KR20200065252A - Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same - Google Patents

Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same Download PDF

Info

Publication number
KR20200065252A
KR20200065252A KR1020180151536A KR20180151536A KR20200065252A KR 20200065252 A KR20200065252 A KR 20200065252A KR 1020180151536 A KR1020180151536 A KR 1020180151536A KR 20180151536 A KR20180151536 A KR 20180151536A KR 20200065252 A KR20200065252 A KR 20200065252A
Authority
KR
South Korea
Prior art keywords
activated carbon
carbon fiber
isotropic pitch
carbonization process
carbonized
Prior art date
Application number
KR1020180151536A
Other languages
Korean (ko)
Other versions
KR102596646B1 (en
Inventor
이영석
한정인
김민지
강다희
최예지
송은지
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to KR1020180151536A priority Critical patent/KR102596646B1/en
Publication of KR20200065252A publication Critical patent/KR20200065252A/en
Application granted granted Critical
Publication of KR102596646B1 publication Critical patent/KR102596646B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/306Active carbon with molecular sieve properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/318Preparation characterised by the starting materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/312Preparation
    • C01B32/336Preparation characterised by gaseous activating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • Inorganic Fibers (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

The present invention provides a method for preparing a non-carbonized activated carbon fiber using an isotropic pitch and a non-carbonized activated carbon fiber prepared thereby. According to the present invention, the preparation method comprises the steps of: preparing an isotropic pitch fiber by spinning an isotropic pitch; stabilizing the isotropic pitch fiber; and activating the stabilized isotropic pitch. In this preparation method, the activated carbon fiber can be more simply and economically prepared by excluding a carbonization process which requires a long time and high energy, unlike a conventional method for preparing an activated carbon fiber. In addition, the non-carbonized activated carbon fiber prepared by the preparation method of the present invention has a large specific surface area and excellent adsorption performance.

Description

등방성 피치를 사용한 비탄화 활성탄소섬유의 제조방법 및 이에 의해 제조된 비탄화 활성탄소섬유{Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same}Method for manufacturing non-carbonized activated carbon fiber using isotropic pitch and non-carbonized activated carbon fiber produced thereby {Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same}

본 발명은 등방성 피치를 사용한 비탄화 활성탄소섬유의 제조방법 및 이에 의해 제조된 비탄화 활성탄소섬유에 관한 것이다.The present invention relates to a method for producing non-carbonized activated carbon fibers using an isotropic pitch and non-carbonized activated carbon fibers produced thereby.

보다 상세하게는, 등방성 피치를 사용하여, 통상의 활성탄소섬유 제조공정에서 장시간 및 고에너지를 요구하는 탄화 공정을 제외시킴으로써, 보다 간이하고 경제적인 공정으로 큰 비표면적 및 우수한 흡착성능을 갖는 비탄화 활성탄소섬유를 제조하는 방법 및 이에 의해 제조된 비탄화 활성탄소섬유에 관한 것이다.More specifically, by using an isotropic pitch, a carbonization process that requires a long time and high energy is excluded from a normal process of manufacturing an activated carbon fiber, thereby making it a simpler and more economical process, non-carbonization with a large specific surface area and excellent adsorption performance. It relates to a method for producing activated carbon fibers and non-carbonized activated carbon fibers produced thereby.

휘발성유기화합물(Volatile organic compound, VOC)은 인체 및 생태계에 미치는 영향이 커서 특정 대기 유해물질로 분류되고 있으며, 또한 광화학 반응을 통하여 오존 등과 같은 2차 오염물질인 광화학 산화물을 생성시킨다. 이와 같은 휘발성 유기화합물은 발암성이 높다고 알려져 있는 화학물질이 다수 포함되어 있기 때문에 인체에 유독하며 오존층 파괴, 지구온난화, 광화학 스모그, 악취 등의 문제점을 야기한다. 휘발성유기화합물은 배출량이 매년 10% 이상 급증하고 있으며, 저농도에서도 인체에 치명적일 수 있기 때문에 이를 효과적으로 제거할 수 있는 처리 기술의 개발이 요구된다.Volatile organic compounds (VOCs) are classified as specific atmospheric harmful substances due to their great effect on the human body and ecosystem, and also generate photochemical oxides, which are secondary pollutants such as ozone, through photochemical reactions. Since these volatile organic compounds contain many chemicals known to have high carcinogenicity, they are toxic to the human body and cause problems such as ozone layer destruction, global warming, photochemical smog, and odor. Volatile organic compounds have increased emissions by more than 10% every year, and even at low concentrations, they can be fatal to the human body, so it is required to develop a treatment technology that can effectively remove them.

일반적으로 저농도, 기상 휘발성유기화합물을 제거하기 위해서는 흡착법이 가장 높은 처리 효율을 갖는 것으로 보고되고 있으며, 이때 주로 사용되는 흡착제로는 활성탄, 활성탄소섬유, 실리카겔, 알루미나, 제올라이트 등이 있다. 특히 활성탄소섬유(Activated carbon fiber)는 큰 비표면적을 가지고, 흡착 부분이 섬유 표면으로부터 직접 미세공으로 이어져 흡착과 탈착 속도가 빠르다는 장점이 있다. In general, in order to remove low-concentration, gaseous volatile organic compounds, the adsorption method has been reported to have the highest processing efficiency. At this time, the adsorbent mainly used is activated carbon, activated carbon fiber, silica gel, alumina, zeolite, and the like. In particular, activated carbon fiber has an advantage of having a large specific surface area, and the adsorption portion leads to micropores directly from the fiber surface, resulting in a fast adsorption and desorption rate.

활성탄소섬유를 제조하는 종래 방법은 대한민국 공개특허 제10-2013-0100588호 등에 기재된 바와 같이, 피치로부터 용융방사를 통해 피치 섬유를 제조하고, 이를 불융화, 탄화하여 탄소섬유를 제조한 후, 활성화를 함으로써 제조하는 것이다. 이러한 종래 방법에 의한 활성탄소섬유의 제조방법은 장시간 및 고에너지를 요구하는 탄화 공정을 거쳐야하는 문제점이 있었다.A conventional method of manufacturing activated carbon fibers is as described in Korean Patent Application Publication No. 10-2013-0100588, etc., to prepare pitch fibers by melt spinning from pitch, and then carbonizing them by dissolving and carbonizing them to activate them. It is manufactured by doing. The method of manufacturing activated carbon fibers according to the conventional method has a problem that has to go through a carbonization process that requires a long time and high energy.

또 다른 공개특허 10-2002-0051383에 의하면, 활성탄소섬유 제조공정에 활성알루미나를 피치에 분산하는 공정이 더 포함되며, 활성알루미나를 분산한 후 방사함으로 인해 실질적으로 탄화 공정을 거치지 않을 시 탄소수율이 떨어지는 문제점이 있었다.According to another published patent 10-2002-0051383, the process of dispersing activated alumina on a pitch is further included in the process of manufacturing activated carbon fibers, and carbon dioxide yields when the carbonization process is not substantially performed due to spinning after dispersing the activated alumina There was this falling issue.

따라서 위와 같은 문제로 보다 간이하고 경제적인 공정으로 큰 비표면적 및 우수한 흡착성능을 가지는 활성탄소섬유를 제조하는 방법이 요구되어 왔다.Accordingly, there has been a demand for a method of manufacturing an activated carbon fiber having a large specific surface area and excellent adsorption performance by a simpler and more economical process due to the above problems.

한국특허공개공보 제 10-2013-0100588호Korean Patent Publication No. 10-2013-0100588 한국특허공개공보 제 10-200200051383호Korean Patent Publication No. 10-200200051383

본 발명의 목적은 등방성 피치를 사용한 비탄화 활성탄소섬유의 제조방법 및 이에 의해 제조된 비탄화 활성탄소섬유를 제공하는 것이다.An object of the present invention is to provide a method for producing non-carbonized activated carbon fibers using an isotropic pitch and non-carbonized activated carbon fibers produced thereby.

본 발명의 다른 목적은 보다 간이하고 경제적인 비탄화 활성탄소섬유의 제조방법 및 이에 의해 제조된 비탄화 활성탄소섬유를 제공하는 것이다.Another object of the present invention is to provide a simpler and more economical method for producing non-carbonized activated carbon fibers and non-carbonized activated carbon fibers produced thereby.

본 발명의 다른 목적은 큰 비표면적과 우수한 흡착성능을 갖는 비탄화 활성탄소섬유를 제공하는 것이다. Another object of the present invention is to provide a non-carbonized activated carbon fiber having a large specific surface area and excellent adsorption performance.

상기 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention

등방성 피치를 방사하여 등방성 피치 섬유를 제조하는 단계; 상기 등방성 피치 섬유를 안정화하는 단계; 및 상기 안정화된 등방성 피치를 수증기 내에서 750 내지 900℃ 온도범위에서 20 내지 50분간 활성화하는 단계; 로 이루어지는 비표면적이 1000㎡/g 이상인 비탄화 활성탄소섬유 제조방법을 제공한다.Spinning isotropic pitch to produce isotropic pitch fibers; Stabilizing the isotropic pitch fibers; And activating the stabilized isotropic pitch in water vapor at a temperature range of 750 to 900° C. for 20 to 50 minutes; It provides a method for producing a non-carbonized activated carbon fiber having a specific surface area of 1000 m 2 /g or more.

본 발명의 일 예에 따르면 상기 등방성 피치는 연화점이 200 내지 250℃ 인 것으로 할 수 있다.According to an example of the present invention, the isotropic pitch may have a softening point of 200 to 250°C.

본 발명의 일 예에 따르면 상기 방사는 상기 등방성 피치 연화점보다 80 내지 100℃ 높은 온도에서 방사하는 것일 수 있다.According to an example of the present invention, the spinning may be spinning at a temperature of 80 to 100°C higher than the isotropic pitch softening point.

본 발명의 일 예에 따르면 상기 안정화하는 단계는, 250 내지 300℃의 온도범위에서 2 내지 3시간 안정화 하는 것일 수 있다.According to an example of the present invention, the stabilizing step may be stabilizing for 2 to 3 hours in a temperature range of 250 to 300°C.

또한, 본 발명은 상기 제조방법에 의해 제조된 비탄화 활성탄소섬유를 제공한다.In addition, the present invention provides a non-carbonized activated carbon fiber produced by the above manufacturing method.

본 발명에 의할 경우, 등방성 피치를 사용하여 비탄화 활성탄소섬유를 제조할 수 있다.In the case of the present invention, non-carbonized activated carbon fibers can be produced using isotropic pitch.

본 발명은 통상의 활성탄소섬유를 제조하는 공정에서 장시간 및 고에너지를 요구하는 탄화 공정을 제외함으로써, 보다 간이하고 경제적인 공정으로 비탄화 활성탄소섬유를 제조할 수 있다.In the present invention, a non-carbonized activated carbon fiber can be produced in a simpler and more economical process by excluding a carbonization process requiring a long time and high energy from a process for manufacturing an ordinary activated carbon fiber.

본 발명에 의한 비탄화 활성탄소섬유는 큰 비표면적 및 우수한 흡착성능을 갖는다.The non-carbonized activated carbon fiber according to the present invention has a large specific surface area and excellent adsorption performance.

도 1a는 실시예 1 내지 3의 질소 흡착등온선을 나타낸 것이다.
도 1b는 비교예 1 내지 3의 질소 흡착등온선을 나타낸 것이다.
도 2a는 실시예 1 내지 3의 기공 분포를 나타낸 것이다.
도 2b는 비교예 1 내지 3의 기공 분포를 나타낸 것이다.
도 3은 실시예 1 내지 3 및 비교예 1 내지 3의 톨루엔 흡착 파과곡선 그래프를 나타낸 것이다.
Figure 1a shows the nitrogen adsorption isotherm of Examples 1 to 3.
Figure 1b shows the nitrogen adsorption isotherm of Comparative Examples 1 to 3.
Figure 2a shows the pore distribution of Examples 1 to 3.
Figure 2b shows the pore distribution of Comparative Examples 1 to 3.
Figure 3 shows the toluene adsorption breakthrough curve graphs of Examples 1 to 3 and Comparative Examples 1 to 3.

이하에서 본 발명에 대하여 구체적으로 설명한다.Hereinafter, the present invention will be described in detail.

다른 정의가 없다면 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 명세서 전체에서 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.Unless otherwise defined, all terms used in this specification (including technical and scientific terms) may be used in a sense that can be commonly understood by those skilled in the art to which the present invention pertains. When a certain part of the specification "includes" a certain component, this means that other components may be further included instead of excluding other components unless specifically stated otherwise. Also, the singular form includes the plural form unless otherwise specified in the phrase.

본 발명의 비탄화라는 의미는 별도의 탄화 공정을 거치지 않았음을 의미한다.The meaning of non-carbonization of the present invention means that a separate carbonization process has not been performed.

본 발명은 상술한 기술적 과제의 해결을 위해 등방성 피치를 사용한 비탄화 활성탄소섬유를 제공하는데, 그 제조방법은, 등방성 피치를 방사하여 등방성 피치 섬유를 제조하는 단계; 상기 등방성 피치 섬유를 안정화하는 단계; 및 상기 안정화된 등방성 피치를 수증기 내에서 750 내지 900℃ 온도범위에서 20 내지 50분간 활성화하는 단계; 로 이루어진다. 또한 이에 의해 생성된 비탄화 활성탄소섬유는 비표면적이 1000㎡/g 이상인 것을 특징으로 한다. 이러한 큰 비표면적을 갖는 비탄화 활성탄소섬유는 장기간의 사용에 유리하고, 흡착성능이 뛰어나다.The present invention provides a non-carbonized activated carbon fiber using an isotropic pitch to solve the above technical problem, the manufacturing method comprising: spinning the isotropic pitch to produce an isotropic pitch fiber; Stabilizing the isotropic pitch fibers; And activating the stabilized isotropic pitch in water vapor at a temperature range of 750 to 900° C. for 20 to 50 minutes; Is made of In addition, the non-carbonized activated carbon fiber thus produced is characterized by having a specific surface area of 1000 m 2 /g or more. The non-carbonized activated carbon fiber having such a large specific surface area is advantageous for long-term use and has excellent adsorption performance.

방사는 섬유 전구체를 융액 상태로 하여 방사 노즐에서 사출하여 섬유상으로 하는 것을 의미하며, 안정화는 제조된 섬유가 이후의 온도에서 용융되지 않도록 열안정화(불융화)하는 것을 의미한다. 또한 활성화는 탄소섬유의 미세기공을 발달시킴으로써 흡착성능을 증가시키는 것을 의미한다.Spinning means that the fiber precursor is melted and injected from the spinning nozzle to form a fiber, and stabilization means thermal stabilization (immiscible) so that the produced fiber does not melt at a subsequent temperature. In addition, activation means to increase the adsorption performance by developing the micropores of the carbon fiber.

피치는 광학적 배열구조에 따라 등방성 피치와 이방성인 피치로 나눌 수 있다. 이방성인 메조페이스 피치를 이용한 탄소 섬유의 경우 고배향성을 갖는 결정질의 탄소구조로 인해 활성화 공정에 따른 기공형성에 취약한 특성을 보임에 반해, 등방성 피치를 사용한 탄소섬유의 경우 난층 구조(Turbostratic structure)로 이루어져 활성화를 통한 미세기공 형성 및 높은 비표면적을 확보할 수 있다. 또한, 피치섬유는 그 자체로 탄소 함유율이 90% 이상이라는 이점을 가지고 있어, 별도의 탄화 공정 없이 활성화 초기 단계에서 이루어지는 탄화만으로도 높은 탄소 함유율을 확보할 수 있다.The pitch can be divided into an isotropic pitch and an anisotropic pitch according to the optical arrangement. In the case of carbon fibers using anisotropic mesophase pitch, due to the crystalline carbon structure having high orientation, the characteristics of vulnerable to pore formation due to the activation process are shown, whereas in the case of carbon fibers using isotropic pitch, the carbon fiber structure has a turbostratic structure. It is possible to form micropores through activation and ensure a high specific surface area. In addition, the pitch fiber itself has an advantage that the carbon content is 90% or more, it is possible to secure a high carbon content only by carbonization performed in the initial stage of activation without a separate carbonization process.

본 발명은 이러한 등방성 피치를 방사하여 등방성 피치 섬유를 제조하고, 그로부터 장시간 및 고에너지를 요구하는 탄화 공정을 거치지 않고, 안정화 및 활성화를 함으로써 간이하고 경제적인 공정으로 비탄화 활성탄소섬유를 제조할 수 있다. 또한 이렇게 제조된 비탄화 활성탄소섬유는 구조배열의 변화를 가져오는 탄화공정을 제외시킴으로써 활성화시 큰 비표면적 및 우수한 흡착성능을 갖는다.The present invention is to produce an isotropic pitch fiber by spinning such an isotropic pitch, from which a non-carbonized activated carbon fiber can be produced in a simple and economical process by stabilizing and activating, without going through a carbonization process that requires a long time and high energy. have. In addition, the non-carbonized activated carbon fiber thus produced has a large specific surface area and excellent adsorption performance when activated by excluding the carbonization process that causes a change in the structure arrangement.

상기 등방성 피치는 연화점이 200 내지 250℃인 것을 사용할 수 있다. 다만 반드시 이에 한정되는 것은 아니다.The isotropic pitch may be used having a softening point of 200 to 250 ℃. However, it is not necessarily limited thereto.

상기 방사는, 용융방사를 통하여 수행할 수 있으며, 원활한 방사 및 단사를 방지하기 위하여 상기 등방성 피치의 연화점보다 80 내지 100℃ 높은 온도에서 수행하는 것이 바람직하나 반드시 이에 한정되는 것은 아니다.The spinning may be performed through melt spinning, and is preferably performed at a temperature of 80 to 100°C higher than the softening point of the isotropic pitch in order to prevent smooth spinning and single spinning, but is not limited thereto.

상기 안정화하는 단계는, 통상적인 피치 섬유의 안정화 방법으로 수행할 수 있으나, 방사된 등방성 피치 섬유가 연화되거나 변형되는 것을 방지하기 위해 250 내지 300℃의 온도범위에서 2 내지 3시간 안정화하는 것이 바람직하다. 다만 반드시 이에 한정되는 것은 아니다.The stabilizing step may be performed by a conventional pitch fiber stabilization method, but is preferably stabilized for 2 to 3 hours in a temperature range of 250 to 300°C to prevent the spun or isotropic pitch fibers from being softened or deformed. . However, it is not necessarily limited thereto.

이하 실시예 및 비교예를 통해 본 발명을 더욱 상세하게 설명한다. 그러나 하기 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기 실시예에 한정 되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples and comparative examples. However, the following examples are only preferred examples of the present invention, and the present invention is not limited to the following examples.

하기 실시예의 물성 측정은 하기한 방법으로 실시하였다.Measurement of physical properties of the following examples was carried out in the following manner.

활성탄소섬유의 액체질소 온도(77K)에서 상대압력(P/P0)의 변화에 따라 활성탄소섬유의 표면 및 기공 내에 물리적으로 흡착되는 질소가스(N2)의 양을 측정함으로써 활성탄소섬유의 비표면적 및 기공분포를 측정하였다. 흡착 실험은 Micromeritics의 ASAP 2020을 이용하여 수행하였다. 시료는 약 0.2g을 사용하였고, 250℃에서 5시간 전처리하여 분석 하였다.By measuring the amount of nitrogen gas (N 2 ) that is physically adsorbed in the surface and pores of the activated carbon fiber according to the change of the relative pressure (P/P 0 ) at the liquid nitrogen temperature (77K) of the activated carbon fiber, The specific surface area and pore distribution were measured. Adsorption experiments were performed using Micromeritics' ASAP 2020. About 0.2 g of the sample was used, and it was analyzed by pre-treatment at 250° C. for 5 hours.

휘발성화합물의 흡착량은 톨루엔 흡착 실험을 수행하였으며, 흡착제의 입출구에서 흡착 가스의 농도 변화인 파과곡선으로부터 흡착량을 구하였다. 활성탄소섬유를 직경 13mm, 길이 200mm 석영관에 0.01 g 충진하고, 100ppm의 톨루엔이 함유되어있는 질소 가스를 300cc/min으로 흘려준 뒤 톨루엔 흡착량을 가스크로마토그래피 (GC analysis apparatus, Aglient, HP 6890, FID)를 이용하여 흡착량을 계산하였다. 본 발명에서는 실온조건에서 실험하였다.The adsorption amount of volatile compounds was performed by toluene adsorption experiment, and the adsorption amount was obtained from the breakthrough curve, which is the concentration change of the adsorption gas at the inlet and outlet of the adsorbent. Activated carbon fiber is filled with 0.01 g in a 13 mm diameter and 200 mm length quartz tube, and nitrogen gas containing 100 ppm of toluene is flowed at 300 cc/min, followed by gas chromatography (GC analysis apparatus, Aglient, HP 6890) , FID). In the present invention, experiments were conducted at room temperature.

제조된 활성탄소섬유의 흡착등온선은 도 1a 및 도 1b, 기공 분포는 도 2a 및 2b에 기재하였으며, 톨루엔 흡착 파과곡선은 도 3에 기재 하였다.The adsorption isotherm of the prepared activated carbon fiber is shown in FIGS. 1A and 1B, the pore distribution is shown in FIGS. 2A and 2B, and the toluene adsorption breakthrough curve is shown in FIG. 3.

제조된 활성탄소섬유의 물성을 평가한 결과는 표 1에 나타내었다.Table 1 shows the results of evaluating the properties of the prepared activated carbon fibers.

연화점이 250℃인 등방성 피치를 사용하여 용융 방사를 통해 등방성 피치 섬유를 제조하였다. 0.3mm의 구멍을 가진 노즐로 등방성 피치를 용융방사 하였으며, 이때 방사 조건은 330 내지 350℃, N2가스 유량은 2 내지 5bar/min으로 하여 용융 방사 하였다.Isotropic pitch fibers were prepared by melt spinning using an isotropic pitch with a softening point of 250°C. The isotropic pitch was melt-spinned with a nozzle having a hole of 0.3 mm, and the spinning conditions were 330 to 350° C., and the N 2 gas flow rate was 2 to 5 bar/min to melt spinning.

제조된 등방성 피치 섬유를 1℃/min의 승온 속도로 280℃, 공기 분위기 하에서 2시간 유지시켜 안정화 하였다.The prepared isotropic pitch fibers were stabilized by maintaining them at 280° C. for 2 hours under an air atmosphere at a heating rate of 1° C./min.

안정화된 등방성 피치 섬유를 탄화 공정을 별도로 거치지 않고, 스팀을 이용하여 5℃/min의 승온 속도로 800℃에서 20분간 활성화를 실시하여 비탄화 활성탄소섬유를 제조하였다.The stabilized isotropic pitch fibers were subjected to activation at 800° C. for 20 minutes at a heating rate of 5° C./min using steam, without going through a carbonization process, to prepare non-carbonized activated carbon fibers.

상기 활성화 과정에서 활성화 온도를 850℃로 실시한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 비탄화 활성탄소섬유를 제조하였다.A non-carbonized activated carbon fiber was prepared in the same manner as in Example 1, except that the activation temperature in the activation process was 850°C.

상기 활성화 과정에서 활성화 온도를 850℃로 실시한 것을 제외하고는 상기 실시예 1과 동일하게 수행하여 비탄화 활성탄소섬유를 제조하였다.A non-carbonized activated carbon fiber was prepared in the same manner as in Example 1, except that the activation temperature in the activation process was 850°C.

<비교예 1><Comparative Example 1>

상기 실시예 1에서, 안정화 과정 후 탄화 공정을 추가로 실시하였다. 이때 탄화는 승온 속도 5℃/min, 1000℃, 질소 분위기 하에서 1시간 유지하였다. 이후 활성화 과정은 실시예 1과 동일하게 수행하여 활성탄소섬유를 제조하였다.In Example 1, a carbonization process was further performed after the stabilization process. At this time, the carbonization was maintained at a heating rate of 5° C./min, 1000° C., under a nitrogen atmosphere for 1 hour. Thereafter, the activation process was performed in the same manner as in Example 1 to prepare activated carbon fibers.

<비교예 2><Comparative Example 2>

상기 비교예 1에서 탄화 공정을 거친 섬유를 850℃의 온도로 활성화를 실시한 것을 제외하고 동일하게 수행하여 활성탄소섬유를 제조하였다.In Comparative Example 1, the activated carbon fiber was prepared by performing the same procedure, except that the fiber subjected to the carbonization process was activated at a temperature of 850°C.

<비교예 3><Comparative Example 3>

상기 비교예 1에서 탄화 공정을 거친 섬유를 900℃의 온도로 활성화를 실시한 것을 제외하고 동일하게 수행하여 활성탄소섬유를 제조하였다.In Comparative Example 1, activated carbon fibers were prepared by performing the same procedure, except that the fibers subjected to the carbonization process were activated at a temperature of 900°C.

비표면적 (m2/g)Specific surface area (m 2 /g) 총 기공 부피 (cc/g)Total pore volume (cc/g) 실시예 1Example 1 10391039 0.390.39 비교예 1Comparative Example 1 722722 0.280.28 실시예 2Example 2 14641464 0.600.60 비교예 2Comparative Example 2 10581058 0.430.43 실시예 3Example 3 18131813 0.820.82 비교예 3Comparative Example 3 14581458 0.620.62

활성탄소섬유 비표면적의 비교Comparison of specific surface area of activated carbon fiber

표 1의 결과로부터 알 수 있듯이, 같은 조건 하 탄화 공정의 유무의 차이만 있는 경우, 탄화 공정을 제외한 실시예에 의하여 제조된 비탄화 활성탄소섬유가 탄화 공정을 거친 비교예에 의하여 제조된 활성탄소섬유보다 비표면적이 크다는 것을 확인할 수 있다.As can be seen from the results of Table 1, when there is only a difference between the presence or absence of the carbonization process under the same conditions, the non-carbonized activated carbon fibers produced by the examples other than the carbonization process are activated carbons prepared by the comparative example that has undergone the carbonization process. It can be seen that the specific surface area is larger than that of the fibers.

활성탄소섬유 기공 부피의 비교Comparison of activated carbon fiber pore volume

표 1 및 도 2a, 도 2b로 부터 알 수 있듯이, 같은 조건 하 탄화 공정의 유무의 차이만 있는 경우, 탄화 공정을 제외한 실시예에 의하여 제조된 비탄화 활성탄소섬유가 탄화 공정을 거친 비교예에 의하여 제조된 활성탄소섬유보다 기공 부피가 크다는 것을 확인할 수 있다.As can be seen from Table 1 and FIGS. 2A and 2B, in the case where there is only a difference in the presence or absence of a carbonization process under the same conditions, the non-carbonized activated carbon fibers prepared by the examples other than the carbonization process have undergone a carbonization process. It can be confirmed that the pore volume is larger than that of the activated carbon fiber produced by the method.

활성탄소섬유의 톨루엔 흡착성능 비교Comparison of activated carbon fiber toluene adsorption performance

도 3에서 알 수 있듯이, 같은 조건 하 탄화 공정의 유무의 차이만 있는 경우, 탄화 공정을 제외한 실시예에 의하여 제조된 비탄화 활성탄소섬유가 탄화 공정을 거친 비교예에 의하여 제조된 활성탄소섬유보다 파과 및 포화 시간이 길어져 흡착 성능이 향상되었음을 확인할 수 있다. As can be seen in Figure 3, if there is only a difference in the presence or absence of the carbonization process under the same conditions, the non-carbonized activated carbon fiber produced by the example other than the carbonization process is compared to the activated carbon fiber produced by the comparative example that has undergone the carbonization process. It can be seen that the breakthrough and saturation times were long, and the adsorption performance was improved.

Claims (5)

등방성 피치를 방사하여 등방성 피치 섬유를 제조하는 단계;
상기 등방성 피치 섬유를 안정화하는 단계; 및
상기 안정화한 등방성 피치 섬유를 수증기 내에서 750 내지 900℃ 온도범위에서 20 내지 50분간 활성화하는 단계; 로 이루어지는 비표면적이 1000㎡/g 이상인 비탄화 활성탄소섬유 제조방법.
Spinning isotropic pitch to produce isotropic pitch fibers;
Stabilizing the isotropic pitch fibers; And
Activating the stabilized isotropic pitch fibers in water vapor at a temperature range of 750 to 900° C. for 20 to 50 minutes; Method for producing a non-carbonized activated carbon fiber having a specific surface area of 1000 m 2 /g or more.
제 1항에 있어서,
상기 등방성 피치는 연화점이 200 내지 250℃ 인 것을 특징으로 하는 비탄화 활성탄소섬유의 제조방법.
According to claim 1,
The isotropic pitch is a method for producing non-carbonized activated carbon fibers, characterized in that the softening point is 200 to 250 ℃.
제 1항에 있어서,
상기 방사는, 상기 등방성 피치 연화점보다 80 내지 100℃ 높은 온도에서 방사하는 것을 특징으로 하는 비탄화 활성탄소섬유의 제조방법.
According to claim 1,
The spinning is a method for producing non-carbonized activated carbon fibers, characterized in that spinning at a temperature of 80 to 100°C higher than the isotropic pitch softening point.
제 1항에 있어서,
상기 안정화하는 단계는, 250 내지 300℃의 온도범위에서 2 내지 3시간 안정화 하는 것을 특징으로 하는 비탄화 활성탄소섬유의 제조방법.
According to claim 1,
The stabilizing step is a method of manufacturing non-carbonized activated carbon fibers, characterized in that it is stabilized for 2 to 3 hours in a temperature range of 250 to 300°C.
제 1항 내지 제 4항 중 어느 한 항에 따라 제조되는 비탄화 활성탄소섬유.Non-carbonized activated carbon fiber prepared according to any one of claims 1 to 4.
KR1020180151536A 2018-11-30 2018-11-30 Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same KR102596646B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180151536A KR102596646B1 (en) 2018-11-30 2018-11-30 Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180151536A KR102596646B1 (en) 2018-11-30 2018-11-30 Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same

Publications (2)

Publication Number Publication Date
KR20200065252A true KR20200065252A (en) 2020-06-09
KR102596646B1 KR102596646B1 (en) 2023-11-02

Family

ID=71082445

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180151536A KR102596646B1 (en) 2018-11-30 2018-11-30 Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same

Country Status (1)

Country Link
KR (1) KR102596646B1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020051383A (en) 2000-12-22 2002-06-29 신현준 Compounded of activated alumina and activated carbon fiber and a preparation method for the same
KR20080057449A (en) * 2006-12-20 2008-06-25 재단법인 포항산업과학연구원 Preparation method of activated carbon fiber based catalyst for removal of nox and activated carbon fiber based catalyst repared thereby
KR20130100588A (en) 2012-03-02 2013-09-11 오씨아이 주식회사 Pitch-based isotropy carbon fibers of high strength and high elasticity and a fabrication process thereof
JP2017179616A (en) * 2016-03-28 2017-10-05 株式会社アドール Manufacturing method of active charcoal containing at least one of metal element and metal compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020051383A (en) 2000-12-22 2002-06-29 신현준 Compounded of activated alumina and activated carbon fiber and a preparation method for the same
KR20080057449A (en) * 2006-12-20 2008-06-25 재단법인 포항산업과학연구원 Preparation method of activated carbon fiber based catalyst for removal of nox and activated carbon fiber based catalyst repared thereby
KR20130100588A (en) 2012-03-02 2013-09-11 오씨아이 주식회사 Pitch-based isotropy carbon fibers of high strength and high elasticity and a fabrication process thereof
JP2017179616A (en) * 2016-03-28 2017-10-05 株式会社アドール Manufacturing method of active charcoal containing at least one of metal element and metal compound

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
C. I. Contescu et al., Detection of Hydrogen Spillover in Palladium-Modified Activated Carbon Fibers during Hydrogen Adsorption. J. Phys. Chem. C, Vol. 113, No. 14, 2009, 5886~5890 *
H. L. Tekinalp et al., The effect of molecular composition and structure on the development of porosity in pitch-based activated carbon fibers. CARBON, 52, 2013, 267~277 *
N. Díez et al., A novel approach for the production of chemically activated carbon. Chemical Engineering Journal, 260, 2015, 463~468 *

Also Published As

Publication number Publication date
KR102596646B1 (en) 2023-11-02

Similar Documents

Publication Publication Date Title
CN108816190B (en) Alumina-activated carbon composite material and preparation method thereof
JP6379325B1 (en) Activated carbon and manufacturing method thereof
WO2018116858A1 (en) Active carbon and production method thereof
JP2022132348A (en) Activated carbon and production method thereof
JP2020110801A (en) Activated carbon
KR101918652B1 (en) Activated carbon for removal of formaldehyde gas and the method thereof
KR20110125742A (en) Formaldehyde-adsorbent comprising amine-functionalized mesoporous materials
KR102596646B1 (en) Method for manufacturing activated carbon fiber without carbonization process using isotropic pitch and activated carbon fiber without carbonization process manufactured by the same
JP2007160163A (en) Method of separating volatile readily adsorbable component and hardly adsorbable component from solution containing volatile readily adsorbable component and hardly adsorbable component using adsorbent
RU2518602C2 (en) Germane purification
US10751697B2 (en) Method of producing highly porous adsorbents
He Development of hollow fiber carbon membranes for CO2 separation
KR101717369B1 (en) Method for purifying fluorinated green house gases
KR102370959B1 (en) Method of preparing resin-based activated carbon and the activated carbon thereby
KR940021501A (en) How to remove iodine compounds in acetic acid
CN110170307B (en) Preparation of coconut shell activated carbon through ozone surface treatment and para aminobenzoic acid modification treatment, product and application
KR102545878B1 (en) activated carbon
KR101391688B1 (en) Process for preparing dry adsorbent for selective capture of carbon dioxide
KR102140913B1 (en) Adsorbents for removing radioactive iodine compounds
KR20200134882A (en) Manufacturing method of porous carbon material with maximized surface oxygen functional group content and adsorbent for acidic volatile organic compounds
DE102018109104A1 (en) Gas treatment plant for the separation of water vapor from a gas mixture
KR102571426B1 (en) Method for preparing nitrogen trifluoride
JP4796455B2 (en) Silica gel activated carbon composite, removal method of volatile organic compound, removal method of organic compound having boiling point of -164 to 400 ° C, pressure swing adsorption method, and pressure swing adsorption device
KR20200016565A (en) Amine adsorbent for co2 capture process
JP2001017859A (en) Adsorbent comprising carbonized wood

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right