KR102582498B1 - 높은 분별력을 가지는 tem sadp 영상 생성 시스템 및 방법 - Google Patents

높은 분별력을 가지는 tem sadp 영상 생성 시스템 및 방법 Download PDF

Info

Publication number
KR102582498B1
KR102582498B1 KR1020210170519A KR20210170519A KR102582498B1 KR 102582498 B1 KR102582498 B1 KR 102582498B1 KR 1020210170519 A KR1020210170519 A KR 1020210170519A KR 20210170519 A KR20210170519 A KR 20210170519A KR 102582498 B1 KR102582498 B1 KR 102582498B1
Authority
KR
South Korea
Prior art keywords
diffraction pattern
sample
light source
electron beam
image
Prior art date
Application number
KR1020210170519A
Other languages
English (en)
Other versions
KR20230055316A (ko
Inventor
정진하
라문수
이혜연
이현지
Original Assignee
라이트비전 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 라이트비전 주식회사 filed Critical 라이트비전 주식회사
Priority to PCT/KR2022/015357 priority Critical patent/WO2023068631A1/ko
Publication of KR20230055316A publication Critical patent/KR20230055316A/ko
Priority to KR1020230089980A priority patent/KR20230110468A/ko
Application granted granted Critical
Publication of KR102582498B1 publication Critical patent/KR102582498B1/ko

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformations in the plane of the image
    • G06T3/40Scaling of whole images or parts thereof, e.g. expanding or contracting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20084Artificial neural networks [ANN]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

입력 파라미터에 적응적으로 대응하여 높은 분별력을 가지는 TEM SADP 영상 생성 시스템 및 방법이 개시된다. 상기 TEM SADP 영상 생성 시스템은 격자 상수, 단위 격자 내 원자의 상대적 위치와 정대축 파라미터 중 적어도 하나를 이용하여 시료를 생성하는 시료 생성부, 상기 단위 격자에 대응하는 역격자 벡터를 생성하는 벡터 생성부, 상기 생성된 시료 내 원자에 도달하는 전자빔의 밝기를 구하는 광원 생성부 및 상기 생성된 역격자 벡터, 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 가상의 회절 패턴 영상을 생성하는 회절 패턴 생성부를 포함한다.

Description

높은 분별력을 가지는 TEM SADP 영상 생성 시스템 및 방법{SYSTEM AND METHOD OF GENERATING TEM SADP IMAGE WITH HIGH DISCERNMENT}
본 발명은 입력 파라미터에 적응적으로 대응하여 높은 분별력을 가지는 TEM SADP 영상 생성 시스템 및 방법에 관한 것이다.
TEM(Transmission Electron Microscope) SADP(Selected Area Diffraction Pattern) 영상을 생성하는 기존 기술은 실제 TEM 기기로 촬영한 SADP와 유사하지 않거나 많은 시간을 필요로 하였다.
또한, SADP 영상 과정에서 광원의 불연속점으로 인한 링잉 효과가 발생하거나 HOLZ(High Order Laue Zone)가 회절 패턴에 포함되거나 회절점이 흐릿한 회절 패턴이 생성되는 현상이 발생하는 문제점이 발생하였다.
예를 들어, 도 1에 도시된 바와 같은 실제 TEM SADP 영상과 생성된 SADP 영상이 유사해야 하지만, 종래 기술에서 생성된 SADP 영상, 예를 들어 JEMS 또는 Condor 프로그램으로 생성된 가상의 SADP 영상은 도 3에 도시된 바와 같이 HOLZ 패턴이 포함되거나 도 4에 도시된 바와 같이 흐릿한 회절점이 포함되거나 도 5에 도시된 바와 같이 링잉 효과가 발생되었다.
KR 10-2021-0122161 A KR 10-2111124 B KR 10-2005508 B KR 10-1964529 B KR 10-2008-0111573 A KR 10-2221931 B KR 10-0403419 B KR 10-2021-0130953 A KR 10-1967300 B
본 발명은 입력 파라미터에 적응적으로 대응하여 높은 분별력을 가지는 TEM SADP 영상 생성 시스템 및 방법을 제공하는 것이다.
또한, 본 발명은 TEM에서 이용할 수 있는 가상의 회절 패턴 영상 생성 시스템 및 방법을 제공하는 것이다.
게다가, 본 발명은 회절 패턴 영상에서 링잉 효과, HOLZ가 포함되거나 흐릿한 회절점이 포함되는 현상을 방지할 수 있는 기술을 제공하는 것이다.
더욱이, 본 발명은 사용자에 의해 입력된 파라미터들을 수학적으로 해석하여 회절 패턴 영상을 생성할 수 있는 기술을 제공하는 것이다.
또한, 본 발명은 CPU 병렬 처리 또는 GPGPU를 활용하여 빠르게 처리할 수 있는 컴퓨팅 장치를 제공하는 것이다.
게다가, 본 발명은 감마 보정과 같은 영상 처리 기법을 활용하는 기술을 제공하는 것이다.
더욱이, 본 발명은 입력 파라미터에 적응적으로 대응하여 생성된 SADP 영상을 활용하는 기술을 제공하는 것이다.
본 발명은 많은 주사빔 출력으로 소재가 파괴되는 현상을 방지할 수 있는 기술을 제공하는 것이다.
상기한 바와 같은 목적을 달성하기 위하여, 본 발명의 일 실시예에 따른 회절 패턴 영상 생성 시스템은 격자 상수, 단위 격자 내 원자의 상대적 위치와 정대축 파라미터 중 적어도 하나를 이용하여 시료를 생성하는 시료 생성부; 상기 단위 격자에 대응하는 역격자 벡터를 생성하는 벡터 생성부; 상기 생성된 시료 내 원자에 도달하는 전자빔의 밝기를 구하는 광원 생성부; 및 상기 생성된 역격자 벡터, 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 가상의 회절 패턴 영상을 생성하는 회절 패턴 생성부를 포함한다.
상기 격자 상수, 상기 단위 격자 내 원자의 상대적 위치, 상기 정대축 파라미터, 상기 전자빔의 파장, 회절 패턴 영상의 크기를 설정하는 파라미터 설정부를 더 포함하되, 상기 파라미터 설정부에 이해 설정된 파라미터들은 사용자에 의해 입력될 수 있다.
상기 회절 패턴 영상은 TEM(Transmission Electron Microscope) SADP(Selected Area Diffraction Pattern) 영상일 수 있다.
상기 시료 생성부는 상기 정대축의 방향과 상기 정대축과 대응하는 격자면이 수직하도록 상기 단위 격자를 배열하여 slab 형태의 시료를 생성할 수 있다.
상기 시료 생성부는 상기 격자 상수와 상기 정대축에 따라 HOLZ(High Order Laue Zone)가 회절 패턴에 포함되거나 회절점이 흐릿한 회절 패턴이 생성되는 것을 방지하도록 slab의 층 수를 적응적으로 결정할 수 있다.
slab의 층 수를 결정할 때, slab의 크기가 증가함에 따라 추후 회절 패턴 계산 과정에서 늘어나는 연산량을 고려하여 slab의 층 수를 적응적으로 결정할 수 있다.
slab의 크기가 증가함에 따른 회절 패턴 계산 과정의 연산량 증가를 CPU 병렬처리 혹은 GPGPU(General Purpose computing on Graphics Processing Unit)를 사용하여 대응할 수 있다.
상기 벡터 생성부는 상기 전자빔이 위치한 원점으로부터 기설정 거리만큼 이격된 영상 좌표와 상기 전자빔의 파장을 이용하여 Eward sphere와 만나는 역격자 벡터를 생성할 수 있다.
상기 광원 생성부는 입력된 광원의 형태와 광원의 세기를 이용하여 상기 시료 내 각 원자에 도달하는 전자빔의 밝기를 구할 수 있다.
상기 광원의 불연속점으로부터 발생할 수 있는 회절 패턴의 링잉 효과를 방지하도록, 상기 광원의 형태와 상기 광원의 세기는 입력되는 slab의 크기와 회절 패턴 영상의 크기에 따라 적응적으로 가변될 수 있다.
상기 회절 패턴 생성부는 상기 생성된 역격자 벡터, 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 누적된 회절 패턴을 계산할 수 있다.
상기 누적된 회절 패턴의 최대값을 계산하며, 상기 계산된 최대값을 기준으로 상기 누적된 회절 패턴을 선형적으로 정규화하여 상기 회절 패턴 영상을 생성할 수 있다.
상기 회절 패턴 영상에 감마 보정을 사용하여 회절 패턴 영상에 포함된 낮은 밝기의 회절점이 더 잘보이도록 변환할 수 있다.
상기 회절 패턴 생성부는 상기 구해진 역격자 벡터, 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 누적된 회절 패턴을 계산하고, 상기 누적된 회절 패턴의 최대값을 계산하며, 상기 계산된 최대값을 기준으로 감마 보정을 사용하는 영상 처리 기법을 사용하여 비선형적으로 상기 누적된 회절 패턴을 정규화하여 상기 회절 패턴 영상을 생성할 수 있다.
본 발명의 다른 실시예에 따른 회절 패턴 영상 생성 시스템은 사용자에 의해 입력된 파라미터들을 이용하여 slab 형태의 시료를 생성하는 시료 생성부; 및 상기 생성된 시료를 분석함에 의해 획득된 파라미터들을 이용하여 회절 패턴 영상을 생성하는 회절 패턴 생성부를 포함한다. 여기서, 상기 시료 생성부는 상기 입력된 파라미터들 중 격자 상수와 정대축 파라미터에 따라 slab의 층수를 적응적으로 결정한다.
본 발명의 또 다른 실시예에 따른 회절 패턴 영상 생성 시스템은 사용자에 의해 입력된 파라미터들을 이용하여 slab 형태의 시료를 생성하는 시료 생성부; 입력된 광원의 형태와 광원의 세기를 이용하여 상기 시료 내 원자에 도달하는 전자빔의 밝기를 구하는 광원 생성부; 및 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 가상의 회절 패턴 영상을 생성하는 회절 패턴 생성부를 포함한다. 여기서, 상기 광원의 불연속점으로부터 발생할 수 있는 회절 패턴의 링잉 효과를 방지하도록 상기 광원의 형태와 상기 광원의 세기가 입력된 slab의 크기 또는 회절 패턴 영상의 크기에 따라 적응적으로 가변된다.
본 발명의 또 다른 실시예에 따른 회절 패턴 영상 생성 시스템은 사용자에 의해 입력된 파라미터들을 이용하여 slab 형태의 시료를 생성하는 시료 생성부; 전자빔이 위치한 원점으로부터 기설정 거리만큼 이격된 영상 좌표와 상기 전자빔의 파장을 이용하여 Eward sphere와 만나는 역격자 벡터를 생성하는 벡터 생성부; 입력된 광원의 형태와 광원의 세기를 이용하여 상기 시료 내 각 원자에 도달하는 전자빔의 밝기를 구하는 광원 생성부; 및 상기 생성된 역격자 벡터, 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 누적된 회절 패턴을 계산하고, 상기 누적된 회절 패턴의 최대값을 계산하며, 상기 계산된 최대값을 기준으로 상기 누적된 회절 패턴을 선형적으로 정규화하여 회절 패턴 영상을 생성하는 회절 패턴 생성부를 포함한다. 여기서, 상기 회절 패턴 영상은 TEM SADP 영상이고, 상기 시료 생성부는 HOLZ(High Order Laue Zone)가 회절 패턴에 포함되거나 회절점이 흐릿한 회절 패턴이 생성되는 현상을 방지하도록 상기 입력된 파라미터들 중 격자 상수와 정대축 파라미터에 따라 slab의 층수를 적응적으로 결정하며, 상기 광원 생성부는 상기 광원의 불연속점으로부터 발생할 수 있는 회절 패턴의 링잉 효과를 방지하도록 상기 광원의 형태와 상기 광원의 세기를 입력된 slab의 크기 또는 회절 패턴 영상의 크기에 따라 적응적으로 가변시킨다.
본 발명의 일 실시예에 따른 회절 패턴 영상 생성 시스템은 격자 상수, 단위 격자 내 원자의 상대적 위치와 정대축 파라미터 중 적어도 하나를 이용하여 시료를 생성하는 단계; Eward sphere와 만나는 역격자 벡터를 생성하는 단계; 입력된 광원의 형태와 광원의 세기를 이용하여 상기 시료 내 원자에 도달하는 전자빔의 밝기를 구하는 단계; 및 상기 생성된 역격자 벡터, 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 가상의 회절 패턴 영상을 생성하는 단계를 포함한다. 여기서, 상기 회절 패턴 영상은 TEM SADP 영상이다.
본 발명에 따른 TEM SADP 영상 생성 시스템 및 방법은 입력 파라미터에 적응적으로 대응하여 HOLZ(High Order Laue Zone)가 회절 패턴에 포함되거나 회절점이 흐릿한 회절 패턴이 생성되는 현상을 방지하며, 광원의 불연속점으로부터 발생할 수 있는 회절 패턴의 링잉 효과를 방지할 수 있다.
도 1은 실제 TEM SADP 영상의 일 예를 도시한 도면이다.
도 2는 JEMS 프로그램으로 생성된 가상의 SADP 영상을 도시한 도면이다.
도 3은 HOLZ 패턴이 포함된 SADP 영상을 도시한 도면이다.
도 4는 흐릿한 회절점 패턴이 포함된 SADP 영상을 도시한 도면이다.
도 5는 링잉 효과가 포함된 SADP 영상을 도시한 도면이다.
도 6은 본 발명의 일 실시예에 따른 TEM SADP 영상 생성 시스템의 구성을 개략적으로 도시한 블록도이다.
도 7은 본 발명의 TEM SADP 영상 생성 방법을 이용하여 생성된 링잉 효과가 사라진 SADP 영상을 도시한 도면이다.
도 8은 입방정계(cubic system)에 속한 소재의 격자 상수의 일 예를 도시한 도면이다.
도 9는 육방정계(hexagonal system)에 속한 소재의 격자 상수의 일 예를 도시한 도면이다.
도 10은 전자빔, Eward sphere, 역격자 및 회절 패턴 사이의 관계를 도시한 도면이다.
도 11은 단위 격자를 정렬하기 전과 후를 도시한 도면이다.
도 12는 본 발명의 일 실시예에 따른 정대축과 정렬한 단위 격자를 이용하여 slab 형태의 시료를 만든 결과를 도시한 도면이다.
도 13은 본 발명의 TEM SADP 영상 생성 시스템에 의해 생성된 회절 패턴의 일 예를 도시한 도면이다.
본 명세서에서 사용되는 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "구성된다" 또는 "포함한다" 등의 용어는 명세서상에 기재된 여러 구성 요소들, 또는 여러 단계들을 반드시 모두 포함하는 것으로 해석되지 않아야 하며, 그 중 일부 구성 요소들 또는 일부 단계들은 포함되지 않을 수도 있고, 또는 추가적인 구성 요소 또는 단계들을 더 포함할 수 있는 것으로 해석되어야 한다. 또한, 명세서에 기재된 "...부", "모듈" 등의 용어는 적어도 하나의 기능이나 동작을 처리하는 단위를 의미하며, 이는 하드웨어 또는 소프트웨어로 구현되거나 하드웨어와 소프트웨어의 결합으로 구현될 수 있다.
본 발명은 입력 파라미터에 적응적으로 대응하여 높은 분별력을 가지는 TEM(투과 전자 현미경, Transmission Electron Microscope) SADP(제한 시야 회절 패턴, Selected Area Diffraction Pattern) 영상 생성 시스템 및 방법에 관한 것으로서, 광원의 불연속점으로부터 발생할 수 있는 회전 패턴의 회절 패턴의 링잉 효과(ringing effect), HOLZ(High Order Laue Zone)가 회절 패턴에 포함되는 현상 및 흐릿한 회절점이 회절 패턴에 포함되는 현상이 발생되지 않는 분별력 있는 우수한 품질의 TEM SADP 영상을 생성할 수 있다.
소재의 특성을 파악하기 위하여 TEM을 통해 전자빔을 소재로 주사하여 SADP 영상을 획득하는데, 전자빔 출력 횟수가 많아지면 상기 소재가 파괴될 수 있다. 따라서, 본 발명은 이러한 소재의 파괴를 방지할 수 있도록 실제 전자빔을 주사하지 않고 프로그램으로 SADP 영상을 제공할 수 있다. 따라서, 이렇게 생성된 SADP 영상을 다양한 분야에 활용할 수 있다.
이하, 본 발명의 다양한 실시예들을 첨부된 도면을 참조하여 상술하겠다.
도 6은 본 발명의 일 실시예에 따른 TEM SADP 영상 생성 시스템의 구성을 개략적으로 도시한 블록도이며, 도 7은 본 발명의 TEM SADP 영상 생성 방법을 이용하여 생성된 링잉 효과가 사라진 SADP 영상을 도시한 도면이다.
도 6을 참조하면, 본 실시예의 TEM SADP 영상 생성 시스템은 입력 파라미터에 적응적으로 대응하여 회절 패턴의 링잉 효과, HOLZ 회절 패턴에 포함되는 현상, 흐릿한 회절점이 포함되는 현상 등이 발생하지 않는 SADP 영상을 생성할 수 있다.
이러한 TEM SADP 영상 생성 시스템은 파라미터 설정부(600), 시료 생성부(602), HKL 벡터 생성부(604), 광원 생성부(606), 회절 패턴 생성부(608) 및 이들의 동작을 전반적으로 제어하는 제어부(미도시)를 포함할 수 있다. 여기서, 상기 TEM SADP 영상 생성 시스템은 하나의 장치일 수 있으며, 예를 들어 서버일 수 있고, 컴퓨팅 장치로 통칭될 수도 있다.
파라미터 설정부(600)는 SADP 영상 생성을 위한 파라미터를 설정할 수 있다. 예를 들어, 파라미터 설정부(600)는 사용자의 입력을 받아 파라미터를 설정할 수 있다.
일 실시예에 따르면, 파라미터 설정부(600)는 격자 상수(lattice constant), 단위 격자 내 원자의 상대적 위치, 정대축(zone axis), 전자빔의 파장 및 세기, 카메라 거리, 회절 패턴 영상 크기 등의 파라미터를 설정할 수 있다. 이들 파라미터들은 상기 사용자에 의해 전부 입력될 수도 있고, 상기 사용자가 일부 입력하면 다른 파라미터는 자동으로 생성될 수도 있다.
시료 생성부(602)는 단위 격자 내 원자의 상대적 위치 및 정대축 파라미터를 이용하여 slab 형태의 시료를 생성할 수 있다. 여기서, slab 형태는 얇은 판 형태를 의미할 수 있다. 물론, 생성되는 시료는 slab 형태로 제한되는 것은 아니다.
HKL 벡터 생성부(604)는 가상의 Eward sphere와 만나는 역격자(reciprocal lattice) 벡터를 생성할 수 있다. 여기서, 상기 역격자는 파라미터 설정부(600)에 의해 설정된 단위 격자에 따라 특정 프로그램을 이용함에 의해 자동으로 생성되는 파라미터일 수 있다.
광원 생성부(606)는 시료 내 각 원자에 도달하는 전자빔의 상대적 밝기를 계산할 수 있다.
회절 패턴 생성부(608)는 시료에 포함된 모든 원자와 전자 사이의 상호 작용에서 발생된 회절을 누적하여 가상의 SADP 영상을 생성할 수 있다. 이 과정에서 상기 설정된 파라미터들, 역격자 벡터 및 원자에 도달하는 전자빔의 상대적 밝기 등이 사용될 수 있다.
정리하면, 본 실시예의 TEM SADP 영상 생성 시스템은 다양한 입력 파라미터에 대응하여 적응적으로 가상의 SADP 영상을 생성하되, 상기 SADP 영상에는 링잉 효과, HOLZ 패턴이 회절 패턴에 포함되는 현상 및 흐릿한 회절점이 회절 패턴에 포함되는 현상이 발생하지 않을 수 있다.
또한, 상기 TEM SADP 영상 생성 시스템은 병렬 처리 또는 GPGPU를 활용하여 빠른 속도로 SADP 영상을 생성할 수 있다.
즉, 상기 TEM SADP 영상 생성 시스템은 빠른 속도로 다량의 가상 SADP 영상들을 생성할 수 있으며, 상기 생성된 SADP 영상들은 실제 SADP 영상과 거의 동일할 수 있다.
한편, 위에서는 사용자에 의해 입력되는 파라미터들을 특정적으로 언급하였으나, 사용자에 의해 입력된 파라미터들을 이용하여 시료를 생성하는 한 파라미터들은 제한되지 않는다.
즉, 상기 TEM SADP 영상 생성 시스템은 사용자에 의해 입력된 파라미터들을 이용하여 slab 형태의 시료를 생성하는 시료 생성부, 입력된 광원의 형태와 광원의 세기를 이용하여 상기 시료 내 원자에 도달하는 전자빔의 밝기를 구하는 광원 생성부 및 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 가상의 회절 패턴 영상을 생성하는 회절 패턴 생성부를 포함할 수 있다.
한편, 역격자 벡터, 전자빔의 밝기 및 회절 패턴은 사용자에 의해 입력된 파라미터들을 수학적으로 적용시켜 생성될 수 있다. 이에 대한 자세한 설명은 후술하겠다.
또한, TEM SADP 영상을 생성하기 위하여 사용자가 파라미터들을 입력하였지만, 실제 SADP 영상에서 파라미터들을 추출하고, 상기 추출된 파라미터들을 이용하여 가상의 TEM SADP 영상을 생성할 수도 있다. 즉, 상기 TEM SADP 영상 생성 시스템은 실제 SADP 영상을 기준으로 하여 다수의 가상 TEM SADP 영상을 생성할 수 있다.
게다가, 상기 slab의 층 수, 상기 역격자 벡터 및 상기 전자빔의 밝기 등은 고정적이지 않으며, 상기 사용자가 입력한 파라미터 또는 상기 실제 SADP 영상으로부터 추출된 파라미터에 따라 적응적으로 변화할 수 있다. 이에 대한 자세한 설명은 후술하겠다.
이하, TEM SADP 영상 생성 과정을 첨부된 도면들을 참조하여 구체적으로 살펴보겠다.
도 8은 입방정계(cubic system)에 속한 소재의 격자 상수의 일 예를 도시한 도면이다. 도 9는 육방정계(hexagonal system)에 속한 소재의 격자 상수의 일 예를 도시한 도면이고, 도 10은 전자빔, Eward sphere, 역격자 및 회절 패턴 사이의 관계를 도시한 도면이며, 도 11은 단위 격자를 정렬하기 전과 후를 도시한 도면이다. 도 12는 본 발명의 일 실시예에 따른 정대축과 정렬한 단위 격자를 이용하여 slab 형태의 시료를 만든 결과를 도시한 도면이며, 도 13은 본 발명의 TEM SADP 영상 생성 시스템에 의해 생성된 회절 패턴의 일 예를 도시한 도면이다.
파라미터 설정부(600)는 격자 상수, 단위 격자 내 원자의 상대적 위치, 정대축, 전자빔의 파장 및 세기, 카메라 거리, 회절 패턴 영상의 크기 등의 파라미터를 설정할 수 있다. 이러한 파라미터들은 사용자에 의해 입력될 수도 있고 실제 SADP 영상으로부터 추출될 수도 있다.
이 때, 상기 격자 상수 및 상기 단위격자 내 원자의 상대적 위치는 CIF(Crystallography Information File), FHI-aims, XYZ와 같은 파일 형태로 입력될 수 있다.
시료 생성부(602)는 입력된 격자 상수, 단위 격자 내 원자의 상대적 위치 및 정대축에 대한 파라미터들을 이용하여 slab 형태의 시료를 생성할 수 있다.
구체적으로는, 상기 격자 상수는 격자 벡터의 크기 a, b, c와 격자 벡터 사이의 각도 α, β, γ의 6개의 변수로 구성될 수 있다. 도 8과 같이 a=b=c, α=β=γ=90°이면 해당 물질은 입방정계에 속하며, 도 9와 같이 a=b≠c, α=β=90°, γ=120°이면 해당 물질은 육방정계에 속한다.
상기 단위 격자 내 원자의 상대적 위치는 단위격자 내 3차원 공간을 0과 1사이로 표현했을 때, 하기 표 1과 같이 나타낼 수 있다.
(입방정계에 속하는 LiAl 소재의 단위 격자 내 원자의 상대적 위치)
원자기호 상대적 위치
x축 y축 z축
Li 0.0000 0.0000 0.5000
Al 0.0000 0.0000 0.0000
시료 생성부(602)는 도 11에 도시된 바와 같이 전자빔의 방향과 정대축과 대응하는 격자면이 수직하도록 단위 격자를 정렬하여 도 12에 도시된 바와 같은 slab 형태의 시료를 생성할 수 있다. 여기서, 상기 slab 형태의 시료는 단위 격자들이 판 형태로 배열되는 구조를 의미할 수 있다.
도 12에서는 입방정계의 소재를 생성하였지만, 육방정계의 시료도 동일한 방식으로 생성할 수 있다. 이 때, 3차원 벡터로 나타낼 수 있는 전자빔의 방향과 정대축을 정렬하기 위하여 Rodrigues formula를 사용할 수 있다.
일 실시예에 따르면, slab의 층 수를 입력된 격자 상수와 정대축 파라미터에 따라 적응적으로 결정하여 HOLZ가 회절 패턴에 포함되는 형상이나 회절점이 흐릿한 회절 패턴이 생성되는 현상을 방지할 수 있다.
즉, 시료 생성부(602)는 HOLZ가 회절 패턴에 포함되는 형상이나 회절점이 흐릿한 회절 패턴이 생성되는 것을 방지하도록, 입력된 격자 상수와 정대축 파라미터에 따라 slab의 층 수를 적응적으로 결정할 수 있다. 이렇게 결정된 slab의 층들에 단위 격자들이 정렬될 수 있다. 결과적으로, 동일한 소재이더라도 사용자에 의해 입력된 파라미터들에 따라 slab의 층 수가 달라질수 있다.
HKL 벡터 생성부(604)는 도 10에 도시된 바와 같이 가상의 Eward sphere와 만나는 역격자 벡터를 생성할 수 있다. 상기 Eward sphere와 만나는 역격자에서 회절이 발생할 수 있으며, 따라서 회절 패턴을 구하기 위하여 회절이 발생하는 역격자를 검출할 수 있다. 여기서, 상기 역격자는 파라미터 설정부(600)에 의해 설정된 단위 격자에 따라 특정 프로그램 또는 수학식들을 이용함에 의해 자동으로 생성되는 파라미터일 수 있다.
구체적으로는, HKL 벡터 생성부(604)는 전자빔이 위치한 원점으로부터 기설정 거리(d)만큼 떨어진 영상 좌표(x,y)와 전자빔의 파장(λ)을 이용하여 역격자 벡터 h(x,y), k(x,y), l(x,y)를 하기 수학식 1 및 수학식 2로 계산할 수 있다.
수학식 1에서 보여지는 바와 같이 영상 좌표(x,y), 파장(λ) 및 전자빔이 위치한 원점으로부터의 거리(d)를 알고 있으면 χ를 구할 수 있으며, 구해진 χ를 이용하면 역격자 벡터[h(x,y), k(x,y), l(x,y)]가 자동으로 구해질 수 있다.
광원 생성부(606)는 광원의 형태와 광원의 세기를 입력으로 받아 시료 내 각 원자에 도달하는 전자빔의 밝기를 구할 수 있다. 이 때, 광원의 형태는 전자빔의 방향과 수직한 격자면을 기준으로 평평할 수도 있고 2D Gaussian 형태를 가질 수도 있다.
시료 내 원자의 3차원 위치를 (xj, yj, zj)라 했을 때, 평평한 광원의 형태를 가정하면 각 원자에 도달하는 전자빔의 밝기는 하기 수학식 3과 같다.
여기서, 는 광원의 세기를 나타낸다.
2D Gaussian 광원의 형태를 가정하면 각 원자에 도달하는 전자빔의 밝기는 하기 수학식 4와 같다.
여기서, 는 x축으로의 표준편차를 의미하며, 는 y축으로의 표준편차를 나타낸다.
3D Gaussian 광원의 형태를 가정하면 각 원자에 도달하는 전자빔의 밝기는 하기 수학식 5와 같다.
여기서, 는 z축으로의 표준편차를 의미한다.
광원 생성부(606)에서는 연속적인 광원 형태를 만들기 위해 3차원 Gaussian을 활용할 수 있다. 이때, Gaussian의 3σ를 시료의 가로, 세로, 높이보다 작게 설정하여 시료의 가장자리에서 불연속점이 생기지 않게 설정할 수 있다.
다른 실시예에 따르면, 광원 생성부(606)는 2차원 Gaussian과 exponential decay 함수를 동시에 활용하여 2차원 Gaussian으로는 시료의 가로, 세로 방향에서 발생할 수 있는 불연속점을 제거하고 exponential decay 함수로는 시료의 높이 방향에서 발생할 수 있는 불연속점을 제거하는 방법을 사용할 수도 있다.
한편, 전자빔의 방향 기준으로 exponential decay를 적용하여 전자빔이 시료를 통과하면서 떨어지는 밝기를 모사할 수 있다. Exponential decay가 적용된 광원 은 하기 수학식 6과 같이 정의할 수 있다.
여기서, 는 exponential decay의 파라미터를 나타낸다.
광원 생성부(606)에서 생성한 광원의 크기와 형태는 입력된 slab의 크기와 회절 패턴 영상의 크기 등에 따라 적응적으로 가변될 수 있으며, 그 결과 광원의 불연속점(discontinuity)으로부터 발생할 수 있는 회절 패턴의 링잉 효과를 방지할 수 있고, 이는 도 7에서 보여진다 .즉, 광원 생성부(606)는 회절 패턴의 링잉 효과를 방지하기 위하여 광원의 크기와 형태를 입력된 slab의 크기와 회절 패턴 영상의 크기에 따라 적응적으로 가변시켜 사용할 수 있다.
회절 패턴 생성부(608)는 HKL 벡터 생성부(604)에 의해서 구해진 역격자 벡터[h(x,y), k(x,y), l(x,y)], 시료 내 원자 위치 및 광원 생성부(606)에서 획득한 전자빔의 밝기()를 이용하여 하기 수학식 7과 같이 누적된 회절 패턴(F(h,k,l))을 계산할 수 있다.
여기서, 은 j번째 원자의 산란 인자(scattering factor)를 의미한다. 이 산란 인자는 원자의 종류에 따라 다를 수 있다.
이어서, 회절 패턴 생성부(608)는 누적된 회절 패턴의 최대값을 계산하고, 상기 계산된 최대값을 기준으로 상기 누적된 회절 패턴을 선형적으로 정규화하여 회절 패턴 영상을 생성할 수 있다.
다른 실시예에 따르면, 회절 패턴 생성부(608)는 감마 보정(gamma correction)과 같은 영상처리 기법을 사용하여 비선형적으로 정규화하여 회절 패턴 영상을 생성할 수도 있다. 이 때, 회절 패턴 생성부(608)에서 시료에 포함된 각각의 원자들과 전자의 상호작용으로부터 발생하는 회절은 독립적으로 계산할 수 있기 때문에 CPU 병렬처리 혹은 GPGPU(General Purpose computing on Graphics Processing Unit)를 활용하여 빠르게 계산할 수 있다. 이렇게 생성된 SADP 영상은 도 13에서 보여진다. 도 13에서 보여지는 바와 같이 SADP 영상에 링잉 효과, HOLZ가 회절 패턴에 포함되는 현상 및 회절점이 흐릿한 회절 패턴이 발생하지 않는다.
한편, 회절 패턴 생성부(608)는 누적된 회절값들을 SADP 영상으로 만들기 위해 다양한 함수를 적용할 수 있다. 예를 들어, 회절 패턴 생성부(608)는 선형 함수를 적용하여 회절 패턴을 생성할 수도 있고, 와 같이 감마 보정에서 사용되는 함수를 사용하여 회절 패턴을 생성할 수 있다.
정리하면, 본 실시예의 SADP 영상 생성 시스템은 역격자 벡터, 시료 내 원자의 위치 및 전자빔의 밝기를 이용하여 링잉 효과, HOLZ가 회절 패턴에 포함되는 현상 및 회절점이 흐릿한 회절 패턴이 생성되는 현상을 방지하는 SADP 영상을 생성할 수 있다.
한편, 전술된 실시예의 구성 요소는 프로세스적인 관점에서 용이하게 파악될 수 있다. 즉, 각각의 구성 요소는 각각의 프로세스로 파악될 수 있다. 또한 전술된 실시예의 프로세스는 장치의 구성 요소 관점에서 용이하게 파악될 수 있다.
또한 앞서 설명한 기술적 내용들은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 실시예들을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 하드웨어 장치는 실시예들의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
상기한 본 발명의 실시예는 예시의 목적을 위해 개시된 것이고, 본 발명에 대한 통상의 지식을 가지는 당업자라면 본 발명의 사상과 범위 안에서 다양한 수정, 변경, 부가가 가능할 것이며, 이러한 수정, 변경 및 부가는 하기의 특허청구범위에 속하는 것으로 보아야 할 것이다.
600 : 파라미터 설정부 602 : 시료 생성부
604 : HKL 벡터 생성부 606 : 광원 생성부
608 : 회절 패턴 생성부

Claims (23)

  1. 격자 상수, 단위 격자 내 원자의 상대적 위치와 정대축 파라미터 중 적어도 하나를 이용하여 시료를 생성하는 시료 생성부;
    상기 단위 격자에 대응하는 역격자 벡터를 생성하는 벡터 생성부;
    상기 생성된 시료 내 원자에 도달하는 전자빔의 밝기를 구하는 광원 생성부; 및
    상기 생성된 역격자 벡터, 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 가상의 회절 패턴 영상을 생성하는 회절 패턴 생성부를 포함하되,
    상기 시료 생성부는 상기 정대축의 방향과 상기 정대축과 대응하는 격자면이 수직하도록 상기 단위 격자를 배열하여 slab 형태의 시료를 생성하며, 상기 격자 상수와 상기 정대축에 따라 HOLZ(High Order Laue Zone)가 회절 패턴에 포함되거나 회절점이 흐릿한 회절 패턴이 생성되는 것을 방지하도록 slab의 층 수를 적응적으로 결정하는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  2. 제1항에 있어서,
    상기 격자 상수, 상기 단위 격자 내 원자의 상대적 위치, 상기 정대축 파라미터, 상기 전자빔의 파장, 회절 패턴 영상의 크기를 설정하는 파라미터 설정부를 더 포함하되,
    상기 파라미터 설정부에 이해 설정된 파라미터들은 사용자에 의해 입력되는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  3. 제1항에 있어서, 상기 회절 패턴 영상은 TEM(Transmission Electron Microscope) SADP(Selected Area Diffraction Pattern) 영상인 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  4. 삭제
  5. 삭제
  6. 제1항에 있어서, slab의 층 수를 결정할 때, slab의 크기가 증가함에 따라 추후 회절 패턴 계산 과정에서 늘어나는 연산량을 고려하여 slab의 층 수를 적응적으로 결정하는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  7. 제6항에 있어서, slab의 크기가 증가함에 따른 회절 패턴 계산 과정의 연산량 증가를 CPU 병렬처리 혹은 GPGPU(General Purpose computing on Graphics Processing Unit)를 사용하여 대응하는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  8. 제1항에 있어서, 상기 벡터 생성부는 상기 전자빔이 위치한 원점으로부터 기설정 거리만큼 이격된 영상 좌표와 상기 전자빔의 파장을 이용하여 Eward sphere와 만나는 역격자 벡터를 생성하는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  9. 제1항에 있어서, 상기 광원 생성부는 사용자에 의해 입력된 파라미터들 중 광원의 형태와 광원의 세기를 이용하여 상기 시료 내 각 원자에 도달하는 전자빔의 밝기를 구하는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  10. 제9항에 있어서, 상기 광원의 불연속점으로부터 발생할 수 있는 회절 패턴의 링잉 효과를 방지하도록, 상기 광원의 형태와 상기 광원의 세기는 상기 입력된 파라미터들 중 slab의 크기와 회절 패턴 영상의 크기에 따라 적응적으로 가변되는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  11. 제3항에 있어서, 상기 회절 패턴 생성부는 상기 생성된 역격자 벡터, 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 누적된 회절 패턴을 계산하는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  12. 제11항에 있어서, 상기 누적된 회절 패턴의 최대값을 계산하며, 상기 계산된 최대값을 기준으로 상기 누적된 회절 패턴을 선형적으로 정규화하여 상기 회절 패턴 영상을 생성하는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  13. 제12항에 있어서, 상기 회절 패턴 영상에 감마 보정을 사용하여 회절 패턴 영상에 포함된 낮은 밝기의 회절점이 더 잘보이도록 변환하는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  14. 제3항에 있어서, 상기 회절 패턴 생성부는 상기 생성된 역격자 벡터, 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 누적된 회절 패턴을 계산하고, 상기 누적된 회절 패턴의 최대값을 계산하며, 상기 계산된 최대값을 기준으로 감마 보정을 사용하는 영상 처리 기법을 사용하여 비선형적으로 상기 누적된 회절 패턴을 정규화하여 상기 회절 패턴 영상을 생성하는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 사용자에 의해 입력된 파라미터들을 이용하여 slab 형태의 시료를 생성하는 시료 생성부;
    전자빔이 위치한 원점으로부터 기설정 거리만큼 이격된 영상 좌표와 상기 전자빔의 파장을 이용하여 Eward sphere와 만나는 역격자 벡터를 생성하는 벡터 생성부;
    상기 입력된 파라미터들 중 광원의 형태와 광원의 세기를 이용하여 상기 시료 내 각 원자에 도달하는 전자빔의 밝기를 구하는 광원 생성부; 및
    상기 생성된 역격자 벡터, 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 누적된 회절 패턴을 계산하고, 상기 누적된 회절 패턴의 최대값을 계산하며, 상기 계산된 최대값을 기준으로 상기 누적된 회절 패턴을 선형적으로 정규화하여 회절 패턴 영상을 생성하는 회절 패턴 생성부를 포함하되,
    상기 회절 패턴 영상은 TEM SADP 영상이고,
    상기 시료 생성부는 HOLZ(High Order Laue Zone)가 회절 패턴에 포함되거나 회절점이 흐릿한 회절 패턴이 생성되는 현상을 방지하도록 상기 입력된 파라미터들 중 격자 상수와 정대축 파라미터에 따라 slab의 층수를 적응적으로 결정하며,
    상기 광원 생성부는 상기 광원의 불연속점으로부터 발생할 수 있는 회절 패턴의 링잉 효과를 방지하도록 상기 광원의 형태와 상기 광원의 세기를 상기 입력된 파라미터들 중 slab의 크기 또는 회절 패턴 영상의 크기에 따라 적응적으로 가변시키는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  20. 격자 상수, 단위 격자 내 원자의 상대적 위치와 정대축 파라미터 중 적어도 하나를 이용하여 시료를 생성하는 단계;
    상기 단위 격자에 대응하는 Eward sphere와 만나는 역격자 벡터를 생성하는 단계;
    사용자에 의해 입력된 파라미터들 중 광원의 형태와 광원의 세기를 이용하여 상기 시료 내 원자에 도달하는 전자빔의 밝기를 구하는 단계; 및
    상기 생성된 역격자 벡터, 상기 시료 내 원자 위치 및 상기 구해진 전자빔의 밝기를 이용하여 가상의 회절 패턴 영상을 생성하는 단계를 포함하되,
    상기 회절 패턴 영상은 TEM SADP 영상이고,
    상기 시료는 slab 형태의 시료이며,
    HOLZ가 회절 패턴에 포함되거나 회절점이 흐릿한 회절 패턴이 생성되는 현상을 방지하도록 상기 격자 상수와 상기 정대축 파라미터에 따라 slab의 층 수가 적응적으로 결정되는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  21. 삭제
  22. 제20항에 있어서, 상기 시료는 slab 형태의 시료이되,
    상기 광원의 불연속점으로부터 발생할 수 있는 회절 패턴의 링잉 효과를 방지하도록 상기 광원의 형태와 상기 광원의 세기가 상기 입력된 파라미터들 중 slab의 크기 또는 회절 패턴 영상의 크기에 따라 적응적으로 가변되는 것을 특징으로 하는 회절 패턴 영상 생성 시스템.
  23. 제20항 또는 제22항의 방법을 수행하기 위한 프로그램 코드를 기록한 컴퓨터로 판독 가능한 기록매체.



KR1020210170519A 2021-10-18 2021-12-02 높은 분별력을 가지는 tem sadp 영상 생성 시스템 및 방법 KR102582498B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2022/015357 WO2023068631A1 (ko) 2021-10-18 2022-10-12 높은 분별력을 가지는 tem sadp 영상 생성 시스템 및 방법
KR1020230089980A KR20230110468A (ko) 2021-10-18 2023-07-11 높은 분별력을 가지는 tem sadp 영상 생성 시스템 및방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210138141 2021-10-18
KR1020210138141 2021-10-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020230089980A Division KR20230110468A (ko) 2021-10-18 2023-07-11 높은 분별력을 가지는 tem sadp 영상 생성 시스템 및방법

Publications (2)

Publication Number Publication Date
KR20230055316A KR20230055316A (ko) 2023-04-25
KR102582498B1 true KR102582498B1 (ko) 2023-09-26

Family

ID=86101809

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020210170519A KR102582498B1 (ko) 2021-10-18 2021-12-02 높은 분별력을 가지는 tem sadp 영상 생성 시스템 및 방법
KR1020210171533A KR102528617B1 (ko) 2021-10-18 2021-12-03 딥러닝을 이용하여 가상 tem sadp 영상과 실제 tem sadp 영상을 상호 변환시키는 회절 패턴 영상 변환 시스템 및 방법

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020210171533A KR102528617B1 (ko) 2021-10-18 2021-12-03 딥러닝을 이용하여 가상 tem sadp 영상과 실제 tem sadp 영상을 상호 변환시키는 회절 패턴 영상 변환 시스템 및 방법

Country Status (1)

Country Link
KR (2) KR102582498B1 (ko)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039409A (ja) * 1998-05-18 2000-02-08 Rigaku Corp 回折条件シミュレ―ション装置、回折測定システムおよび結晶分析システム
JP2005099020A (ja) 2003-09-22 2005-04-14 Samsung Electronics Co Ltd 収束電子線回折を用いた材料の構造分析方法
JP6255494B2 (ja) * 2014-07-07 2017-12-27 株式会社日立ハイテクノロジーズ 電子顕微鏡、及び、試料の観察方法
US20190043690A1 (en) 2017-08-01 2019-02-07 Battelle Memorial Institute Optimized sub-sampling in an electron microscope
KR102111124B1 (ko) 2019-05-28 2020-05-15 (주)위아프렌즈 무렌즈 단층 촬영 회절영상의 재구성방법 및 이 방법이 사용되는 휴대용 수질입자 분석장치
JP2020523634A (ja) * 2017-06-13 2020-08-06 ビュージックス コーポレーションVuzix Corporation 拡大された光分配を行う重合格子を備えた画像光ガイド
JP2020537123A (ja) 2017-10-09 2020-12-17 南京大学 結像装置、結像方法および結像システム
KR102221931B1 (ko) 2014-02-11 2021-03-02 옥스포드 인스트루먼츠 나노테크놀로지 툴스 리미티드 시료에 따른 전자 회절 패턴 분석을 수행하는 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5715923A (en) * 1980-07-02 1982-01-27 Osaka Gas Co Ltd Testing method for welding of socket
GB9021257D0 (en) 1990-09-29 1990-11-14 Guilfoyle David N Method and apparatus for measuring the flow of a fluid through porous media by echo planar imaging
CH693517A5 (de) 1997-06-06 2003-09-15 Ovd Kinegram Ag Flächenmuster.
KR20080111573A (ko) 2007-06-19 2008-12-24 현대자동차주식회사 무기안료의 단면 이미지 관찰을 위한 투과전자현미경용시편의 제조방법
KR102180068B1 (ko) * 2013-12-30 2020-11-17 엘지디스플레이 주식회사 해상도 스케일링 기능을 갖는 멀티뷰 이미지 생성 방법 및 장치
DE102017211377B4 (de) * 2017-07-04 2021-01-14 Micro-Epsilon Messtechnik Gmbh & Co. Kg Verfahren und Vorrichtung zur optischen Oberflächenvermessung eines Messobjektes
KR101967300B1 (ko) 2017-10-27 2019-04-09 아토리서치(주) 가상머신 이미지 생성 자동화 방법 및 장치
KR101964529B1 (ko) 2017-11-16 2019-04-02 한국기초과학지원연구원 투과전자현미경 장치 및 이를 이용한 이미지 보정 방법
KR102005508B1 (ko) 2017-12-01 2019-07-30 김태경 이미지 표시 광학장치 및 이를 위한 이미지 생성 방법
US11990380B2 (en) * 2019-04-19 2024-05-21 Kla Corporation Methods and systems for combining x-ray metrology data sets to improve parameter estimation
US11404241B2 (en) 2020-03-30 2022-08-02 Fei Company Simultaneous TEM and STEM microscope
KR102466978B1 (ko) 2020-04-23 2022-11-14 엔에이치엔클라우드 주식회사 딥러닝 기반 가상 이미지 생성방법 및 시스템

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000039409A (ja) * 1998-05-18 2000-02-08 Rigaku Corp 回折条件シミュレ―ション装置、回折測定システムおよび結晶分析システム
JP2005099020A (ja) 2003-09-22 2005-04-14 Samsung Electronics Co Ltd 収束電子線回折を用いた材料の構造分析方法
KR102221931B1 (ko) 2014-02-11 2021-03-02 옥스포드 인스트루먼츠 나노테크놀로지 툴스 리미티드 시료에 따른 전자 회절 패턴 분석을 수행하는 방법
JP6255494B2 (ja) * 2014-07-07 2017-12-27 株式会社日立ハイテクノロジーズ 電子顕微鏡、及び、試料の観察方法
JP2020523634A (ja) * 2017-06-13 2020-08-06 ビュージックス コーポレーションVuzix Corporation 拡大された光分配を行う重合格子を備えた画像光ガイド
US20190043690A1 (en) 2017-08-01 2019-02-07 Battelle Memorial Institute Optimized sub-sampling in an electron microscope
JP2020537123A (ja) 2017-10-09 2020-12-17 南京大学 結像装置、結像方法および結像システム
KR102111124B1 (ko) 2019-05-28 2020-05-15 (주)위아프렌즈 무렌즈 단층 촬영 회절영상의 재구성방법 및 이 방법이 사용되는 휴대용 수질입자 분석장치

Also Published As

Publication number Publication date
KR20230055316A (ko) 2023-04-25
KR20230055317A (ko) 2023-04-25
KR102528617B1 (ko) 2023-05-04

Similar Documents

Publication Publication Date Title
Lobato et al. Progress and new advances in simulating electron microscopy datasets using MULTEM
Kasim et al. Quantitative shadowgraphy and proton radiography for large intensity modulations
Jackson et al. Dictionary indexing of electron back-scatter diffraction patterns: a hands-on tutorial
Wang et al. AP-Cloud: Adaptive Particle-in-Cloud method for optimal solutions to Vlasov–Poisson equation
Vay et al. Effects of hyperbolic rotation in Minkowski space on the modeling of plasma accelerators in a Lorentz boosted frame
Bertin et al. Computation of virtual X-ray diffraction patterns from discrete dislocation structures
US8588499B2 (en) Image processing method, image processing system, and X-ray computed tomography system
KR102582498B1 (ko) 높은 분별력을 가지는 tem sadp 영상 생성 시스템 및 방법
US9595133B2 (en) Information processing apparatus, control method, and storage medium for defining tiles with limited numbers of fragments
Jensen et al. An extended moments model of quantum efficiency for metals and semiconductors
KR20230110468A (ko) 높은 분별력을 가지는 tem sadp 영상 생성 시스템 및방법
CN116310060B (zh) 一种渲染数据的方法、装置、设备及存储介质
Stielow et al. Fast reconstruction of single-shot wide-angle diffraction images through deep learning
Peckerar et al. Proximity correction algorithms and a co‐processor based on regularized optimization. I. Description of the algorithm
KR20230055391A (ko) 딥러닝을 이용하여 가상 tem sadp 영상과 실제 tem sadp 영상을 상호 변환시키는 회절 패턴 영상 변환 시스템 및 방법
CN113609737A (zh) 相对论电子束传输方案设计方法、装置、设备和介质
Wenskat Automated optical inspection and image analysis of superconducting radio-frequency cavities
Sizov et al. FPGA based image processing system for electron beam welding facility
El-Sayed et al. Using Rényi’s entropy for edge detection in level images
CN112213704A (zh) 一种目标散射截面计算方法及装置
Stegeman et al. Assessment of electrostatic radiation shielding efficacy via void area calculation
KR20200140061A (ko) 전자기 수치 해석 방법
Khursheed et al. High accuracy electron trajectory plotting through finite‐element fields
Thronsen et al. Scanning precession electron diffraction data analysis approaches for phase mapping of precipitates in aluminium alloys
Oliva et al. Spectral-nodal deterministic methodology for neutron shielding calculations using the X, Y-geometry multigroup transport equation in the discrete ordinates formulation

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant