KR102596646B1 - Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same - Google Patents

Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same Download PDF

Info

Publication number
KR102596646B1
KR102596646B1 KR1020180151536A KR20180151536A KR102596646B1 KR 102596646 B1 KR102596646 B1 KR 102596646B1 KR 1020180151536 A KR1020180151536 A KR 1020180151536A KR 20180151536 A KR20180151536 A KR 20180151536A KR 102596646 B1 KR102596646 B1 KR 102596646B1
Authority
KR
South Korea
Prior art keywords
activated carbon
carbon fiber
isotropic pitch
carbonization process
manufacturing
Prior art date
Application number
KR1020180151536A
Other languages
Korean (ko)
Other versions
KR20200065252A (en
Inventor
이영석
한정인
김민지
강다희
최예지
송은지
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020180151536A priority Critical patent/KR102596646B1/en
Publication of KR20200065252A publication Critical patent/KR20200065252A/en
Application granted granted Critical
Publication of KR102596646B1 publication Critical patent/KR102596646B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 등방성 피치를 사용한 비탄화 활성탄소섬유의 제조방법 및 이에 의해 제조된 비탄화 활성탄소섬유를 제공한다. 본 발명의 제조방법은 등방성 피치를 방사하여 등방성 피치 섬유를 제조하는 단계; 상기 등방성 피치 섬유를 안정화하는 단계; 및 상기 안정화된 등방성 피치를 활성화하는 단계; 로 이루어지는데, 이러한 제조방법은 통상의 활성탄소섬유의 제조방법과 상이하게 장시간 및 고에너지를 요구하는 탄화 공정을 제외시킴으로써 보다 간이하고 경제적으로 활성탄소섬유를 제조할 수 있다. 또한 본 발명의 제조방법으로 제조된 비탄화 활성탄소섬유는 큰 비표면적 및 우수한 흡착성능을 갖는다.The present invention provides a method for producing non-carbonized activated carbon fiber using isotropic pitch and non-carbonized activated carbon fiber produced thereby. The manufacturing method of the present invention includes manufacturing isotropic pitch fibers by spinning isotropic pitch; Stabilizing the isotropic pitch fibers; and activating the stabilized isotropic pitch; This manufacturing method is different from the usual manufacturing method of activated carbon fiber, and excludes the carbonization process that requires a long time and high energy, thereby making it possible to manufacture activated carbon fiber more simply and economically. In addition, the non-carbonized activated carbon fiber produced by the production method of the present invention has a large specific surface area and excellent adsorption performance.

Description

등방성 피치를 사용한 비탄화 활성탄소섬유의 제조방법 및 이에 의해 제조된 비탄화 활성탄소섬유{Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same}Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same}

본 발명은 등방성 피치를 사용한 비탄화 활성탄소섬유의 제조방법 및 이에 의해 제조된 비탄화 활성탄소섬유에 관한 것이다.The present invention relates to a method for producing non-carbonized activated carbon fiber using isotropic pitch and to the non-carbonized activated carbon fiber produced thereby.

보다 상세하게는, 등방성 피치를 사용하여, 통상의 활성탄소섬유 제조공정에서 장시간 및 고에너지를 요구하는 탄화 공정을 제외시킴으로써, 보다 간이하고 경제적인 공정으로 큰 비표면적 및 우수한 흡착성능을 갖는 비탄화 활성탄소섬유를 제조하는 방법 및 이에 의해 제조된 비탄화 활성탄소섬유에 관한 것이다.More specifically, by using isotropic pitch, the carbonization process that requires a long time and high energy in the normal activated carbon fiber manufacturing process is excluded, making non-carbonization with a large specific surface area and excellent adsorption performance a simpler and more economical process. It relates to a method for producing activated carbon fiber and non-carbonized activated carbon fiber produced thereby.

휘발성유기화합물(Volatile organic compound, VOC)은 인체 및 생태계에 미치는 영향이 커서 특정 대기 유해물질로 분류되고 있으며, 또한 광화학 반응을 통하여 오존 등과 같은 2차 오염물질인 광화학 산화물을 생성시킨다. 이와 같은 휘발성 유기화합물은 발암성이 높다고 알려져 있는 화학물질이 다수 포함되어 있기 때문에 인체에 유독하며 오존층 파괴, 지구온난화, 광화학 스모그, 악취 등의 문제점을 야기한다. 휘발성유기화합물은 배출량이 매년 10% 이상 급증하고 있으며, 저농도에서도 인체에 치명적일 수 있기 때문에 이를 효과적으로 제거할 수 있는 처리 기술의 개발이 요구된다.Volatile organic compounds (VOCs) have a significant impact on the human body and ecosystem and are classified as specific air pollutants. They also generate photochemical oxides, which are secondary pollutants such as ozone, through photochemical reactions. These volatile organic compounds are toxic to the human body because they contain many chemicals known to be highly carcinogenic and cause problems such as ozone layer destruction, global warming, photochemical smog, and bad odor. The emissions of volatile organic compounds are rapidly increasing by more than 10% every year, and since they can be fatal to the human body even at low concentrations, the development of treatment technology that can effectively remove them is required.

일반적으로 저농도, 기상 휘발성유기화합물을 제거하기 위해서는 흡착법이 가장 높은 처리 효율을 갖는 것으로 보고되고 있으며, 이때 주로 사용되는 흡착제로는 활성탄, 활성탄소섬유, 실리카겔, 알루미나, 제올라이트 등이 있다. 특히 활성탄소섬유(Activated carbon fiber)는 큰 비표면적을 가지고, 흡착 부분이 섬유 표면으로부터 직접 미세공으로 이어져 흡착과 탈착 속도가 빠르다는 장점이 있다. In general, adsorption is reported to have the highest treatment efficiency to remove low-concentration, gaseous volatile organic compounds, and the mainly used adsorbents include activated carbon, activated carbon fiber, silica gel, alumina, and zeolite. In particular, activated carbon fiber has the advantage of having a large specific surface area and fast adsorption and desorption speeds as the adsorption portion is directly connected to the micropores from the fiber surface.

활성탄소섬유를 제조하는 종래 방법은 대한민국 공개특허 제10-2013-0100588호 등에 기재된 바와 같이, 피치로부터 용융방사를 통해 피치 섬유를 제조하고, 이를 불융화, 탄화하여 탄소섬유를 제조한 후, 활성화를 함으로써 제조하는 것이다. 이러한 종래 방법에 의한 활성탄소섬유의 제조방법은 장시간 및 고에너지를 요구하는 탄화 공정을 거쳐야하는 문제점이 있었다.As described in Korean Patent Publication No. 10-2013-0100588, the conventional method of producing activated carbon fiber is to manufacture pitch fibers from pitch through melt spinning, infusible and carbonize them to produce carbon fibers, and then activate them. It is manufactured by doing. The manufacturing method of activated carbon fiber using this conventional method had the problem of having to go through a carbonization process that requires a long time and high energy.

또 다른 공개특허 10-2002-0051383에 의하면, 활성탄소섬유 제조공정에 활성알루미나를 피치에 분산하는 공정이 더 포함되며, 활성알루미나를 분산한 후 방사함으로 인해 실질적으로 탄화 공정을 거치지 않을 시 탄소수율이 떨어지는 문제점이 있었다.According to another published patent 10-2002-0051383, the activated carbon fiber manufacturing process further includes a process of dispersing activated alumina into pitch, and by dispersing activated alumina and then spinning, the carbon yield is substantially reduced when the carbonization process is not performed. There was a problem with this falling.

따라서 위와 같은 문제로 보다 간이하고 경제적인 공정으로 큰 비표면적 및 우수한 흡착성능을 가지는 활성탄소섬유를 제조하는 방법이 요구되어 왔다.Therefore, due to the above problems, there has been a need for a method of manufacturing activated carbon fibers with a large specific surface area and excellent adsorption performance through a simpler and more economical process.

한국특허공개공보 제 10-2013-0100588호Korean Patent Publication No. 10-2013-0100588 한국특허공개공보 제 10-200200051383호Korean Patent Publication No. 10-200200051383

본 발명의 목적은 등방성 피치를 사용한 비탄화 활성탄소섬유의 제조방법 및 이에 의해 제조된 비탄화 활성탄소섬유를 제공하는 것이다.The purpose of the present invention is to provide a method for producing non-carbonized activated carbon fiber using isotropic pitch and the non-carbonized activated carbon fiber produced thereby.

본 발명의 다른 목적은 보다 간이하고 경제적인 비탄화 활성탄소섬유의 제조방법 및 이에 의해 제조된 비탄화 활성탄소섬유를 제공하는 것이다.Another object of the present invention is to provide a simpler and more economical method for producing non-carbonized activated carbon fiber and the non-carbonized activated carbon fiber produced thereby.

본 발명의 다른 목적은 큰 비표면적과 우수한 흡착성능을 갖는 비탄화 활성탄소섬유를 제공하는 것이다. Another object of the present invention is to provide non-carbonized activated carbon fibers with a large specific surface area and excellent adsorption performance.

상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention

등방성 피치를 방사하여 등방성 피치 섬유를 제조하는 단계; 상기 등방성 피치 섬유를 안정화하는 단계; 및 상기 안정화된 등방성 피치를 수증기 내에서 750 내지 900℃ 온도범위에서 20 내지 50분간 활성화하는 단계; 로 이루어지는 비표면적이 1000㎡/g 이상인 비탄화 활성탄소섬유 제조방법을 제공한다.Manufacturing isotropic pitch fibers by spinning isotropic pitch; Stabilizing the isotropic pitch fibers; And activating the stabilized isotropic pitch in water vapor at a temperature range of 750 to 900° C. for 20 to 50 minutes; It provides a method for producing non-carbonized activated carbon fibers having a specific surface area of 1000 m2/g or more.

본 발명의 일 예에 따르면 상기 등방성 피치는 연화점이 200 내지 250℃ 인 것으로 할 수 있다.According to one example of the present invention, the isotropic pitch may have a softening point of 200 to 250°C.

본 발명의 일 예에 따르면 상기 방사는 상기 등방성 피치 연화점보다 80 내지 100℃ 높은 온도에서 방사하는 것일 수 있다.According to an example of the present invention, the spinning may be performed at a temperature 80 to 100° C. higher than the isotropic pitch softening point.

본 발명의 일 예에 따르면 상기 안정화하는 단계는, 250 내지 300℃의 온도범위에서 2 내지 3시간 안정화 하는 것일 수 있다.According to one example of the present invention, the stabilizing step may be stabilization at a temperature range of 250 to 300° C. for 2 to 3 hours.

또한, 본 발명은 상기 제조방법에 의해 제조된 비탄화 활성탄소섬유를 제공한다.Additionally, the present invention provides non-carbonized activated carbon fibers manufactured by the above manufacturing method.

본 발명에 의할 경우, 등방성 피치를 사용하여 비탄화 활성탄소섬유를 제조할 수 있다.According to the present invention, non-carbonized activated carbon fiber can be manufactured using isotropic pitch.

본 발명은 통상의 활성탄소섬유를 제조하는 공정에서 장시간 및 고에너지를 요구하는 탄화 공정을 제외함으로써, 보다 간이하고 경제적인 공정으로 비탄화 활성탄소섬유를 제조할 수 있다.The present invention can produce non-carbonized activated carbon fibers in a simpler and more economical process by excluding the carbonization process that requires a long time and high energy from the process of producing conventional activated carbon fibers.

본 발명에 의한 비탄화 활성탄소섬유는 큰 비표면적 및 우수한 흡착성능을 갖는다.The non-carbonized activated carbon fiber according to the present invention has a large specific surface area and excellent adsorption performance.

도 1a는 실시예 1 내지 3의 질소 흡착등온선을 나타낸 것이다.
도 1b는 비교예 1 내지 3의 질소 흡착등온선을 나타낸 것이다.
도 2a는 실시예 1 내지 3의 기공 분포를 나타낸 것이다.
도 2b는 비교예 1 내지 3의 기공 분포를 나타낸 것이다.
도 3은 실시예 1 내지 3 및 비교예 1 내지 3의 톨루엔 흡착 파과곡선 그래프를 나타낸 것이다.
Figure 1a shows nitrogen adsorption isotherms of Examples 1 to 3.
Figure 1b shows nitrogen adsorption isotherms of Comparative Examples 1 to 3.
Figure 2a shows the pore distribution of Examples 1 to 3.
Figure 2b shows the pore distribution of Comparative Examples 1 to 3.
Figure 3 shows toluene adsorption breakthrough curve graphs of Examples 1 to 3 and Comparative Examples 1 to 3.

이하에서 본 발명에 대하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

다른 정의가 없다면 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.Unless otherwise defined, all terms (including technical and scientific terms) used in this specification may be used with meanings that can be commonly understood by those skilled in the art in the technical field to which the present invention pertains. When a part in the entire specification is said to “include” a certain element, this means that it may further include other elements rather than excluding other elements, unless specifically stated to the contrary. The singular also includes the plural, unless specifically stated in the phrase.

본 발명의 비탄화라는 의미는 별도의 탄화 공정을 거치지 않았음을 의미한다.Non-carbonization in the present invention means that no separate carbonization process has been performed.

본 발명은 상술한 기술적 과제의 해결을 위해 등방성 피치를 사용한 비탄화 활성탄소섬유를 제공하는데, 그 제조방법은, 등방성 피치를 방사하여 등방성 피치 섬유를 제조하는 단계; 상기 등방성 피치 섬유를 안정화하는 단계; 및 상기 안정화된 등방성 피치를 수증기 내에서 750 내지 900℃ 온도범위에서 20 내지 50분간 활성화하는 단계; 로 이루어진다. 또한 이에 의해 생성된 비탄화 활성탄소섬유는 비표면적이 1000㎡/g 이상인 것을 특징으로 한다. 이러한 큰 비표면적을 갖는 비탄화 활성탄소섬유는 장기간의 사용에 유리하고, 흡착성능이 뛰어나다.The present invention provides non-carbonized activated carbon fibers using isotropic pitch to solve the above-described technical problem, the manufacturing method of which includes the steps of spinning isotropic pitch to produce isotropic pitch fibers; Stabilizing the isotropic pitch fibers; And activating the stabilized isotropic pitch in water vapor at a temperature range of 750 to 900° C. for 20 to 50 minutes; It consists of In addition, the non-carbonized activated carbon fiber produced thereby is characterized by a specific surface area of 1000 m2/g or more. Non-carbonized activated carbon fibers with such a large specific surface area are advantageous for long-term use and have excellent adsorption performance.

방사는 섬유 전구체를 융액 상태로 하여 방사 노즐에서 사출하여 섬유상으로 하는 것을 의미하며, 안정화는 제조된 섬유가 이후의 온도에서 용융되지 않도록 열안정화(불융화)하는 것을 의미한다. 또한 활성화는 탄소섬유의 미세기공을 발달시킴으로써 흡착성능을 증가시키는 것을 의미한다.Spinning means turning the fiber precursor into a melt by injecting it from a spinning nozzle to form a fiber, and stabilizing means thermally stabilizing (infusible) the manufactured fiber so that it does not melt at a subsequent temperature. Activation also means increasing adsorption performance by developing micropores of carbon fiber.

피치는 광학적 배열구조에 따라 등방성 피치와 이방성인 피치로 나눌 수 있다. 이방성인 메조페이스 피치를 이용한 탄소 섬유의 경우 고배향성을 갖는 결정질의 탄소구조로 인해 활성화 공정에 따른 기공형성에 취약한 특성을 보임에 반해, 등방성 피치를 사용한 탄소섬유의 경우 난층 구조(Turbostratic structure)로 이루어져 활성화를 통한 미세기공 형성 및 높은 비표면적을 확보할 수 있다. 또한, 피치섬유는 그 자체로 탄소 함유율이 90% 이상이라는 이점을 가지고 있어, 별도의 탄화 공정 없이 활성화 초기 단계에서 이루어지는 탄화만으로도 높은 탄소 함유율을 확보할 수 있다.Pitch can be divided into isotropic pitch and anisotropic pitch depending on the optical arrangement structure. In the case of carbon fiber using an anisotropic mesophase pitch, it is vulnerable to pore formation due to the activation process due to its highly oriented crystalline carbon structure, whereas in the case of carbon fiber using isotropic pitch, it has a turbostratic structure. It is possible to form micropores and secure a high specific surface area through activation. In addition, pitch fiber itself has the advantage of having a carbon content of more than 90%, so a high carbon content can be secured just by carbonization in the early stage of activation without a separate carbonization process.

본 발명은 이러한 등방성 피치를 방사하여 등방성 피치 섬유를 제조하고, 그로부터 장시간 및 고에너지를 요구하는 탄화 공정을 거치지 않고, 안정화 및 활성화를 함으로써 간이하고 경제적인 공정으로 비탄화 활성탄소섬유를 제조할 수 있다. 또한 이렇게 제조된 비탄화 활성탄소섬유는 구조배열의 변화를 가져오는 탄화공정을 제외시킴으로써 활성화시 큰 비표면적 및 우수한 흡착성능을 갖는다.The present invention produces isotropic pitch fibers by spinning such isotropic pitch, and stabilizes and activates them without going through a carbonization process that requires a long time and high energy, thereby producing non-carbonized activated carbon fibers in a simple and economical process. there is. In addition, the non-carbonized activated carbon fiber produced in this way has a large specific surface area and excellent adsorption performance upon activation by excluding the carbonization process that causes changes in structural arrangement.

상기 등방성 피치는 연화점이 200 내지 250℃인 것을 사용할 수 있다. 다만 반드시 이에 한정되는 것은 아니다.The isotropic pitch may have a softening point of 200 to 250°C. However, it is not necessarily limited to this.

상기 방사는, 용융방사를 통하여 수행할 수 있으며, 원활한 방사 및 단사를 방지하기 위하여 상기 등방성 피치의 연화점보다 80 내지 100℃ 높은 온도에서 수행하는 것이 바람직하나 반드시 이에 한정되는 것은 아니다.The spinning can be performed through melt spinning, and is preferably carried out at a temperature of 80 to 100°C higher than the softening point of the isotropic pitch in order to ensure smooth spinning and prevent single yarn, but is not necessarily limited thereto.

상기 안정화하는 단계는, 통상적인 피치 섬유의 안정화 방법으로 수행할 수 있으나, 방사된 등방성 피치 섬유가 연화되거나 변형되는 것을 방지하기 위해 250 내지 300℃의 온도범위에서 2 내지 3시간 안정화하는 것이 바람직하다. 다만 반드시 이에 한정되는 것은 아니다.The stabilizing step can be performed by a conventional pitch fiber stabilization method, but it is preferable to stabilize the spun isotropic pitch fiber for 2 to 3 hours in the temperature range of 250 to 300 ℃ to prevent the spun isotropic pitch fiber from softening or deforming. . However, it is not necessarily limited to this.

이하 실시예 및 비교예를 통해 본 발명을 더욱 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기 실시예에 한정 되는 것은 아니다.The present invention will be described in more detail below through examples and comparative examples. However, the following example is only a preferred example of the present invention and the present invention is not limited to the following example.

하기 실시예의 물성 측정은 하기한 방법으로 실시하였다.The physical properties of the following examples were measured using the method described below.

활성탄소섬유의 액체질소 온도(77K)에서 상대압력(P/P0)의 변화에 따라 활성탄소섬유의 표면 및 기공 내에 물리적으로 흡착되는 질소가스(N2)의 양을 측정함으로써 활성탄소섬유의 비표면적 및 기공분포를 측정하였다. 흡착 실험은 Micromeritics의 ASAP 2020을 이용하여 수행하였다. 시료는 약 0.2g을 사용하였고, 250℃에서 5시간 전처리하여 분석 하였다.By measuring the amount of nitrogen gas (N 2 ) physically adsorbed on the surface and pores of activated carbon fiber according to the change in relative pressure (P/P 0 ) at the liquid nitrogen temperature (77K) of activated carbon fiber, Specific surface area and pore distribution were measured. Adsorption experiments were performed using Micromeritics' ASAP 2020. Approximately 0.2 g of sample was used and analyzed after pretreatment at 250°C for 5 hours.

휘발성화합물의 흡착량은 톨루엔 흡착 실험을 수행하였으며, 흡착제의 입출구에서 흡착 가스의 농도 변화인 파과곡선으로부터 흡착량을 구하였다. 활성탄소섬유를 직경 13mm, 길이 200mm 석영관에 0.01 g 충진하고, 100ppm의 톨루엔이 함유되어있는 질소 가스를 300cc/min으로 흘려준 뒤 톨루엔 흡착량을 가스크로마토그래피 (GC analysis apparatus, Aglient, HP 6890, FID)를 이용하여 흡착량을 계산하였다. 본 발명에서는 실온조건에서 실험하였다.The adsorption amount of volatile compounds was determined through a toluene adsorption experiment, and the adsorption amount was obtained from the breakthrough curve, which is the change in concentration of the adsorbed gas at the inlet and outlet of the adsorbent. 0.01 g of activated carbon fiber was filled into a quartz tube with a diameter of 13 mm and a length of 200 mm, nitrogen gas containing 100 ppm toluene was flowed at 300 cc/min, and the amount of toluene adsorbed was measured by gas chromatography (GC analysis apparatus, Aglient, HP 6890). , FID) was used to calculate the adsorption amount. In the present invention, experiments were conducted under room temperature conditions.

제조된 활성탄소섬유의 흡착등온선은 도 1a 및 도 1b, 기공 분포는 도 2a 및 2b에 기재하였으며, 톨루엔 흡착 파과곡선은 도 3에 기재 하였다.The adsorption isotherm of the manufactured activated carbon fiber is shown in Figures 1a and 1b, the pore distribution is shown in Figures 2a and 2b, and the toluene adsorption breakthrough curve is shown in Figure 3.

제조된 활성탄소섬유의 물성을 평가한 결과는 표 1에 나타내었다.The results of evaluating the physical properties of the manufactured activated carbon fiber are shown in Table 1.

연화점이 250℃인 등방성 피치를 사용하여 용융 방사를 통해 등방성 피치 섬유를 제조하였다. 0.3mm의 구멍을 가진 노즐로 등방성 피치를 용융방사 하였으며, 이때 방사 조건은 330 내지 350℃, N2가스 유량은 2 내지 5bar/min으로 하여 용융 방사 하였다.Isotropic pitch fibers were manufactured through melt spinning using isotropic pitch with a softening point of 250°C. An isotropic pitch was melt-spun using a nozzle with a 0.3 mm hole. At this time, the spinning conditions were 330 to 350°C and the N 2 gas flow rate was 2 to 5 bar/min.

제조된 등방성 피치 섬유를 1℃/min의 승온 속도로 280℃, 공기 분위기 하에서 2시간 유지시켜 안정화 하였다.The prepared isotropic pitch fiber was stabilized by maintaining it at 280°C in an air atmosphere for 2 hours at a temperature increase rate of 1°C/min.

안정화된 등방성 피치 섬유를 탄화 공정을 별도로 거치지 않고, 스팀을 이용하여 5℃/min의 승온 속도로 800℃에서 20분간 활성화를 실시하여 비탄화 활성탄소섬유를 제조하였다.Non-carbonized activated carbon fibers were prepared by activating the stabilized isotropic pitch fibers at 800°C for 20 minutes at a temperature increase rate of 5°C/min using steam, without undergoing a separate carbonization process.

상기 활성화 과정에서 활성화 온도를 850℃로 실시한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 비탄화 활성탄소섬유를 제조하였다.Non-carbonized activated carbon fiber was manufactured in the same manner as in Example 1, except that the activation temperature was set to 850°C during the activation process.

상기 활성화 과정에서 활성화 온도를 850℃로 실시한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 비탄화 활성탄소섬유를 제조하였다.Non-carbonized activated carbon fiber was manufactured in the same manner as in Example 1, except that the activation temperature was set to 850°C during the activation process.

<비교예 1><Comparative Example 1>

상기 실시예 1에서, 안정화 과정 후 탄화 공정을 추가로 실시하였다. 이때 탄화는 승온 속도 5℃/min, 1000℃, 질소 분위기 하에서 1시간 유지하였다. 이후 활성화 과정은 실시예 1과 동일하게 수행하여 활성탄소섬유를 제조하였다.In Example 1, a carbonization process was additionally performed after the stabilization process. At this time, carbonization was maintained at a temperature increase rate of 5°C/min, 1000°C, and nitrogen atmosphere for 1 hour. Afterwards, the activation process was performed in the same manner as in Example 1 to produce activated carbon fiber.

<비교예 2><Comparative Example 2>

상기 비교예 1에서 탄화 공정을 거친 섬유를 850℃의 온도로 활성화를 실시한 것을 제외하고 동일하게 수행하여 활성탄소섬유를 제조하였다.Activated carbon fiber was manufactured in the same manner as in Comparative Example 1, except that the fiber that had undergone the carbonization process was activated at a temperature of 850°C.

<비교예 3><Comparative Example 3>

상기 비교예 1에서 탄화 공정을 거친 섬유를 900℃의 온도로 활성화를 실시한 것을 제외하고 동일하게 수행하여 활성탄소섬유를 제조하였다.Activated carbon fiber was manufactured in the same manner as in Comparative Example 1, except that the fiber that had undergone the carbonization process was activated at a temperature of 900°C.

비표면적 (m2/g)Specific surface area (m 2 /g) 총 기공 부피 (cc/g)Total pore volume (cc/g) 실시예 1Example 1 10391039 0.390.39 비교예 1Comparative Example 1 722722 0.280.28 실시예 2Example 2 14641464 0.600.60 비교예 2Comparative Example 2 10581058 0.430.43 실시예 3Example 3 18131813 0.820.82 비교예 3Comparative Example 3 14581458 0.620.62

활성탄소섬유 비표면적의 비교Comparison of specific surface areas of activated carbon fibers

표 1의 결과로부터 알 수 있듯이, 같은 조건 하 탄화 공정의 유무의 차이만 있는 경우, 탄화 공정을 제외한 실시예에 의하여 제조된 비탄화 활성탄소섬유가 탄화 공정을 거친 비교예에 의하여 제조된 활성탄소섬유보다 비표면적이 크다는 것을 확인할 수 있다.As can be seen from the results in Table 1, when there is only a difference in the presence or absence of a carbonization process under the same conditions, the non-carbonized activated carbon fiber manufactured by the example excluding the carbonization process is the activated carbon manufactured by the comparative example that has undergone the carbonization process. It can be seen that the specific surface area is larger than that of the fiber.

활성탄소섬유 기공 부피의 비교Comparison of activated carbon fiber pore volumes

표 1 및 도 2a, 도 2b로 부터 알 수 있듯이, 같은 조건 하 탄화 공정의 유무의 차이만 있는 경우, 탄화 공정을 제외한 실시예에 의하여 제조된 비탄화 활성탄소섬유가 탄화 공정을 거친 비교예에 의하여 제조된 활성탄소섬유보다 기공 부피가 크다는 것을 확인할 수 있다.As can be seen from Table 1 and Figures 2a and 2b, when there is only a difference in the presence or absence of a carbonization process under the same conditions, the non-carbonized activated carbon fiber manufactured by the example excluding the carbonization process is compared to the comparative example that underwent the carbonization process. It can be confirmed that the pore volume is larger than that of the activated carbon fiber manufactured by.

활성탄소섬유의 톨루엔 흡착성능 비교Comparison of toluene adsorption performance of activated carbon fiber

도 3에서 알 수 있듯이, 같은 조건 하 탄화 공정의 유무의 차이만 있는 경우, 탄화 공정을 제외한 실시예에 의하여 제조된 비탄화 활성탄소섬유가 탄화 공정을 거친 비교예에 의하여 제조된 활성탄소섬유보다 파과 및 포화 시간이 길어져 흡착 성능이 향상되었음을 확인할 수 있다. As can be seen in Figure 3, when there is only a difference in the presence or absence of a carbonization process under the same conditions, the non-carbonized activated carbon fiber manufactured by the example excluding the carbonization process is stronger than the activated carbon fiber manufactured by the comparative example that has undergone the carbonization process. It can be seen that the adsorption performance has improved as the breakthrough and saturation times have been lengthened.

Claims (5)

등방성 피치를 방사하여 등방성 피치 섬유를 제조하는 단계;
상기 등방성 피치 섬유를 250 내지 300℃의 온도범위에서 2 내지 3시간 안정화하는 단계; 및
상기 안정화한 등방성 피치 섬유를 수증기 내에서 750 내지 900℃ 온도범위에서 20 내지 50분간 활성화하는 단계; 로 이루어지는 비표면적이 1000㎡/g 이상인 비탄화 활성탄소섬유 제조방법.
Manufacturing isotropic pitch fibers by spinning isotropic pitch;
Stabilizing the isotropic pitch fibers in a temperature range of 250 to 300° C. for 2 to 3 hours; and
Activating the stabilized isotropic pitch fiber in water vapor at a temperature range of 750 to 900° C. for 20 to 50 minutes; A method of producing non-carbonized activated carbon fiber with a specific surface area of 1000 m2/g or more.
제 1항에 있어서,
상기 등방성 피치는 연화점이 200 내지 250℃ 인 것을 특징으로 하는 비탄화 활성탄소섬유의 제조방법.
According to clause 1,
A method of producing non-carbonized activated carbon fiber, characterized in that the isotropic pitch has a softening point of 200 to 250 ° C.
제 1항에 있어서,
상기 방사는, 상기 등방성 피치 연화점보다 80 내지 100℃ 높은 온도에서 방사하는 것을 특징으로 하는 비탄화 활성탄소섬유의 제조방법.
According to clause 1,
The spinning is a method of producing non-carbonized activated carbon fiber, characterized in that spinning at a temperature 80 to 100 ° C higher than the isotropic pitch softening point.
삭제delete 제 1항 내지 제 3항 중 어느 한 항에 따라 제조되는 비탄화 활성탄소섬유.Non-carbonized activated carbon fiber manufactured according to any one of claims 1 to 3.
KR1020180151536A 2018-11-30 2018-11-30 Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same KR102596646B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180151536A KR102596646B1 (en) 2018-11-30 2018-11-30 Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180151536A KR102596646B1 (en) 2018-11-30 2018-11-30 Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same

Publications (2)

Publication Number Publication Date
KR20200065252A KR20200065252A (en) 2020-06-09
KR102596646B1 true KR102596646B1 (en) 2023-11-02

Family

ID=71082445

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180151536A KR102596646B1 (en) 2018-11-30 2018-11-30 Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same

Country Status (1)

Country Link
KR (1) KR102596646B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179616A (en) * 2016-03-28 2017-10-05 株式会社アドール Manufacturing method of active charcoal containing at least one of metal element and metal compound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100417714B1 (en) 2000-12-22 2004-02-11 재단법인 포항산업과학연구원 Compounded of activated alumina and activated carbon fiber and a preparation method for the same
KR20080057449A (en) * 2006-12-20 2008-06-25 재단법인 포항산업과학연구원 Preparation method of activated carbon fiber based catalyst for removal of nox and activated carbon fiber based catalyst repared thereby
KR101372012B1 (en) 2012-03-02 2014-03-12 오씨아이 주식회사 Pitch-based isotropy carbon fibers of high strength and high elasticity and a fabrication process thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179616A (en) * 2016-03-28 2017-10-05 株式会社アドール Manufacturing method of active charcoal containing at least one of metal element and metal compound

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. I. Contescu et al., Detection of Hydrogen Spillover in Palladium-Modified Activated Carbon Fibers during Hydrogen Adsorption. J. Phys. Chem. C, Vol. 113, No. 14, 2009, 5886~5890
H. L. Tekinalp et al., The effect of molecular composition and structure on the development of porosity in pitch-based activated carbon fibers. CARBON, 52, 2013, 267~277
N. Díez et al., A novel approach for the production of chemically activated carbon. Chemical Engineering Journal, 260, 2015, 463~468

Also Published As

Publication number Publication date
KR20200065252A (en) 2020-06-09

Similar Documents

Publication Publication Date Title
CN1328425C (en) Active carbon fiber in hollow morphological structure, and preparation method
KR20170035907A (en) Activated carbon with excellent adsorption performance and process for producing same
CN108816190B (en) Alumina-activated carbon composite material and preparation method thereof
JP6379325B1 (en) Activated carbon and manufacturing method thereof
CN1633326A (en) Method for treatment of a gaseous mixture comprising hydrogen and hydrogen sulphide
CN103691399A (en) Preparation method of high-performance carbon molecular sieve for separating carbon dioxide/methane
JP2022132348A (en) Activated carbon and production method thereof
KR102596646B1 (en) Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same
US11873235B2 (en) Activated carbon
KR101918652B1 (en) Activated carbon for removal of formaldehyde gas and the method thereof
KR20130040273A (en) Absorbent for purifying air, filter comprising the absorbent and method for preparing the filter
KR102370959B1 (en) Method of preparing resin-based activated carbon and the activated carbon thereby
KR940021501A (en) How to remove iodine compounds in acetic acid
KR100967622B1 (en) Manufacturing method of Fibrous Adsorbent by blend electrospinning for VOC absorbent
KR102545878B1 (en) activated carbon
KR101333617B1 (en) Method for fabricating solid amine-impregnated zeolite sorbent and sorbent fabricated by the same
KR100407806B1 (en) ACTIVATED CARBON FIBER CATALYST FOR REMOVAL OF SOx AND PREPARATION METHOD OF THE SAME
JP7300124B2 (en) Activated carbon for removing trihalomethane and method for producing the same
KR101717369B1 (en) Method for purifying fluorinated green house gases
KR20230079471A (en) Method of decarbonating gaseous flows
KR20200016565A (en) Amine adsorbent for co2 capture process
Ahmad et al. Influence of carbonisation temperature on the surface pore characteristics of acid-treated oil palm empty fruit bunch activated carbon
Lei et al. Carbon Membrane Preparation
WO2021186974A1 (en) Gas separation method and zeolite membrane
JP2006315903A (en) Fibrous active carbon

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right