KR102597907B1 - Primer set for detecting bifidobacterium and use thereof - Google Patents

Primer set for detecting bifidobacterium and use thereof Download PDF

Info

Publication number
KR102597907B1
KR102597907B1 KR1020210107487A KR20210107487A KR102597907B1 KR 102597907 B1 KR102597907 B1 KR 102597907B1 KR 1020210107487 A KR1020210107487 A KR 1020210107487A KR 20210107487 A KR20210107487 A KR 20210107487A KR 102597907 B1 KR102597907 B1 KR 102597907B1
Authority
KR
South Korea
Prior art keywords
region
rrna
candidate
bifidobacterium
complete genome
Prior art date
Application number
KR1020210107487A
Other languages
Korean (ko)
Other versions
KR20230025223A (en
Inventor
한규동
문세영
안용주
오윤석
이동걸
정진욱
Original Assignee
단국대학교 천안캠퍼스 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 단국대학교 천안캠퍼스 산학협력단 filed Critical 단국대학교 천안캠퍼스 산학협력단
Priority to KR1020210107487A priority Critical patent/KR102597907B1/en
Publication of KR20230025223A publication Critical patent/KR20230025223A/en
Application granted granted Critical
Publication of KR102597907B1 publication Critical patent/KR102597907B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 장내 비피더스 속 균주의 정확한 정량을 위한 qPCR 전용 프라이머 세트 및 이의용도에 관한 것이다. 본 발명의 프라이머 세트를 이용하여 비피더스 속 균주를 판별하는 경우, 기존 16S 리보좀 RNA 유전자를 이용한 NGS 방법보다 간편, 정확 및 경제성이 높게 비피더스 속 균주를 구별해낼 수 있다.The present invention relates to a qPCR-specific primer set and its use for accurate quantification of intestinal Bifidus strains. When identifying Bifidus strains using the primer set of the present invention, Bifidus strains can be distinguished more simply, accurately, and economically than the NGS method using the existing 16S ribosomal RNA gene.

Description

비피더스 균주의 정량을 위한 프라이머 세트 및 이의 용도{PRIMER SET FOR DETECTING BIFIDOBACTERIUM AND USE THEREOF}Primer set for quantification of Bifidus strains and use thereof {PRIMER SET FOR DETECTING BIFIDOBACTERIUM AND USE THEREOF}

본 발명은 장내 비피던스 균의 정확한 정량을 위한 qPCR 전용 프라이머 세트 및 이의용도에 관한 것이다.The present invention relates to a qPCR-specific primer set for accurate quantification of intestinal bifidance bacteria and its use.

현재 비피더스라고 불리는 비피도박테리움(Bifidobacterium)에 대한 새로운 인식과 중요성이 대두되고 있다. 비피도박테리움은 모유영양아의 장관뿐만 아니라 건강한 성인의 장내 균총에서도 우점 종으로써 분변 미생물중 약 25%를 점유한다. Currently, new awareness and importance of Bifidobacterium, also known as Bifidus, are emerging. Bifidobacterium is a dominant species not only in the intestinal tract of breastfed infants but also in the intestinal flora of healthy adults, accounting for approximately 25% of fecal microorganisms.

비피도박테리움은 혐기성균으로 그람 양성의 무포아성의 간균이고, 특유의 V자 혹은 Y자의 형태를 나타내며 생균 적온은 36~38도이다. 이들 균은 3:2의 비율로 acetic acid와 lactic acid를 생성하는 hetero-fermentation을 행하며, 당대사과정에서 gas의 생성이 없는 특징을 지닌다. 특히 다른 유산균들과 달리 인체 내에서 쉽게 흡수되는 L(+)-lactic acid 만을 특이적으로 생성함으로써 유아 산독증 등을 유발시키지 않는다. 또한 비피도 박테리움 균은 체내로 섭취되어 소화관을 통과하는 도중에 장관 내에 정착함으로써 기존에 서식하고 있는 다양한 장내 세균 균총에 상호 영향을 주게 되어 사람의 영양, 노화, 발암, 면역기능, 장관 감염 및 약물효과 등의 효과뿐만 아니라, 장내 부패 세균의 증식을 억제하고 단백질의 분해나 다른 유해세균에 의해 생성되는 nitrosoamine 등의 독성물질을 무독화 시키며 비타민류의 합성, phospatase의 작용에 의한 유당 및 단백질의 소화 증진, Ca의 체내 흡수 촉진, 혈중 cholesterol의 감소효과와 항암작용 등 많은 유익한 작용을 하는 것으로 알려져 비피도박테리움 균의 건강 기대효과가 각광을 받게 되었다. 따라서 현재 비피도박테리움을 이용한 yogurt, cheese 등의 유제품 및 생균제제의 시장규모가 급속도로 확대되고 있는 추세이다. 우리나라의 경우에도 비피도박테리움을 포함하는 기능성식품, 건강보조제 혹은 정장제 등이 발매되고 있으며 인공영아의 장내 균총 정상화를 위한 분유 첨가물, 가금류 등 양식용 사료에 첨가는 생균제제로서 도 그 이용가치가 높게 평가되고 있다. 또한, 비피더스균은 장내에 존재하는 유익균중 하나로서, 비피더스균의 장내 비율에 따라 다른 임상적인 반응이 나타나기도 한다. Bifidobacterium is an anaerobic, gram-positive, non-porous bacillus, has a characteristic V- or Y-shape, and the optimum temperature for viable cells is 36 to 38 degrees. These bacteria perform hetero-fermentation, producing acetic acid and lactic acid in a ratio of 3:2, and have the characteristic of not producing gas during sugar metabolism. In particular, unlike other lactic acid bacteria, it does not cause acidosis in infants by specifically producing L(+)-lactic acid, which is easily absorbed in the human body. In addition, Bifidobacterium bacteria are ingested into the body and settle in the intestinal tract while passing through the digestive tract, thereby influencing the various existing intestinal bacterial flora, affecting human nutrition, aging, carcinogenesis, immune function, intestinal infections, and drugs. In addition to its effectiveness, it inhibits the growth of intestinal putrefactive bacteria, detoxifies toxic substances such as nitrosoamine produced by protein decomposition and other harmful bacteria, synthesizes vitamins, and digests lactose and proteins through the action of phospatase. The expected health effects of Bifidobacterium bacteria have come into the spotlight as they are known to have many beneficial effects, such as promoting the absorption of Ca in the body, reducing blood cholesterol, and anti-cancer effects. Therefore, the current market size for dairy products such as yogurt and cheese using Bifidobacterium and probiotics is rapidly expanding. In Korea, functional foods, health supplements, or intestinal supplements containing Bifidobacterium are on the market, and its use as a probiotic is also valuable as an additive to powdered milk to normalize the intestinal flora of artificial infants and as a probiotic when added to aquaculture feeds such as poultry. It is highly regarded. In addition, bifidobacteria are one of the beneficial bacteria present in the intestines, and different clinical responses may appear depending on the proportion of bifidobacteria in the intestine.

한편, 차세대염기서열분석(Next-generation sequencing; NGS)은 규명하고자 하는 유전체 또는 유전자 집단의 염기서열 판독 데이터에 대하여 고출력이 가능한 기술이다. 본 기술은 다양한 생물 종의 전장 유전체 판독부터 특정 조직에서 발현되는 유전자의 빈도수를 규명하기까지 다양한 분자 유전학적 연구분야의 발전을 이끌었다. 이와 동시에, NGS의 도입은 미생물 연구분야에도 큰 변화를 가져왔다. 기존 미생물 연구에서 미생물 동정은 배양에 의존적인 균에 대하여 생어 시퀀싱을 통한 16S 동정에 그쳤다. 하지만, NGS 기술의 도입으로 시료 내 존재하는 모든 미생물에 대한 분류가 가능해 지면서 기존에 알지 못하던 난배양성 미생물에 대한 동정 이 가능하게 되었다. 상기한 바와 같이, NGS 기술을 기반으로 주어진 환경 내 존재하는 모든 미생물 유전체 집단을 규명하는 것을 '메타지놈 프로파일링(metagenome profiling)'이라고 한다. 메타지놈 프로파일링에 사용되는 가장 대중적인 방법으로, 모든 세균의 유전체상에 공통적으로 보존되어있는 16S ribiosomal RNA gene 일부 염기서열 정보를 판독하여 미생물 커뮤니티를 분석하는 방법을 들 수 있다. 상기 유전자 내에는 종마다 차이를 보이는 염기서열 영역인 '초 가변부위 영역(variable region)'이 존재한다. 따라서, NGS 기반 16S 메타지놈 프로파일링은 이 가변부위 영역을 판독하여 미생물 군집을 규명하는 것이다. 그러나, NGS의 발전은 다양한 미생물학 연구에 발전을 이끌어 왔지만 여전히 실험 및 분석에 있어 고가의 비용이 요구되며 결과 도출까지의 상당한 시간이 소모된다는 단점을 가지고 있다. 또한, 16S rRNA유전자 내 존재하는 종간의 높은 염기서열 유사성으로 인해 종(species)수준에서의 정확한 균주 표적이 어렵다는 치명적인 연구 장벽이 있다. 이러한 어려움을 극복하기위해, NGS를 기반으로 규명된 특정 프로바이오틱스 균주만을 탐지하여 상대적인 빈도수를 빠른 시간 내 확인할 수 있는 실시간 유전자 증폭 장치(quantitative real-time PCR)를 이용하려는 접근이 행해지고 있다.Meanwhile, next-generation sequencing (NGS) is a technology that enables high output of base sequence read data of the genome or gene group to be identified. This technology has led to the development of various molecular genetic research fields, from reading the entire genome of various biological species to identifying the frequency of genes expressed in specific tissues. At the same time, the introduction of NGS brought about significant changes in the field of microbiology research. In existing microbial research, microbial identification was limited to 16S identification through Sanger sequencing for culture-dependent bacteria. However, with the introduction of NGS technology, classification of all microorganisms present in a sample became possible, making it possible to identify previously unknown egg-bearing microorganisms. As mentioned above, identifying all microbial genome groups existing in a given environment based on NGS technology is called 'metagenome profiling'. The most popular method used in metagenomic profiling is the method of analyzing microbial communities by reading partial sequence information of the 16S ribiosomal RNA gene, which is commonly conserved in the genomes of all bacteria. Within the gene, there is a 'hypervariable region', which is a base sequence region that differs from species to species. Therefore, NGS-based 16S metagenomic profiling identifies microbial communities by reading this variable region. However, although the development of NGS has led to advancements in various microbiology research, it still has the disadvantage of requiring high costs for experimentation and analysis and a considerable amount of time to obtain results. In addition, there is a critical research barrier in that it is difficult to accurately target strains at the species level due to the high base sequence similarity between species within the 16S rRNA gene. To overcome these difficulties, an approach is being taken to use a real-time gene amplification device (quantitative real-time PCR) that can detect only specific probiotic strains identified based on NGS and confirm their relative frequencies in a short time.

qRT-PCR은 특정 표적 유전자에 대한 중합연쇄반응을 실시간으로 모니터링할 수 있는 2세대 유전자 증폭 장치다. qRT-PCR은 샘플 내 존재하는 표적 유전자에 대한 상대적 혹은 절대적인 정량을 목적으로 할 때 주로 이용된다. 최근, COVID-19의 원인이 되는 코로나바이러스에 대한 분자적 진단 역시 특이적 프라이머를 이용한 qRT-PCR 진단이 최적의 기준(gold standard)으로 인정 받을 정도로 장비의 측광 민감도 및 정확성이 높은 것을 알 수 있다. 또한, 미생물 연구분야에서도 qRT-PCR은 배양이 어려운 미생물 균주에 대하여 16S rRNA 유전자 영역이 아닌 균주가 보유한 특정 단백질 코딩 영역을 대상으로 프라이머를 제작하여 존재를 확인하는데 사용되고 있다. 예를 들어, 세균 세포벽 형성에 반드시 필수적인 단백질에 대한 특정 세균 종이 보유한 유전자 코딩 영역에 프라이머를 디자인하는 것이다. 이러한 접근 방법은 NGS가 지닌 시간적, 금전적인 비용부담을 줄일 수 있고, 장비의 높은 민감도와 16S rRNA 유전자가 지닌 염기서열 유사성 문제를 회피할 수 있는 정확한 균주 표적의 이점이 될 수 있다. qRT-PCR is a second-generation gene amplification device that can monitor the polymerization chain reaction for a specific target gene in real time. qRT-PCR is mainly used for the purpose of relative or absolute quantification of target genes present in a sample. Recently, the photometric sensitivity and accuracy of the equipment are so high that qRT-PCR diagnosis using specific primers is recognized as the gold standard for molecular diagnosis of the coronavirus that causes COVID-19. . In addition, in the field of microbiology research, qRT-PCR is used to confirm the presence of microbial strains that are difficult to culture by producing primers targeting the specific protein coding region possessed by the strain rather than the 16S rRNA gene region. For example, designing primers in the gene coding region of a specific bacterial species for a protein essential for bacterial cell wall formation. This approach can reduce the time and financial cost burden of NGS and has the advantage of high sensitivity of the equipment and accurate strain targeting that can avoid the nucleotide sequence similarity problem of the 16S rRNA gene.

따라서, 본 발명은 기존의 문제점을 극복하기 위하여, NGS 기반 16S 메타지놈 분석기술을 통해 분류되는 비피더스 속 균주에 대하여 16S rRNA 영역이 아닌 특정 단백질 코딩 영역에 qRT-PCR전용 프라이머를 디자인하여 qRT-PCR 분석으로 비피더스 속 균주의 장내 존재 여부를 확인할 수 있는 접근 방법을 제공한다.Therefore, in order to overcome the existing problems, the present invention designs qRT-PCR-specific primers in the specific protein coding region rather than the 16S rRNA region for strains of the genus Bifidus classified through NGS-based 16S metagenomic analysis technology. The analysis provides an approach to confirm the presence or absence of Bifidus strains in the intestine.

본 발명의 목적은 서열번호 1로 표시되는 프라이머; 및 서열번호 2로 표시되는 프라이머를 포함하는 장내 서식 미생물의 검출을 위한 프라이머 세트를 제공함에 있다.The object of the present invention is a primer represented by SEQ ID NO: 1; and a primer set for detection of intestinal microorganisms, including the primer represented by SEQ ID NO: 2.

또한, 본 발명의 다른 목적은 상기 프라이머 세트를 포함하는 장내 서식 미생물의 검출 또는 정량용 조성물을 제공함에 있다.In addition, another object of the present invention is to provide a composition for detecting or quantifying intestinal microorganisms comprising the primer set.

또한, 본 발명의 또 다른 목적은 프라이머 세트를 포함하는 장내 서식 미생물의 검출 또는 정량용 키트를 제공함에 있다.In addition, another object of the present invention is to provide a kit for detecting or quantifying intestinal microorganisms including a primer set.

또한, 본 발명의 또 다른 목적은 시료에 상기 프라이머 세트를 이용하여 중합효소연쇄반응을 수행하고 분석하는 단계를 포함하는 장내 서식 미생물의 검출 또는 정량방법을 제공함에 있다.In addition, another object of the present invention is to provide a method for detecting or quantifying microorganisms inhabiting the intestines, which includes performing and analyzing a polymerase chain reaction on a sample using the primer set.

따라서, 본 발명은 서열번호 1로 표시되는 프라이머; 및 서열번호 2로 표시되는 프라이머를 포함하는 장내 서식 미생물의 검출을 위한 프라이머 세트를 제공한다.Therefore, the present invention provides a primer represented by SEQ ID NO: 1; and a primer set for detection of intestinal microorganisms, including the primer represented by SEQ ID NO: 2.

또한, 본 발명은 상기 프라이머 세트를 포함하는 장내 서식 미생물의 검출 또는 정량용 조성물을 제공한다.Additionally, the present invention provides a composition for detecting or quantifying intestinal microorganisms comprising the primer set.

또한, 본 발명은 상기 프라이머 세트를 포함하는 장내 서식 미생물의 검출 또는 정량용 키트를 제공한다.Additionally, the present invention provides a kit for detecting or quantifying intestinal microorganisms including the primer set.

또한, 본 발명은 시료에 상기 프라이머 세트를 이용하여 중합효소연쇄반응을 수행하고 분석하는 단계를 포함하는 장내 서식 미생물의 검출 또는 정량방법을 제공한다.In addition, the present invention provides a method for detecting or quantifying microorganisms inhabiting the intestines, comprising performing and analyzing a polymerase chain reaction on a sample using the primer set.

본 발명의 프라이머 세트를 이용하여 비피더스 속 균주를 판별하는 경우, 기존 16S 리보좀 RNA 유전자를 이용한 NGS 방법보다 간편, 정확 및 경제성이 높게 장내 서식하는 비피더스 속 균주를 구별해낼 수 있다.When identifying Bifidus strains using the primer set of the present invention, Bifidus strains living in the intestine can be distinguished more simply, accurately, and economically than the NGS method using the existing 16S ribosomal RNA gene.

도 1은 본 발명의 비피더스 속 균주 검출을 위한 전체적인 실험 모식도이다.
도 2는 본 발명의 프라이머 세트에 대한 비피더스 속 균주 특이성을 증명하는 in silico 검정 결과를 나타낸 도이다.
도 3은 본 발명의 프라이머 세트를 이용한 qPCR 방법 및 NGS를 이용한 방법의 비피더스 속 균주 검출 및 정량의 효과를 비교한 도이다.
Figure 1 is an overall experimental schematic diagram for detecting Bifidus strains of the present invention.
Figure 2 is a diagram showing the results of an in silico test demonstrating the specificity of the primer set of the present invention to Bifidus strains.
Figure 3 is a diagram comparing the effectiveness of detection and quantification of Bifidus strains of the qPCR method using the primer set of the present invention and the method using NGS.

이하, 본 발명의 일 실시예에 따른 비피더스 속 균주를 검출하기 위한 프라이머 세트, 이를 포함하는 조성물 및 키트에 대하여 상세하게 설명한다.Hereinafter, a primer set for detecting Bifidus strains according to an embodiment of the present invention, a composition containing the same, and a kit will be described in detail.

이하, 본 발명에서 사용된 용어를 정의한다.Hereinafter, terms used in the present invention are defined.

본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 본 명세서에서 사용된 “및/또는”은 언급된 구성요소의 각각 및 하나 이상의 모든 조합을 포함한다.The terminology used herein is for describing embodiments and is not intended to limit the invention. As used herein, singular forms also include plural forms, unless specifically stated otherwise in the context. As used herein, “and/or” includes each and all combinations of one or more of the mentioned elements.

본 명세서에서 사용된 용어 “포함한다(comprises)” 및/또는 “포함하는(comprising)”은 언급된 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.As used herein, the terms “comprises” and/or “comprising” mean that a referenced component, step, operation and/or element is one or more other components, steps, operations and/or elements. does not exclude the presence or addition of

본 발명에서의 용어, "마이크로바이옴(Microbiome)"은 인체에 서식하는 미생물로서 장내 미생물 자체 또는 장내 미생물의 유전정보 전체를 말한다.In the present invention, the term "microbiome" refers to microorganisms that inhabit the human body and refers to the intestinal microorganisms themselves or the entire genetic information of the intestinal microorganisms.

또한, 본 명세서에서 사용된 용어 “판별”은 시료로부터, 본 발명의 프라이머 세트에 의해 비피더스 속 균주를 다른 균주로 부터 구별하는 것을 의미한다.Additionally, the term “discrimination” used herein means distinguishing a Bifidus genus strain from other strains from a sample using the primer set of the present invention.

또한, 본 명세서에서 사용된 용어“프라이머”는 카피하려는 핵산 가닥에 상보적인 단일 가닥 올리고뉴클레오티드 서열을 말하며, 프라이머 연장 산물의 합성을 위한 개시점으로 작용한다. 상기 프라이머의 길이 및 서열은 연장 산물의 합성을 시작하도록 허용해야 하며, 프라이머의 구체적인 길이 및 서열은 요구되는 DNA 또는 RNA 표적의 복합도(complexity)뿐만 아니라 온도 및 이온 강도와 같은 프라이머 이용 조건에 의존할 것이다.Additionally, the term “primer” used herein refers to a single-stranded oligonucleotide sequence complementary to the nucleic acid strand to be copied, and serves as a starting point for the synthesis of the primer extension product. The length and sequence of the primers should be sufficient to initiate synthesis of the extension product, and the specific length and sequence of the primers will depend on the conditions of primer use, such as temperature and ionic strength, as well as the complexity of the desired DNA or RNA target. something to do.

본 발명의 프라이머 세트는 장내 서식 균주에 특이적으로 존재하는 유전자를 증폭을 위하여 각각 정방향(forward) 및 역방향(reverse) 프라이머로 구성되어 있다. 본 발명의 프라이머 세트는 프라이머의 길이, Tm 값, 프라이머의 GC 함량, 및 프라이머 내의 자가-상보적 서열에 의한 프라이머의 복합체(dimer) 형성 방지와 같은 조건들을 충분히 고려하고, 장내 서식 균주의 검출에 대한 민감도 및 특이도를 최대화할 수 있도록 세심하게 디자인된 것이다. 본 발명의 프라이머 세트는 포스포아미다이트(phosphoramidite) 고체 지지체 합성법이나 기타 널리 공지된 방법을 이용하여 화학적으로 합성할 수 있다. 이러한 염기서열은 또한 당해 기술분야에 공지된 다양한 방법을 통해 변형시킬 수 있다. 이러한 변형의 예로는 메틸화, 캡화, 천연 뉴클레오티드 하나 이상의 동족체로의 치환 및 뉴클레오티드 간의 변형, 예를 들면 하전되지 않은 연결체(예: 메틸 포스포네이트, 포스포트리에스테르, 포스포로아미데이트, 카바메이트 등) 또는 하전된 연결체(예: 포스포로티오에이트, 포스포티오에이트 등)로의 변형이 있다. 또한, 본 발명의 프라이머 세트의 염기서열은 검출 가능한 시그날을 직접적 또는 간접적으로 제공할수 있는 표지를 이용하여 변형시킬 수 있다. 본 발명의 프로브는 프로브의 말단에 형광물질로 표지될 수 있다. 프로브의 5'-말단에는 형광 표지인자(reporter dye)가 결합될 수 있고, 3'-말단에는 형광 억제물질(quencher)이 결합될 수 있다. 상기 형광 표지인자로는 현재까지 개발된 어떠한 물질을 사용하여도 무방하며, 예를 들어, FAM(6-carboxyfluorescein), HEX(hexachloro-6-carboxyfluorescein), TET(tetrachlorofluorescein), 텍사스 레드(texas red), 로다민 그린(rhodamine green), 로다민 레드(rhodamine red), 테트라메틸로다민(tetramethylrhodamine), NED(N-(1-naphthyl) ethylenediamine), Cy5(cyanine-5) 또는 Cy3(cyanine-3)이 사용될 수 있고, 바람직하게는 FAM(6-carboxyfluorescein)을 사용할 수 있다.The primer set of the present invention consists of forward and reverse primers to amplify genes specifically present in intestinal strains. The primer set of the present invention sufficiently considers conditions such as primer length, Tm value, GC content of the primer, and prevention of primer complex (dimer) formation by self-complementary sequences in the primer, and is used for detection of intestinal strains. It was carefully designed to maximize sensitivity and specificity. The primer set of the present invention can be chemically synthesized using phosphoramidite solid support synthesis or other well-known methods. These base sequences can also be modified through various methods known in the art. Examples of such modifications include methylation, capping, substitution of a native nucleotide with one or more homologs, and modifications between nucleotides, such as uncharged linkages (e.g., methyl phosphonates, phosphotriesters, phosphoroamidates, carbamates, etc.) ) or modifications to charged linkages (e.g. phosphorothioate, phosphothioate, etc.). Additionally, the base sequence of the primer set of the present invention can be modified using a label that can directly or indirectly provide a detectable signal. The probe of the present invention may be labeled with a fluorescent substance at the end of the probe. A fluorescent reporter dye may be bound to the 5'-end of the probe, and a fluorescence quencher may be bound to the 3'-end. Any material developed to date may be used as the fluorescent marker, for example, FAM (6-carboxyfluorescein), HEX (hexachloro-6-carboxyfluorescein), TET (tetrachlorofluorescein), and Texas Red. , rhodamine green, rhodamine red, tetramethylrhodamine, N-(1-naphthyl) ethylenediamine (NED), cyanine-5 (Cy5) or cyanine-3 (Cy3). can be used, preferably FAM (6-carboxyfluorescein).

상기 형광 억제물질로는 TAMRA(6-carboxytetramethylrhodamine), BHQ1(black hole quencher 1), BHQ2(blackhole quencher 2), BHQ3(black hole quencher 3), DDQ(Deep Dark Quencher), 블랙베리 퀸처(Blackberry Quencher) 또는 아이오와 블랙(Iowa black)이 사용될 수 있고, 바람직하게는 TAMRA(6-carboxytetramethylrhodamine)를 사용할 수 있다.The fluorescence suppressors include TAMRA (6-carboxytetramethylrhodamine), BHQ1 (black hole quencher 1), BHQ2 (black hole quencher 2), BHQ3 (black hole quencher 3), DDQ (Deep Dark Quencher), and Blackberry Quencher. Alternatively, Iowa black may be used, and preferably TAMRA (6-carboxytetramethylrhodamine) may be used.

본 발명에서 중합효소연쇄반응은 (i) 초기 변성(denaturation) 단계; (ii) 변성(denaturation), 어닐링(annealing) 및 연장(extension)으로 이루어지는 한 싸이클을 수회 내지 수십 회 반복하는 단계; 및 (iii) 최종 열처리 단계; 또는 이들 단계을 적합하게 변형한 열 싸이클(thermal cycle) 프로그램을 통해 수행될 수 있다.구체적으로, 본 발명에서의 PCR 조건으로는 90~95℃에서 5~20분간 열처리하여 초기 변성시킨 후, 90~95℃에서 10초~2분간 변성 단계(denaturation); 54~60℃(Tm)에서 10초~2분간 어닐링 단계(annealing); 및 70~75℃에서 10초~2분간 합성 단계(extension)를 총 10~50회 반복하여 PCR 증폭을 실시할 수 있으며, 상기 반응 온도 및 반응 시간 조건은 당업자가 적절하게 변형하여 수행할 수 있다.In the present invention, the polymerase chain reaction includes (i) an initial denaturation step; (ii) repeating one cycle of denaturation, annealing, and extension several to dozens of times; and (iii) a final heat treatment step; Alternatively, these steps may be performed through an appropriately modified thermal cycle program. Specifically, the PCR conditions in the present invention include initial denaturation by heat treatment at 90-95°C for 5-20 minutes, and then 90-95°C. Denaturation at 95°C for 10 seconds to 2 minutes; Annealing at 54-60°C (Tm) for 10 seconds to 2 minutes; And PCR amplification can be performed by repeating the synthesis step (extension) a total of 10 to 50 times for 10 seconds to 2 minutes at 70 to 75°C, and the reaction temperature and reaction time conditions can be appropriately modified by those skilled in the art. .

본 발명에서 PCR 증폭 산물의 크기의 분석은 당업계에 알려진 임의의 방법이 사용될 수 있다. 예를 들면, 아가로즈 또는 폴리아크릴아미드 젤 전기영동에 의하여 표적 크기 마커와의 비교를 통하여 증폭 산물의 크기를 알 수 있다.In the present invention, any method known in the art can be used to analyze the size of the PCR amplification product. For example, the size of the amplification product can be determined through comparison with a target size marker using agarose or polyacrylamide gel electrophoresis.

본 발명에서 실시간 중합효소연쇄반응은 타겟 DNA의 증폭과 동시에 형광 방출에 의한 타겟 DNA의 절대 또는 상대적인 정량이 가능한 실험방법으로서, 전기영동하여 분석하는 단계가 생략되고, 증폭산물의 증폭정도를 자동화, 수치화시켜 신속하고 정확하게 검출 및 정량이 가능하다. 상기 방법을 수행하는 경우 타겟 DNA 내의 증폭된 서열에 특이적으로 결합하고 형광 표지인자 및 형광 억제물질이 태깅되어 있는 프로브를 사용하여 수행될 수 있고, 프로브의 사용없이 SYBR-Green 등의 형광물질을 사용하여 수행될 수도 있다. 실시간 중합효소연쇄반응에 대한 결과는 Ct(cycle threshold) 값을 이용하여 분석될 수 있다.In the present invention, real-time polymerase chain reaction is an experimental method that allows absolute or relative quantification of target DNA by fluorescence emission simultaneously with amplification of the target DNA. The step of electrophoresis and analysis is omitted, and the degree of amplification of the amplification product is automated. By quantifying it, it is possible to detect and quantify it quickly and accurately. When performing the above method, it can be performed using a probe that specifically binds to the amplified sequence in the target DNA and is tagged with a fluorescent marker and a fluorescent suppressor, and can be performed using a fluorescent substance such as SYBR-Green without the use of a probe. It can also be performed using The results of real-time polymerase chain reaction can be analyzed using Ct (cycle threshold) values.

이 하, 실시예에 의하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

실시예 1. 본 발명의 프라이머 세트 제조Example 1. Preparation of primer set of the present invention

Google/NAVER 등 여러 웹 사이트를 통하여 찾고자 하는 속(Genus)과 관련하여 메타지놈 관련 연구 내용이 담긴 논문을 조사하여 후보유전자를 선정하였다.Candidate genes were selected by searching papers containing metagenome-related research related to the genus to be searched through various websites such as Google/NAVER.

이 후, 선정한 유전자 리스트에 대해서 NCBI 홈페이지에서 'identical protein' category에서 유전자 이름과 속 이름(genus name)을 조사하였고, 나열된 유전자 리스트에 대하여 summary file을 전부 다운 받고, 엑셀파일로 정리하였다.Afterwards, for the selected gene list, we searched the gene name and genus name in the 'identical protein' category on the NCBI website, downloaded all summary files for the listed gene list, and organized them into an Excel file.

이 후, Hypothetical protein 또는 잘못된 단백질 명칭, 박테리아 명칭은 삭제하고, 필터링을 거친 후, 속에 대한 종의 정보가 100개가 넘어갈 경우에는 종에 대한 균주수를 2 내지 5개로 설정하였다. 필터링이 다 끝난 후, summary file의 Protein이라는 행의 Protein ID를 텍스트 파일로 붙여 넣고 저장하였다. 이 후, 'Bio edit' tool을 이용하여 내려 받은 CDS 서열을 불러온 뒤, 서열에 대한 정보를 아미노산 형식으로 전환하고, Clustal multiple alignment를 진행 한 후, 서열 형식으로 전환하였다. Alignment가 끝난 뒤, 전혀 다른 단백질로 보이거나, 상관성이 없는 서열은 제거하여, 다시 alignment를 진행하였다. Alignment가 끝난 후, 서열간 보존된 서열 영역 내에서 real-time PCR을 위한 조건에 맞는 프라이머를 도출하였다. 이 후, 디자인한 프라이머에 대해서 'Oligo calc' , 'Oligo Analysis' tool 을 이용하여 프라이머가 적합한지에 대하여 확인하였다. 이 후, NCBI Nucleotide BLAST test를 통해 다른 박테리아의 서열과 겹치는 곳이 있는지를 먼저 확인 하였고, 그 다음 'In silico (http://insilico.ehu.es/PCR/)' 라는 tool로 확인한 후, 프라이머 세트를 제작하여 이의 정보를 표 1에 나타내었다(도 1 및 도 2 참조). Afterwards, hypothetical proteins, incorrect protein names, and bacterial names were deleted, and after filtering, if the information on the species for the genus exceeded 100, the number of strains for the species was set to 2 to 5. After filtering was completed, the Protein ID in the row called Protein in the summary file was pasted into a text file and saved. Afterwards, the downloaded CDS sequence was imported using the 'Bio edit' tool, the sequence information was converted to amino acid format, Clustal multiple alignment was performed, and then converted to sequence format. After alignment was completed, sequences that appeared to be completely different proteins or had no correlation were removed and alignment was performed again. After alignment, primers meeting the conditions for real-time PCR were derived within the conserved sequence region. Afterwards, the suitability of the designed primer was checked using the 'Oligo calc' and 'Oligo Analysis' tools. After this, we first checked whether there was any overlap with the sequences of other bacteria through the NCBI Nucleotide BLAST test, and then checked with a tool called 'In silico ( http://insilico.ehu.es/PCR/ )', and then used primers. A set was produced and its information is shown in Table 1 (see Figures 1 and 2).

Bacterial taxonBacterial taxon RankRank Target geneTarget gene Foward primer (5'-3')Forward primer (5'-3') Reverse primer (5'-3')Reverse primer (5'-3') Tm ℃Tm℃ GC %GC%
(F/R)(F/R)
Amplicon Size (bp)Amplicon Size (bp)
BifidobacteriumBifidobacterium GenusGenus Transaldolase Transaldolase AAGGGCATCTCCGTCAACGAAGGGCATCTCCGTCAACG GGAGACGAAGAAGGAAGCGAGGAGACGAAGAAGGAAGCGA 59.5/60.559.5/60.5 58/5558/55 146146

실시예 2. 본 발명의 프라이머 세트를 이용하여 인간분변으로부터 비피더스 속 검출 확인Example 2. Confirmation of detection of Bifidus genus from human feces using the primer set of the present invention

실시예 1에서 도출한 프라이머 세트의 장내 비피더스 속 균주의 검출의 효과를 확인하기 위하여, 하기의 실험을 수행하였다. In order to confirm the effectiveness of the primer set derived in Example 1 in detecting intestinal Bifidus strains, the following experiment was performed.

먼저, 10명의 인간 분변으로부터 미생물 전장 유전체를 추출하였다. 시중에 제공되는 QIAGEN사의 미생물 유전체 추출 전용키트를 사용하여 마이크로바이옴의 DNA를 추출한 후, 추출된 DNA 수율과 퀄리티를 확인하였다(ThermoFisher사에서 제공되는 Qubit assay 장비 사용). 이 후, 각 DNA 시료의 이중가닥 DNA 농도를 10ng/ul로 희석시켜 표준화 시킨 후, 표준화된 마이크로바이옴의 DNA로부터 비 속 균주 특이적 프라이머를 사용한 실시간 유전자 증폭을 실시하였고, 이의 결과를 확인하였다(PCR 조성: Template DNA(microbial genomic DNA; 10ng/ul)-1ul; Forward primer- 1ul, Reverse primer-1ul; SYBR Green taq pol-10ul/ D.W- 7ul). First, full-length microbial genomes were extracted from 10 human feces. After extracting the DNA of the microbiome using a commercially available microbial genome extraction kit from QIAGEN, the yield and quality of the extracted DNA were confirmed (using Qubit assay equipment provided by ThermoFisher). Afterwards, the double-stranded DNA concentration of each DNA sample was diluted and standardized to 10ng/ul, and then real-time gene amplification was performed using strain-specific primers from the standardized microbiome DNA, and the results were confirmed. (PCR composition: Template DNA (microbial genomic DNA; 10ng/ul)-1ul; Forward primer-1ul, Reverse primer-1ul; SYBR Green taq pol-10ul/ D.W- 7ul).

실시예 3. 본 발명의 프라이머세트와 16s rRNA를 타겟하는 세트와 비교Example 3. Comparison of the primer set of the present invention with the set targeting 16s rRNA

1. 건강한 사람 100명의 분변으로부터 분리된 미생물의 유전체 DNA 시료의 dsDNA 양적 표준화1. Quantitative standardization of dsDNA from microbial genomic DNA samples isolated from the feces of 100 healthy people

하기 표 2는 특정 표적 미생물 균주의 샘플 내 상대적인 빈도수를 평가하기 위해 반드시 진행되어야 하는 Bacterial genomic dsDNA quantity를 동일한 농도 조건으로 표준화시킨 것을 확인할 수 있는 qRT-PCR assay를 활용한 표준곡선 계산(standard curve calculation method)한 결과이다. 이론상으로, 모든 미생물 유전체 상에는 16S 리보좀 RNA를 코딩하고 있는 서열(약 1.5kbp)을 포함하고 있다. qRT-PCR을 진행하기 위한 실험 최적의 amplicon size가 약 100-200bp인 것을 고려하여 16S 서열상에 존재하는 4번째 초가변영역(hyper-variable region; 약 150-180bp)인 V4 region을 타겟하여 qRT-PCR을 진행하였다. 실험의 순서는 하기와 같다.Table 2 below shows standard curve calculation using qRT-PCR assay, which confirms that the bacterial genomic dsDNA quantity, which must be performed to evaluate the relative frequency in the sample of a specific target microbial strain, is standardized to the same concentration conditions. method). In theory, all microbial genomes contain a sequence (about 1.5 kbp) encoding 16S ribosomal RNA. Considering that the optimal amplicon size for qRT-PCR is about 100-200bp, qRT was performed by targeting the V4 region, the fourth hyper-variable region (about 150-180bp) present in the 16S sequence. -PCR was performed. The order of the experiment is as follows.

먼저, 다양한 균주의 DNA가 혼합된 DNA 시료의 이중가닥 DNA 양을 ThermoFisher사의 Qbit 4.0 장비를 통하여 확인하였다. 이 후, 모든 샘플의 dsDNA 농도를 희석하여 10ng/ul로 표준화하였다. 이 후, qRT-PCR을 이용한 표준곡선(Standard curve)계산을 위하여, 모든 희석된 dsDNA샘플(10ng/ul로 희석된 100개 의 시료)을 10^-1, 10^-2 및 10^-3배로 순차적으로 희석하였다. 각 희석된 샘플(순차적으로 희석된 시료 300개)을 주형 DNA로, 16S V4 region universal primer pairs(515F: 5'-GTGCCAGCMGCCGCGGTAA-3' / 806R: 5'-GGACTACHVGGGTWTCTAAT-3')를 사용하여 qRT-PCR을 진행하였다.First, the amount of double-stranded DNA in the DNA sample mixed with DNA from various strains was confirmed using ThermoFisher's Qbit 4.0 equipment. After this, the dsDNA concentration of all samples was diluted and standardized to 10ng/ul. Afterwards, for standard curve calculation using qRT-PCR, all diluted dsDNA samples (100 samples diluted to 10ng/ul) were 10^-1, 10^-2, and 10^-3. It was serially diluted in doubly. Each diluted sample (300 serially diluted samples) was used as template DNA and 16S V4 region universal primer pairs (515F: 5'-GTGCCAGCMGCCGCGGTAA-3' / 806R: 5'-GGACTACHVGGGTWTCTAAT-3') were used for qRT- PCR was performed.

2. NGS에 의하여 측정된 특이적 균주의 샘플 내 빈도와 qRT-PCR의 Ct값으로부터 계산된 동일 샘플 내 미생물 빈도의 비교2. Comparison of the frequency of specific strains in the sample measured by NGS and the frequency of microorganisms in the same sample calculated from the Ct value of qRT-PCR

Ct value로부터 특정 미생물이 차지하는 상대적 빈도를 하기와 같이 계산하였다.From the Ct value, the relative frequency of specific microorganisms was calculated as follows.

(1)relative bacterial frequency value = 1/2^(Ct value) (1)relative bacterial frequency value = 1/2^(Ct value)

(2)relative bacterial Proportion value (%) = 해당 frequency data/100개 frequency data의 합 X 100(2) relative bacterial proportion value (%) = relevant frequency data/sum of 100 frequency data

본 비교 데이터를 통해 NGS 빈도와 qPCR 빈도가 유사한 것을 확인할 수 있으며 이는 NGS를 통해 검출 및 정량화된 특정 균주가 샘플 내 차지하는 상대적 비중이 Qrt-PCR 전용 프라이머를 사용하여서도 유의하게 검출 및 정량화될 수 있다는 것을 확인 할 수 있다.Through this comparative data, it can be confirmed that the NGS frequency and qPCR frequency are similar, which means that the relative proportion of specific strains detected and quantified through NGS in the sample can be significantly detected and quantified even using Qrt-PCR dedicated primers. You can check that.

3. 본 발명의 프라이머를 이용한 경우, 균주의 특이도(specificity)를 Sanger sequencing을 통한 검증3. When using the primers of the present invention, verify the specificity of the strain through Sanger sequencing.

본 발명의 프라이머 세트를 이용하여 제작된 Qpcr amplicon product 일부를 사용하여 Sanger sequencing와 NCBI BLAST를 통해 Bacterial taxonomy identification을 진행하였다. Bacterial taxonomy identification was performed through Sanger sequencing and NCBI BLAST using part of the Qpcr amplicon product produced using the primer set of the present invention.

보다 구체적으로, Qrt-PCR에 적용된 amplicon product 일부를 정제하여 순수한 DNA를 확보하였다. Qrt-pcr product의 amplicon size는 약 100-150bp 이므로 sanger sequencing을 위한 적정 library size에 부합하였다. 따라서, M13 sequence가 포함된 TA cloning vector를 사용한 유전자 라이게이션을 통해 library 크기를 약 400bp로 확장시켰다. 이 후, CP-cell(E-coli)에 플라스미드 DNA를 형질전환 시켜준 뒤 LB배지에 도말하였다. LB배지 상에 형성된 White colony (potential transformed CP-cell)를 적출하여 Colony PCR을 진행하였다. 이때 사용된 PCR 프라이머는 M13 universal sequence를 사용하였다. 정제된 Colony PCR amplicon product를 template DNA로 사용하여 sanger sequencing을 수행하였다. 이 후, Sanger sequencing 결과 출력된 서열데이터를 사용하여 NCBI nucleotide BLAST를 통한 bacterial identification을 수행하여 타겟 균주의 속이 맞는지 규명하였다.상기 방법을 통하여, 비피더스 속 균주가 검출된 것을 확인하였다(표 3).More specifically, some of the amplicon products applied to Qrt-PCR were purified to obtain pure DNA. The amplicon size of the Qrt-pcr product was about 100-150bp, so it met the appropriate library size for sanger sequencing. Therefore, the library size was expanded to approximately 400bp through gene ligation using a TA cloning vector containing the M13 sequence. Afterwards, plasmid DNA was transformed into CP-cells (E-coli) and plated on LB medium. White colonies (potentially transformed CP-cells) formed on LB medium were extracted and colony PCR was performed. The PCR primer used at this time was the M13 universal sequence. sanger sequencing was performed using the purified Colony PCR amplicon product as template DNA. Afterwards, using the sequence data output as a result of Sanger sequencing, bacterial identification was performed through NCBI nucleotide BLAST to confirm the genus of the target strain. Through the above method, it was confirmed that a strain of the genus Bifidus was detected (Table 3).

Sample IDSample ID Target geneTarget gene *Ct value (10^-3)*Ct value (10^-3) Ct value (10^-2)CT value (10^-2) Ct alue (10^-1)CT alue (10^-1) Candidate 1Candidate 1 16S rRNA V4 region16S rRNA V4 region 26.2426.24 22.1722.17 19.2719.27 Candidate 2Candidate 2 16S rRNA V4 region16S rRNA V4 region 26.2826.28 22.4822.48 19.3819.38 Candidate 3Candidate 3 16S rRNA V4 region16S rRNA V4 region 26.0926.09 22.6622.66 19.0319.03 Candidate 4Candidate 4 16S rRNA V4 region16S rRNA V4 region 26.0126.01 22.7822.78 19.1519.15 Candidate 5Candidate 5 16S rRNA V4 region16S rRNA V4 region 26.5826.58 22.0322.03 19.2319.23 Candidate 6Candidate 6 16S rRNA V4 region16S rRNA V4 region 26.5626.56 22.0722.07 19.1819.18 Candidate 7Candidate 7 16S rRNA V4 region16S rRNA V4 region 26.4726.47 22.0822.08 19.8019.80 Candidate 8Candidate 8 16S rRNA V4 region16S rRNA V4 region 27.3827.38 22.1122.11 19.5719.57 Candidate 9Candidate 9 16S rRNA V4 region16S rRNA V4 region 26.9226.92 22.2222.22 19.7519.75 Candidate 10Candidate 10 16S rRNA V4 region16S rRNA V4 region 26.7826.78 22.2622.26 19.8419.84 Candidate 11Candidate 11 16S rRNA V4 region16S rRNA V4 region 26.4626.46 22.3922.39 19.6319.63 Candidate 12Candidate 12 16S rRNA V4 region16S rRNA V4 region 26.9626.96 22.4322.43 19.3619.36 Candidate 13Candidate 13 16S rRNA V4 region16S rRNA V4 region 26.7926.79 22.4722.47 19.8519.85 Candidate 14Candidate 14 16S rRNA V4 region16S rRNA V4 region 26.5026.50 22.5422.54 19.0419.04 Candidate 15Candidate 15 16S rRNA V4 region16S rRNA V4 region 26.7226.72 22.5922.59 19.4519.45 Candidate 16Candidate 16 16S rRNA V4 region16S rRNA V4 region 27.0327.03 22.5922.59 19.2019.20 Candidate 17Candidate 17 16S rRNA V4 region16S rRNA V4 region 26.5726.57 22.5922.59 18.7018.70 Candidate 18Candidate 18 16S rRNA V4 region16S rRNA V4 region 27.1327.13 22.6022.60 19.0019.00 Candidate 19Candidate 19 16S rRNA V4 region16S rRNA V4 region 26.9126.91 22.6622.66 18.9118.91 Candidate 20Candidate 20 16S rRNA V4 region16S rRNA V4 region 26.2626.26 22.7822.78 19.0019.00 Candidate 21Candidate 21 16S rRNA V4 region16S rRNA V4 region 26.6826.68 22.8322.83 19.2319.23 Candidate 22Candidate 22 16S rRNA V4 region16S rRNA V4 region 26.9626.96 22.8522.85 19.6219.62 Candidate 23Candidate 23 16S rRNA V4 region16S rRNA V4 region 26.5826.58 22.9622.96 19.8919.89 Candidate 24Candidate 24 16S rRNA V4 region16S rRNA V4 region 26.9726.97 23.0323.03 19.5019.50 Candidate 25Candidate 25 16S rRNA V4 region16S rRNA V4 region 27.3227.32 23.1123.11 19.3419.34 Candidate 26Candidate 26 16S rRNA V4 region16S rRNA V4 region 27.2227.22 23.1323.13 19.2919.29 Candidate 27Candidate 27 16S rRNA V4 region16S rRNA V4 region 27.0027.00 23.2723.27 19.3019.30 Candidate 28Candidate 28 16S rRNA V4 region16S rRNA V4 region 26.9026.90 23.2923.29 19.0419.04 Candidate 29Candidate 29 16S rRNA V4 region16S rRNA V4 region 27.3727.37 23.3123.31 19.9619.96 Candidate 30Candidate 30 16S rRNA V4 region16S rRNA V4 region 27.5527.55 23.3223.32 20.7220.72 Candidate 31Candidate 31 16S rRNA V4 region16S rRNA V4 region 27.5427.54 23.3523.35 18.6318.63 Candidate 32Candidate 32 16S rRNA V4 region16S rRNA V4 region 26.9526.95 23.4023.40 19.3819.38 Candidate 33Candidate 33 16S rRNA V4 region16S rRNA V4 region 27.4627.46 23.4223.42 19.0319.03 Candidate 34Candidate 34 16S rRNA V4 region16S rRNA V4 region 27.3727.37 23.4823.48 19.0219.02 Candidate 35Candidate 35 16S rRNA V4 region16S rRNA V4 region 27.5627.56 23.4823.48 19.9819.98 Candidate 36Candidate 36 16S rRNA V4 region16S rRNA V4 region 27.1427.14 23.5223.52 19.1119.11 Candidate 37Candidate 37 16S rRNA V4 region16S rRNA V4 region 27.9427.94 23.5223.52 19.9719.97 Candidate 38Candidate 38 16S rRNA V4 region16S rRNA V4 region 26.9726.97 23.6723.67 20.1220.12 Candidate 39Candidate 39 16S rRNA V4 region16S rRNA V4 region 27.3827.38 23.6723.67 19.2519.25 Candidate 40Candidate 40 16S rRNA V4 region16S rRNA V4 region 27.1827.18 23.7023.70 18.3218.32 Candidate 41Candidate 41 16S rRNA V4 region16S rRNA V4 region 27.2827.28 23.7123.71 19.9219.92 Candidate 42Candidate 42 16S rRNA V4 region16S rRNA V4 region 27.5327.53 23.7323.73 19.9619.96 Candidate 43Candidate 43 16S rRNA V4 region16S rRNA V4 region 27.7627.76 23.7723.77 19.7019.70 Candidate 44Candidate 44 16S rRNA V4 region16S rRNA V4 region 27.9327.93 23.8323.83 19.0719.07 Candidate 45Candidate 45 16S rRNA V4 region16S rRNA V4 region 27.9327.93 23.8323.83 19.4019.40 Candidate 46Candidate 46 16S rRNA V4 region16S rRNA V4 region 27.4627.46 23.8423.84 19.6619.66 Candidate 47Candidate 47 16S rRNA V4 region16S rRNA V4 region 27.2827.28 23.8523.85 20.2720.27 Candidate 48Candidate 48 16S rRNA V4 region16S rRNA V4 region 27.0727.07 23.8623.86 19.2219.22 Candidate 49Candidate 49 16S rRNA V4 region16S rRNA V4 region 27.7727.77 23.8923.89 20.0720.07 Candidate 50Candidate 50 16S rRNA V4 region16S rRNA V4 region 27.6227.62 23.9123.91 20.6920.69 Candidate 51Candidate 51 16S rRNA V4 region16S rRNA V4 region 27.0527.05 23.9823.98 19.6319.63 Candidate 52Candidate 52 16S rRNA V4 region16S rRNA V4 region 27.9027.90 23.9823.98 20.2120.21 Candidate 53Candidate 53 16S rRNA V4 region16S rRNA V4 region 27.9927.99 23.9923.99 20.0620.06 Candidate 54Candidate 54 16S rRNA V4 region16S rRNA V4 region 27.5927.59 23.0323.03 19.7519.75 Candidate 55Candidate 55 16S rRNA V4 region16S rRNA V4 region 27.4427.44 23.0723.07 19.7519.75 Candidate 56Candidate 56 16S rRNA V4 region16S rRNA V4 region 27.5827.58 23.0823.08 20.2020.20 Candidate 57Candidate 57 16S rRNA V4 region16S rRNA V4 region 26.9626.96 23.0923.09 20.6120.61 Candidate 58Candidate 58 16S rRNA V4 region16S rRNA V4 region 27.9027.90 23.0923.09 19.9119.91 Candidate 59Candidate 59 16S rRNA V4 region16S rRNA V4 region 27.2727.27 23.1023.10 20.6920.69 Candidate 60Candidate 60 16S rRNA V4 region16S rRNA V4 region 27.5427.54 23.1223.12 19.7619.76 Candidate 61Candidate 61 16S rRNA V4 region16S rRNA V4 region 27.7527.75 23.1323.13 20.1520.15 Candidate 62Candidate 62 16S rRNA V4 region16S rRNA V4 region 27.2727.27 23.1623.16 20.4920.49 Candidate 63Candidate 63 16S rRNA V4 region16S rRNA V4 region 27.4827.48 23.1623.16 19.6219.62 Candidate 64Candidate 64 16S rRNA V4 region16S rRNA V4 region 26.9426.94 23.1823.18 20.8220.82 Candidate 65Candidate 65 16S rRNA V4 region16S rRNA V4 region 27.2027.20 23.1923.19 20.0220.02 Candidate 66Candidate 66 16S rRNA V4 region16S rRNA V4 region 27.3727.37 23.2323.23 20.1820.18 Candidate 67Candidate 67 16S rRNA V4 region16S rRNA V4 region 27.5627.56 23.2423.24 20.2320.23 Candidate 68Candidate 68 16S rRNA V4 region16S rRNA V4 region 27.2927.29 23.2623.26 20.7020.70 Candidate 69Candidate 69 16S rRNA V4 region16S rRNA V4 region 28.0628.06 23.2623.26 19.9619.96 Candidate 70Candidate 70 16S rRNA V4 region16S rRNA V4 region 27.9627.96 23.2623.26 19.9719.97 Candidate 71Candidate 71 16S rRNA V4 region16S rRNA V4 region 27.9627.96 23.2723.27 20.0520.05 Candidate 72Candidate 72 16S rRNA V4 region16S rRNA V4 region 27.4327.43 23.2923.29 20.6120.61 Candidate 73Candidate 73 16S rRNA V4 region16S rRNA V4 region 27.5827.58 23.3023.30 19.9219.92 Candidate 74Candidate 74 16S rRNA V4 region16S rRNA V4 region 27.3527.35 23.3123.31 20.7720.77 Candidate 75Candidate 75 16S rRNA V4 region16S rRNA V4 region 27.6627.66 23.3123.31 19.8719.87 Candidate 76Candidate 76 16S rRNA V4 region16S rRNA V4 region 27.9327.93 23.3523.35 20.1620.16 Candidate 77Candidate 77 16S rRNA V4 region16S rRNA V4 region 27.1227.12 23.3823.38 19.3719.37 Candidate 78Candidate 78 16S rRNA V4 region16S rRNA V4 region 27.3627.36 23.5123.51 20.0120.01 Candidate 79Candidate 79 16S rRNA V4 region16S rRNA V4 region 27.3427.34 23.5423.54 20.8320.83 Candidate 80Candidate 80 16S rRNA V4 region16S rRNA V4 region 27.9927.99 23.5923.59 20.5220.52 Candidate 81Candidate 81 16S rRNA V4 region16S rRNA V4 region 27.8627.86 23.6123.61 19.7619.76 Candidate 82Candidate 82 16S rRNA V4 region16S rRNA V4 region 27.8127.81 23.6723.67 20.3120.31 Candidate 83Candidate 83 16S rRNA V4 region16S rRNA V4 region 27.7327.73 23.7123.71 20.0020.00 Candidate 84Candidate 84 16S rRNA V4 region16S rRNA V4 region 27.9627.96 23.7623.76 20.3320.33 Candidate 85Candidate 85 16S rRNA V4 region16S rRNA V4 region 28.0228.02 23.7823.78 20.6520.65 Candidate 86Candidate 86 16S rRNA V4 region16S rRNA V4 region 27.4327.43 23.8523.85 20.3020.30 Candidate 87Candidate 87 16S rRNA V4 region16S rRNA V4 region 27.9527.95 23.8723.87 19.8719.87 Candidate 88Candidate 88 16S rRNA V4 region16S rRNA V4 region 27.2027.20 23.9623.96 20.3720.37 Candidate 89Candidate 89 16S rRNA V4 region16S rRNA V4 region 27.1627.16 23.9723.97 20.9320.93 Candidate 90Candidate 90 16S rRNA V4 region16S rRNA V4 region 27.4527.45 23.9823.98 21.7621.76 Candidate 91Candidate 91 16S rRNA V4 region16S rRNA V4 region 27.9227.92 24.1124.11 20.6220.62 Candidate 92Candidate 92 16S rRNA V4 region16S rRNA V4 region 27.3227.32 23.2223.22 21.2321.23 Candidate 93Candidate 93 16S rRNA V4 region16S rRNA V4 region 27.1227.12 23.2523.25 21.2421.24 Candidate 94Candidate 94 16S rRNA V4 region16S rRNA V4 region 27.5227.52 23.2523.25 20.4920.49 Candidate 95Candidate 95 16S rRNA V4 region16S rRNA V4 region 27.9427.94 23.3823.38 19.8319.83 Candidate 96Candidate 96 16S rRNA V4 region16S rRNA V4 region 27.6327.63 23.6023.60 19.0319.03 Candidate 97Candidate 97 16S rRNA V4 region16S rRNA V4 region 27.6227.62 23.6323.63 19.3919.39 Candidate 98Candidate 98 16S rRNA V4 region16S rRNA V4 region 27.6427.64 23.6323.63 20.7320.73 Candidate 99Candidate 99 16S rRNA V4 region16S rRNA V4 region 27.7927.79 23.8323.83 20.5220.52 Candidate 100Candidate 100 16S rRNA V4 region16S rRNA V4 region 27.4027.40 23.8823.88 19.6119.61

Bifidobacterium Bifidobacterium BLAST ResultsBLAST Results
SampleSample Colony no.Colony no. DescriptionDescription AccessionAccession Sample 1Sample 1 1One Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome CP025199.1CP025199.1 Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome AP012330.1AP012330.1 Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome CP072504.1CP072504.1 Bifidobacterium kashiwanohense PV20-2, complete genome Bifidobacterium kashiwanohense PV20-2, complete genome CP007456.1CP007456.1 Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome CP026729.1CP026729.1 22 Bifidobacterium adolescentis strain ZJ2 chromosome, complete genome Bifidobacterium adolescentis strain ZJ2 chromosome, complete genome CP047129.1CP047129.1 Bifidobacterium adolescentis strain P2P3 chromosome, complete genome Bifidobacterium adolescentis strain P2P3 chromosome, complete genome CP024959.1CP024959.1 Bifidobacterium adolescentis strain 6 chromosome, complete genome Bifidobacterium adolescentis strain 6 chromosome, complete genome CP023005.1CP023005.1 Bifidobacterium adolescentis strain 1-11 chromosome, complete genome Bifidobacterium adolescentis strain 1-11 chromosome, complete genome CP028341.1CP028341.1 Bifidobacterium adolescentis isolate MGYG-HGUT-02395 genome assembly, chromosome: 1 Bifidobacterium adolescentis isolate MGYG-HGUT-02395 genome assembly, chromosome: 1 LR698990.1LR698990.1 33 Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome CP025199.1CP025199.1 Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome AP012330.1AP012330.1 Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome CP072504.1CP072504.1 Bifidobacterium kashiwanohense PV20-2, complete genome Bifidobacterium kashiwanohense PV20-2, complete genome CP007456.1CP007456.1 Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome CP026729.1CP026729.1 44 Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome CP025199.1CP025199.1 Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome AP012330.1AP012330.1 Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome CP072504.1CP072504.1 Bifidobacterium kashiwanohense PV20-2, complete genome Bifidobacterium kashiwanohense PV20-2, complete genome CP007456.1CP007456.1 Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome CP026729.1CP026729.1 55 FailFail Sample 2Sample 2 1One Bifidobacterium longum strain 51A chromosome, complete genome Bifidobacterium longum strain 51A chromosome, complete genome CP026999.1CP026999.1 Bifidobacterium longum strain NCTC11818 genome assembly, chromosome: 1 Bifidobacterium longum strain NCTC11818 genome assembly, chromosome: 1 LR134369.1LR134369.1 Bifidobacterium longum subsp. longum strain BORI chromosome, complete genome Bifidobacterium longum subsp. longum strain BORI chromosome, complete genome CP031133.1CP031133.1 Bifidobacterium longum subsp. longum strain AH1206, complete genome Bifidobacterium longum subsp. longum strain AH1206, complete genome CP016019.1CP016019.1 Bifidobacterium longum subsp. longum strain CCUG30698, complete genome Bifidobacterium longum subsp. longum strain CCUG30698, complete genome CP011965.1CP011965.1 22 Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome CP025199.1CP025199.1 Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome AP012330.1AP012330.1 Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome CP072504.1CP072504.1 Bifidobacterium kashiwanohense PV20-2, complete genome Bifidobacterium kashiwanohense PV20-2, complete genome CP007456.1CP007456.1 Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome Bifidobacterium catenulatum subsp . kashiwanohense strain APCKJ1 chromosome, complete genome CP026729.1CP026729.1 33 Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome CP025199.1CP025199.1 Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome AP012330.1AP012330.1 Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome CP072504.1CP072504.1 Bifidobacterium kashiwanohense PV20-2, complete genome Bifidobacterium kashiwanohense PV20-2, complete genome CP007456.1CP007456.1 Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome CP026729.1CP026729.1 44 FailFail 55 FailFail Sample 3Sample 3 1One Bifidobacterium longum Jih1 DNA, complete genome Bifidobacterium longum Jih1 DNA, complete genome AP022868.1AP022868.1 Bifidobacterium longum strain Su859 genome assembly, chromosome: I Bifidobacterium longum strain Su859 genome assembly, chromosome: I LT629712.1LT629712.1 Bifidobacterium longum subsp. longum GT15, complete genome Bifidobacterium longum subsp. longum GT15, complete genome CP006741.1CP006741.1 Bifidobacterium longum strain BXY01, complete genome Bifidobacterium longum strain BXY01, complete genome CP008885.1CP008885.1 Bifidobacterium longum subsp. suillum strain JCM 19995 chromosome, complete genome Bifidobacterium longum subsp. suillum strain JCM 19995 chromosome, complete genome CP070996.1CP070996.1 22 Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome CP025199.1CP025199.1 Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome AP012330.1AP012330.1 Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome CP072504.1CP072504.1 Bifidobacterium kashiwanohense PV20-2, complete genome Bifidobacterium kashiwanohense PV20-2, complete genome CP007456.1CP007456.1 Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome CP026729.1CP026729.1 33 Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome CP025199.1CP025199.1 Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome AP012330.1AP012330.1 Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome Bifidobacterium pseudocatenulatum strain N2 chromosome, complete genome CP072504.1CP072504.1 Bifidobacterium kashiwanohense PV20-2, complete genome Bifidobacterium kashiwanohense PV20-2, complete genome CP007456.1CP007456.1 Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome CP026729.1CP026729.1 44 Bifidobacterium longum Jih1 DNA, complete genome Bifidobacterium longum Jih1 DNA, complete genome AP022868.1AP022868.1 Bifidobacterium longum strain Su859 genome assembly, chromosome: I Bifidobacterium longum strain Su859 genome assembly, chromosome: I LT629712.1LT629712.1 Bifidobacterium longum subsp. longum GT15, complete genome Bifidobacterium longum subsp. longum GT15, complete genome CP006741.1CP006741.1 Bifidobacterium longum strain BXY01, complete genome Bifidobacterium longum strain BXY01, complete genome CP008885.1CP008885.1 Bifidobacterium longum subsp. suillum strain JCM 19995 chromosome, complete genome Bifidobacterium longum subsp. suillum strain JCM 19995 chromosome, complete genome CP070996.1CP070996.1 55 FailFail Sample 4Sample 4 1One Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome CP025199.1CP025199.1 Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome AP012330.1AP012330.1 Bifidobacterium kashiwanohense PV20-2, complete genome Bifidobacterium kashiwanohense PV20-2, complete genome CP007456.1CP007456.1 Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome CP026729.1CP026729.1 Bifidobacterium breve strain IDCC4401 chromosome Bifidobacterium breve strain IDCC4401 chromosome CP045532.1CP045532.1 22 Bifidobacterium longum Jih1 DNA, complete genome Bifidobacterium longum Jih1 DNA, complete genome AP022868.1AP022868.1 Bifidobacterium longum strain Su859 genome assembly, chromosome: I Bifidobacterium longum strain Su859 genome assembly, chromosome: I LT629712.1LT629712.1 Bifidobacterium longum subsp. longum GT15, complete genome Bifidobacterium longum subsp. longum GT15, complete genome CP006741.1CP006741.1 Bifidobacterium breve strain IDCC4401 chromosome Bifidobacterium breve strain IDCC4401 chromosome CP045532.1CP045532.1 Bifidobacterium breve isolate B.breve_1_mod genome assembly, chromosome: BILOC7D69C13_1 Bifidobacterium breve isolate B.breve_1_mod genome assembly, chromosome: BILOC7D69C13_1 LR655209.1LR655209.1 33 Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome CP025199.1CP025199.1 Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome AP012330.1AP012330.1 Bifidobacterium kashiwanohense PV20-2, complete genome Bifidobacterium kashiwanohense PV20-2, complete genome CP007456.1CP007456.1 Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome CP026729.1CP026729.1 Bifidobacterium breve strain IDCC4401 chromosome Bifidobacterium breve strain IDCC4401 chromosome CP045532.1CP045532.1 44 Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome CP025199.1CP025199.1 Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome AP012330.1AP012330.1 Bifidobacterium kashiwanohense PV20-2, complete genome Bifidobacterium kashiwanohense PV20-2, complete genome CP007456.1CP007456.1 Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome CP026729.1CP026729.1 Bifidobacterium breve strain IDCC4401 chromosome Bifidobacterium breve strain IDCC4401 chromosome CP045532.1CP045532.1 55 Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome Bifidobacterium pseudocatenulatum strain 12 chromosome, complete genome CP025199.1CP025199.1 Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome Bifidobacterium pseudocatenulatum DSM 20438 = JCM 1200 = LMG 10505 DNA, complete genome AP012330.1AP012330.1 Bifidobacterium kashiwanohense PV20-2, complete genome Bifidobacterium kashiwanohense PV20-2, complete genome CP007456.1CP007456.1 Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome Bifidobacterium catenulatum subsp. kashiwanohense strain APCKJ1 chromosome, complete genome CP026729.1CP026729.1 Bifidobacterium breve strain IDCC4401 chromosome Bifidobacterium breve strain IDCC4401 chromosome CP045532.1CP045532.1 Sample 5Sample 5 1One Bifidobacterium adolescentis strain P2P3 chromosome, complete genome Bifidobacterium adolescentis strain P2P3 chromosome, complete genome CP024959.1CP024959.1 Bifidobacterium adolescentis strain 6 chromosome, complete genome Bifidobacterium adolescentis strain 6 chromosome, complete genome CP023005.1CP023005.1 Bifidobacterium adolescentis isolate MGYG-HGUT-02395 genome assembly, chromosome: 1 Bifidobacterium adolescentis isolate MGYG-HGUT-02395 genome assembly, chromosome: 1 LR698990.1LR698990.1 Bifidobacterium adolescentis strain PRL2019 chromosome, complete genome Bifidobacterium adolescentis strain PRL2019 chromosome, complete genome CP053072.1CP053072.1 Bifidobacterium adolescentis strain ZJ2 chromosome, complete genome Bifidobacterium adolescentis strain ZJ2 chromosome, complete genome CP047129.1CP047129.1 22 Bifidobacterium longum strain 51A chromosome, complete genome Bifidobacterium longum strain 51A chromosome, complete genome CP026999.1CP026999.1 Bifidobacterium longum strain NCTC11818 genome assembly, chromosome: 1 Bifidobacterium longum strain NCTC11818 genome assembly, chromosome: 1 LR134369.1LR134369.1 Bifidobacterium longum subsp. longum strain BORI chromosome, complete genome Bifidobacterium longum subsp. longum strain BORI chromosome, complete genome CP031133.1CP031133.1 Bifidobacterium longum subsp. longum strain AH1206, complete genome Bifidobacterium longum subsp. longum strain AH1206, complete genome CP016019.1CP016019.1 Bifidobacterium longum subsp. longum strain CCUG30698, complete genome Bifidobacterium longum subsp. longum strain CCUG30698, complete genome CP011965.1CP011965.1 33 Bifidobacterium longum strain 51A chromosome, complete genome Bifidobacterium longum strain 51A chromosome, complete genome CP026999.1CP026999.1 Bifidobacterium longum strain NCTC11818 genome assembly, chromosome: 1 Bifidobacterium longum strain NCTC11818 genome assembly, chromosome: 1 LR134369.1LR134369.1 Bifidobacterium longum subsp. longum strain BORI chromosome, complete genome Bifidobacterium longum subsp. longum strain BORI chromosome, complete genome CP031133.1CP031133.1 Bifidobacterium longum subsp. longum strain AH1206, complete genome Bifidobacterium longum subsp. longum strain AH1206, complete genome CP016019.1CP016019.1 Bifidobacterium longum subsp. longum strain CCUG30698, complete genome Bifidobacterium longum subsp. longum strain CCUG30698, complete genome CP011965.1CP011965.1 44 Bifidobacterium longum Jih1 DNA, complete genome Bifidobacterium longum Jih1 DNA, complete genome AP022868.1AP022868.1 Bifidobacterium longum strain Su859 genome assembly, chromosome: I Bifidobacterium longum strain Su859 genome assembly, chromosome: I LT629712.1LT629712.1 Bifidobacterium longum subsp. longum GT15, complete genome Bifidobacterium longum subsp. longum GT15, complete genome CP006741.1CP006741.1 Bifidobacterium longum strain BXY01, complete genome Bifidobacterium longum strain BXY01, complete genome CP008885.1CP008885.1 Bifidobacterium longum subsp. suillum strain JCM 19995 chromosome, complete genome Bifidobacterium longum subsp. suillum strain JCM 19995 chromosome, complete genome CP070996.1CP070996.1 55 FailFail

<110> Industry-Academic Cooperation Foundation, Dankook University <120> PRIMER SET FOR DETECTING BIFIDOBACTERIUM AND USE THEREOF <130> P-1 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> foward primer for Transaldolase <400> 1 aagggcatct ccgtcaacg 19 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for Transaldolase <400> 2 ggagacgaag aaggaagcga 20 <110> Industry-Academic Cooperation Foundation, Dankook University <120> PRIMER SET FOR DETECTING BIFIDOBACTERIUM AND USE THEREOF <130>P-1 <160> 2 <170> KoPatentIn 3.0 <210> 1 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> forward primer for Transaldolase <400> 1 aagggcatct ccgtcaacg 19 <210> 2 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for Transaldolase <400> 2 ggagacgaag aaggaagcga 20

Claims (8)

서열번호 1로 표시되는 염기서열; 및 서열번호 2로 표시되는 염기서열을 포함하는 비피더스 속 균주의 검출을 위한 프라이머 세트.Base sequence represented by SEQ ID NO: 1; And a primer set for detection of Bifidus strains containing the base sequence represented by SEQ ID NO: 2. 삭제delete 제1항의 프라이머 세트는 Transaldolase 유전자를 증폭하는 것을 특징으로 하는, 비피더스 속 균주의 검출을 위한 프라이머 세트.The primer set of claim 1 is a primer set for detection of Bifidus strains, characterized in that it amplifies the Transaldolase gene. 제 1항의 프라이머 세트를 포함하는 비피더스 속 균주의 검출 또는 정량용 조성물.A composition for detection or quantitation of Bifidus strains comprising the primer set of claim 1. 제 1항의 프라이머 세트를 포함하는 비피더스 속 균주의 검출 또는 정량용 키트.A kit for detection or quantification of Bifidus strains comprising the primer set of claim 1. 시료에 제 1항의 프라이머 세트를 이용하여 중합효소연쇄반응을 수행하고 분석하는 단계를 포함하는 비피더스 속 균주의 검출 또는 정량방법.A method for detecting or quantifying strains of the genus Bifidus comprising performing and analyzing a polymerase chain reaction on a sample using the primer set of claim 1. 삭제delete 제 6항에 있어서, 상기 시료는 분변인 것인, 방법.
The method of claim 6, wherein the sample is feces.
KR1020210107487A 2021-08-13 2021-08-13 Primer set for detecting bifidobacterium and use thereof KR102597907B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210107487A KR102597907B1 (en) 2021-08-13 2021-08-13 Primer set for detecting bifidobacterium and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210107487A KR102597907B1 (en) 2021-08-13 2021-08-13 Primer set for detecting bifidobacterium and use thereof

Publications (2)

Publication Number Publication Date
KR20230025223A KR20230025223A (en) 2023-02-21
KR102597907B1 true KR102597907B1 (en) 2023-11-02

Family

ID=85327971

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210107487A KR102597907B1 (en) 2021-08-13 2021-08-13 Primer set for detecting bifidobacterium and use thereof

Country Status (1)

Country Link
KR (1) KR102597907B1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210071228A1 (en) * 2018-05-10 2021-03-11 Seegene, Inc. Method for detecting gut microorganism in a sample using normal gut flora as internal control
KR102141246B1 (en) * 2018-05-25 2020-08-04 주식회사 엠디헬스케어 Method for the diagnosis of colon cancer using analysis of qPCR
KR20200068248A (en) * 2018-12-05 2020-06-15 대구한의대학교산학협력단 Development of selective quantitative comparative analysis of intestinal microbiome
KR102330639B1 (en) * 2019-01-18 2021-11-24 주식회사 천랩 Microbial biomarker specific to irritable bowel syndrome(IBS) and method for predicting risk of irritable bowel syndrome using the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Kyudong Han 등, Research Square, "Evaluatio of an effective detection and quantification method for particular microorganisms by comparing NGS-based metagenome profiling data", preprint, 2021.06.21.*

Also Published As

Publication number Publication date
KR20230025223A (en) 2023-02-21

Similar Documents

Publication Publication Date Title
Sharma et al. Molecular typing tools for identifying and characterizing lactic acid bacteria: a review
EP2018441B1 (en) Tagged microorganisms and methods of tagging
US20060276973A1 (en) Predicting animal performance
Vandamme et al. Phylogenetics and systematics
Bagheripoor-Fallah et al. Comparison of molecular techniques with other methods for identification and enumeration of probiotics in fermented milk products
Sandes et al. Lactobacillus species identification by amplified ribosomal 16S-23S rRNA restriction fragment length polymorphism analysis
KR101732676B1 (en) Primer for nucleic acid amplification having dumbbell structure and method for detection of intestinal beneficial bacteria
Ward et al. Review of molecular methods for identification, characterization and detection of bifidobacteria
KR101869832B1 (en) A Novel Enterococcus species specific primer, a method for isolating and identifying specific Enterococcus strain by using the same and a composition therefor
Klancnik et al. PCR in food analysis
KR102597907B1 (en) Primer set for detecting bifidobacterium and use thereof
WO2013115682A2 (en) Method for identifying species and strains of lactobacilli using an intergenic region of dna proximal to the f1f0 atp synthase operon
Huang et al. Development of novel species‐specific primers for species identification of the Lactobacillus casei group based on RAPD fingerprints
Hu et al. Advances of intra‐species molecular typing analysis of aquatic probiotics approved by the Chinese Ministry of Agriculture
KR102597903B1 (en) Primer set for detecting akkermansia and use thereof
KR102597906B1 (en) Primer set for detecting bacteroides and use thereof
KR102611219B1 (en) Primer set for detecting roseburia and use thereof
KR102597909B1 (en) Primer set for detecting phascolarctobacterium and use thereof
Dimitrov et al. Comparative evaluation of three molecular typing methods in their applicability to differentiate Lactobacillus strains with human origin
KR101149875B1 (en) Differential identification of Salmonella enterica serovar Gallinarum biovar Gallinarum, Pullorum and biovar Gallinarum live vaccine strains
JP7150359B2 (en) Lactic acid bacteria detection primer set and detection method using the primer set
JP2014064543A (en) Oligonucleotides for detecting and/or quantifying bifidobacterium longum
KR102655121B1 (en) A Primer set for specifically detecting Lactobacillus sakei K040706 and uses thereof
JP2017216979A (en) Oligonucleotide
JP7252606B2 (en) Lactic acid bacteria detection primer set and detection method using the primer set

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant