 샘플은 블록 단위로 더해져서 복원 블록이 생성될 수 있다. 여기서 가산부(140)는 별도의 구성으로 설명하였으나, 가산부(140)는 예측부(110)의 일부일 수 있다. 한편, 가산부(140)는 복원부 또는 복원 블록 생성부로 불릴 수도 있다.
복원된 픽처(reconstructed picture)에 대하여 필터부(150)는 디블록킹 필터 및/또는 샘플 적응적 오프셋(sample adaptive offset)을 적용할 수 있다. 디블록킹 필터링 및/또는 샘플 적응적 오프셋을 통해, 복원 픽처 내 블록 경계의 아티팩트나 양자화 과정에서의 왜곡이 보정될 수 있다. 샘플 적응적 오프셋은 샘플 단위로 적용될 수 있으며, 디블록킹 필터링의 과정이 완료된 후 적용될 수 있다. 필터부(150)는 ALF(Adaptive Loop Filter)를 복원된 픽처에 적용할 수도 있다. ALF는 디블록킹 필터 및/또는 샘플 적응적 오프셋이 적용된 후의 복원된 픽처에 대하여 적용될 수 있다.
메모리(160)는 복원 픽처(디코딩된 픽처) 또는 인코딩/디코딩에 필요한 정보를 저장할 수 있다. 여기서 복원 픽처는 상기 필터부(150)에 의하여 필터링 절차가 완료된 복원 픽처일 수 있다. 상기 저장된 복원 픽처는 다른 픽처의 (인터) 예측을 위한 참조 픽처로 활용될 수 있다. 예컨대, 메모리(160)는 인터 예측에 사용되는 (참조) 픽처들을 저장할 수 있다. 이 때, 인터 예측에 사용되는 픽처들은 참조 픽처 세트(reference picture set) 혹은 참조 픽처 리스트(reference picture list)에 의해 지정될 수 있다.
도 2는 본 발명이 적용될 수 있는 비디오 디코딩 장치의 구성을 개략적으로 설명하는 도면이다.
도 2를 참조하면, 비디오 디코딩 장치(200)는 엔트로피 디코딩부(210), 레지듀얼 처리부(220), 예측부(230), 가산부(240), 필터부(250) 및 메모리(260)을 포함할 수 있다. 여기서 레지듀얼 처리부(220)는 재정렬부(221), 역양자화부(222), 역변환부(223)을 포함할 수 있다.
비디오 정보를 포함하는 비트스트림이 입력되면, 비디오 디코딩 장치(200)는 비디오 인코딩 장치에서 비디오 정보가 처리된 프로세스에 대응하여 비디오를 복원할 수 있다.
예컨대, 비디오 디코딩 장치(200)는 비디오 인코딩 장치에서 적용된 처리 유닛을 이용하여 비디오 디코딩을 수행할 수 있다. 따라서 비디오 디코딩의 처리 유닛 블록은 일 예로 코딩 유닛일 수 있고, 다른 예로 코딩 유닛, 예측 유닛 또는 변환 유닛일 수 있다. 코딩 유닛은 최대 코딩 유닛으로부터 쿼드 트리 구조 및/또는 바이너리 트리 구조를 따라서 분할될 수 있다.
예측 유닛 및 변환 유닛이 경우에 따라 더 사용될 수 있으며, 이 경우 예측 블록은 코딩 유닛으로부터 도출 또는 파티셔닝되는 블록으로서, 샘플 예측의 유닛일 수 있다. 이 때, 예측 유닛은 서브 블록으로 나뉠 수도 있다. 변환 유닛은 코딩 유닛으로부터 쿼드 트리 구조를 따라서 분할 될 수 있으며, 변환 계수를 유도하는 유닛 또는 변환 계수로부터 레지듀얼 신호를 유도하는 유닛일 수 있다.
엔트로피 디코딩부(210)는 비트스트림을 파싱하여 비디오 복원 또는 픽처 복원에 필요한 정보를 출력할 수 있다. 예컨대, 엔트로피 디코딩부(210)는 지수 골롬 부호화, CAVLC 또는 CABAC 등의 코딩 방법을 기초로 비트스트림 내 정보를 디코딩하고, 비디오 복원에 필요한 신택스 엘리먼트의 값, 레지듀얼에 관한 변환 계수의 양자화된 값 들을 출력할 수 있다.
보다 상세하게, CABAC 엔트로피 디코딩 방법은, 비트스트림에서 각 구문 요소에 해당하는 빈을 수신하고, 디코딩 대상 구문 요소 정보와 주변 및 디코딩 대상 블록의 디코딩 정보 혹은 이전 단계에서 디코딩된 심볼/빈의 정보를 이용하여 문맥(context) 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 디코딩(arithmetic decoding)를 수행하여 각 구문 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 디코딩 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 디코딩된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다.
엔트로피 디코딩부(210)에서 디코딩된 정보 중 예측에 관한 정보는 예측부(230)로 제공되고, 엔트로피 디코딩부(210)에서 엔트로피 디코딩이 수행된 레지듀얼 값, 즉 양자화된 변환 계수는 재정렬부(221)로 입력될 수 있다.
재정렬부(221)는 양자화되어 있는 변환 계수들을 2차원의 블록 형태로 재정렬할 수 있다. 재정렬부(221)는 인코딩 장치에서 수행된 계수 스캐닝에 대응하여 재정렬을 수행할 수 있다. 여기서 재정렬부(221)는 별도의 구성으로 설명하였으나, 재정렬부(221)는 역양자화부(222)의 일부일 수 있다.
역양자화부(222)는 양자화되어 있는 변환 계수들을 (역)양자화 파라미터를 기반으로 역양자화하여 변환 계수를 출력할 수 있다. 이 때, 양자화 파라미터를 유도하기 위한 정보는 인코딩 장치로부터 시그널링될 수 있다.
역변환부(223)는 변환 계수들을 역변환하여 레지듀얼 샘플들을 유도할 수 있다.
예측부(230)는 현재 블록에 대한 예측을 수행하고, 상기 현재 블록에 대한 예측 샘플들을 포함하는 예측된 블록(predicted block)을 생성할 수 있다. 예측부(230)에서 수행되는 예측의 단위는 코딩 블록일 수도 있고, 변환 블록일 수도 있고, 예측 블록일 수도 있다.
예측부(230)는 상기 예측에 관한 정보를 기반으로 인트라 예측을 적용할 것인지 인터 예측을 적용할 것인지를 결정할 수 있다. 이 때, 인트라 예측과 인터 예측 중 어느 것을 적용할 것인지를 결정하는 단위와 예측 샘플을 생성하는 단위는 상이할 수 있다. 아울러, 인터 예측과 인트라 예측에 있어서 예측 샘플을 생성하는 단위 또한 상이할 수 있다. 예를 들어, 인터 예측과 인트라 예측 중 어느 것을 적용할 것인지는 CU 단위로 결정할 수 있다. 또한 예를 들어, 인터 예측에 있어서 PU 단위로 예측 모드를 결정하고 예측 샘플을 생성할 수 있고, 인트라 예측에 있어서 PU 단위로 예측 모드를 결정하고 TU 단위로 예측 샘플을 생성할 수도 있다.
인트라 예측의 경우에, 예측부(230)는 현재 픽처 내의 주변 참조 샘플을 기반으로 현재 블록에 대한 예측 샘플을 유도할 수 있다. 예측부(230)는 현재 블록의 주변 참조 샘플을 기반으로 방향성 모드 또는 비방향성 모드를 적용하여 현재 블록에 대한 예측 샘플을 유도할 수 있다. 이 때, 주변 블록의 인트라 예측 모드를 이용하여 현재 블록에 적용할 예측 모드가 결정될 수도 있다.
인터 예측의 경우에, 예측부(230)는 참조 픽처 상에서 움직임 벡터에 의해 참조 픽처 상에서 특정되는 샘플을 기반으로 현재 블록에 대한 예측 샘플을 유도할 수 있다. 예측부(230)는 스킵(skip) 모드, 머지(merge) 모드 및 MVP 모드 중 어느 하나를 적용하여 현재 블록에 대한 예측 샘플을 유도할 수 있다. 이때, 비디오 인코딩 장치에서 제공된 현재 블록의 인터 예측에 필요한 움직임 정보, 예컨대 움직임 벡터, 참조 픽처 인덱스 등에 관한 정보는 상기 예측에 관한 정보를 기반으로 획득 또는 유도될 수 있다
스킵 모드와 머지 모드의 경우에, 주변 블록의 움직임 정보가 현재 블록의 움직임 정보로 이용될 수 있다. 이 때, 주변 블록은 공간적 주변 블록과 시간적 주변 블록을 포함할 수 있다.
예측부(230)는 가용한 주변 블록의 움직임 정보로 머지 후보 리스트를 구성하고, 머지 인덱스가 머지 후보 리스트 상에서 지시하는 정보를 현재 블록의 움직임 벡터로 사용할 수 있다. 머지 인덱스는 인코딩 장치로부터 시그널링될 수 있다. 움직임 정보는 움직임 벡터와 참조 픽처를 포함할 수 있다. 스킵 모드와 머지 모드에서 시간적 주변 블록의 움직임 정보가 이용되는 경우에, 참조 픽처 리스트 상의 최상위 픽처가 참조 픽처로서 이용될 수 있다.
스킵 모드의 경우, 머지 모드와 달리 예측 샘플과 원본 샘플 사이의 차이(레지듀얼)이 전송되지 않는다.
MVP 모드의 경우, 주변 블록의 움직임 벡터를 움직임 벡터 예측자(motion vector predictor)로 이용하여 현재 블록의 움직임 벡터가 유도될 수 있다. 이 때, 주변 블록은 공간적 주변 블록과 시간적 주변 블록을 포함할 수 있다.
일 예로, 머지 모드가 적용되는 경우, 복원된 공간적 주변 블록의 움직임 벡터 및/또는 시간적 주변 블록인 Col 블록에 대응하는 움직임 벡터를 이용하여, 머지 후보 리스트가 생성될 수 있다. 머지 모드에서는 머지 후보 리스트에서 선택된 후보 블록의 움직임 벡터가 현재 블록의 움직임 벡터로 사용된다. 상기 예측에 관한 정보는 상기 머지 후보 리스트에 포함된 후보 블록들 중에서 선택된 최적의 움직임 벡터를 갖는 후보 블록을 지시하는 머지 인덱스를 포함할 수 있다. 이 때, 예측부(230)는 상기 머지 인덱스를 이용하여, 현재 블록의 움직임 벡터를 도출할 수 있다.
다른 예로, MVP(Motion Vector Prediction) 모드가 적용되는 경우, 복원된 공간적 주변 블록의 움직임 벡터 및/또는 시간적 주변 블록인 Col 블록에 대응하는 움직임 벡터를 이용하여, 움직임 벡터 예측자 후보 리스트가 생성될 수 있다. 즉, 복원된 공간적 주변 블록의 움직임 벡터 및/또는 시간적 주변 블록인 Col 블록에 대응하는 움직임 벡터는 움직임 벡터 후보로 사용될 수 있다. 상기 예측에 관한 정보는 상기 리스트에 포함된 움직임 벡터 후보 중에서 선택된 최적의 움직임 벡터를 지시하는 예측 움직임 벡터 인덱스를 포함할 수 있다. 이 때, 예측부(230)는 상기 움직임 벡터 인덱스를 이용하여, 움직임 벡터 후보 리스트에 포함된 움직임 벡터 후보 중에서, 현재 블록의 예측 움직임 벡터를 선택할 수 있다. 인코딩 장치의 예측부는 현재 블록의 움직임 벡터와 움직임 벡터 예측자 간의 움직임 벡터 차분(MVD)을 구할 수 있고, 이를 인코딩하여 비트스트림 형태로 출력할 수 있다. 즉, MVD는 현재 블록의 움직임 벡터에서 상기 움직임 벡터 예측자를 뺀 값으로 구해질 수 있다. 이 때, 예측부(230)는 상기 예측에 관한 정보에 포함된 움직임 벡터 차분을 획득하고, 상기 움직임 벡터 차분과 상기 움직임 벡터 예측자의 가산을 통해 현재 블록의 상기 움직임 벡터를 도출할 수 있다. 예측부는 또한 참조 픽처를 지시하는 참조 픽처 인덱스 등을 상기 예측에 관한 정보로부터 획득 또는 유도할 수 있다.
가산부(240)는 레지듀얼 샘플과 예측 샘플을 더하여 현재 블록 혹은 현재 픽처를 복원할 수 있다. 가산부(240)는 레지듀얼 샘플과 예측 샘플을 블록 단위로 더하여 현재 픽처를 복원할 수도 있다. 스킵 모드가 적용된 경우에는 레지듀얼이 전송되지 않으므로, 예측 샘플이 복원 샘플이 될 수 있다. 여기서는 가산부(240)를 별도의 구성으로 설명하였으나, 가산부(240)는 예측부(230)의 일부일 수도 있다. 한편, 가산부(240)는 복원부 또는 복원 블록 생성부로 불릴 수도 있다.
필터부(250)는 복원된 픽처에 디블록킹 필터링 샘플 적응적 오프셋, 및/또는 ALF 등을 적용할 수 있다. 이 때, 샘플 적응적 오프셋은 샘플 단위로 적용될 수 있으며, 디블록킹 필터링 이후 적용될 수도 있다. ALF는 디블록킹 필터링 및/또는 샘플 적응적 오프셋 이후 적용될 수도 있다.
메모리(260)는 복원 픽처(디코딩된 픽처) 또는 디코딩에 필요한 정보를 저장할 수 있다. 여기서 복원 픽처는 상기 필터부(250)에 의하여 필터링 절차가 완료된 복원 픽처일 수 있다. 예컨대, 메모리(260)는 인터 예측에 사용되는 픽처들을 저장할 수 있다. 이 때, 인터 예측에 사용되는 픽처들은 참조 픽처 세트 혹은 참조 픽처 리스트에 의해 지정될 수도 있다. 복원된 픽처는 다른 픽처에 대한 참조 픽처로서 이용될 수 있다. 또한, 메모리(260)는 복원된 픽처를 출력 순서에 따라서 출력할 수도 있다.
한편, 상술한 변환을 통하여 상기 현재 블록의 레지듀얼 블록에 대한 저주파수(lower frequency)의 변환 계수들이 도출될 수 있고, 상기 레지듀얼 블록에 끝에는 제로 테일(zero tail) 이 도출될 수 있다.
구체적으로, 상기 변환은 두가지 주요 과정들로 구성될 수 있는바, 상기 주요 과정들은 핵심 변환(core transform) 및 2차 변환(secondary transform)을 포함할 수 있다. 상기 핵심 변환(core transform) 및 상기 2차 변환을 포함하는 변환은 다중 변환 기법이라고 나타낼 수 있다.
도 3은 본 발명에 따른 다중 변환 기법을 개략적으로 나타낸다.
도 3을 참조하면, 변환부는 상술한 도 1의 인코딩 장치 내의 변환부에 대응될 수 있고, 역변환부는 상술한 도 1의 인코딩 장치 내의 역변환부 또는 도 2의 디코딩 장치 내의 역변환부에 대응될 수 있다.
변환부는 레지듀얼 블록 내의 레지듀얼 샘플들(레지듀얼 샘플 어레이)를 기반으로 1차 변환을 수행하여 (1차) 변환 계수들을 도출할 수 있다(S310). 여기서 상기 1차 변환은 적응적 다중 핵심 변환(Adaptive Multiple core Transform, AMT)을 포함할 수 있다. 상기 적응적 다중 핵심 변환은 MTS(Multiple Transform Set)이라고 나타낼 수도 있다.
상기 적응적 다중 핵심 변환은 DCT(Discrete Cosine Transform) 타입 2과 DST(Discrete Sine Transform) 타입 7, DCT 타입 8, 및/또는 DST 타입 1을 추가적으로 사용하여 변환하는 방식을 나타낼 수 있다. 즉, 상기 적응적 다중 핵심 변환은 상기 DCT 타입 2, 상기 DST 타입 7, 상기 DCT 타입 8 및 상기 DST 타입 1 중 선택된 복수의 변환 커널들을 기반으로 공간 도메인의 레지듀얼 신호(또는 레지듀얼 블록)를 주파수 도메인의 변환 계수들(또는 1차 변환 계수들)로 변환하는 변환 방법을 나타낼 수 있다. 여기서 상기 1차 변환 계수들은 변환부 입장에서 임시 변환 계수들로 불릴 수 있다.
다시 말하면, 기존의 변환 방법이 적용되는 경우, DCT 타입 2를 기반으로 레지듀얼 신호(또는 레지듀얼 블록)에 대한 공간 도메인에서 주파수 도메인으로의 변환이 적용되어 변환 계수들이 생성될 수 있었다. 이와 달리, 상기 적응적 다중 핵심 변환이 적용되는 경우, DCT 타입 2, DST 타입 7, DCT 타입 8, 및/또는 DST 타입 1 등을 기반으로 레지듀얼 신호(또는 레지듀얼 블록)에 대한 공간 도메인에서 주파수 도메인으로의 변환이 적용되어 변환 계수들(또는 1차 변환 계수들)이 생성될 수 있다. 여기서, DCT 타입 2, DST 타입 7, DCT 타입 8, 및 DST 타입 1 등은 변환 타입, 변환 커널(kernel) 또는 변환 코어(core)라고 불릴 수 있다.
참고로, 상기 DCT/DST 변환 타입들은 기저 함수들(basis functions)을 기반으로 정의될 수 있으며, 상기 기저 함수들은 다음 표와 같이 나타낼 수 있다.
상기 적응적 다중 핵심 변환이 수행되는 경우, 상기 변환 커널들 중 대상 블록에 대한 수직 변환 커널 및 수평 변환 커널이 선택될 수 있고, 상기 수직 변환 커널을 기반으로 상기 대상 블록에 대한 수직 변환이 수행되고, 상기 수평 변환 커널을 기반으로 상기 대상 블록에 대한 수평 변환이 수행될 수 있다. 여기서, 상기 수평 변환은 상기 대상 블록의 수평 성분들에 대한 변환을 나타낼 수 있고, 상기 수직 변환은 상기 대상 블록의 수직 성분들에 대한 변환을 나타낼 수 있다. 상기 수직 변환 커널/수평 변환 커널은 레지듀얼 블록을 에워싸는(encompass) 대상 블록(CU 또는 서브블록)의 예측 모드 및/또는 변환 서브셋을 가리키는 변환 인덱스를 기반으로 적응적으로 결정될 수 있다.
예를 들어, 상기 적응적 다중 핵심 변환은 대상 블록의 폭(width) 및 높이(height)가 모두 64보다 작거나 같은 경우에 적용될 수 있고, 상기 대상 블록의 상기 적응적 다중 핵심 변환이 적용되는지 여부는 CU 레벨 플래그를 기반으로 결정될 수 있다. 구체적으로, 상기 CU 레벨 플래그가 0 인 경우, 상술한 기존의 변환 방법이 적용될 수 있다. 즉, 상기 CU 레벨 플래그가 0 인 경우, 상기 DCT 타입 2를 기반으로 레지듀얼 신호(또는 레지듀얼 블록)에 대한 공간 도메인에서 주파수 도메인으로의 변환이 적용되어 변환 계수들이 생성될 수 있고, 상기 변환 계수들이 인코딩될 수 있다. 한편, 여기서 상기 대상 블록은 CU 일 수 있다. 상기 CU 레벨 플래그가 0 인 경우, 상기 적응적 다중 핵심 변환이 상기 대상 블록에 적용될 수 있다.
또한, 상기 적응적 다중 핵심 변환이 적용되는 대상 블록의 루마 블록의 경우, 두 개의 추가적인 플래그들이 시그널링될 수 있고, 상기 플래그들을 기반으로 수직 변환 커널 및 수평 변환 커널이 선택될 수 있다. 상기 수직 변환 커널에 대한 플래그는 AMT 수직 플래그라고 나타낼 수 있고, AMT_TU_vertical_flag (또는 EMT_TU_vertical_flag) 는 상기 AMT 수직 플래그의 신텍스 요소(syntax element)를 나타낼 수 있다. 상기 수평 변환 커널에 대한 플래그는 AMT 수평 플래그라고 나타낼 수 있고, AMT_TU_horizontal_flag (또는 EMT_TU_horizontal_flag) 는 상기 AMT 수평 플래그의 신텍스 요소를 나타낼 수 있다. 상기 AMT 수직 플래그는 상기 수직 변환 커널에 대한 변환 서브셋에 포함된 변환 커널 후보들 중 하나의 변환 커널 후보를 가리킬 수 있고, 상기 AMT 수직 플래그가 가리키는 변환 커널 후보는 상기 대상 블록에 대한 수직 변환 커널로 도출될 수 있다. 또한, 상기 AMT 수평 플래그는 상기 수평 변환 커널에 대한 변환 서브셋에 포함된 변환 커널 후보들 중 하나의 변환 커널 후보를 가리킬 수 있고, 상기 AMT 수평 플래그가 가리키는 변환 커널 후보는 상기 대상 블록에 대한 수평 변환 커널로 도출될 수 있다. 한편, 상기 AMT 수직 플래그는 MTS 수직 플래그라고 나타낼 수도 있으며, 상기 AMT 수평 플래그는 MTS 수평 플래그라고 나타낼 수도 있다.
한편, 3개의 변환 서브셋들이 기설정될 수 있고, 상기 대상 블록에 적용된 인트라 예측 모드를 기반으로 상기 변환 서브셋들 중 하나가 상기 수직 변환 커널에 대한 변환 서브셋으로 도출될 수 있다. 또한, 상기 대상 블록에 적용된 인트라 예측 모드를 기반으로 상기 변환 서브셋들 중 하나가 상기 수평 변환 커널에 대한 변환 서브셋으로 도출될 수 있다. 예를 들어, 상기 기설정된 변환 서브셋들은 다음의 표와 같이 도출될 수 있다.
표 2를 참조하면 인덱스 값이 0 인 변환 서브셋은 DST 타입 7 및 DCT 타입 8을 변환 커널 후보로 포함하는 변환 서브셋을 나타낼 수 있고, 인덱스 값이 1 인 변환 서브셋은 DST 타입 7 및 DST 타입 1을 변환 커널 후보로 포함하는 변환 서브셋을 나타낼 수 있고, 인덱스 값이 2 인 변환 서브셋은 DST 타입 7 및 DCT 타입 8을 변환 커널 후보로 포함하는 변환 서브셋을 나타낼 수 있다.
상기 대상 블록에 적용된 인트라 예측 모드를 기반으로 도출되는 상기 수직 변환 커널에 대한 변환 서브셋 및 상기 수평 변환 커널에 대한 변환 서브셋은 다음의 표와 같이 도출될 수 있다.
여기서, V 는 상기 수직 변환 커널에 대한 변환 서브셋을 나타내고, H는 상기 수평 변환 커널에 대한 변환 서브셋을 나타낸다.
상기 대상 블록에 대한 AMT 플래그(또는 EMT_CU_flag)의 값이 1인 경우, 표 3에 도시된 것과 같이 상기 대상 블록의 인트라 예측 모드를 기반으로 상기 수직 변환 커널에 대한 변환 서브셋 및 상기 수평 변환 커널에 대한 변환 서브셋이 도출될 수 있다. 이 후, 상기 수직 변환 커널에 대한 변환 서브셋에 포함된 변환 커널 후보들 중 상기 대상 블록의 AMT 수직 플래그가 가리키는 변환 커널 후보가 상기 대상 블록의 수직 변환 커널로 도출될 수 있고, 상기 수평 변환 커널에 대한 변환 서브셋에 포함된 변환 커널 후보들 중 상기 대상 블록의 AMT 수평 플래그가 가리키는 변환 커널 후보가 상기 대상 블록의 수평 변환 커널로 도출될 수 있다. 한편, 상기 AMT 플래그는 MTS 플래그라고 나타낼 수도 있다.
참고로, 예를 들어, 인트라 예측 모드는 2개의 비방향성(non-directional, 또는 비각도성(non-angular)) 인트라 예측 모드들과 65개의 방향성(directional, 또는 각도성(angular)) 인트라 예측 모드들을 포함할 수 있다. 상기 비방향성 인트라 예측 모드들은 0번인 플래너(planar) 인트라 예측 모드 및 1번인 DC 인트라 예측 모드를 포함할 수 있고, 상기 방향성 인트라 예측 모드들은 2번 내지 66번의 65개의 인트라 예측 모드들을 포함할 수 있다. 다만, 이는 예시로서 본 발명은 인트라 예측 모드들의 수가 다른 경우에도 적용될 수 있다. 한편, 경우에 따라 67번 인트라 예측 모드가 더 사용될 수 있으며, 상기 67번 인트라 예측 모드는 LM(linear model) 모드를 나타낼 수 있다.
도 4는 65개의 예측 방향의 인트라 방향성 모드들을 예시적으로 나타낸다.
도 4를 참조하면, 좌상향 대각 예측 방향을 갖는 34번 인트라 예측 모드를 중심으로 수평 방향성(horizontal directionality)을 갖는 인트라 예측 모드와 수직 방향성(vertical directionality)을 갖는 인트라 예측 모드를 구분할 수 있다. 도 4의 H와 V는 각각 수평 방향성과 수직 방향성을 의미하며, -32 ~ 32의 숫자는 샘플 그리드 포지션(sample grid position) 상에서 1/32 단위의 변위를 나타낸다. 2번 내지 33번 인트라 예측 모드는 수평 방향성, 34번 내지 66번 인트라 예측 모드는 수직 방향성을 갖는다. 18번 인트라 예측 모드와 50번 인트라 예측 모드는 각각 수평 인트라 예측 모드(horizontal intra prediction mode), 수직 인트라 예측 모드(vertical intra prediction mode)를 나타내며, 2번 인트라 예측 모드는 좌하향 대각 인트라 예측 모드, 34번 인트라 예측 모드는 좌상향 대각 인트라 예측 모드, 66번 인트라 예측 모드는 우상향 대각 인트라 예측 모드라고 불릴 수 있다.
변환부는 상기 (1차) 변환 계수들을 기반으로 2차 변환을 수행하여 (2차) 변환 계수들을 도출할 수 있다(S320). 상기 1차 변환이 공간 도메인에서 주파수 도메인으로의 변환이었다면, 상기 2차 변환은 주파수 도메인에서 주파수 도메인으로의 변환으로 볼 수 있다. 상기 2차 변환은 비분리 변환(non-separable transform)을 포함할 수 있다. 이 경우 상기 2차 변환은 비분리 2차 변환(non-separable secondary transform, NSST) 또는 MDNSST(mode-dependent non-separable secondary transform)이라고 불릴 수 있다. 상기 비분리 2차 변환은 상기 1차 변환을 통하여 도출된 (1차) 변환 계수들을 비분리 변환 매트릭스(non-separable transform matrix)를 기반으로 2차 변환하여 레지듀얼 신호에 대한 변환 계수들(또는 2차 변환 계수들)을 생성하는 변환을 나타낼 수 있다. 여기서, 상기 비분리 변환 매트릭스를 기반으로 상기 (1차) 변환 계수들에 대하여 수직 변환 및 수평 변환을 분리하여(또는 수평 수직 변환을 독립적으로) 적용하지 않고 한번에 변환을 적용할 수 있다. 다시 말해, 상기 비분리 2차 변환은 상기 비분리 변환 매트릭스를 기반으로 상기 (1차) 변환 계수들의 수직 성분 및 수평 성분 분리하지 않고 같이 변환하여 변환 계수들(또는 2차 변환 계수들)을 생성하는 변환 방법을 나타낼 수 있다. 상기 비분리 2차 변환은 (1차) 변환 계수들로 구성된 블록(이하, 변환 계수 블록 또는 대상 블록이라고 불릴 수 있다)의 좌상단(top-left) 영역에 대하여 적용될 수 있다. 예를 들어, 상기 변환 계수 블록의 너비(W) 및 높이(H)가 둘 다 8 이상인 경우, 8×8 비분리 2차 변환이 상기 변환 계수 블록의 좌상단 8×8 영역(이하 좌상단 대상 영역)에 대하여 적용될 수 있다. 또한, 상기 변환 계수 블록의 너비(W) 및 높이(H)가 둘 다 4 이상 이면서, 상기 변환 계수 블록의 너비(W) 또는 높이(H)가 8보다 작은 경우, 4×4 비분리 2차 변환이 상기 변환 계수 블록의 좌상단 min(8,W)×min(8,H) 영역에 대하여 적용될 수 있다.
구체적으로 예를 들어, 4×4 입력 블록이 사용되는 경우 비분리 2차 변환은 다음과 같이 수행될 수 있다.
상기 4×4 입력 블록 X는 다음과 같이 나타내어질 수 있다.
상기 X를 벡터 형태로 나타내는 경우, 벡터 는 다음과 같이 나타내어질 수 있다.
이 경우, 상기 2차 비분리 변환은 다음과 같이 계산될 수 있다.
여기서, 는 변환 계수 벡터를 나타내고, T는 16×16 (비분리) 변환 매트릭스를 나타낸다.
상기 수학식3을 통하여 통하여 16×1 변환 계수 벡터 가 도출될 수 있으며, 상기 는 스캔 순서(수평, 수직, 대각(diagonal) 등)를 통하여 4×4 블록으로 재구성(re-organized)될 수 있다. 다만, 상술한 계산은 예시로서 비분리 2차 변환의 계산 복잡도를 줄이기 위하여 HyGT(Hypercube-Givens Transform) 등이 비분리 2차 변환의 계산을 위하여 사용될 수도 있다.
한편, 상기 비분리 2차 변환은 모드 기반(mode dependent)하게 변환 커널(또는 변환 코어, 변환 타입)이 선택될 수 있다. 여기서 모드는 인트라 예측 모드 및/또는 인터 예측 모드를 포함할 수 있다.
상술한 바와 같이 상기 비분리 2차 변환은 상기 변환 계수 블록의 너비(W) 및 높이(H)를 기반으로 결정된 8×8 변환 또는 4×4 변환에 기반하여 수행될 수 있다. 즉, 상기 비분리 2차 변환은 8×8 서브블록 사이즈 또는 4×4 서브블록 사이즈에 기반하여 수행될 수 있다. 예를 들어, 상기 모드 기반 변환 커널 선택을 위하여, 8×8 서브블록 사이즈 및 4×4 서브블록 사이즈 둘 다에 대하여 비분리 2차 변환을 위한 3개씩 35개 세트의 비분리 2차 변환 커널들이 구성될 수 있다. 즉, 8×8 서브블록 사이즈에 대하여 35개의 변환 세트가 구성되고, 4×4 서브블록 사이즈에 대하여 35개의 변환 세트가 구성될 수 있다. 이 경우 8×8 서브블록 사이즈에 대한 35개의 변환 세트에는 각각 3개씩의 8×8 변환 커널들이 포함될 수 있고, 이 경우 4×4 서브블록 사이즈에 대한 35개의 변환 세트에는 각각 3개씩의 4×4 변환 커널들이 포함될 수 있다. 다만, 상기 변환 서브블록 사이즈, 상기 세트의 수 및 세트 내 변환 커널들의 수는 예시로서 8×8 또는 4×4 이외의 사이즈가 사용될 수 있고, 또는 n개의 세트들이 구성되고, 각 세트 내에 k개의 변환 커널들이 포함될 수도 있다.
상기 변환 세트는 NSST 세트라고 불릴 수 있고, 상기 NSST 세트 내의 변환 커널은 NSST 커널이라고 불릴 수 있다. 상기 변환 세트들 중 특정 세트의 선택은 예를 들어, 대상 블록(CU 또는 서브블록)의 인트라 예측 모드에 기반하여 수행될 수 있다.
이 경우, 상기 35개의 변환 세트들과 상기 인트라 예측 모드들 간의 매핑(mapping)은 예를 들어 다음 표와 같이 나타내어질 수 있다. 참고로, 대상 블록에 LM 모드가 적용되는 경우 상기 대상 블록에 대하여는 2차 변환이 적용되지 않을 수 있다.
한편, 특정 세트가 사용되는 것으로 결정되면, 비분리 2차 변환 인덱스를 통하여 상기 특정 세트 내 k개의 변환 커널들 중 하나가 선택될 수 있다. 인코딩 장치는 RD(rate-distortion) 체크 기반으로 특정 변환 커널을 가리키는 비분리 2차 변환 인덱스를 도출할 수 있으며, 상기 비분리 2차 변환 인덱스를 디코딩 장치로 시그널링할 수 있다. 디코딩 장치는 상기 비분리 2차 변환 인덱스를 기반으로 특정 세트 내 k개의 변환 커널들 중 하나를 선택할 수 있다. 예를 들어, NSST 인덱스 값 0은 첫번째 비분리 2차 변환 커널을 가리킬 수 있고, NSST 인덱스 값 1은 두번째 비분리 2차 변환 커널을 가리킬 수 있으며, NSST 인덱스 값 2는 세번째 비분리 2차 변환 커널을 가리킬 수 있다. 또는 NSST 인덱스 값 0은 대상 블록에 대하여 첫번째 비분리 2차 변환이 적용되지 않음을 가리킬 수 있고, NSST 인덱스 값 1 내지 3은 상기 3개의 변환 커널들을 가리킬 수 있다.
다시 도 3을 참조하면, 변환부는 선택된 변환 커널들을 기반으로 상기 비분리 2차 변환을 수행하고 (2차) 변환 계수들을 획득할 수 있다. 상기 변환 계수들은 상술한 바와 같이 양자화부를 통하여 양자화된 변환 계수들로 도출될 수 있고, 인코딩되어 디코딩 장치로 시그널링 및 인코딩 장치 내의 역양자화/역변환부로 전달될 수 있다.
한편, 2차 변환이 생략되는 경우, 상기 1차 (분리) 변환의 출력인 (1차) 변환 계수들이 상술한 바와 같이 양자화부를 통하여 양자화된 변환 계수들로 도출될 수 있고, 인코딩되어 디코딩 장치로 시그널링 및 인코딩 장치 내의 역양자화/역변환부로 전달될 수 있다.
역변환부는 상술한 변환부에서 수행된 절차의 역순으로 일련의 절차를 수행할 수 있다. 역변환부는 (역양자화된) 변환 계수들을 수신하여, 2차 (역)변환을 수행하여 (1차) 변환 계수들을 도출하고(S350), 상기 (1차) 변환 계수들에 대하여 1차 (역)변환을 수행하여 레지듀얼 블록(레지듀얼 샘플들)을 획득할 수 있다(S360). 여기서 상기 1차 변환 계수들은 역변환부 입장에서 수정된(modified) 변환 계수들로 불릴 수 있다. 인코딩 장치 및 디코딩 장치는 상기 레지듀얼 블록과 예측된 블록을 기반으로 복원 블록을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있음은 상술한 바와 같다.
한편, 상술한 바와 같이 2차 (역)변환이 생략되는 경우 (역양자화된) 변환 계수들을 수신하여 상기 1차 (분리) 변환을 수행하여 레지듀얼 블록(레지듀얼 샘플들)을 획득할 수 있다. 인코딩 장치 및 디코딩 장치는 상기 레지듀얼 블록과 예측된 블록을 기반으로 복원 블록을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있음은 상술한 바와 같다.
도 5a 내지 도 5c는 본 발명의 일 실시예에 따른 선택적 변환(selective transform)을 설명하기 위한 도면이다.
본 명세서에서 "대상 블록"은 코딩이 수행되는 현재 블록 또는 레지듀얼 블록을 의미할 수 있다.
도 5a는 변환을 통하여 변환 계수들을 도출하는 일 예를 나타낸다.
비디오 코딩에서의 변환(transform)은 도 5a에 도시된 것과 같이 입력 벡터 R 을 변환 매트릭스(transform matrix)를 기반으로 변환하여 입력 벡터 R 에 대한 변환 계수 벡터 C 를 생성하는 과정을 나타낼 수 있다. 상기 입력 벡터 R 은 1차 변환 계수들을 나타낼 수도 있다. 또는, 상기 입력 벡터 R 은 레지듀얼 벡터, 즉, 레지듀얼 샘플들을 나타낼 수도 있다. 한편, 상기 변환 계수 벡터 C 는 출력 벡터 C 라고 나타낼 수도 있다.
도 5b는 변환을 통하여 변환 계수들을 도출하는 구체적인 예를 나타낸다. 도 5b는 도 5a에 도시된 변환 과정을 구체적으로 나타낸다. 도 3에서 전술한 바와 같이, 비분리 2차 변환(이하 'NSST'라 한다)에 있어서, 1차 변환을 적용하여 획득한 변환 계수들의 블록 데이터를 M x M 블록들로 분할한 후, 각 M x M 블록에 대하여 M2 x M2 NSST가 수행될 수 있다. M은 예를 들어 4 또는 8 일 수 있으나, 이에 한정되지 않는다. 상기 M2 은 N 일 수 있다. 이 경우, 도 5b에 도시된 것과 같이 상기 입력 벡터 R 은 (1차) 변환 계수 r1 내지 rN 을 포함하는 (1xN) 차원 벡터일 수 있고, 상기 변환 계수 벡터 C 는 변환 계수 c1 내지 cN 을 포함하는 (Nx1) 차원 벡터일 수 있다. 즉, 상기 입력 벡터 R 은 N개의 (1차) 변환 계수 r1 내지 rN 을 포함할 수 있고, 상기 입력 벡터 R 의 사이즈는 1xN 일 수 있다. 또한, 상기 변환 계수 벡터 C 는 N개의 변환 계수 c1 내지 cN 을 포함할 수 있고, 상기 변환 계수 벡터 C 의 사이즈는 Nx1 일 수 있다.
상기 변환 계수 벡터 C 를 도출하기 위하여 상기 입력 벡터 R 은 상기 변환 매트릭스를 통과할 수 있다. 즉, 상기 입력 벡터 R 은 상기 변환 매트릭스를 기반으로 상기 변환 계수 벡터 C 가 도출될 수 있다.
한편, 상기 변환 매트릭스는 N개의 베이시스 벡터들(basis vectors) B1 내지 BN 을 포함할 수 있다. 도 5b에 도시된 것과 같이 상기 베이시스 벡터들 B1 내지 BN 은 (1xN) 차원 벡터들일 수 있다. 즉, 상기 베이시스 벡터들 B1 내지 BN 의 사이즈는 1xN 일 수 있다. 상기 입력 벡터 R의 (1차) 변환 계수들과 상기 변환 매트릭스의 상기 베이시스 벡터들 각각을 기반으로 변환 계수 벡터 C가 생성될 수 있다. 예를 들어, 상기 입력 벡터와 각 베이시스 벡터와의 내적(inner product)은 상기 변환 계수 벡터 C로 도출될 수 있다.
한편, 상술한 변환에는 2가지 메인 이슈들(main issues)이 발생된다. 구체적으로, 출력 벡터를 생성하기 위하여 필요한 곱셈 및 덧셈의 횟수와 관련하여 높은 계산 복잡도와 생성된 계수들을 저장하기 위한 메모리 요구(memory requirement) 가 메인 이슈로 발생될 수 있다.
예를 들어, 분리 변환(separable transform) 및 비분리 변환(non separable transform)에 필요한 계산 복잡도 및 메모리 요구는 다음의 표와 같이 도출될 수 있다.
표 5를 참조하면 상기 분리 변환을 통하여 생성된 계수들을 저장하기 위한 대한 메모리는 N2 가 요구될 수 있고, 상기 계산 횟수는 2N3 일 수 있다. 상기 계산 횟수는 계산 복잡도를 나타낸다. 또한, 상기 비분리 변환을 통하여 생성된 계수들을 저장하기 위한 대한 메모리는 N4 가 요구될 수 있고, 상기 계산 횟수는 N4 일 수 있다. 상기 계산 횟수는 계산 복잡도를 나타낸다. 즉, 상기 계산 횟수가 많을수록 계산 복잡도가 높을 수 있고, 상기 계산 횟수가 적을수록 상기 계산 복잡도가 낮을 수 있다.
상기 표 5에 도시된 것과 같이 상기 분리 변환 대비 상기 비분리 변환을 위한 메모리 요구 및 계산 횟수는 크게 증가될 수 있다. 또한, 상기 비분리 변환이 수행되는 대상 블록의 사이즈가 증가할수록, 즉, 상기 N 이 커질수록 상기 분리 변환을 위한 메모리 요구 및 계산횟수와 상기 비분리 변환을 위한 메모리 요구 및 계산횟수 사이의 불일치는 증가할 수 있다.
상기 비분리 변환은 분리 변환과 비교하여 더 나은 코딩 이득(coding gain)을 제공하지만, 상기 표 5에 도시된 것과 같이 상기 비분리 변환의 계산 복잡도로 인하여 기존 비디오 코딩 표준에서는 상기 비분리 변환이 사용되지 않았고, 또한, 분리 변환의 계산 복잡도도 대상 블록의 사이즈가 커질수록 증가하는바, 기존 HEVC 표준에서는 상기 분리 변환이 사이즈가 32x32 사이즈 이하인 대상 블록에서만 사용되도록 제한되었다.
이에, 본 발명은 선택적 변환을 제안한다. 상기 선택적 변환은 계산 복잡도 및 메모리 요구를 크게 줄일 수 있고, 이를 통하여 계산 집약적인 변환 블록의 효율성을 증가시키고 코딩 효율을 향상시키는 효과를 발생시킬 수 있다. 즉, 상기 선택적 변환은 사이즈가 큰 블록의 변환 또는 비분리 변환 시 발생하는 연산 복잡도(complexity) 이슈를 해소하기 위해 이용될 수 있다. 상기 선택적 변환은 1차 변환(또는 핵심 변환(core transform)이라고 지칭될 수 있다), 2차 변환 등 어떠한 유형의 변환에도 이용될 수 있다. 예를 들어, 상기 선택적 변환은 인코딩 장치/디코딩 장치에 대한 상기 핵심 변환으로 적용될 수 있고, 인코딩 시간/디코딩 시간을 크게 줄이는 효과를 발생시킬 수 있다.
도 5c는 상기 선택적 변환을 통하여 변환 계수들을 도출하는 일 예를 나타낸다. 상기 선택적 변환은 선택적인 개수의 요소들을 포함하는 베이시스 벡터를 포함하는 변환 매트릭스를 기반으로 대상 블록에 대하여 수행되는 변환을 의미할 수 있다.
간소화 변환은 변환 매트릭스의 베이시스 벡터의 N개의 요소들 중 중복되거나 중요하지 않은 요소가 포함될 수 있고, 상기 요소를 제외하여 계산 복잡도 및 메모리 요구를 줄일 수 있다는 동기(motivation)를 통하여 제안된 방안이다. 예를 들어, 도 5c 를 참조하면 베이시스 벡터 B1 의 N개의 요소들 중 Z0 개의 요소들은 중요하지 않은 요소들일 수 있고, 이 경우, N1개의 요소들만을 포함하는 트렁케이티드(truncated) 베이시스 벡터 B1 이 도출될 수 있다. 여기서, 상기 N1 은 N-Z0 일 수 있다. 상기 트렁케이티드 베이시스 벡터 B1 은 수정된(modified) 베이시스 벡터 B1 이라고 나타낼 수 있다.
도 5c 를 참조하면 상기 입력 벡터 R 에 상기 수정된 베이시스 벡터 B1 이 변환 매트릭스의 일부로 적용되는 경우, 변환 계수 C1 이 도출될 수 있다. 실험 결과, 상기 변환 계수 C1 은 상기 입력 벡터 R 에 기존의 베이시스 벡터 B1 이 변환 매트릭스의 일부로 적용되어 도출되는 변환 계수 C1 과 동일한 값임이 관찰된다. 즉, 각 베이시스 벡터의 미미한 요소가 0이라고 가정하여 결과를 도출하는 것이 결과의 큰 차이없이 필요한 곱셈의 횟수를 크게 줄일 수 있음을 의미한다. 또한, 다음으로 이 연산을 위해 저장해야 하는 요소(즉, 변환 매트릭스의 요소)의 수를 줄일 수 있다.
베이시스 벡터의 요소들 중 중요하지 않은 요소(또는 의미 있는 요소)의 위치를 정의하기 위하여 연관 벡터(association vector)가 제안된다. 상기 N1 차원의 수정된 베이시스 벡터 B1을 도출하기 위하여 (1xN) 차원의 연관 벡터 A1이 고려될 수 있다. 즉, 1xN1 사이즈의 수정된 베이시스 벡터 B1(즉, N1개의 요소들을 포함하는 수정된 베이시스 벡터 B1)을 도출하기 위하여 1xN 사이즈의 연관 벡터 A1 이 고려될 수 있다.
도 5c를 참조하면 상기 입력 벡터 R 에 상기 베이시스 벡터 B1 내지 BN 각각에 대한 연관 벡터가 적용되어 도출된 값들이 상기 베이시스 벡터들로 전달될 수 있다. 이를 통하여, 상기 입력 벡터 R 의 일부 요소만 베이시스 벡터의 요소와 계산될 수 있다. 구체적으로, 상기 연관 벡터는 0과 1을 포함할 수 있고, 상기 입력 벡터 R 의 요소들 중 선택된 요소와는 1이 곱해지고, 선택되지 요소와는 0 이 곱해지도록 연산되어 상기 선택된 요소들만 통과되어 상기 베이시스 벡터로 전달될 수 있다.
예를 들어, 상기 입력 벡터 R에 상기 연관 벡터 A1 이 적용될 수 있고, 상기 입력 벡터 R 의 요소들 중 상기 연관 벡터 A1에 의하여 지정된 N1 개의 요소들만 상기 베이시스 벡터 B1 과의 내적을 계산하는데 사용될 수 있다. 상기 내적은 상기 변환 계수 벡터 C 의 C1을 나타낼 수 있다. 여기서, 상기 베이시스 벡터 B1 은 N1 개의 요소들을 포함할 수 있고, 상기 N1 은 N 이하일 수 있다. 상술한 상기 입력 벡터 R과 연관 벡터 A1 및 베이시스 벡터 B1 의 연산은 연관 벡터 A2 내지 AN 및 베이시스 벡터 B2 내지 BN 에 대해서도 수행될 수 있다.
상기 연관 벡터는 0 및/또는 1, 이진수 값들(binary values)만을 포함하는바, 상기 연관 벡터를 저장함에 있어 이점이 있을 수 있다. 상기 연관 벡터의 0은 상기 0에 대한 상기 입력 벡터 R의 요소가 상기 내적 계산을 위한 변환 매트릭스로 전달되지 않음을 나타낼 수 있고, 상기 연관 벡터의 1은 상기 1에 대한 상기 입력 벡터 R의 요소가 상기 내적 계산을 위한 상기 변환 매트릭스로 전달됨을 나타낼 수 있다. 예를 들어, 1xN 사이즈의 연관 벡터 Ak 은 Ak1 내지 AkN 을 포함할 수 있다. 상기 연관 벡터 Ak 의 Akn 이 0 인 경우, 상기 입력 벡터 R 의 rn 은 통과되지 않을 수 있다. 즉, 상기 입력 벡터 R의 rn 은 상기 변환 벡터 Bn 으로 전달되지 않을 수 있다. 또한, 상기 Akn 이 1 인 경우, 상기 입력 벡터 R 의 rn 은 통과될 수 있다. 즉, 상기 입력 벡터 R의 rn 은 상기 변환 벡터 Bn 으로 전달될 수 있고, 상기 변환 계수 벡터 C 의 cn 을 도출하기 위한 계산에 사용될 수 있다.
도 6은 상기 선택적 변환을 2차 변환으로 적용한 다중 변환 기법을 개략적으로 나타낸다.
도 6을 참조하면, 변환부는 상술한 도 1의 인코딩 장치 내의 변환부에 대응될 수 있고, 역변환부는 상술한 도 1의 인코딩 장치 내의 역변환부 또는 도 2의 디코딩 장치 내의 역변환부에 대응될 수 있다.
변환부는 레지듀얼 블록 내의 레지듀얼 샘플들(레지듀얼 샘플 어레이)를 기반으로 1차 변환을 수행하여 (1차) 변환 계수들을 도출할 수 있다(S610). 여기서 상기 1차 변환은 상술한 AMT를 포함할 수 있다.
상기 적응적 다중 핵심 변환이 적용되는 경우, DCT 타입 2, DST 타입 7, DCT 타입 8, 및/또는 DST 타입 1 등을 기반으로 레지듀얼 신호(또는 레지듀얼 블록)에 대한 공간 도메인에서 주파수 도메인으로의 변환이 적용되어 변환 계수들(또는 1차 변환 계수들)이 생성될 수 있다. 여기서 상기 1차 변환 계수들은 변환부 입장에서 임시 변환 계수들로 불릴 수 있다. 또한, DCT 타입 2, DST 타입 7, DCT 타입 8, 및 DST 타입 1 등은 변환 타입, 변환 커널(kernel) 또는 변환 코어(core)라고 불릴 수 있다. 참고로, 상기 DCT/DST 변환 타입들은 기저 함수들(basis functions)을 기반으로 정의될 수 있으며, 상기 기저 함수들은 상술한 표 1과 같이 나타낼 수 있다. 구체적으로, 상기 적응적 다중 핵심 변환을 적용하여 상기 1차 변환 계수들을 도출하는 과정은 상술한 바와 같다.
변환부는 상기 (1차) 변환 계수들을 기반으로 선택적 변환을 수행하여 (2차) 변환 계수들을 도출할 수 있다(S620). 선택적 변환은 수정된 베이시스 벡터를 포함하는 변환 매트릭스 및 상기 베이시스 벡터에 대한 연관 벡터를 포함하는 연관 매트릭스(association matrix)를 기반으로 대상 블록에 대한 상기 (1차) 변환 계수들에 대하여 수행되는 변환을 의미할 수 있다. 상기 수정된 베이시스 벡터는 N 이하의 요소들을 포함하는 베이시스 벡터를 나타낼 수 있다. 즉, 상기 수정된 베이시스 벡터는 N개의 요소들 중 선택된 특정 개수의 요소들을 포함하는 베이시스 벡터를 나타낼 수 있다. 예를 들어, 수정된 베이시스 벡터 Bn는 (1xNn) 차원 벡터일 수 있고, 상기 Nn 은 상기 N 보다 작거나 같을 수 있다. 즉, 수정된 베이시스 벡터 Bn의 사이즈는 (1xNn) 사이즈일 수 있고, 상기 Nn 은 상기 N 보다 작거나 같을 수 있다. 여기서, 상기 N 은 상기 선택된 변환이 적용되는 상기 대상 블록의 좌상단 대상 영역의 높이 및 폭의 곱일 수 있다. 또는, 상기 N 은 상기 선택된 변환이 적용되는 상기 대상 블록의 좌상단 대상 영역의 변환계수들의 총 개수일 수 있다. 한편, 상기 수정된 베이시스 벡터를 포함하는 상기 변환 매트릭스는 수정된(modified) 변환 매트릭스라고 나타낼 수 있다. 또한, 상기 변환 매트릭스는 변환 베이시스 블록(Transform Bases Block, TBB)이라고 나타낼 수도 있고, 상기 연관 매트릭스는 연관 벡터 블록(Association Vectors Block, AVB)이라고 나타낼 수도 있다.
변환부는 상기 수정된 변환 매트릭스 및 상기 연관 매트릭스를 기반으로 상기 선택적 변환을 수행하고 (2차) 변환 계수들을 획득할 수 있다. 상기 변환 계수들은 상술한 바와 같이 양자화부를 통하여 양자화된 변환 계수들로 도출될 수 있고, 인코딩되어 디코딩 장치로 시그널링 및 인코딩 장치 내의 역양자화부/역변환부로 전달될 수 있다.
역변환부는 상술한 변환부에서 수행된 절차의 역순으로 일련의 절차를 수행할 수 있다. 역변환부는 (역양자화된) 변환 계수들을 수신하여, 선택적 (역)변환을 수행하여 (1차) 변환 계수들을 도출하고(S650), 상기 (1차) 변환 계수들에 대하여 1차 (역)변환을 수행하여 레지듀얼 블록(레지듀얼 샘플들)을 획득할 수 있다(S660). 여기서 상기 1차 변환 계수들은 역변환부 입장에서 수정된(modified) 변환 계수들로 불릴 수 있다. 인코딩 장치 및 디코딩 장치는 상기 레지듀얼 블록과 예측된 블록을 기반으로 복원 블록을 생성하고, 이를 기반으로 복원 픽처를 생성할 수 있음은 상술한 바와 같다.
한편, 본 발명은 상기 선택적 변환의 일 실시예로, 간소화 변환과 결합된 선택적 변환을 제안한다.
본 명세서에서 "간소화 변환"은 간소화 팩터(factor)에 따라 크기가 감소된 변환 매트릭스(transform matrix)를 기반으로 대상 블록에 대한 레지듀얼 샘플들에 대하여 수행되는 변환을 의미할 수 있다.
일 실시예에 따른 간소화 변환에서, N차원 벡터(N dimensional vector)가 다른 공간에 위치한 R차원 벡터(R dimensional vector)에 매핑되어 간소화 변환 매트릭스가 결정될 수 있으며, 여기서 R은 N보다 작다. 즉, 상기 간소화 변환은 R 개의 베이시스 벡터를 포함하는 간소화 변환 매트릭스(reduced transform matrix)를 기반으로 대상 블록에 대한 레지듀얼 샘플들에 대하여 수행되는 변환을 의미할 수 있다. 여기서, N은 변환이 적용되는 블록(또는 대상 영역)의 한 변의 길이(length)의 제곱 또는 변환이 적용되는 블록(또는 대상 영역)과 대응되는 변환 계수들의 총 개수를 의미할 수 있고, 간소화 팩터는 R/N값을 의미할 수 있다. 간소화 팩터는 감소된 팩터, 감소 팩터, reduced factor, reduction factor, simplified factor, simple factor 등 다양한 용어로 지칭될 수 있다. 한편, R은 간소화 계수(reduced coefficient)로 지칭될 수 있으나, 경우에 따라서는 간소화 팩터가 R을 의미할 수도 있다. 또한, 경우에 따라서 간소화 팩터는 N/R값을 의미할 수도 있다.
일 실시예에 따른 상기 간소화 변환 매트릭스의 사이즈는 통상의 변환 매트릭스의 사이즈 NxN보다 작은 RxN이며, 아래의 수학식 4와 같이 정의될 수 있다.
대상 블록의 1차 변환이 적용된 변환 계수들에 대하여 간소화 변환 매트릭스 TRxN가 곱해지는 경우, 상기 대상 블록에 대한 (2차) 변환 계수들이 도출될 수 있다.
상기 RST 가 적용되는 경우, 2차 변환에 RxN 사이즈인 간소화 변환 매트릭스가 적용되므로 R+1 에서 N 까지의 변환 계수는 암시적으로(implicitly) 0 이 될 수 있다. 다시 말해, 대상 블록의 변환 계수가 상기 RST 가 적용되어 도출된 경우, 상기 R+1 에서 N 까지의 변환 계수의 값은 0 일 수 있다. 여기서, 상기 R+1 에서 N 까지의 변환 계수는 변환 계수들 중 R+1 번째 변환 계수부터 N 번째 변환계수를 나타낼 수 있다. 구체적으로, 대상 블록의 변환 계수의 배열은 다음과 같이 설명될 수 있다.
도 7은 본 발명의 실시예에 따른 대상 블록을 기반으로 변환 계수의 배열을 설명하기 위한 도면이다. 이하 도 7에서 후술되는 변환에 관한 설명들은 역변환에도 마찬가지로 적용될 수 있다. 대상 블록(또는 레지듀얼 블록, 700)에 대하여, 1차 변환 및 간소화 변환을 기반으로 하는 NSST가 수행될 수 있다. 일 예시에서, 도 7에 도시된 16x16 블록은 대상 블록(700)을 나타내고, A 내지 P로 표기된 4x4 블록들은 대상 블록(700)의 서브 그룹을 나타낼 수 있다. 1차 변환은 대상 블록(700) 전체 범위에서 수행될 수 있고, 1차 변환이 수행된 이후 NSST는 서브 그룹 A, B, E 및 F가 구성하는 8x8 블록(이하, 좌상단 대상 영역)에 대하여 적용될 수 있다. 이때, 간소화 변환을 기반으로 하는 NSST가 수행되면 R개(여기서, R은 간소화 계수를 의미하며, R은 N보다 작다)의 NSST 변환 계수들만이 도출되므로, R+1번째부터 N번째 범위의 NSST 변환 계수들은 각각 0으로 결정될 수 있다. R이 예를 들어 16인 경우, 간소화 변환을 기반으로 하는 NSST가 수행되어 도출된 16개의 변환 계수들은 대상 블록(700)의 좌상단 대상 영역에 포함되는 좌상단 4x4 블록인 서브 그룹 A에 포함된 각 블록들에 할당될 수 있고, 서브 그룹 B, E 및 F에 포함된 N-R개, 즉 64-16=48개의 각 블록들에 대해서는 변환 계수 0이 할당될 수 있다. 간소화 변환을 기반으로 하는 NSST가 수행되지 않은 1차 변환 계수들은 서브 그룹 C, D, G, H, I, J, K, L, M, N, O 및 P에 포함된 각 블록들에 할당될 수 있다.
도 8은 상기 간소화 변환 및 상기 선택적 변환이 결합된 변환을 통하여 변환 계수들을 도출하는 일 예를 나타낸다. 도 8을 참조하면 변환 매트릭스는 R 개의 베이시스 벡터들을 포함할 수 있고, 상기 연관 매트릭스는 R 개의 연관 벡터들을 포함할 수 있다. 여기서, R 개의 베이시스 벡터들을 포함하는 상기 변환 매트릭스는 간소화 변환 매트릭스(reduced transform matrix)라고 나타낼 수 있고, 상기 R 개의 연관 벡터들을 포함하는 연관 매트릭스는 간소화 연관 매트릭스(reduced association matrix)라고 나타낼 수 있다.
또한, 상기 베이시스 벡터들 각각은 N 개의 요소들 중 선택된 요소들만을 포함할 수 있다. 예를 들어, 도 8을 참조하면, 베이시스 벡터 B1 은 N1 개의 요소들을 포함하는 1xN1 차원 벡터일 수 있고, 베이시스 벡터 B2 는 N2 개의 요소들을 포함하는 1xN2 차원 벡터일 수 있고, 베이시스 벡터 BR 은 NR 개의 요소들을 포함하는 1xNR 차원 벡터일 수 있다. 상기 N1, N2 및 NR 은 상기 N 이하의 값들일 수 있다. 상기 간소화 변환 및 상기 선택적 변환이 결합된 변환은 2차 변환 및 1차 변환 등 어떠한 유형의 변환에도 이용될 수 있다.
도 8을 참조하면 인코딩 장치 및 디코딩 장치는 상기 간소화 변환 및 상기 선택적 변환이 결합된 변환을 2차 변환으로 적용할 수 있다. 예를 들어, 상기 수정된 베이시스 벡터를 포함하는 간소화 변환 매트릭스 및 간소화 연관 매트릭스를 기반으로 상기 선택적 변환이 수행될 수 있고 (2차) 변환 계수들이 획득될 수 있다. 또한, 상기 선택적 변환의 계산 복잡도를 줄이기 위하여 HyGT(Hypercube-Givens Transform) 등이 상기 선택적 변환의 계산을 위하여 사용될 수도 있다.
도 9는 상기 선택적 변환을 통하여 변환 계수들을 도출하는 일 예를 나타낸다. 상기 선택적 변환에 대한 일 실시예에 있어서, 상기 연관 매트릭스의 연관 벡터 A1, A2, ... AN 에 대한 패턴은 존재하지 않을 수 있고, 상기 연관 벡터들은 서로 다른 형태로 도출될 수 있다. 또는, 상기 선택적 변환에 대한 다른 실시예에 있어서, 상기 연관 매트릭스의 연관 벡터 A1, A2, ... AN 이 동일한 형태로 도출될 수 있다.
구체적으로, 예를 들어, 상기 연관 벡터들은 동일한 개수의 1을 포함할 수 있다. 예를 들어, 1의 개수가 M 인 경우, 상기 연관 벡터들은 M 개의 1 및 N-M 개의 0을 포함할 수 있다. 이 경우, 상기 입력 벡터 R 의 (1차) 변환 계수들 중 M 개의 변환 계수들이 베이시스 벡터들로 전달될 수 있다. 따라서, 상기 베이시스 벡터들의 길이도 M 일 수 있다. 즉, 도 9에 도시된 것과 같이 상기 베이시스 벡터들은 M 개의 요소들을 포함할 수 있고, (1xM) 차원 벡터들일 수 있고, N1 = N2 = ... = NN = M 으로 도출될 수 있다. 도 9에 도시된 연관 매트릭스 및 수정된 변환 매트릭스 구조는 상기 선택적 변환에 대한 대칭 구조(symmetric architecture)라고 나타낼 수 있다.
또한, 다른 예로, 값이 1인 요소들의 특정 패턴이 존재할 수 있고, 임의의 방식으로 상기 패턴이 반복, 회전 및/또는 변환(translate)되어 상기 연관 벡터들이 도출될 수 있다.
한편, 상술한 선택적 변환은 상기 간소화 변환 및/또는 상기 HyGT 뿐만 아니라 다른 변환 기술과 함께 적용될 수도 있다.
또한, 본 발명은 상술한 선택적 변환에 있어서, 상기 연관 벡터를 단순화(simplifying)하는 방안이 제안한다. 상기 연관 벡터를 단순화함으로써 상기 선택적 변환을 수행하기 위한 정보의 저장(storing) 및 상기 선택적 변환의 핸들링(handling)이 보다 향상될 수 있다. 즉, 상기 선택적 변환을 수행하기 위한 메모리 로드(memory load)가 줄어들 수 있고, 상기 선택적 변환의 핸들링 능력이 보다 향상될 수 있다.
상기 연관 벡터의 단순화로 인한 효과는 상기 연관 벡터가 포함하는 요소들 중 0이 아닌 요소가 연속적인 분포를 가지는 경우에 더 명백하게 나타날 수 있다. 예를 들어, 연관 벡터 Ak 가 1의 연속된 스트링(continuous string)을 포함할 수 있다. 이 경우, 상기 Ak 는 2개의 팩터들(factors) Aks 및 AkL 을 통하여 표현될 수 있다. 즉, 상기 팩터들 Aks 및 AkL 을 기반으로 상기 연관 벡터 Ak 가 도출될 수 있다. 여기서, 상기 Aks 는 0이 아닌 요소(예를 들어 1)의 시작점을 나타내는 팩터일 수 있고, 상기 AkL 은 0이 아닌 요소의 길이를 나타내는 팩터일 수 있다. 상기 팩터들을 기반으로 나타낸 상기 연관 벡터 Ak 는 다음의 표와 같이 도출될 수 있다.
표 6을 참조하면 상기 연관 벡터 Ak 는 16개의 요소들을 포함할 수 있다. 즉, 상기 연관 벡터 Ak 는 1x16 차원 벡터일 수 있다. 상기 연관 벡터 Ak 의 0 이 아닌 요소의 시작점을 나타내는 팩터 Aks 의 값은 0 으로 도출될 수 있고, 이 경우, 상기 팩터 Aks 는 상기 0 이 아닌 요소의 시작점을 상기 연관 벡터 Ak 의 첫번째 요소로 가리킬 수 있다. 또한, 상기 연관 벡터 Ak 의 0 이 아닌 요소의 길이를 나타내는 팩터 AkL 의 값은 8 로 도출될 수 있고, 이 경우, 상기 팩터 AkL 는 상기 0 이 아닌 요소의 길이를 8개로 가리킬 수 있다. 따라서, 상기 Ak 는 상기 팩터들을 기반으로 표 6에 도시된 것과 같이 첫번째 요소 내지 8번째 요소는 1이고, 나머지 요소들은 0 인 벡터로 도출될 수 있다.
도 10은 연관 벡터에 대한 2개의 팩터들을 기반으로 상기 연관 벡터를 도출하여 선택적 변환을 수행하는 일 예를 나타낸다. 도 10을 참조하면 각 연관 벡터에 대한 팩터들을 기반으로 연관 매트릭스가 도출될 수 있고, 상기 연관 매트릭스 및 상기 수정된 변환 매트릭스를 기반으로 대상 블록에 대한 변환 계수들이 도출될 수 있다.
한편, 연관 벡터들 각각의 0이 아닌 요소의 시작점 및 0이 아닌 요소의 수는 고정된(fixed) 값으로 도출될 수 있고, 또는 상기 연관 벡터들 각각의 0이 아닌 요소의 시작점 및 0이 아닌 요소의 수는 다양하게 도출될 수도 있다.
또한, 예를 들어, 연관 벡터의 0이 아닌 요소의 시작점 및 0이 아닌 요소의 수는 변환이 수행되는 좌상단 대상 영역의 사이즈를 기반으로 도출될 수도 있다. 여기서, 상기 좌상단 대상 영역의 사이즈는 상기 좌상단 대상 영역의 변환 계수들의 수를 나타낼 수 있고, 또는, 상기 좌상단 대상 영역의 높이 및 폭의 곱을 나타낼 수 있다. 또한, 다른 예로, 연관 벡터의 0이 아닌 요소의 시작점 및 0이 아닌 요소의 수는 대상 블록의 인트라 예측 모드를 기반으로 도출될 수도 있다. 구체적으로, 예를 들어, 상기 대상 블록의 상기 인트라 예측 모드가 비방향성 인트라 예측 모드인지 여부를 기반으로 상기 연관 벡터의 0이 아닌 요소의 시작점 및 0이 아닌 요소의 수가 도출될 수 있다.
또는, 예를 들어, 연관 벡터의 0이 아닌 요소의 시작점 및 0이 아닌 요소의 수는 기설정될 수 있다. 또는, 예를 들어, 상기 연관 벡터의 0이 아닌 요소의 시작점을 나타내는 정보 및 0이 아닌 요소의 수를 나타내는 정보가 시그널링될 수 있고, 상기 0이 아닌 요소의 시작점을 나타내는 정보 및 상기 0이 아닌 요소의 수를 나타내는 정보를 기반으로 상기 연관 벡터가 도출될 수 있다. 또는, 상기 0이 아닌 요소의 시작점을 나타내는 정보 대신에 다른 정보가 사용될 수도 있다. 예를 들어, 상기 0이 아닌 요소의 시작점을 나타내는 정보 대신 상기 0이 아닌 요소의 마지막 위치(last position)를 나타내는 정보가 사용될 수 있고, 상기 0이 아닌 요소의 마지막 위치를 나타내는 정보를 기반으로 상기 연관 벡터가 도출될 수 있다.
한편, 상기 팩터들을 기반으로 상기 연관 벡터를 도출하는 방안은 분리 변환과, 간소화 변환 HyGT 등의 비분리 변환에도 적용될 수 있다.
도 11은 본 발명에 따른 인코딩 장치에 의한 영상 인코딩 방법을 개략적으로 나타낸다. 도 11에서 개시된 방법은 도 1에서 개시된 인코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 11의 S1100은 상기 인코딩 장치의 감산부, S1110은 상기 인코딩 장치의 변환부, S1120은 상기 인코딩 장치의 엔트로피 인코딩부에 의하여 수행될 수 있다. 또한, 비록 도시되지는 않았으나 예측 샘플을 도출하는 과정은 상기 인코딩 장치의 예측부에 의하여 수행될 수 있다.
인코딩 장치는 대상 블록의 레지듀얼 샘플들을 도출한다(S1100). 예를 들어, 인코딩 장치는 대상 블록에 인터 예측을 수행할지 또는 인트라 예측을 수행할지 여부를 결정할 수 있고, 구체적인 인터 예측 모드 또는 구체적인 인트라 예측 모드를 RD 코스트 기반으로 결정할 수 있다. 결정된 모드에 따라 인코딩 장치는 상기 대상 블록에 대한 예측 샘플들을 도출할 수 있고, 상기 대상 블록에 대한 원본 샘플들과 상기 예측 샘플들의 가산을 통하여 상기 레지듀얼 샘플들을 도출할 수 있다.
인코딩 장치는 상기 레지듀얼 샘플들에 대한 선택적 변환(selective transform)을 기반으로 상기 대상 블록의 변환 계수들을 도출한다(S1110). 상기 선택적 변환은 수정된(modified) 변환 매트릭스(transform matrix)를 기반으로 수행될 수 있고, 상기 수정된 변환 매트릭스는 수정된 베이시스 벡터(basis vector)를 포함하는 매트릭스이고, 상기 수정된 베이시스 벡터는 N개의 요소들 중 선택된 특정 개수의 요소들을 포함할 수 있다. 또한, 상기 선택적 변환은 상기 대상 블록의 좌상단 대상 영역에 수행될 수 있고, 상기 N은 상기 좌상단 대상 영역에 위치하는 레지듀얼 샘플들의 수일 수 있다. 또는 상기 N은 상기 좌상단 대상 영역의 폭과 높이를 곱한 값일 수 있다. 예를 들어, 상기 N은 16 또는 64 일 수 있다.
인코딩 장치는 상기 레지듀얼 샘플들에 대한 핵심 변환을 수행하여 수정된 변환 계수들을 도출할 수 있고, 상기 수정된 변환 매트릭스 및 상기 수정된 베이시스 벡터에 대한 연관 벡터(association vector)를 포함하는 연관 매트릭스(association matrix)를 기반으로 상기 대상 블록의 좌상단 대상 영역에 위치하는 수정된 변환 계수들에 대한 상기 선택적 변환을 수행하여 상기 대상 블록의 변환 계수들을 도출할 수 있다.
구체적으로, 상기 레지듀얼 샘플들에 대한 핵심 변환은 다음과 같이 수행될 수 있다. 인코딩 장치는 상기 대상 블록에 대한 적응적 다중 핵심 변환(Adaptive Multiple core Transform, AMT) 적용 여부를 결정할 수 있다. 이 경우, 상기 대상 블록의 적응적 다중 핵심 변환이 적용되는지 여부를 나타내는 AMT 플래그가 생성될 수 있다. 상기 대상 블록에 상기 AMT 가 적용되지 않는 경우, 인코딩 장치는 DCT 타입 2를 상기 대상 블록에 대한 변환 커널로 도출할 수 있고, 상기 DCT 타입 2를 기반으로 상기 레지듀얼 샘플들에 대한 변환을 수행하여 상기 수정된 변환 계수들을 도출할 수 있다.
상기 대상 블록에 상기 AMT 가 적용되는 경우, 인코딩 장치는 수평 변환 커널에 대한 변환 서브셋 및 수직 변환 커널에 대한 변환 서브셋을 구성할 수 있고, 상기 변환 서브셋들을 기반으로 수평 변환 커널 및 수직 변환 커널을 도출할 수 있고, 상기 수평 변환 커널 및 상기 수직 변환 커널을 기반으로 상기 레지듀얼 샘플들에 대한 변환을 수행하여 수정된 변환 계수들을 도출할 수 있다. 여기서, 상기 수평 변환 커널에 대한 변환 서브셋 및 상기 수직 변환 커널에 대한 변환 서브셋은 DCT 타입 2, DST 타입 7, DCT 타입 8, 및/또는 DST 타입 1을 후보로 포함할 수 있다. 또한, 변환 인덱스 정보가 생성될 수 있고, 상기 변환 인덱스 정보는 상기 수평 변환 커널을 가리키는 AMT 수평 플래그 및 상기 수직 변환 커널을 가리키는 AMT 수직 플래그를 포함할 수 있다. 한편, 상기 변환 커널은 변환 타입 또는 변환 코어(core)라고 불릴 수 있다.
상기 수정된 변환 계수들이 도출된 경우, 인코딩 장치는 상기 수정된 변환 매트릭스 및 상기 수정된 베이시스 벡터에 대한 연관 벡터(association vector)를 포함하는 연관 매트릭스(association matrix)를 기반으로 상기 대상 블록의 좌상단 대상 영역에 위치하는 수정된 변환 계수들에 대한 상기 선택적 변환을 수행하여 상기 대상 블록의 상기 변환 계수들을 도출할 수 있다. 상기 대상 블록의 상기 좌상단 영역에 위치하는 상기 수정된 변환 계수들 이외의 수정된 변환 계수들은 그대로 상기 대상 블록의 상기 변환 계수들로 도출될 수 있다.
구체적으로, 상기 좌상단 대상 영역에 위치하는 상기 수정된 변환 계수들 중 상기 연관 벡터의 1인 요소들(elements)에 대한 수정된 변환 계수들이 도출될 수 있고, 상기 도출된 수정된 변환 계수들과 상기 수정된 베이시스 벡터를 기반으로 상기 대상 블록의 변환 계수가 도출될 수 있다. 여기서, 상기 수정된 베이시스 벡터에 대한 상기 연관 벡터는 N개의 요소들을 포함할 수 있고, 상기 N개의 요소들은 1 인 요소들 및/또는 0 인 요소들을 포함할 수 있고, 상기 1인 요소들의 개수는 A개일 수 있다. 또한, 상기 수정된 베이시스 벡터는 상기 A개의 요소들을 포함할 수 있다.
한편, 일 예로, 상기 수정된 변환 매트릭스는 N개의 수정된 베이시스 벡터들을 포함할 수 있고, 상기 연관 매트릭스는 N개의 연관 벡터들을 포함할 수 있다. 상기 연관 벡터들은 동일한 개수의 1인 요소들을 포함할 수 있고, 상기 수정된 베이시스 벡터들은 모두 동일한 개수의 요소들을 포함할 수 있다. 또는, 상기 연관 벡터들은 동일한 개수의 1인 요소들을 포함하지 않을 수 있고, 상기 수정된 베이시스 벡터들은 모두 동일한 개수의 요소들을 포함하지 않을 수 있다.
또는, 다른 예로, 상기 수정된 변환 매트릭스는 R 개의 수정된 베이시스 벡터들을 포함할 수 있고, 상기 연관 매트릭스는 R개의 연관 벡터들을 포함할 수 있다. 상기 R은 간소화 계수(reduced coefficient)일 수 있고, 상기 R은 N보다 작을 수 있다. 상기 연관 벡터들은 동일한 개수의 1인 요소들을 포함할 수 있고, 상기 수정된 베이시스 벡터들은 모두 동일한 개수의 요소들을 포함할 수 있다. 또는, 상기 연관 벡터들은 동일한 개수의 1인 요소들을 포함하지 않을 수 있고, 상기 수정된 베이시스 벡터들은 모두 동일한 개수의 요소들을 포함하지 않을 수 있다.
한편, 상기 연관 벡터는 1인 요소들이 연속되도록 구성될 수 있다. 이 경우, 일 예로, 상기 연관 벡터에 대한 정보가 엔트로피 인코딩될 수 있다. 예를 들어, 상기 연관 벡터에 대한 정보는 1인 요소의 시작점을 나타내는 정보 및 1인 요소의 개수를 나타내는 정보를 포함할 수 있다. 또는, 예를 들어, 상기 연관 벡터에 대한 정보는 1인 요소의 마지막 위치를 나타내는 정보 및 1인 요소의 개수를 나타내는 정보를 포함할 수 있다.
또한, 다른 예로, 상기 좌상단 대상 영역의 사이즈를 기반으로 상기 연관 벡터가 도출될 수 있다. 예를 들어, 상기 좌상단 대상 영역의 사이즈를 기반으로 상기 연관 벡터의 1인 요소의 시작점 및 상기 1인 요소의 개수가 도출될 수 있다.
또는, 다른 예로, 상기 대상 블록의 인트라 예측 모드를 기반으로 상기 연관 벡터가 도출될 수 있다. 예를 들어, 상기 인트라 예측 모드를 기반으로 상기 연관 벡터의 1인 요소의 시작점 및 상기 1인 요소의 개수가 도출될 수 있다. 또한, 예를 들어, 상기 인트라 예측 모드가 비방향성(non-directional) 인트라 예측 모드인지 여부를 기반으로 상기 연관 벡터의 1인 요소의 시작점 및 상기 1인 요소의 개수가 도출될 수 있다.
인코딩 장치는 변환 계수들에 대한 정보를 인코딩한다(S1330). 상기 변환 계수들에 대한 정보는 상기 변환 계수들의 크기, 위치 등에 관한 정보를 포함할 수 있다. 또한, 상술한 바와 같이 상기 연관 벡터에 대한 정보가 엔트로피 인코딩될 수 있다. 예를 들어, 상기 연관 벡터에 대한 정보는 1인 요소의 시작점을 나타내는 정보 및 1인 요소의 개수를 나타내는 정보를 포함할 수 있다. 또는, 예를 들어, 상기 연관 벡터에 대한 정보는 1인 요소의 마지막 위치를 나타내는 정보 및 1인 요소의 개수를 나타내는 정보를 포함할 수 있다.
상기 변환 계수들에 대한 정보 및/또는 상기 연관 벡터에 대한 정보를 포함하는 영상 정보는 비트스트림 형태로 출력될 수 있다. 또한, 상기 영상 정보는 예측 정보를 더 포함할 수 있다. 상기 예측 정보는 상기 예측 절차에 관련된 정보들로 예측 모드 정보 및 움직임 정보에 관한 정보(ex. 인터 예측이 적용되는 경우) 등을 포함할 수 있다.
출력된 비트스트림은 저장매체 또는 네트워크를 통하여 디코딩 장치로 전달될 수 있다.
도 12는 본 발명에 따른 영상 인코딩 방법을 수행하는 인코딩 장치를 개략적으로 나타낸다. 도 11에서 개시된 방법은 도 12에서 개시된 인코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 12의 상기 인코딩 장치의 가산부는 도 11의 S1100을 수행할 수 있고, 상기 인코딩 장치의 변환부는 S1110을 수행할 수 있고, 상기 인코딩 장치의 엔트로피 인코딩부는 S1120 내지 S1130을 수행할 수 있다. 또한, 비록 도시되지는 않았으나 예측 샘플을 도출하는 과정은 상기 인코딩 장치의 예측부에 의하여 수행될 수 있다.
도 13은 본 발명에 따른 디코딩 장치에 의한 영상 디코딩 방법을 개략적으로 나타낸다. 도 13에서 개시된 방법은 도 2에서 개시된 디코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 13의 S1300 내지 S1310은 상기 디코딩 장치의 엔트로피 디코딩부, S1320은 상기 디코딩 장치의 역변환부, S1330은 상기 디코딩 장치의 가산부에 의하여 수행될 수 있다. 또한, 비록 도시되지는 않았으나 예측 샘플을 도출하는 과정은 상기 디코딩 장치의 예측부에 의하여 수행될 수 있다.
디코딩 장치는 상기 비트스트림으로부터 상기 대상 블록의 변환 계수들을 도출한다(S1300). 디코딩 장치는 상기 비트스트림을 통하여 수신된 상기 대상 블록의 변환 계수들에 대한 정보를 디코딩하여 상기 대상 블록의 변환 계수들을 도출할 수 있다. 상기 수신된 상기 대상 블록의 변환 계수들에 대한 정보는 레지듀얼(residual) 정보라고 나타낼 수 있다.
디코딩 장치는 상기 변환 계수들에 대한 선택적 변환(selective transform)을 기반으로 상기 대상 블록에 대한 레지듀얼 샘플들을 도출한다(S1310). 상기 선택적 변환은 수정된(modified) 변환 매트릭스(transform matrix)를 기반으로 수행될 수 있고, 상기 수정된 변환 매트릭스는 수정된 베이시스 벡터(basis vector)를 포함하는 매트릭스이고, 상기 수정된 베이시스 벡터는 N개의 요소들 중 선택된 특정 개수의 요소들을 포함할 수 있다. 또한, 상기 선택적 변환은 상기 대상 블록의 좌상단 대상 영역에 위치하는 변환 계수들에 대하여 수행될 수 있고, 상기 N은 상기 좌상단 대상 영역에 위치하는 변환 계수들의 수일 수 있다. 또는 상기 N은 상기 좌상단 대상 영역의 폭과 높이를 곱한 값일 수 있다. 예를 들어, 상기 N은 16 또는 64 일 수 있다.
디코딩 장치는 상기 수정된 변환 매트릭스 및 상기 수정된 베이시스 벡터에 대한 연관 벡터(association vector)를 포함하는 연관 매트릭스(association matrix)를 기반으로 상기 대상 블록의 좌상단 대상 영역에 위치하는 변환 계수들에 대한 상기 선택적 변환을 수행하여 수정된 변환 계수들을 도출할 수 있다.
구체적으로, 상기 좌상단 대상 영역에 위치하는 변환 계수들 중 상기 연관 벡터의 1인 요소들(elements)에 대한 변환 계수들이 도출될 수 있고, 상기 도출된 변환 계수들과 상기 수정된 베이시스 벡터를 기반으로 수정된 변환 계수가 도출될 수 있다. 여기서, 상기 수정된 베이시스 벡터에 대한 상기 연관 벡터는 N개의 요소들을 포함할 수 있고, 상기 N개의 요소들은 1 인 요소들 및/또는 0 인 요소들을 포함할 수 있고, 상기 1인 요소들의 개수는 A개일 수 있다. 또한, 상기 수정된 베이시스 벡터는 상기 A개의 요소들을 포함할 수 있다.
한편, 일 예로, 상기 수정된 변환 매트릭스는 N개의 수정된 베이시스 벡터들을 포함할 수 있고, 상기 연관 매트릭스는 N개의 연관 벡터들을 포함할 수 있다. 상기 연관 벡터들은 동일한 개수의 1인 요소들을 포함할 수 있고, 상기 수정된 베이시스 벡터들은 모두 동일한 개수의 요소들을 포함할 수 있다. 또는, 상기 연관 벡터들은 동일한 개수의 1인 요소들을 포함하지 않을 수 있고, 상기 수정된 베이시스 벡터들은 모두 동일한 개수의 요소들을 포함하지 않을 수 있다.
또는, 다른 예로, 상기 수정된 변환 매트릭스는 R 개의 수정된 베이시스 벡터들을 포함할 수 있고, 상기 연관 매트릭스는 R개의 연관 벡터들을 포함할 수 있다. 상기 R은 간소화 계수(reduced coefficient)일 수 있고, 상기 R은 N보다 작을 수 있다. 상기 연관 벡터들은 동일한 개수의 1인 요소들을 포함할 수 있고, 상기 수정된 베이시스 벡터들은 모두 동일한 개수의 요소들을 포함할 수 있다. 또는, 상기 연관 벡터들은 동일한 개수의 1인 요소들을 포함하지 않을 수 있고, 상기 수정된 베이시스 벡터들은 모두 동일한 개수의 요소들을 포함하지 않을 수 있다.
한편, 상기 연관 벡터는 1인 요소들이 연속되도록 구성될 수 있다. 이 경우, 일 예로, 상기 연관 벡터에 대한 정보가 비트스트림으로부터 획득될 수 있고, 상기 연관 벡터에 대한 정보를 기반으로 상기 연관 벡터가 도출될 수 있다. 예를 들어, 상기 연관 벡터에 대한 정보는 1인 요소의 시작점을 나타내는 정보 및 1인 요소의 개수를 나타내는 정보를 포함할 수 있다. 또는, 예를 들어, 상기 연관 벡터에 대한 정보는 1인 요소의 마지막 위치를 나타내는 정보 및 1인 요소의 개수를 나타내는 정보를 포함할 수 있다.
또는, 다른 예로, 상기 좌상단 대상 영역의 사이즈를 기반으로 상기 연관 벡터가 도출될 수 있다. 예를 들어, 상기 좌상단 대상 영역의 사이즈를 기반으로 상기 연관 벡터의 1인 요소의 시작점 및 상기 1인 요소의 개수가 도출될 수 있다.
또는, 다른 예로, 상기 대상 블록의 인트라 예측 모드를 기반으로 상기 연관 벡터가 도출될 수 있다. 예를 들어, 상기 인트라 예측 모드를 기반으로 상기 연관 벡터의 1인 요소의 시작점 및 상기 1인 요소의 개수가 도출될 수 있다. 또한, 예를 들어, 상기 인트라 예측 모드가 비방향성(non-directional) 인트라 예측 모드인지 여부를 기반으로 상기 연관 벡터의 1인 요소의 시작점 및 상기 1인 요소의 개수가 도출될 수 있다.
상기 수정된 변환 계수들이 도출된 경우, 디코딩 장치는 상기 수정된 변환 계수들을 포함하는 상기 대상 블록에 대한 핵심 변환을 수행하여 상기 레지듀얼 샘플들을 도출할 수 있다.
상기 대상 블록에 대한 핵심 변환은 다음과 같이 수행될 수 있다. 디코딩 장치는 비트스트림으로부터 적응적 다중 핵심 변환(Adaptive Multiple core Transform, AMT)이 적용되는지 여부를 나타내는 AMT 플래그를 획득할 수 있고, 상기 AMT 플래그의 값이 0 인 경우, 디코딩 장치는 DCT 타입 2를 상기 대상 블록에 대한 변환 커널로 도출할 수 있고, 상기 DCT 타입 2를 기반으로 상기 수정된 변환 계수들을 포함하는 상기 대상 블록에 대한 역변환을 수행하여 상기 레지듀얼 샘플들을 도출할 수 있다.
상기 AMT 플래그의 값이 1 인 경우, 디코딩 장치는 수평 변환 커널에 대한 변환 서브셋 및 수직 변환 커널에 대한 변환 서브셋을 구성할 수 있고, 상기 비트스트림으로부터 획득된 변환 인덱스 정보, 상기 변환 서브셋들을 기반으로 수평 변환 커널 및 수직 변환 커널을 도출할 수 있고, 상기 수평 변환 커널 및 상기 수직 변환 커널을 기반으로 상기 수정된 변환 계수들을 포함하는 상기 대상 블록에 대한 역변환을 수행하여 상기 레지듀얼 샘플들을 도출할 수 있다. 여기서, 상기 수평 변환 커널에 대한 변환 서브셋 및 상기 수직 변환 커널에 대한 변환 서브셋은 DCT 타입 2, DST 타입 7, DCT 타입 8, 및/또는 DST 타입 1을 후보로 포함할 수 있다. 또한, 상기 변환 인덱스 정보는 상기 수평 변환 커널에 대한 변환 서브셋에 포함된 후보들 중 하나를 가리키는 AMT 수평 플래그 및 상기 수직 변환 커널에 대한 변환 서브셋에 포함된 후보들 중 하나를 가리키는 AMT 수직 플래그를 포함할 수 있다. 한편, 상기 변환 커널은 변환 타입 또는 변환 코어(core)라고 불릴 수 있다.
디코딩 장치는 상기 레지듀얼 샘플들을 기반으로 복원 픽처를 생성한다(S1320). 디코딩 장치는 상기 레지듀얼 샘플들을 기반으로 복원 픽처를 생성할 수 있다. 예를 들어, 디코딩 장치는 비트스트림을 통하여 수신된 예측 정보를 기반으로 대상 블록에 대한 인터 예측 또는 인트라 예측을 수행하고 예측 샘플들을 도출할 수 있고, 상기 예측 샘플들과 상기 레지듀얼 샘플들의 가산을 통하여 상기 복원 픽처를 생성할 수 있다. 이후 필요에 따라 주관적/객관적 화질을 향상시키기 위하여 디블록킹 필터링, SAO 및/또는 ALF 절차와 같은 인루프 필터링 절차가 상기 복원 픽처에 적용될 수 있음은 상술한 바와 같다.
도 14는 본 발명에 따른 영상 디코딩 방법을 수행하는 디코딩 장치를 개략적으로 나타낸다. 도 13에서 개시된 방법은 도 14에서 개시된 디코딩 장치에 의하여 수행될 수 있다. 구체적으로 예를 들어, 도 14의 상기 디코딩 장치의 엔트로피 디코딩부는 도 13의 S1300을 수행할 수 있고, 도 14의 상기 디코딩 장치의 역변환부는 도 13의 S1310을 수행할 수 있고, 도 16의 상기 디코딩 장치의 가산부는 도 15의 S1320을 수행할 수 있다. 또한, 비록 도시되지는 않았으나 예측 샘플을 도출하는 과정은 도 14의 상기 디코딩 장치의 예측부에 의하여 수행될 수 있다.
상술한 본 발명에 따르면 효율적인 변환을 통하여 레지듀얼 처리를 위해 전송되어야 하는 데이터량을 줄일 수 있고, 레지듀얼 코딩 효율을 높일 수 있다.
또한, 본 발명에 따르면 선택된 특정 개수의 요소들을 포함하는 베이시스 벡터로 구성된 변환 매트릭스를 기반으로 비분리 변환을 수행할 수 있고, 이를 통하여 비분리 변환을 위한 메모리 로드 및 계산 복잡도를 줄일 수 있고, 레지듀얼 코딩 효율을 높일 수 있다.
또한, 본 발명에 따르면 단순화된 구조의 변환 매트릭스를 기반으로 비분리 변환을 수행할 수 있고, 이를 통하여 레지듀얼 처리를 위해 전송되어야 하는 데이터량을 줄일 수 있고, 레지듀얼 코딩 효율을 높일 수 있다.
상술한 실시예에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타내어진 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 본 발명에 따른 방법은 소프트웨어 형태로 구현될 수 있으며, 본 발명에 따른 인코딩 장치 및/또는 디코딩 장치는 예를 들어 TV, 컴퓨터, 스마트폰, 셋톱박스, 디스플레이 장치 등의 영상 처리를 수행하는 장치에 포함될 수 있다.
본 발명에서 실시예들이 소프트웨어로 구현될 때, 상술한 방법은 상술한 기능을 수행하는 모듈(과정, 기능 등)로 구현될 수 있다. 모듈은 메모리에 저장되고, 프로세서에 의해 실행될 수 있다. 메모리는 프로세서 내부 또는 외부에 있을 수 있고, 잘 알려진 다양한 수단으로 프로세서와 연결될 수 있다. 프로세서는 ASIC(application-specific integrated circuit), 다른 칩셋, 논리 회로 및/또는 데이터 처리 장치를 포함할 수 있다. 메모리는 ROM(read-only memory), RAM(random access memory), 플래쉬 메모리, 메모리 카드, 저장 매체 및/또는 다른 저장 장치를 포함할 수 있다. 즉, 본 발명에서 설명한 실시예들은 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다. 예를 들어, 각 도면에서 도시한 기능 유닛들은 컴퓨터, 프로세서, 마이크로 프로세서, 컨트롤러 또는 칩 상에서 구현되어 수행될 수 있다.
또한, 본 발명이 적용되는 디코딩 장치 및 인코딩 장치는 멀티미디어 방송 송수신 장치, 모바일 통신 단말, 홈 시네마 비디오 장치, 디지털 시네마 비디오 장치, 감시용 카메라, 비디오 대화 장치, 비디오 통신과 같은 실시간 통신 장치, 모바일 스트리밍 장치, 저장 매체, 캠코더, 주문형 비디오(VoD) 서비스 제공 장치, OTT 비디오(Over the top video) 장치, 인터넷 스트리밍 서비스 제공 장치, 3차원(3D) 비디오 장치, 화상 전화 비디오 장치, 및 의료용 비디오 장치 등에 포함될 수 있으며, 비디오 신호 또는 데이터 신호를 처리하기 위해 사용될 수 있다. 예를 들어, OTT 비디오(Over the top video) 장치로는 게임 콘솔, 블루레이 플레이어, 인터넷 접속 TV, 홈시어터 시스템, 스마트폰, 태블릿 PC, DVR(Digital Video Recoder) 등을 포함할 수 있다.
또한, 본 발명이 적용되는 처리 방법은 컴퓨터로 실행되는 프로그램의 형태로 생산될 수 있으며, 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 본 발명에 따른 데이터 구조를 가지는 멀티미디어 데이터도 또한 컴퓨터가 판독할 수 있는 기록 매체에 저장될 수 있다. 상기 컴퓨터가 판독할 수 있는 기록 매체는 컴퓨터로 읽을 수 있는 데이터가 저장되는 모든 종류의 저장 장치 및 분산 저장 장치를 포함한다. 상기 컴퓨터가 판독할 수 있는 기록 매체는, 예를 들어, 블루레이 디스크(BD), 범용 직렬 버스(USB), ROM, PROM, EPROM, EEPROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크 및 광학적 데이터 저장 장치를 포함할 수 있다. 또한, 상기 컴퓨터가 판독할 수 있는 기록 매체는 반송파(예를 들어, 인터넷을 통한 전송)의 형태로 구현된 미디어를 포함한다. 또한, 인코딩 방법으로 생성된 비트스트림이 컴퓨터가 판독할 수 있는 기록 매체에 저장되거나 유무선 통신 네트워크를 통해 전송될 수 있다. 또한, 본 발명의 실시예는 프로그램 코드에 의한 컴퓨터 프로그램 제품으로 구현될 수 있고, 상기 프로그램 코드는 본 발명의 실시예에 의해 컴퓨터에서 수행될 수 있다. 상기 프로그램 코드는 컴퓨터에 의해 판독 가능한 캐리어 상에 저장될 수 있다.
또한, 본 발명이 적용되는 컨텐츠 스트리밍 시스템은 크게 인코딩 서버, 스트리밍 서버, 웹 서버, 미디어 저장소, 사용자 장치 및 멀티미디어 입력 장치를 포함할 수 있다.
상기 인코딩 서버는 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들로부터 입력된 컨텐츠를 디지털 데이터로 압축하여 비트스트림을 생성하고 이를 상기 스트리밍 서버로 전송하는 역할을 한다. 다른 예로, 스마트폰, 카메라, 캠코더 등과 같은 멀티미디어 입력 장치들이 비트스트림을 직접 생성하는 경우, 상기 인코딩 서버는 생략될 수 있다. 상기 비트스트림은 본 발명이 적용되는 인코딩 방법 또는 비트스트림 생성 방법에 의해 생성될 수 있고, 상기 스트리밍 서버는 상기 비트스트림을 전송 또는 수신하는 과정에서 일시적으로 상기 비트스트림을 저장할 수 있다.
상기 스트리밍 서버는 웹 서버를 통한 사용자 요청에 기초하여 멀티미디어 데이터를 사용자 장치에 전송하고, 상기 웹 서버는 사용자에게 어떠한 서비스가 있는지를 알려주는 매개체 역할을 한다. 사용자가 상기 웹 서버에 원하는 서비스를 요청하면, 상기 웹 서버는 이를 스트리밍 서버에 전달하고, 상기 스트리밍 서버는 사용자에게 멀티미디어 데이터를 전송한다. 이때, 상기 컨텐츠 스트리밍 시스템은 별도의 제어 서버를 포함할 수 있고, 이 경우 상기 제어 서버는 상기 컨텐츠 스트리밍 시스템 내 각 장치 간 명령/응답을 제어하는 역할을 한다.
상기 스트리밍 서버는 미디어 저장소 및/또는 인코딩 서버로부터 컨텐츠를 수신할 수 있다. 예를 들어, 상기 인코딩 서버로부터 컨텐츠를 수신하게 되는 경우, 상기 컨텐츠를 실시간으로 수신할 수 있다. 이 경우, 원활한 스트리밍 서비스를 제공하기 위하여 상기 스트리밍 서버는 상기 비트스트림을 일정 시간동안 저장할 수 있다.
상기 사용자 장치의 예로는, 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 디지털 TV, 데스크탑 컴퓨터, 디지털 사이니지 등이 있을 수 있다. 상기 컨텐츠 스트리밍 시스템 내 각 서버들은 분산 서버로 운영될 수 있으며, 이 경우 각 서버에서 수신하는 데이터는 분산 처리될 수 있다.

Claims (4)

  1. 디코딩 장치에 의하여 수행되는 영상 디코딩 방법에 있어서,
    비트스트림으로부터 대상 블록의 역양자화된 변환 계수들을 도출하는 단계;
    상기 역양자화된 변환 계수들에 대한 비분리 변환을 기반으로 상기 대상 블록에 대한 1차 변환 계수들을 도출하는 단계;
    상기 1차 변환 계수들에 대한 분리 변환을 기반으로 상기 대상 블록에 대한 레지듀얼 샘플들을 도출하는 단계; 및
    상기 레지듀얼 샘플들 및 상기 대상 블록에 대한 예측 샘플들을 기반으로 복원 픽처를 생성하는 단계를 포함하되,
    상기 비분리 변환은 변환 매트릭스를 기반으로 수행되고,
    상기 변환 매트릭스는 수정된 베이시스 벡터들을 포함하고,
    상기 수정된 베이시스 벡터들 각각은 N개 요소들보다 적은 수의 요소들을 포함하고,
    상기 N은 상기 대상 블록 내에 상기 비분리 변환이 적용되는 영역에 위치하는 역양자화된 변환 계수들의 수이고,
    상기 비분리 변환이 적용되는 영역은 상기 대상 블록 내에 8x8 좌상단 대상 영역이고, 상기 N은 64이고,
    상기 수정된 베이시스 벡터들의 수는 N보다 작은 것을 특징으로 하는, 영상 디코딩 방법.
  2. 인코딩 장치에 의하여 수행되는 영상 인코딩 방법에 있어서,
    대상 블록의 레지듀얼 샘플들을 도출하는 단계;
    상기 레지듀얼 샘플들에 대한 분리 변환을 기반으로 상기 대상 블록에 대한 1차 변환 계수들을 도출하는 단계;
    상기 1차 변환 계수들에 대한 비분리 변환을 기반으로 상기 대상 블록의 2차 변환 계수들을 도출하는 단계;
    상기 2차 변환 계수들을 기반으로 상기 대상 블록에 대한 양자화된 변환 계수들을 도출하는 단계; 및
    상기 양자화된 변환 계수들에 대한 정보를 인코딩하는 단계를 포함하되,
    상기 비분리 변환은 변환 매트릭스를 기반으로 수행되고,
    상기 변환 매트릭스는 수정된 베이시스 벡터들을 포함하고,
    상기 수정된 베이시스 벡터들 각각은 N개 요소들보다 적은 수의 요소들을 포함하고,
    상기 N은 상기 대상 블록 내에 상기 비분리 변환이 적용되는 영역에 위치하는 1차 변환 계수들의 수이고,
    상기 비분리 변환이 적용되는 영역은 상기 대상 블록 내에 8x8 좌상단 대상 영역이고, 상기 N은 64이고,
    상기 수정된 베이시스 벡터들의 수는 N보다 작은 것을 특징으로 하는, 영상 인코딩 방법.
  3. 제2항의 영상 인코딩 방법에 의해 생성된 비트스트림을 저장하는 컴퓨터 판독 가능한 디지털 저장 매체.
  4. 영상에 대한 비트스트림을 포함하는 데이터의 전송 방법에 있어서,
    상기 비트스트림을 획득하되, 상기 비트스트림은 대상 블록의 레지듀얼 샘플들을 도출하고, 상기 레지듀얼 샘플들에 대한 분리 변환을 기반으로 상기 대상 블록에 대한 1차 변환 계수들을 도출하고, 상기 1차 변환 계수들에 대한 비분리 변환을 기반으로 상기 대상 블록의 2차 변환 계수들을 도출하고, 상기 2차 변환 계수들을 기반으로 상기 대상 블록에 대한 양자화된 변환 계수들을 도출하고, 상기 양자화된 변환 계수들에 대한 정보를 인코딩함으로써 생성되는 단계; 및
    상기 비트스트림을 포함하는 상기 데이터를 전송하는 단계를 포함하되,
    상기 비분리 변환은 변환 매트릭스를 기반으로 수행되고,
    상기 변환 매트릭스는 수정된 베이시스 벡터들을 포함하고,
    상기 수정된 베이시스 벡터들 각각은 N개 요소들보다 적은 수의 요소들을 포함하고,
    상기 N은 상기 대상 블록 내에 상기 비분리 변환이 적용되는 영역에 위치하는 1차 변환 계수들의 수이고,
    상기 비분리 변환이 적용되는 영역은 상기 대상 블록 내에 8x8 좌상단 대상 영역이고, 상기 N은 64이고,
    상기 수정된 베이시스 벡터들의 수는 N보다 작은 것을 특징으로 하는, 전송방법.
KR1020237001151A 2017-12-21 2018-12-21 선택적 변환에 기반한 영상 코딩 방법 및 그 장치 KR102604680B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237039521A KR20230161537A (ko) 2017-12-21 2018-12-21 선택적 변환에 기반한 영상 코딩 방법 및 그 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762609270P 2017-12-21 2017-12-21
US62/609,270 2017-12-21
PCT/KR2018/016437 WO2019125035A1 (ko) 2017-12-21 2018-12-21 선택적 변환에 기반한 영상 코딩 방법 및 그 장치
KR1020207017703A KR102489149B1 (ko) 2017-12-21 2018-12-21 선택적 변환에 기반한 영상 코딩 방법 및 그 장치

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207017703A Division KR102489149B1 (ko) 2017-12-21 2018-12-21 선택적 변환에 기반한 영상 코딩 방법 및 그 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237039521A Division KR20230161537A (ko) 2017-12-21 2018-12-21 선택적 변환에 기반한 영상 코딩 방법 및 그 장치

Publications (2)

Publication Number Publication Date
KR20230010067A KR20230010067A (ko) 2023-01-17
KR102604680B1 true KR102604680B1 (ko) 2023-11-21

Family

ID=66994867

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020207017703A KR102489149B1 (ko) 2017-12-21 2018-12-21 선택적 변환에 기반한 영상 코딩 방법 및 그 장치
KR1020237001151A KR102604680B1 (ko) 2017-12-21 2018-12-21 선택적 변환에 기반한 영상 코딩 방법 및 그 장치
KR1020237039521A KR20230161537A (ko) 2017-12-21 2018-12-21 선택적 변환에 기반한 영상 코딩 방법 및 그 장치

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020207017703A KR102489149B1 (ko) 2017-12-21 2018-12-21 선택적 변환에 기반한 영상 코딩 방법 및 그 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020237039521A KR20230161537A (ko) 2017-12-21 2018-12-21 선택적 변환에 기반한 영상 코딩 방법 및 그 장치

Country Status (8)

Country Link
US (3) US11184618B2 (ko)
EP (2) EP4307676A3 (ko)
JP (4) JP6980920B2 (ko)
KR (3) KR102489149B1 (ko)
CN (5) CN111615830B (ko)
BR (5) BR122021019719B1 (ko)
MX (1) MX2020006623A (ko)
WO (1) WO2019125035A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4307676A3 (en) * 2017-12-21 2024-03-13 LG Electronics Inc. Method for coding image on basis of selective transform and device therefor
WO2019194503A1 (ko) * 2018-04-01 2019-10-10 엘지전자 주식회사 분할된 블록에 2차 변환을 적용하여 비디오 신호를 처리하는 방법 및 장치
CN116546198A (zh) 2018-08-12 2023-08-04 Lg电子株式会社 解码装置、编码装置、存储介质和发送图像的数据的装置
KR20200028856A (ko) * 2018-09-07 2020-03-17 김기백 인트라 예측을 이용한 영상 부호화/복호화 방법 및 장치
KR20220047628A (ko) * 2019-09-21 2022-04-18 엘지전자 주식회사 변환에 기반한 영상 코딩 방법 및 그 장치
MX2022003996A (es) * 2019-10-04 2022-04-26 Lg Electronics Inc Metodo de codificacion de imagenes a base de transformacion, y dispositivo para el mismo.
CN117714715A (zh) * 2019-10-08 2024-03-15 Lg电子株式会社 图像解码设备、图像编码设备和数据发送设备
US20220201334A1 (en) 2020-12-23 2022-06-23 Tencent America LLC Method and apparatus for video coding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170094313A1 (en) 2015-09-29 2017-03-30 Qualcomm Incorporated Non-separable secondary transform for video coding

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8571104B2 (en) * 2007-06-15 2013-10-29 Qualcomm, Incorporated Adaptive coefficient scanning in video coding
US8428133B2 (en) * 2007-06-15 2013-04-23 Qualcomm Incorporated Adaptive coding of video block prediction mode
CN102388610B (zh) * 2009-02-09 2015-03-04 三星电子株式会社 使用低复杂度频率变换的视频编码方法和设备以及视频解码方法和设备
US9215470B2 (en) * 2010-07-09 2015-12-15 Qualcomm Incorporated Signaling selected directional transform for video coding
US8885701B2 (en) * 2010-09-08 2014-11-11 Samsung Electronics Co., Ltd. Low complexity transform coding using adaptive DCT/DST for intra-prediction
WO2012044075A2 (ko) * 2010-09-28 2012-04-05 삼성전자 주식회사 영상의 변환 방법 및 장치, 역변환 방법 및 장치
JP5781313B2 (ja) * 2011-01-12 2015-09-16 株式会社Nttドコモ 画像予測符号化方法、画像予測符号化装置、画像予測符号化プログラム、画像予測復号方法、画像予測復号装置及び画像予測復号プログラム
US9338449B2 (en) * 2011-03-08 2016-05-10 Qualcomm Incorporated Harmonized scan order for coding transform coefficients in video coding
GB2492333B (en) * 2011-06-27 2018-12-12 British Broadcasting Corp Video encoding and decoding using transforms
CA2853002C (en) * 2011-10-18 2017-07-25 Kt Corporation Method for encoding image, method for decoding image, image encoder, and image decoder
KR101418096B1 (ko) * 2012-01-20 2014-07-16 에스케이 텔레콤주식회사 가중치예측을 이용한 영상 부호화/복호화 방법 및 장치
US9215464B2 (en) * 2013-09-19 2015-12-15 Blackberry Limited Coding position data for the last non-zero transform coefficient in a coefficient group
US9432696B2 (en) * 2014-03-17 2016-08-30 Qualcomm Incorporated Systems and methods for low complexity forward transforms using zeroed-out coefficients
US10306229B2 (en) * 2015-01-26 2019-05-28 Qualcomm Incorporated Enhanced multiple transforms for prediction residual
US20170034530A1 (en) * 2015-07-28 2017-02-02 Microsoft Technology Licensing, Llc Reduced size inverse transform for decoding and encoding
US10200719B2 (en) * 2015-11-25 2019-02-05 Qualcomm Incorporated Modification of transform coefficients for non-square transform units in video coding
CN113411580B (zh) * 2016-05-13 2024-01-30 夏普株式会社 图像解码装置及其方法、图像编码装置及其方法
JP6868785B2 (ja) * 2016-05-13 2021-05-12 ソニーグループ株式会社 画像処理装置および方法
US11758136B2 (en) * 2016-06-24 2023-09-12 Electronics And Telecommunications Research Institute Method and apparatus for transform-based image encoding/decoding
US10972733B2 (en) * 2016-07-15 2021-04-06 Qualcomm Incorporated Look-up table for enhanced multiple transform
US10848788B2 (en) * 2017-01-06 2020-11-24 Qualcomm Incorporated Multi-type-tree framework for video coding
US10855997B2 (en) 2017-04-14 2020-12-01 Mediatek Inc. Secondary transform kernel size selection
CN116055721A (zh) * 2017-07-28 2023-05-02 松下电器(美国)知识产权公司 编码装置和编码方法
EP4307676A3 (en) * 2017-12-21 2024-03-13 LG Electronics Inc. Method for coding image on basis of selective transform and device therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170094313A1 (en) 2015-09-29 2017-03-30 Qualcomm Incorporated Non-separable secondary transform for video coding

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEN, Jianle et al., "Algorithm Description of Joint Exploration Test Model 3", JVET-C1001, ver3. 2016-06-01.

Also Published As

Publication number Publication date
JP2024026721A (ja) 2024-02-28
BR122021019694B1 (pt) 2022-05-17
US11184618B2 (en) 2021-11-23
CN115834876A (zh) 2023-03-21
BR122021019719B1 (pt) 2022-05-24
KR20200084354A (ko) 2020-07-10
MX2020006623A (es) 2020-09-14
EP3716631A1 (en) 2020-09-30
BR122021019687B1 (pt) 2022-05-17
CN115941940A (zh) 2023-04-07
CN111615830A (zh) 2020-09-01
BR122021019686B1 (pt) 2022-05-24
CN115767086A (zh) 2023-03-07
BR112020012643B1 (pt) 2022-05-17
JP7214820B2 (ja) 2023-01-30
BR112020012643A2 (pt) 2020-12-01
JP7420982B2 (ja) 2024-01-23
JP2021507634A (ja) 2021-02-22
JP2022036081A (ja) 2022-03-04
US20200322611A1 (en) 2020-10-08
US20230224467A1 (en) 2023-07-13
WO2019125035A1 (ko) 2019-06-27
US20210360254A1 (en) 2021-11-18
CN111615830B (zh) 2022-12-09
EP3716631A4 (en) 2020-09-30
KR20230161537A (ko) 2023-11-27
JP2023033549A (ja) 2023-03-10
US11647199B2 (en) 2023-05-09
EP4307676A3 (en) 2024-03-13
CN115776572A (zh) 2023-03-10
EP4307676A2 (en) 2024-01-17
KR102489149B1 (ko) 2023-01-17
KR20230010067A (ko) 2023-01-17
JP6980920B2 (ja) 2021-12-15

Similar Documents

Publication Publication Date Title
KR102622465B1 (ko) 영상 코딩 시스템에서 인트라 예측에 따른 영상 디코딩 방법 및 장치
KR102604680B1 (ko) 선택적 변환에 기반한 영상 코딩 방법 및 그 장치
KR102605673B1 (ko) 비분리 2차 변환에 기반한 영상 코딩 방법 및 그 장치
KR102602614B1 (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
US20170099502A1 (en) Method and apparatus for encoding/decoding image
KR20210133301A (ko) 변환에 기반한 영상 코딩 방법 및 그 장치
KR20210133299A (ko) Bdpcm에 기반한 영상 코딩 방법 및 그 장치
KR20210089171A (ko) 이차 변환에 기반한 영상 코딩 방법 및 그 장치
KR20210093892A (ko) 이차 변환에 기반한 영상 코딩 방법 및 그 장치
KR20210079377A (ko) 이차 변환에 기반한 영상 코딩 방법 및 그 장치
JP2023112077A (ja) 変換カーネルセットに関する情報に対するコーディング
KR20200047723A (ko) 영상 코딩 시스템에서 블록 사이즈에 따른 변환을 사용하는 영상 디코딩 방법 및 그 장치
KR20210079379A (ko) 이차 변환에 기반한 영상 코딩 방법 및 그 장치
KR20210095138A (ko) 이차 변환에 기반한 영상 코딩 방법 및 그 장치
KR20210080557A (ko) 이차 변환에 기반한 영상 코딩 방법 및 그 장치
KR20210093891A (ko) 이차 변환에 기반한 영상 코딩 방법 및 그 장치
KR20230012526A (ko) 영상 코딩 방법 및 그 장치
KR20230012534A (ko) 영상 코딩 방법 및 그 장치

Legal Events

Date Code Title Description
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant