KR102582262B1 - Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof - Google Patents

Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof Download PDF

Info

Publication number
KR102582262B1
KR102582262B1 KR1020220158632A KR20220158632A KR102582262B1 KR 102582262 B1 KR102582262 B1 KR 102582262B1 KR 1020220158632 A KR1020220158632 A KR 1020220158632A KR 20220158632 A KR20220158632 A KR 20220158632A KR 102582262 B1 KR102582262 B1 KR 102582262B1
Authority
KR
South Korea
Prior art keywords
cyp2e1
gene
coral
transgenic
plants
Prior art date
Application number
KR1020220158632A
Other languages
Korean (ko)
Other versions
KR20220162673A (en
Inventor
이수영
박부희
박필만
안혜련
김란선
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020220158632A priority Critical patent/KR102582262B1/en
Publication of KR20220162673A publication Critical patent/KR20220162673A/en
Application granted granted Critical
Publication of KR102582262B1 publication Critical patent/KR102582262B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/12Leaves
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/13Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen (1.14.13)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Physiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 CYP2E1 유전자를 이용한 톨루엔 정화능이 증진된 형질전환 산호수 및 이의 용도에 관한 것으로, CYP2E1 유전자가 형질전환된 산호수는 일반적인 산호수 대비 톨루엔 저감률이 현저히 우수하므로, 대기 중 톨루엔 정화에 유용하게 활용될 수 있다.The present invention relates to transgenic coral water with improved toluene purification ability using the CYP2E1 gene and its use. Coral water transformed with the CYP2E1 gene has a significantly better toluene reduction rate than general coral water, so it can be usefully used for purifying toluene in the atmosphere. You can.

Description

CYP2E1 유전자를 이용한 톨루엔 정화능이 증진된 형질전환 산호수 및 이의 용도{Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof}Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof}

본 발명은 CYP2E1 유전자를 이용한 톨루엔 정화능이 증진된 형질전환 산호수 및 이의 용도에 관한 것이다.The present invention relates to transgenic coral aquatic plants with improved toluene purification ability using the CYP2E1 gene and their uses.

점차 환경오염이 심해지면서, 인구가 밀집하고 있는 도심지에서의 미세먼지 증가와 매연과 같은 각종 유해 물질들이 점차 증가하고 있는 추세이다. 최근 가정 또는 사무실 등을 비롯한 실내에서 생활하는 시간이 많아지고 있으나, 환기부족 및 실내 오염물질 발생원 증가 등의 문제로 실내 공기 오염이 심화되면서, 실내 공기의 적정관리에 대한 요구가 높아지고 있다. 실외의 경우 자연 바람이나 대기순환으로 오염물질이 희석되는 반면, 실내의 경우에는 밀폐된 공간 내에서 환기 및 청소가 부족하여 오염물질이 지속적으로 순환 적체되면서 오염 농도가 증가하고 있는 실정이다.As environmental pollution gradually worsens, various harmful substances such as fine dust and exhaust fumes are gradually increasing in densely populated urban areas. Recently, more and more people are spending time indoors, including at home or in offices, but as indoor air pollution is worsening due to problems such as lack of ventilation and increasing sources of indoor pollutants, the demand for proper management of indoor air is increasing. In the case of outdoors, pollutants are diluted by natural wind or atmospheric circulation, while indoors, the concentration of pollutants is increasing as pollutants continue to circulate due to lack of ventilation and cleaning in enclosed spaces.

이와 같은 오염물질에 대한 노출의 증가는 각종 질병과 아토피, 천식과 같은 질병을 유발하므로 최근에는 많은 가정 및 직장에서 공기 청정기를 이용하여 이러한 오염물질을 제거하고자 하고 있다. 다만, 이러한 공기 청정기는 미세먼지 등 미세 입자의 정화에는 큰 효과를 나타내지만, 톨루엔 등 독성 화학 물질의 정화에는 큰 효과가 없는 것으로 알려져 있다. 또한, 일반적인 공기 청정기는 물리 필터를 이용하므로 주기적인 필터 청소 및 교체를 수반해야 하는데, 필터의 교체 시기를 놓칠 경우 공기 청정기를 사용하지 않은 경우 보다 악화된 공기를 사용자에게 공급할 수 있다는 문제가 있다.Increased exposure to such pollutants causes various diseases such as atopy and asthma, so recently, many homes and workplaces are trying to remove these pollutants by using air purifiers. However, although these air purifiers are highly effective in purifying fine particles such as fine dust, they are known to be ineffective in purifying toxic chemicals such as toluene. In addition, since general air purifiers use physical filters, they require periodic filter cleaning and replacement. However, if the filter replacement period is missed, there is a problem in that worse air than when the air purifier is not used can be supplied to the user.

따라서, 공공장소뿐만 아니라 일반 가정에서도 공기정화 식물을 배치하여 실내 오염물질을 정화하고자 하고 있다. 다만, 소수의 공기정화 식물만으로는 충분한 오염물질의 정화가 어렵고, 공간적 제약으로 인하여 생활 공간에 다수의 공기정화 식물을 기르는 데에는 한계가 있다.Therefore, air purification plants are placed not only in public places but also in ordinary homes to purify indoor pollutants. However, it is difficult to sufficiently purify pollutants with only a small number of air purifying plants, and there are limits to growing a large number of air purifying plants in living spaces due to space constraints.

이에, 본 발명자들은 공기정화 능력이 증진된 형질전환 식물체를 개발하기 위한 연구를 수행하여 본 발명을 완성하였다.Accordingly, the present inventors conducted research to develop transgenic plants with improved air purification ability and completed the present invention.

대한민국 특허등록 제10-1152617호Republic of Korea Patent Registration No. 10-1152617

본 발명의 하나의 목적은 CYP2E1(Cytochrome P450 2E1) 유전자를 포함하는 공기 정화 능력이 증진된 산호수(Ardisia pusilla)를 제공하는 것이다.One object of the present invention is to provide coral water ( Ardisia pusilla ) with improved air purifying ability containing the CYP2E1 (Cytochrome P450 2E1) gene.

본 발명의 다른 목적은 CYP2E1 유전자를 포함하는 공기 정화 능력이 증진된 산호수의 원괴체유사체를 제공하는 것이다.Another object of the present invention is to provide a coral conglomerate analogue with improved air purification ability containing the CYP2E1 gene.

본 발명의 또 다른 목적은 서열번호 1의 염기서열로 이루어진, CYP2E1 유전자를 포함하는 재조합 벡터로 산호수 세포를 형질전환하는 단계; 및 형질전환된 산호수 세포로부터 형질전환 산호수를 재분화하는 단계를 포함하는 공기 정화 능력이 증진된 형질전환 산호수의 제조 방법을 제공하는 것이다.Another object of the present invention is to transform coral aqueous cells with a recombinant vector containing the CYP2E1 gene consisting of the base sequence of SEQ ID NO: 1; And to provide a method for producing transformed coral water with improved air purifying ability, including the step of re-differentiating the transformed coral water from the transformed coral water cells.

본 발명의 또 다른 목적은 서열번호 1의 염기서열로 이루어진, CYP2E1 유전자를 포함하는 재조합 벡터로 산호수 세포를 형질전환시켜 CYP2E1 유전자를 발현하는 단계를 포함하는 산호수의 공기 정화 능력을 증진시키는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for improving the air purification ability of coral water, comprising the step of expressing the CYP2E1 gene by transforming coral cells with a recombinant vector containing the CYP2E1 gene, which consists of the base sequence of SEQ ID NO: 1. It is done.

본 발명의 또 다른 목적은 상기 방법에 의해 제조된 공기 정화 능력이 증진된 산호수를 제공하는 것이다.Another object of the present invention is to provide coral water with improved air purifying ability prepared by the above method.

본 발명의 일 양상은 CYP2E1(Cytochrome P450 2E1) 유전자를 포함하는 공기 정화 능력이 증진된 산호수(Ardisia pusilla)를 제공한다.One aspect of the present invention provides coral water ( Ardisia pusilla ) with improved air purifying ability containing the CYP2E1 (Cytochrome P450 2E1) gene.

본 발명의 공기 정화 능력이 증진된 산호수는 CYP2E1 유전자로 형질전환되어 공기중의 유해물질의 정화 능력이 증진된 것으로, 특히 톨루엔 저감률이 현저히 우수하므로, 대기 중 톨루엔 정화에 유용하게 활용될 수 있다.The coral water with improved air purification ability of the present invention has been transformed with the CYP2E1 gene to have an improved purification ability of harmful substances in the air. In particular, the toluene reduction rate is significantly excellent, so it can be usefully used for purifying toluene in the atmosphere. .

본 발명의 CYP2E1 유전자가 도입된 형질전환 산호수는 당업계에 공지된 표준 기술을 사용하여 원괴체유사체 유도, 재분화 신초 유도 및 생장을 통해 재분화 식물체를 획득할 수 있으며, 기내 마디배양 및 분주를 통해 증식시킬 수 있다. 또한 기내식물체를 발근 및 토양 순화 후 온실로 옮겨 꺾꽂이, 접붙이기 등과 같은 무성번식방법에 의해 생산될 수 있다.The transgenic coral tree into which the CYP2E1 gene of the present invention has been introduced can obtain redifferentiated plants through induction of mass analogues, induction of redifferentiated shoots, and growth using standard techniques known in the art, and proliferate through in-flight node culture and distribution. You can do it. In addition, after rooting and purifying the soil, indoor plants can be moved to a greenhouse and produced by asexual propagation methods such as cuttings and grafting.

본 발명에서 사용되는 용어, '원괴체유사체(protocorm like body, PLB)'는 미분화된 배와 배유 때문에 자체 발아 능력이 없는 난과 식물의 종자가 자연 상태에서 균과의 공생으로 발아하여 형성되는 구상체 조직인 원괴체(protocorm)와 유사한 형태의 조직으로 난과식물의 경우 생장점조직을 배양하였을 때 형성된다.The term used in the present invention, 'protocorm like body (PLB)', is a sphere formed by germinating the seeds of orchid plants, which do not have the ability to germinate on their own due to undifferentiated embryos and endosperm, through symbiosis with fungi in a natural state. It is a tissue similar to the protocorm, which is the upper body tissue, and is formed when growing point tissue is cultured in orchid plants.

본 발명에서 사용되는 용어, '기내 도입'은 시험관 등의 용기에 인공 배지를 주입하여 환경이 조절된 상태로 식물체의 일부를 치상하여 배양하는 것을 말하고, '기내배양 개체'는 기내 도입된 식물체 일부를 배양하여 얻은 식물체를 말한다.As used in the present invention, the term 'in-flight introduction' refers to cultivating a part of a plant in a controlled environment by injecting an artificial medium into a container such as a test tube, and the 'in-flight culture object' refers to the part of the plant introduced into the aircraft. refers to a plant obtained by culturing.

본 발명의 일 구체예에 따르면, 상기 CYP2E1 유전자는 서열번호 1의 염기서열로 이루어질 수 있다.According to one embodiment of the present invention, the CYP2E1 gene may consist of the base sequence of SEQ ID NO: 1.

본 발명의 일 구체예에 따르면, 상기 공기 정화는 톨루엔(toluene) 정화일 수 있다.According to one embodiment of the present invention, the air purification may be toluene purification.

본 발명의 일 구체예에 따른 CYP2E1 유전자가 도입된 형질전환 산호수 CYP2E1-2-2계통은 톨루엔 처리 5시간 후 톨루엔 저감 능력이 일반적인 산호수 대비 1.86 내지 6.09배 우수하므로, 대기 중 톨루엔 정화에 유용하게 활용될 수 있다.The transgenic coral aqueous CYP2E1-2-2 line into which the CYP2E1 gene was introduced according to one embodiment of the present invention has a toluene reduction ability 1.86 to 6.09 times better than that of general coral aquatic plants after 5 hours of toluene treatment, and is therefore useful for purifying toluene in the atmosphere. It can be.

본 발명의 다른 양상은 CYP2E1 유전자를 포함하는 공기 정화 능력이 증진된 산호수의 원괴체유사체를 제공한다.Another aspect of the present invention provides a coral conglomerate analogue with improved air purification ability containing the CYP2E1 gene.

본 발명의 CYP2E1 유전자를 포함하는 공기 정화 능력이 증진된 산호수의 원괴체유사체는 당업계에 공지된 식물체(마디절편)로부터 생산하기 위한 방법을 통하여 획득될 수 있다.A coral mass analog with improved air purification ability containing the CYP2E1 gene of the present invention can be obtained through a method for producing from plants (node fragments) known in the art.

본 발명의 또 다른 양상은 서열번호 1의 염기서열로 이루어진, CYP2E1 유전자를 포함하는 재조합 벡터로 산호수 세포를 형질전환하는 단계; 및 형질전환된 산호수 세포로부터 형질전환 산호수를 재분화하는 단계를 포함하는 공기 정화 능력이 증진된 형질전환 산호수의 제조 방법을 제공한다.Another aspect of the present invention includes the steps of transforming coralline cells with a recombinant vector containing the CYP2E1 gene consisting of the base sequence of SEQ ID NO: 1; And it provides a method for producing transformed coral water with improved air purifying ability, including the step of re-differentiating the transformed coral water from the transformed coral water cells.

본 발명에서 사용되는 용어, '재조합 벡터'는 적합한 숙주 내에서 목적 단백질을 발현시킬 수 있도록 적합한 조절 서열에 작동 가능하게 연결된 상기 목적 단백질을 코딩하는 폴리뉴클레오티드의 염기서열을 함유하는 DNA 제조물을 의미한다.As used in the present invention, the term 'recombinant vector' refers to a DNA preparation containing the base sequence of a polynucleotide encoding the target protein operably linked to a suitable control sequence to enable expression of the target protein in a suitable host. .

본 발명에서 사용되는 용어, '형질전환'은 목적 단백질을 코딩하는 염기서2열을 포함하는 벡터를 식물체 내에 도입하여 식물체 내에서 상기 염기서열이 코딩하는 단백질이 발현할 수 있도록 하는 것을 말한다. 형질전환된 염기서열은 식물체 내에서 발현될 수 있기만 한다면, 식물체의 염색체 내에 삽입되어 위치할 수 있고, 또는 염색체 외에 위치할 수 있으며, 이들 모두를 포함할 수 있다. 또한, 상기 염기서열은 목적 단백질을 코딩하는 DNA 및/또는 RNA를 포함할 수 있다. 상기 염기서열은 예를 들어, 자체적으로 발현되는데 필요한 모든 요소를 포함하는 유전자 구조체인 발현 카세트(expression cassette)의 형태로 식물체에 도입될 수 있다. 상기 발현 카세트는 통상 상기 염기서열에 작동 가능하게 연결되어 있는 프로모터, 전사 종결신호, 리보좀 결합부위 및/또는 번역 종결신호를 포함할 수 있다. 상기 발현 카세트는 자체 복제가 가능한 발현 벡터 형태일 수 있다. 또한, 상기 염기서열은 상기 벡터로 형질전환된 아그로박테리움에 의하여 식물체에 도입될 수 있고, 또는 상기 염기서열은 그 자체의 형태로 식물체에 도입되어 식물체에서 발현에 필요한 서열과 작동 가능하게 연결되어 있는 것일 수도 있으나, 이에 한정되는 것은 아니다. 상기 목적 단백질을 코딩하는 염기서열은 구체적으로 CYP2E1 유전자이고, 구체적으로, 서열번호 1로 이루어진 염기서열일 수 있다.The term 'transformation' used in the present invention refers to introducing a vector containing two base sequences encoding a target protein into a plant so that the protein encoded by the base sequence can be expressed within the plant. As long as the transformed base sequence can be expressed in the plant, it can be inserted and located within the chromosome of the plant, or can be located outside the chromosome, and can include all of these. Additionally, the base sequence may include DNA and/or RNA encoding the target protein. For example, the base sequence can be introduced into the plant in the form of an expression cassette, which is a genetic structure containing all elements necessary for self-expression. The expression cassette may typically include a promoter, transcription termination signal, ribosome binding site, and/or translation termination signal operably linked to the base sequence. The expression cassette may be in the form of an expression vector capable of self-replication. In addition, the base sequence can be introduced into the plant by Agrobacterium transformed with the vector, or the base sequence can be introduced into the plant in its own form and operably linked to the sequence required for expression in the plant. It may exist, but it is not limited to this. The base sequence encoding the target protein is specifically the CYP2E1 gene, and may specifically be the base sequence consisting of SEQ ID NO: 1.

본 발명에서 사용되는 벡터는 숙주세포 내에서 복제 가능한 것이면 제한 없이 사용될 수 있으며, 당업계에 공지된 임의의 벡터가 사용될 수 있다. 본 발명에 따른 벡터는 식물 형질전환용 벡터이므로, 당업계에 알려진 다양한 식물체-기능적 프로모터가 사용될 수 있으며, 예를 들어, 칼리플라워 모자이크 바이러스(CaMV) 35S 프로모터, 피그워트 모자이크 바이러스 35S 프로모터, 슈가케인 바실리폼 바이러스 프로모터, 코메리나 옐로우 모틀 바이러스 프로모터, 리불로스-1,5-비스-포스페이트 카르복실라아제의 소단위(ssRUBISCO)로부터의 빛-유도성 프로모터, 쌀 사이토졸릭 트리오세포스페이트 이소머라아제(TPI) 프로모터, 아라비돕시스(Arabidopsis)로부터의 아데닌 포스포리보실트랜스퍼라아제(APRT) 프로모터, 옥수수의 유비키틴 프로모터, 쌀 액틴 1 유전자 프로모터, 알파-아밀라제 3D 프로모터(alpha-amylase, 3D promoter), 글로부린 프로모터, 글루테린 A 또는 B 프로모터, 플로라민 프로모터, 만노핀 신타아제 및 옥토핀신타아제 프로모터가 사용될 수 있으나, 이에 한정되는 것은 아니다.The vector used in the present invention can be used without limitation as long as it can replicate within the host cell, and any vector known in the art can be used. Since the vector according to the present invention is a vector for plant transformation, various plant-functional promoters known in the art can be used, for example, cauliflower mosaic virus (CaMV) 35S promoter, pigwort mosaic virus 35S promoter, sugar cane Bacilliform virus promoter, Comerina yellow mottle virus promoter, light-inducible promoter from the subunit of ribulose-1,5-bis-phosphate carboxylase (ssRUBISCO), rice cytosolic triocytophosphate isomerase (TPI) ) promoter, adenine phosphoribosyltransferase (APRT) promoter from Arabidopsis, ubiquitin promoter of maize, rice actin 1 gene promoter, alpha-amylase, 3D promoter, globulin promoter, Gluterin A or B promoter, floramine promoter, mannopine synthase and octopine synthase promoter may be used, but are not limited thereto.

또한, 상기 벡터는 선발 표지 유전자로써 항생제 저항성 유전자, 제초제 저항성 유전자, 대사관련 유전자, 발광 유전자, GFP(green fluorescence protein) 유전자, GUS(β유전자, GAL(β-galactosidase) 유전자 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 구체적으로 네오마이신 포스포트랜스퍼라제 Ⅱ(NPT Ⅱ) 유전자, 하이그로마이신 포스포트랜스퍼라제 유전자, 포스피노트리신 아세틸트랜스퍼라제 유전자 또는 다이하이드로폴레이트 환원효소 유전자 등이 사용될 수 있으나, 이에 한정되는 것은 아니다.In addition, the vector may contain an antibiotic resistance gene, a herbicide resistance gene, a metabolism-related gene, a luminescence gene, a GFP (green fluorescence protein) gene, a GUS (β gene), a GAL (β-galactosidase) gene, etc. as selection marker genes. , but is not limited to this. Specifically, neomycin phosphotransferase II (NPT II) gene, hygromycin phosphotransferase gene, phosphinothricin acetyltransferase gene, or dihydrofolate reductase gene, etc. may be used. However, it is not limited to this.

CYP2E1 유전자를 포함하는 재조합 벡터로 산호수 세포를 형질전환시키는 방법은 목적 단백질을 코딩하는 염기서열을 식물체 내로 도입하는 어떤 방법도 제한 없이 사용될 수 있으며, 당업계에 공지된 적합한 표준 기술을 선택하여 수행될 수 있다. 예를 들어, 아그로박테리움 속(Agrobacterium sp.) 미생물을 이용한 형질전환, 입자 총 충격법(particle gun bombardment), 실리콘 탄화물 위스커(Silicon carbide whiskers), 초음파 처리(sonication), 전기천공법(electroporation) 및 PEG (Polyethylenglyco l)에 의한 침전법이 사용될 수 있고, 바람직하게는, 아그로박테리움-매개 형질전환법이 사용될 수 있으나, 이에 한정되는 것은 아니다.The method of transforming coralline cells with a recombinant vector containing the CYP2E1 gene can be performed without limitation by introducing a base sequence encoding the target protein into the plant, and can be performed by selecting an appropriate standard technique known in the art. You can. For example, transformation using Agrobacterium sp. microorganisms, particle gun bombardment, silicon carbide whiskers, sonication, and electroporation. and precipitation with PEG (Polyethylenglyco l) may be used, and preferably, Agrobacterium-mediated transformation may be used, but is not limited thereto.

본 발명의 일 구체예에 따르면, 상기 공기 정화는 톨루엔 정화일 수 있다.According to one embodiment of the present invention, the air purification may be toluene purification.

본 발명의 또 다른 양상은 서열번호 1의 염기서열로 이루어진, CYP2E1 유전자를 포함하는 재조합 벡터로 산호수 세포를 형질전환시켜 CYP2E1 유전자를 발현하는 단계를 포함하는 산호수의 공기 정화 능력을 증진시키는 방법을 제공한다.Another aspect of the present invention provides a method for improving the air purification ability of coral water, comprising the step of expressing the CYP2E1 gene by transforming coral cells with a recombinant vector containing the CYP2E1 gene, which consists of the base sequence of SEQ ID NO: 1. do.

본 발명의 산호수의 공기 정화 능력을 증진시키는 방법에 있어서, 전술한 내용과 중복되는 부분은 전술한 의미와 동일한 의미로 사용될 수 있다.In the method of improving the air purifying ability of coral water of the present invention, parts that overlap with the above-described content may be used with the same meaning as the above-mentioned meaning.

본 발명의 또 다른 양상은 상기 방법에 의해 제조된 공기 정화 능력이 증진된 산호수를 제공한다.Another aspect of the present invention provides coral water with improved air purification ability produced by the above method.

CYP2E1 유전자를 이용한 톨루엔 정화능이 증진된 형질전환 산호수 및 이의 용도에 따르면, CYP2E1 유전자가 형질전환된 산호수는 일반적인 산호수 대비 톨루엔 저감률이 현저히 우수하므로, 대기 중 톨루엔 정화에 유용하게 활용될 수 있다.According to transgenic coral water with improved toluene purification ability using the CYP2E1 gene and its uses, coral water transformed with the CYP2E1 gene has a significantly better toluene reduction rate than general coral water, so it can be useful for purifying toluene in the atmosphere.

도 1은 CYP2E1 삽입 pCM2300PMN 벡터 map을 나타낸 그림이다.
도 2는 경정배양 후 (A) 170일 및 (B) 250일이 경과된 산호수 신초를 나타낸 사진이다.
도 3은 CYP2E1 유전자가 도입된 산호수 모주의 증식을 나타낸 사진이다.
도 4는 CYP2E1 유전자가 도입된 산호수 줄기 단편 유래 재분화 선발배지 교체 및 식물체 재분화 경과를 나타낸 사진이다.
도 5는 CYP2E1 유전자가 도입된 형질전환 산호수의 증식을 나타낸 사진이다.
도 6은 (A) CYP2E1 유전자 및 (B) NPTII 유전자의 도입이 확인된 형질전환 산호수의 게놈 DNA PCR 결과이다.
도 7은 (A) 순화 후, 온실에서 (B) 증식되고 있는 형질전환 산호수를 나타낸 사진이다.
도 8은 (A) EcoRI 절단 후 전체 DNA 및 (B) CYP2E1 유전자 copy 수를 나타낸 형질전환 산호수의 서던 블롯 분석 결과이다.
도 9는 형질전환 산호수의 CYP2E1 유전자 도입 copy 수를 나타낸 그래프이다.
도 10은 (A) CYP2E1 mRNA 및 (B) 전체 RNA를 나타낸 형질전환 산호수의 노던 블롯 분석 결과이다. NC는 비형질전환 산호수로부터 추출한 전체 RNA이고, 1 내지 25는 CYP2E1 유전자가 도입된 형질전환 산호수로부터 추출된 전체 RNA이다.
도 11은 형질전환 산호수로부터 CYP2E1 단백질 발현이 확인된 (A) SDS-PAGE 분석 결과 및 (B) 웨스턴 블롯 분석 결과이다. M은 사전 염색된(pre-stained) 단백질 마커(Bio-Rad)이고, PC는 대장균에서 유도된 재조합 rabbit CYP2E1 단백질이고, NC는 비형질전환 산호수의 전체 잎 단백질이고, 1 내지 12는 각각 형질전환 산호수 라인들(CYP2E1-2-1, CYP2E1-2-2, CYP2E1-3-3, CYP2E1-3-4, CYP2E1-6-1, CYP2E1-6-2, CYP2E1-6-5, CYP2E1-20-3, CYP2E1-24-3, CYP2E1-35-1, CYP2E1-54-1, CYP2E1-54-2)의 잎 단백질이다.
도 12는 (A) CYP2E1에 의한 아닐린(aniline)의 4-아미노페놀(aminophenol)로의 전환, (B) OD630nm에서 4-아미노페놀의 표준곡선, 및 (C) 형질전환 산호수의 CYP2E1 효소 활성을 나타낸 그림 및 그래프이다.
도 13은 제한효소를 이용한 유전자 삽입 개수 및 CYP2E1 유전자 도입 산호수의 게놈 내 주변 염기 서열을 나타낸 CYP2E1 유전자 삽입 형질전환 산호수의 인접 DNA 시퀀싱 결과이다.
도 14는 형질전환 산호수의 엽면적당 톨루엔 저감 능력 검정 결과를 나타낸 그래프이다.
Figure 1 is a diagram showing the CYP2E1 insertion pCM2300PMN vector map.
Figure 2 is a photograph showing coral shoots 170 days (A) and 250 days (B) after culture.
Figure 3 is a photograph showing the proliferation of coral mother plants into which the CYP2E1 gene was introduced.
Figure 4 is a photograph showing the replacement of the redifferentiation selection medium derived from a coral stem fragment into which the CYP2E1 gene was introduced and the progress of plant redifferentiation.
Figure 5 is a photograph showing the proliferation of transgenic corals into which the CYP2E1 gene has been introduced.
Figure 6 shows the genomic DNA PCR results of transgenic coral in which introduction of (A) CYP2E1 gene and (B) NPTII gene was confirmed.
Figure 7 is a photograph showing (A) a transgenic coral tree growing in a greenhouse (B) after acclimation.
Figure 8 shows the results of Southern blot analysis of transgenic coral showing (A) total DNA after EcoRI digestion and (B) CYP2E1 gene copy number.
Figure 9 is a graph showing the number of copies of the CYP2E1 gene introduced into transgenic coral.
Figure 10 shows the results of Northern blot analysis of transgenic corals showing (A) CYP2E1 mRNA and (B) total RNA. NC is total RNA extracted from non-transformed corals, and 1 to 25 are total RNAs extracted from transformed corals into which the CYP2E1 gene was introduced.
Figure 11 shows (A) SDS-PAGE analysis results and (B) Western blot analysis results confirming CYP2E1 protein expression in transgenic corals. M is a pre-stained protein marker (Bio-Rad), PC is a recombinant rabbit CYP2E1 protein derived from E. coli, NC is a whole leaf protein of non-transformed coral tree, and 1 to 12 are each transgenic. Coral lines (CYP2E1-2-1, CYP2E1-2-2, CYP2E1-3-3, CYP2E1-3-4, CYP2E1-6-1, CYP2E1-6-2, CYP2E1-6-5, CYP2E1-20- 3, CYP2E1-24-3, CYP2E1-35-1, CYP2E1-54-1, CYP2E1-54-2) leaf proteins.
Figure 12 shows (A) conversion of aniline to 4-aminophenol by CYP2E1 , (B) standard curve of 4-aminophenol at OD630nm, and (C) CYP2E1 enzyme activity of transgenic coral. These are pictures and graphs.
Figure 13 is the result of adjacent DNA sequencing of the CYP2E1 gene-inserted transgenic coral, showing the number of gene insertions using restriction enzymes and the surrounding base sequences in the genome of the CYP2E1 gene-transformed coral.
Figure 14 is a graph showing the results of testing the toluene reduction ability per leaf area of transgenic coral trees.

이하 본 발명을 하나 이상의 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through one or more examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.

실시예 1. Example 1. CYP2E1CYP2E1 유전자 클로닝 및 식물 형질전환 발현 벡터 내 삽입 Gene cloning and insertion into plant transformation expression vectors

pCambia2300 운반체에 항시 발현 프로모터인 P35S 프로모터(0.8kb)와 노팔린 신타아제 터미네이터(0.2kb)를 삽입시킨 pCambia2300-PMN 운반체를 제작하였고, 표 1의 CYP2E1(Cytochrome P450 2E1) 유전자(Genbank No. M15061) 전체 서열(full length, 1,995bp)을 합성하였다. 서브클로닝을 위해 CYP2E1 유전자를 XbaI과 KpnI제한 효소로 절단하여 pCambia2300-PMN에 삽입시켜 최종적으로 pCambia2300-CYP2E1을 제작하였다(도 1). 이때 DH5α(Invitrogen) 컴피턴트 세포(competent cell)를 사용하여 형질전환하였다. 구축된 식물발현운반체인 pCambia2300-CYP2E1는 아그로박테리움 튜머파시엔스(Agrobacterium tumefaciens) 균주 GV3101에 형질전환하여 산호수로 도입하는데 사용하였다. The pCambia2300-PMN carrier was constructed by inserting the constitutive expression promoter P35S promoter (0.8kb) and nopaline synthase terminator (0.2kb) into the pCambia2300 carrier, and the CYP2E1 (Cytochrome P450 2E1) gene in Table 1 (Genbank No. M15061). The entire sequence (full length, 1,995bp) was synthesized. For subcloning, the CYP2E1 gene was cut with XbaI and KpnI restriction enzymes and inserted into pCambia2300-PMN, ultimately creating pCambia2300-CYP2E1 (Figure 1). At this time, transformation was performed using DH5α (Invitrogen) competent cells. The constructed plant expression carrier, pCambia2300-CYP2E1, was used to transform Agrobacterium tumefaciens strain GV3101 and introduce it into coral water.

CYP2E1 gene CYP2E1 gene ATGGCTGTTCTGGGCATCACCGTCGCCCTGCTGGGGTGGATGGTCATCCTCCTGTTCATATCCGTCTGGAAGCAGATCCACAGCAGCTGGAACCTGCCCCCAGGACCTTTCCCACTGCCCATCATCGGGAATCTTCTCCAGTTGGATTTGAAGGATATTCCCAAGTCCTTTGGCAGGCTGGCAGAGCGCTTTGGGCCGGTGTTCACTGTGTACCTGGGCTCCAGGCGTGTTGTGGTTCTGCACGGCTACAAGGCGGTGAGGGAGATGCTGTTGAACCACAAGAACGAGTTCTCTGGGCGTGGCGAGATCCCTGCTTTCCGGGAGTTTAAGGACAAGGGGATCATTTTCAACAATGGACCCACCTGGAAGGACACTCGGCGGTTCTCCCTGACCACCCTCCGGGACTATGGGATGGGGAAACAGGGCAACGAGGACCGGATCCAGAAGGAGGCCCACTTCCTGCTGGAGGAGCTCAGGAAGACCCAGGGCCAGCCCTTCGACCCCACCTTTGTCATCGGCTGCACACCCTTCAACGTCATCGCCAAAATCCTCTTCAATGACCGCTTTGACTATAAGGACAAGCAGGCTCTGAGGCTGATGAGTTTGTTCAACGAGAACTTCTACCTGCTCAGTACTCCTTGGCTGCAGGTTTACAATAATTTTTCAAACTATCTACAGTACATGCCTGGAAGTCACAGGAAAGTAATAAAAAATGTGTCTGAAATAAAAGAGTACACACTCGCAAGAGTGAAGGAGCACCACAAGTCGCTGGACCCCAGCTGCCCCCGGGACTTCATTGACAGCCTGCTCATAGAAATGGAGAAGGACAAACACAGCACGGAGCCCCTGTACACGCTGGAAAACATTGCTGTGACTGTGGCGGACATGTTCTTTGCGGGCACGGAGACCACCAGCACCACGCTGCGATATGGGCTCCTGATCCTGCTGAAGCACCCCGAGATCGAAGAGAAACTTCATGAAGAAATCGACAGGGTGATTGGGCCGAGCCGAATGCCTTCTGTCAGGGACAGGGTGCAGATGCCCTACATGGACGCTGTGGTACATGAGATTCAGCGATTCATCGATCTCGTGCCCTCCAATCTGCCGCACGAAGCCACACGGGACACCACCTTCCAAGGATACGTCATCCCCAAGGGCACTGTTGTAATCCCGACTCTGGACTCCCTTTTGTATGACAAGCAAGAATTCCCTGATCCCGAGAAGTTCAAACCAGAGCACTTTCTGAATGAGGAGGGGAAGTTCAAGTATAGCGACTACTTCAAGCCGTTTTCCGCAGGAAAACGCGTGTGTGTTGGAGAAGGCCTGGCTCGCATGGAGTTGTTTCTGCTCCTGTCTGCCATTCTGCAGCATTTTAACCTCAAGCCTCTCGTTGACCCAGAGGACATTGACCTTCGCAATATTACGGTGGGCTTTGGCCGTGTCCCACCACGCTACAAACTCTGTGTCATTCCCCGCTCGTAAATGGCTGTTCTGGGCATCACCGTCGCCCTGCTGGGGTGGATGGTCATCCTCCTGTTCATATCCGTCTGGAAGCAGATCCACAGCAGCTGGAACCTGCCCCCAGGACCTTTCCCACTGCCCATCATCGGGAATCTTCTCCAGTTGGATTTGAAGGATATTCCCAAGTCCTTTGGCAGGCTGGCAGAGCGCTTTGGGCCGGTGTTCACTGTGTACCTGGGCTCCAGGCGTGTTGTGGTTCTGCACGGGCTACAA GGCGGTGAGGGAGATGCTGTTGAACCACAAGAACGAGTTCTCTGGGCGTGGCGAGATCCCTGCTTTCCGGGAGTTTAAGGACAAGGGGATCATTTTCAACAATGGACCCACCTGGAAGGACACTCGGCGGTTCTCCCTGACCACCCTCCGGGACTATGGGATGGGGAAACAGGGCAACGAGGACCGGATCCAGAAGGAGGCCCACTTCCTGCTGAGGAGCTCAGGAAGACCCAGGGCCAGCCCTTCGACC CCACCTTTGTCATCGGCTGCACACCCTTCAACGTCATCGCCAAAATCCTCTTCAATGACCGCTTTGACTATAAGGACAAGCAGGCTCTGAGGCTGATGAGTTTGTTCAACGAGAACTTCTACCTGCTCAGTACTCCTTGGCTGCAGGTTTACAATAATTTTTCAAAACTATCTACAGTACATGCCTGGAAGTCACAGGAAAGTAATAAAAAATGTGTCTGAAATAAAAGAGTACACACTCGCAAGAGTGAAGGAGCACCACAA GTCGCTGGACCCCAGCTGCCCCCGGGACTTCATTGACAGCCTGCTCATAGAAATGGAGAAGGACAAACACAGCACGGAGCCCCTGTACACGCTGGAAAACATTGCTGTGACTGTGGCGGACATGTTCTTTGCGGGCACGGAGACCACCAGCACCACGCTGCGATATGGGCTCCTGATCCTGCTGAAGCACCCCGAGATCGAAGAGAAACTTCATGAAGAAATCGACAGGGTGATTGGGCCGAGCCGAATGCCTTCTG TCAGGGACAGGGTGCAGATGCCCTACATGGACGCTGTGGTACATGAGATTCAGCGATTCATCGATCTCGTGCCCTCCAATCTGCCGCACGAAGCCACACGGGACACCACCTTCCAAGGATACGTCATCCCCAAGGGCACTGTTGTAATCCCGACTCTGGACTCCCTTTTGTATGACAAGCAAGAATTCCCTGATCCCGAGAAGTTCAAACCAGAGCACTTTCTGAATGAGGAGGGGAAGTTCAAGTATAGCGACTACT TCAAGCCGTTTTCCGCAGGAAAACGCGTGTGTGTTGGAGAAGGCCTGGCTCGCATGGAGTTGTTTCTGCTCCTGTCTGCCATTCTGCAGCATTTTAACCTCAAGCCTCTCGTTGACCCAGAGGACATTGACCTTCGCAATATTACGGTGGGCTTTGGCCGTGTCCCACCACGCTACAAACTCTGTGTCATTCCCCGCTCGTAA 서열번호 1SEQ ID NO: 1

실시예 2. Example 2. CYP2E1CYP2E1 유전자 도입 산호수 재분화 식물체 획득 Obtaining genetically introduced coral regeneration plants

2-1. CYP2E1 유전자 도입을 위한 산호수 재료 준비2-1. Preparation of coral material for CYP2E1 gene introduction

실내 공기 정화능력이 증진된 산호수를 개발하기 위하여, 자생 실내 식물로서 상업적으로 이용되고 있는 산호수를 국립원예특작과학원 도시농업과로부터 분양 받아 2015년 1월 15일에 신초 50개를 소독한 후 경정(3mm 내외)을 2% 수크로오스(sucrose, Duchefa)가 첨가된 1/2 MS(Duchefa) 고체배지[pH5.7, 0.7% agar(Duchefa)]로 채운 시험관에 배양하였다. In order to develop coral tree with improved indoor air purification ability, coral tree, which is commercially used as a native indoor plant, was purchased from the Urban Agriculture Department of the National Institute of Horticultural and Herbal Science, and 50 shoots were disinfected and purified on January 15, 2015. (approximately 3 mm) was cultured in a test tube filled with 1/2 MS (Duchefa) solid medium [pH 5.7, 0.7% agar (Duchefa)] supplemented with 2% sucrose (Duchefa).

신초 소독은 다음과 같은 방법으로 수행하였다: 신초를 10분정도 흐르는 물에 담가 둔 후, 70% 에탄올(EtOH)로 30초 동안 표면 살균하고, 멸균수로 헹구었다. 이후, 진공펌프를 이용해 압력을 낮춰 시료 표면 공기를 빼내어 1% NaOCl액이 잘 침투되도록 10분간 소독하였고, 무균대안으로 옮겨 멸균수로 3회 헹군후 5분간 멸균수에 담가 둔 후 멸균 필터페이퍼가 깔린 샤알레에서 멸균수를 제거하였다. 그 다음, 4주 간격으로 곁가지를 동일한 배지로 옮기는 계대배양을 통해 증식하여 톨루엔 정화 유전자 도입 식물체를 획득하기 위한 재료로 사용하였다(도 2 및 도 3). 경정배양 및 이후 계대배양은 25℃±2℃로 유지되는 배양실에서 배양하였다.Shoot disinfection was performed in the following manner: the shoots were soaked in running water for about 10 minutes, then surface sterilized with 70% ethanol (EtOH) for 30 seconds and rinsed with sterile water. Afterwards, the pressure was lowered using a vacuum pump to remove air from the surface of the sample, and the sample was disinfected for 10 minutes to allow 1% NaOCl solution to penetrate well. Then, the sample was moved to a sterile container, rinsed three times with sterilized water, and soaked in sterilized water for 5 minutes. Then, the sample was covered with sterilized filter paper. Sterile water was removed from the laid dish. Next, the side branches were propagated through subculture in which the side branches were transferred to the same medium at 4-week intervals and used as material to obtain toluene-purified transgenic plants (Figures 2 and 3). Jugular culture and subsequent subculture were cultured in a culture room maintained at 25°C ± 2°C.

2-2. CYP2E1 유전자가 도입된 산호수 재분화 식물체 획득2-2. Obtaining coral re-differentiation plants into which the CYP2E1 gene was introduced

2016년 3월, 실시예 2-1에서 준비한 산호수 줄기를 절단한 단편(절편체, 1mm 내외 두께) 332개를 전배양 배지[1/2 MS components + TDZ(MBcell) 0.5㎎·L-1 + IBA(Duchefa) 0.5㎎·L-1 + 수크오로스 30g·L-1 + plant agar 7g·L-1, pH5.7]에 1 내지 4일간 전배양한 후, 실시예 1에서 제작한 아그로박테리움 균주와 2 내지 4일간 공동배양[배지조성: 전배양 배지 + 아세토시린곤(acetosyringone, aldrich) 50μM, pH5.2]을 통해 산호수 줄기단편으로 CYP2E1 유전자의 도입을 시도하였다. 아그로박테리움 균주는 LB액체배지에서 배양(O.D600 = 0.6 내지 0.8) 후 액체배지(MS components + 수크로오스 30g·L-1, pH5.2)에 희석하여 사용하였다. 공동배양 후, 절편체를 MS 액체배지(pH5.7)로 세척하고, 영양배지(전배양배지 + 세포탁심(cefotaxim) 200㎎·L-1)에서 7일간 배양하였다. 이후 선발배지[영양배지 + 가나마이신(Sigma) 5㎎·L-1]에서 배지교체를 통하여(도 4) 2016년 말 재분화 신초를 획득하였다. 그 후, 재분화 신초를 생장 선발배지(1/2 MS + 수크로오스 30g·L-1 + 세포탁심 100㎎·L-1 + 가나마이신 5㎎·L-1 + plant agar 7g·L-1, pH5.7)로 옮겨 식물체로 생장 및 증식 시켰으며, 332개 중 121개의 절편체로부터 재분화 신초를 획득하였다. In March 2016, 332 pieces (explants, about 1 mm thick) cut from the coral stem prepared in Example 2-1 were cultured in pre-culture medium [1/2 MS components + TDZ (MBcell) 0.5 mg·L -1 + After pre-culturing for 1 to 4 days in [IBA (Duchefa) 0.5mg·L -1 + sucrose 30g·L -1 + plant agar 7g·L -1 , pH 5.7], Agrobacteria prepared in Example 1 An attempt was made to introduce the CYP2E1 gene into coral stem fragments through co-cultivation with the Leeum strain for 2 to 4 days [medium composition: pre-culture medium + acetosyringone (aldrich) 50 μM, pH 5.2]. The Agrobacterium strain was cultured in LB liquid medium (OD 600 = 0.6 to 0.8) and then diluted in liquid medium (MS components + sucrose 30 g·L -1 , pH 5.2). After co-culture, the explants were washed with MS liquid medium (pH 5.7) and cultured in nutrient medium (pre-culture medium + cefotaxim 200 mg·L -1 ) for 7 days. Afterwards, redifferentiated shoots were obtained at the end of 2016 by changing the medium in the selection medium [nutrient medium + kanamycin (Sigma) 5 mg·L -1 ] (Figure 4). Afterwards, the redifferentiated shoots were grown on a growth selection medium (1/2 MS + sucrose 30g·L -1 + cefotaxime 100mg·L -1 + kanamycin 5mg·L -1 + plant agar 7g·L -1 , pH 5. 7) and grown and multiplied into plants, and redifferentiated shoots were obtained from 121 explants out of 332.

실시예 3.Example 3. CYP2E1CYP2E1 유전자 도입 확인, 및 산호수 식물체의 순화 및 증식 Confirmation of gene introduction, and purification and propagation of coralline plants

3-1. CYP2E1 유전자 도입 산호수의 기내 증식 및 PCR 분석에 따른 CYP2E1 유전자 도입 확인3-1. Confirmation of CYP2E1 gene introduction based on in-flight growth and PCR analysis of CYP2E1 gene-introduced corals

실시예 2-2에서 획득한 산호수 재분화 신초를 신초생장 선발배지에서 생장시켜, 65개 산호수 절편체로부터 산호수 재분화 유식물체 178개체를 획득하였다. 그 후, CYP2E1 유전자가 도입되었는지 분석하기 위하여 산호수 재분화 유식물체를 기내 증식하였다(도 5). The coral regeneration shoots obtained in Example 2-2 were grown on a shoot growth selection medium, and 178 coral regeneration plantlets were obtained from 65 coral explants. Afterwards, in order to analyze whether the CYP2E1 gene was introduced, coralline regenerated seedlings were propagated in vitro (Figure 5).

기내 증식한 산호수 재분화 유식물체에 목표 유전자인 CYP2E1 도입되었는지 확인하기 위하여 PCR(Polymerase Chain Reaction) 분석을 수행하였다. The target gene, CYP2E1 , is present in coral regeneration plants grown in vitro. To confirm whether it was introduced, PCR (Polymerase Chain Reaction) analysis was performed.

구체적으로, 가나마이신(kanamycin)이 첨가된 배지에서 일차 선발되어 형질전환체로 예상되는 산호수 178개체로부터 DNeasy Mini Plant Kit(Qiagen, USA)를 이용하여 게놈(genomic) DNA를 추출하였으며, NanoVue(GE healthcare, UK)를 이용하여 추출된 게놈 DNA를 정량하였다. PCR 반응은 200 내지 500ng의 DNA, 0.2mM dNTP, 표 2의 프라이머 및 0.2U Taq polymerase 등을 혼합한 시약 20㎕를 95℃에서 1분 동안 denaturation, 58℃에서 1분 동안 primer annealing, 72℃에서 1분 동안 primer extension하는 과정을 30회 증폭한 후, loading star(DYNEBIO, Korea)를 혼합한 1% 아가로스 젤(agarose gel)상에서 전기영동하여 UV 하에서 유전자 도입여부를 확인하였다.Specifically, genomic DNA was extracted using DNeasy Mini Plant Kit (Qiagen, USA) from 178 corals that were initially selected on a medium supplemented with kanamycin and expected to be transformants, and NanoVue (GE healthcare) , UK) was used to quantify the extracted genomic DNA. For the PCR reaction, 20 ㎕ of reagent mixed with 200 to 500 ng of DNA, 0.2mM dNTP, primers from Table 2, and 0.2U Taq polymerase were denatured at 95°C for 1 minute, primer annealed at 58°C for 1 minute, and at 72°C. After amplifying the primer extension process 30 times for 1 minute, gene introduction was confirmed under UV by electrophoresis on a 1% agarose gel mixed with a loading star (DYNEBIO, Korea).

프라이머primer 프라이머 염기서열(5'→3')Primer base sequence (5'→3') 서열번호sequence number 비고note Os-CYP2E1 F1Os-CYP2E1F1 TCTAGAATGGCTGTTCTGGGCATTCTAGAATGGCTGTTCTGGGCAT 서열번호 2SEQ ID NO: 2 목표 유전자 특이적 프라이머Target gene specific primer Oc-CYP2E1 R1Oc-CYP2E1 R1 TTGGTACCTTACGAGCGGGGAATTTGGTACCTTACGAGCGGGGAAT 서열번호 3SEQ ID NO: 3 NPTII FNPTII F GAGGCTATTCGGCTATGACTGGAGGCTATTCGGCTATGACTG 서열번호 4SEQ ID NO: 4 선별 유전자 특이적 프라이머Selected gene-specific primers NPTII R1NPTII R1 ATCGGGAGCGGCGATACCGTAATCGGGAGCGGCGATACCGTA 서열번호 5SEQ ID NO: 5

그 결과, 산호수 178개체 중 50개체에서 목표 및 선발 유전자가 도입된 것으로 확인되었으며, 형질전환율은 28.0%인 것으로 확인되었다(도 6). As a result, it was confirmed that the target and selection genes were introduced in 50 of 178 corals, and the transformation rate was confirmed to be 28.0% (Figure 6).

3-2. CYP2E1 유전자가 도입된 산호수 식물체의 순화 및 증식3-2. Purification and proliferation of coral plants into which the CYP2E1 gene has been introduced.

CYP2E1 유전자가 도입된 산호수에 대한 효소 활성 분석 및 톨루엔 가스 정화 분석을 수행하여 위하여, 실시예 3-1에서 형질전환된 것으로 확인된 50계통의 산호수 형질전환체를 순화 후, 더운 여름 차광막을 이용하여 온실에서 반 음지 식물로 재배하였다(도 7).In order to perform enzyme activity analysis and toluene gas purification analysis on coral water into which the CYP2E1 gene was introduced, the 50 coral line transformants confirmed to have been transformed in Example 3-1 were purified and then used as a shading film in the hot summer. The plants were grown as semi-shade plants in a greenhouse (Figure 7).

실시예 4. Example 4. CYP2E1 CYP2E1 유전자가 도입된 산호수 식물체의 분자생물학적 분석Molecular biological analysis of coral plants with introduced genes

4-1. CYP2E1 유전자 도입 copy수 확인4-1. Check the copy number of CYP2E1 gene introduction

CYP2E1 유전자 도입 copy수를 확인하기 위하여 서던 블롯(Southern blot) 분석을 수행하였다.Southern blot analysis was performed to confirm the copy number of the CYP2E1 gene introduction.

구체적으로, 형질전환 산호수의 게놈 DNA안에 삽입된 CYP2E1 유전자의 copy수를 확인하기 위하여, 온실에서 증식된 실시예 3-2의 형질전환 산호수 중 25계통의 잎으로부터 DNA를 추출하여 농도를 확인하였다. 40㎍의 DNA를 100units의 EcoRI으로 처리하고, 0.5X TBE 용액에 담긴 0.9% 아가로스 젤에 로딩한 후, 30V로 17시간 러닝(running)하였다. 아가로스 젤에 전개된 DNA는 Hybond-N+ membrane(Amersham Life Science, UK)에 capillary transfer 방법으로 블롯팅하였다. 멤브레인을 UV 2,000J로 가교 결합(cross-linking)한 후, 혼성화 용기(hybridization bottle)에 넣고 10㎖의 혼성화 버퍼(hybridization buffer, 1mM EDTA, 250 mM Na2HPO4·7H2O, 1% casein hydrolysate, 7% SDS, 85% H3PO4, pH 7.4)를 첨가하여 3시간 동안 65℃에서 사전 혼성화(pre-hybridization)하였다. CYP2E1 유전자가 삽입되어 있는 pCAMBIA2300 벡터의 PCR 산물을 용리(elution)한 후, 30ng DNA로 Redyprime II Random Prime Labeling System(Amersham Life Science, UK)을 사용하여 [α-32P]dCTP로 표지한 프로브(probe)를 첨가하고, 65℃에서 18시간 동안 혼성화하였다. 용기에서 혼성화 버퍼를 제거한 후, 2X SSC, 0.1% SDS로 65℃에서 30분간, 2X SSC, 1% SDS으로 65 ℃에서 30분간, 100㎖의 0.2X SSC, 0.1% SDS으로 65℃에서 30분간 멤브레인을 세척한 다음, 표지인식을 위하여 BSA-1800II Bio-Imaging analyzer(FUJIFILM, Japan)을 사용하였다.Specifically, in order to confirm the copy number of the CYP2E1 gene inserted into the genomic DNA of the transgenic coral, DNA was extracted from leaves of 25 lines of the transgenic coral of Example 3-2 grown in a greenhouse and the concentration was confirmed. 40㎍ of DNA was treated with 100 units of EcoRI, loaded on a 0.9% agarose gel in 0.5X TBE solution, and run at 30V for 17 hours. DNA developed on an agarose gel was blotted onto a Hybond-N+ membrane (Amersham Life Science, UK) using the capillary transfer method. After cross-linking the membrane with UV 2,000J, it was placed in a hybridization bottle and 10 ml of hybridization buffer (1mM EDTA, 250 mM Na 2 HPO 4 ·7H 2 O, 1% casein) hydrolysate, 7% SDS, 85% H3PO4, pH 7.4) was added and pre-hybridization was performed at 65°C for 3 hours. After eluting the PCR product of the pCAMBIA2300 vector into which the CYP2E1 gene was inserted, 30ng DNA was labeled with [α-32P]dCTP using the Redyprime II Random Prime Labeling System (Amersham Life Science, UK). ) was added and hybridized at 65°C for 18 hours. After removing the hybridization buffer from the vessel, 2 After washing the membrane, a BSA-1800II Bio-Imaging analyzer (FUJIFILM, Japan) was used for label recognition.

그 결과, 25 계통의 형질전환 산호수 식물체에 CYP2E1 유전자가 1 내지 3 copy 삽입된 것으로 확인되었다(도 8 및 도 9).As a result, it was confirmed that 1 to 3 copies of the CYP2E1 gene were inserted into 25 lines of transgenic coralline plants (FIGS. 8 and 9).

4-2. CYP2E1 유전자의 발현 분석4-2. Expression analysis of CYP2E1 gene

형질전환 산호수 식물체에서 CYP2E1 유전자의 발현을 분석하기 위하여 노던 블롯(Northern blot) 분석을 수행하였다.Northern blot analysis was performed to analyze the expression of CYP2E1 gene in transgenic coralline plants.

구체적으로, 실시예 4-1에서 CYP2E1 유전자의 삽입이 확인된 형질전환 산호수 25계통의 식물체의 잎으로부터 전체 RNA를 Fruit-mate for RNA prep과 RNAiso(Takara, Japan)를 사용하여 추출하였다. RNA를 분리하기 위하여, 형질전환 산호수 잎 2g을 액체질소를 이용하여 막자사발에서 분쇄한 후, 이를 2.0㎖ 튜브에 옮기고, 1㎖ Fruite mate를 첨가하여 섞어준 다음, 15,000rpm으로 5분간 원심 분리하여 상층액을 새로운 튜브로 옮기고, 1㎖ RNAiso를 첨가하여 강하게 섞어준 후 5분간 실온에 두었다. 여기에 클로로포름(chloroform) 200㎕를 첨가한 후, 다시 한 번 강하게 섞어주고, 이를 10분간 실온에서 반응시켰다. 반응이 끝난 EP 튜브를 15,000rpm으로 15분간 원심 분리하여 상층액 600㎕를 새로운 Ep 튜브에 옮기고, 300㎕ High-salt Solution(Takara)을 넣고 간단히 섞어준 후, 동량의 이소프로판올(isopropanol)을 첨가하여 실온에서 10분간 반응시켰다. 이후 4℃에서 15,000 rpm으로 8분간 원심 분리한 후 상층액을 버리고, 펠렛을 DEPC로 처리된 70% 에탄올(ethanol) 1㎖을 이용하여 세척 및 건조시킨 후, RNA 펠렛을 DEPC 처리된 50㎕의 물에 녹였다. 녹말을 제거하기 위하여 65℃에서 5분간 건조시킨 후, 원심 분리하여 상층액을 새 EP 튜브에 옮겼다. RNA는 NanoVue(GE healthcare)를 이용하여 정량한 후, 총 RNA 20㎍을 포름알데히드(formaldehyde) 아가로스 젤에서 전기영동한 다음, capillary transfer 방법(Lehrach, H. et al., 1977)에 의해 Hybond-N+ membrane (Amersham Pharmacia Biotech)으로 이동시켰다. 이후 과정은 실시예 4-1의 서던 블롯 분석 방법과 동일하게 수행하였다.Specifically, total RNA was extracted from leaves of 25 lines of transgenic coralline plants in which the insertion of the CYP2E1 gene was confirmed in Example 4-1 using Fruit-mate for RNA prep and RNAiso (Takara, Japan). To isolate RNA, 2 g of transgenic coral leaves were crushed in a mortar using liquid nitrogen, then transferred to a 2.0 mL tube, mixed with 1 mL Fruit mate, and then centrifuged at 15,000 rpm for 5 minutes. The supernatant was transferred to a new tube, 1 ml RNAiso was added, mixed vigorously, and left at room temperature for 5 minutes. After adding 200㎕ of chloroform, it was vigorously mixed again and allowed to react at room temperature for 10 minutes. After the reaction was completed, centrifuge the EP tube at 15,000 rpm for 15 minutes, transfer 600㎕ of the supernatant to a new EP tube, add 300㎕ High-salt Solution (Takara), mix briefly, and then add an equal amount of isopropanol. It was reacted at room temperature for 10 minutes. After centrifugation at 15,000 rpm for 8 minutes at 4°C, the supernatant was discarded, the pellet was washed and dried using 1 ml of DEPC-treated 70% ethanol, and the RNA pellet was mixed with 50 ㎕ of DEPC-treated ethanol. Dissolved in water. After drying at 65°C for 5 minutes to remove starch, centrifugation was performed and the supernatant was transferred to a new EP tube. RNA was quantified using NanoVue (GE healthcare), and then 20㎍ of total RNA was electrophoresed on a formaldehyde agarose gel and then transferred to Hybond using the capillary transfer method (Lehrach, H. et al., 1977). Transferred to -N+ membrane (Amersham Pharmacia Biotech). The subsequent process was performed in the same manner as the Southern blot analysis method in Example 4-1.

그 결과, 25계통 중 12계통에서 안정적으로 mRNA가 발현됨을 확인하였으며(도 10), 삽입된 CYP2E1 유전자 copy수와 비례해서 mRNA 발현이 증가하지는 않은 것으로 확인되었다. 한편, 일부 형질전환 계통들에서는 유전자가 도입되었으나, mRNA 발현은 확인되지 않았다.As a result, it was confirmed that mRNA was stably expressed in 12 of the 25 lines (Figure 10), and it was confirmed that mRNA expression did not increase in proportion to the number of copies of the inserted CYP2E1 gene. Meanwhile, genes were introduced in some transgenic lines, but mRNA expression was not confirmed.

4-3. CYP2E1 단백질 발현 분석4-3. CYP2E1 protein expression analysis

형질전환 산호수 식물체에서 CYP2E1 단백질의 발현을 분석하기 위하여 SDS-PAGE(odium dodecyl sulfate polyacryl amide gel electrophoresis) 및 웨스턴 블롯(Western blot blot) 분석을 수행하였다.To analyze the expression of CYP2E1 protein in transgenic coralline plants, SDS-PAGE (odium dodecyl sulfate polyacryl amide gel electrophoresis) and Western blot analysis were performed.

구체적으로, 실시예 4-2에서 CYP2E1 유전자에 대한 mRNA의 안정적 발현이 확인된 12계통의 형질전환 산호수 잎으로부터 전체 단백질을 추출한 후, Bradford's method를 사용하여 정량하였다. 형질전환 산호수 잎 단백질은 50mM Tris(pH7.4), 1mM EDTA, 1% PVP(40,000), 0.001% PMSF, 5% 메르캅토에탄올(mercaptoethanol) 및 0.05% Tween-20의 버퍼를 이용하여 추출하였다. 20㎍의 전체 단백질은 Laemmli(1970)의 방법에 기초하여 환원 조건(reducing condition)에서 12%의 폴리 아크릴아마이드 젤(poly arcrylamide gel)을 이용하여 SDS-PAGE를 수행하여 분리되었으며, 분리된 단백질들은 Coomassie brilliant blue에 의하여 염색되고 가시화되었다. Specifically, the total protein was extracted from the leaves of transgenic coral trees of 12 lines in which stable expression of mRNA for the CYP2E1 gene was confirmed in Example 4-2, and then quantified using Bradford's method. Transformed coralline leaf proteins were extracted using a buffer of 50mM Tris (pH7.4), 1mM EDTA, 1% PVP (40,000), 0.001% PMSF, 5% mercaptoethanol, and 0.05% Tween-20. 20 μg of total protein was separated by SDS-PAGE using a 12% poly acrylamide gel under reducing conditions based on the method of Laemmli (1970), and the separated proteins were Stained and visualized with Coomassie brilliant blue.

한편, 웨스턴 블롯 분석을 수행하기 위하여 아크릴아마이드 젤에서 분리된 단백질들은 Hybond-C membrane(Amersham)에 20V로 40분 동안 일렉트로블로팅(electroblotting) 시킨 후, TBST 버퍼(100mM Tris pH7.5, 0.9% NaCl, 0.1% Tween 20)에 10% 탈지유(skim milk)로 약 16시간 정도 블로킹(blocking)하였다. 멤브레인을 TBST 버퍼로 3회 세척한 후, rabbit anti-CYP2E1 polyclonal antibody(MyBiosource, CA, USA)를 1차 항체로 4시간 반응시키고, anti-rabbit IgG(H+L) alkaline phosphatase conjugated(Sigma)를 2차 항체로 사용하여 5% 탈지유가 포함된 TBST 버퍼에 1:7,000으로 희석하여 실온에서 2시간 동안 반응시켰다. TBST 버퍼로 3회, TMN 버퍼(100mM Tris pH9.5, 100mM NaCl, 5mM MgCl2)로 1회 세척 한 후, BCIP(5-bromo-4-chloro-3-indolylphosphate) 및 NBT(nitro blue tetrazolium)으로 TMN 버퍼에서 발색하였다.Meanwhile, in order to perform Western blot analysis, proteins separated on an acrylamide gel were electroblotted on a Hybond-C membrane (Amersham) at 20V for 40 minutes, and then incubated in TBST buffer (100mM Tris pH7.5, 0.9%). Blocking was performed with 10% skim milk in NaCl, 0.1% Tween 20) for approximately 16 hours. After washing the membrane three times with TBST buffer, it was reacted with rabbit anti-CYP2E1 polyclonal antibody (MyBiosource, CA, USA) as the primary antibody for 4 hours, and anti-rabbit IgG (H+L) alkaline phosphatase conjugated (Sigma). Used as a secondary antibody, it was diluted 1:7,000 in TBST buffer containing 5% skim milk and reacted at room temperature for 2 hours. After washing three times with TBST buffer and once with TMN buffer (100mM Tris pH9.5, 100mM NaCl, 5mM MgCl 2 ), BCIP (5-bromo-4-chloro-3-indolylphosphate) and NBT (nitro blue tetrazolium) Color was developed in TMN buffer.

그 결과, 12계통에서 소포체로 가는 신호 펩티드(signal peptide)가 절단된 후, 성숙한 형태(mature form)의 53kDa에서 단백질이 확인되어(도 11) CYP2E1 단백질이 발현되는 것으로 확인되었다.As a result, after the signal peptide from line 12 to the endoplasmic reticulum was cleaved, the mature form of the protein at 53 kDa was confirmed (Figure 11), confirming that the CYP2E1 protein was expressed.

4-4. CYP2E1 단백질 효소 활성 확인4-4. Confirmation of CYP2E1 protein enzyme activity

형질전환 산호수 식물체에서 CYP2E1 단백질의 효소 활성을 분석하기 위하여 아닐린 하이드록시레이즈 활성(aniline hydroxylase activity)을 평가하였다.To analyze the enzymatic activity of CYP2E1 protein in transgenic coralline plants, aniline hydroxylase activity was evaluated.

구체적으로, 실시예 4-3에서 CYP2E1 단백질 발현이 확인된 형질전환 산호수 식물체의 잎을 채취하고, 액체 질소를 이용하여 곱게 간 후, 버퍼(50mM Tris-HCl buffer(pH7.4) 중 1mM EDTA, 1% PVP, 0.001% PMSF(pH 8.0))를 이용하여 전체 잎 단백질을 추출하였다. 5% 메르캅토에탄올을 첨가하고, 15,000g 원심분리기를 이용하여 30분 동안 4℃에서 원심분리 한 후, 상층액을 새로운 Ep 튜브로 옮긴 다음, 10분 동안 4℃에서 15,000g로 원심분리하여 상층액을 수거하였다. Bradford's method(Bradford 1976)를 사용하여 단백질을 정량한 후, 10㎍의 전체 잎 단백질을 CYP2E1 활성 분석을 위하여 사용하였다. Specifically, the leaves of the transgenic coralline plants confirmed to express CYP2E1 protein in Example 4-3 were collected, ground finely using liquid nitrogen, and then mixed with a buffer (1mM EDTA in 50mM Tris-HCl buffer (pH7.4), Whole leaf proteins were extracted using 1% PVP, 0.001% PMSF (pH 8.0)). Add 5% mercaptoethanol, centrifuge at 4°C for 30 minutes using a 15,000g centrifuge, transfer the supernatant to a new Ep tube, and centrifuge at 15,000g at 4°C for 10 minutes to collect the upper layer. The liquid was collected. After protein quantification using Bradford's method (Bradford 1976), 10 μg of whole leaf protein was used for CYP2E1 activity analysis.

효소활성 반응 분석에 사용하기 위하여 5mM 아닐린, 5 mM MgCl2, 5mM 이소구연산염(isocitrate), 100mM Tris-HCl 조성을 갖는 효소활성 버퍼를 준비하였으며, 샘플과 반응 전에 0.5mM NADPH를 첨가하여 사용하였다. 효소활성 반응은 10㎍의 전체 잎 단백질에 100㎕의 NADPH 존재 하에서 준비한 효소활성 버퍼를 넣고, 37℃에서 1시간 동안 반응시킨 후, 10% 트리클로로아세트산(trichloroacetic acid)을 이용하여 반응하고 남아있는 물질들을 침전시켰다. 5분 동안 아이스에서 반응시킨 후, 10분 동안 4℃에서 15,000g으로 원심분리하여 상층액을 수거하고, 100㎕ 샘플과 100㎕ 2.5N NaOH 용액을 첨가하여 58℃의 수조에서 20동안 반응시켜 p-아미노페놀을 발색시켰다. 아닐린 하이드록시레이즈 활성은 기질로 사용한 아닐린이 CYP2E1 효소에 의해 하이드록실레이션 됨으로써 형성되는 p-아미노페놀을 630nm에서 측정하여 평가하였다. To be used in the enzyme activity reaction analysis, an enzyme activity buffer containing 5mM aniline, 5mM MgCl 2 , 5mM isocitrate, and 100mM Tris-HCl was prepared, and 0.5mM NADPH was added before reaction with the sample. For the enzyme activity reaction, 10 ㎍ of whole leaf protein was added with an enzyme activity buffer prepared in the presence of 100 ㎕ of NADPH, reacted at 37°C for 1 hour, and then reacted using 10% trichloroacetic acid, and the remaining The materials precipitated out. After reacting on ice for 5 minutes, centrifuge at 15,000 g at 4°C for 10 minutes to collect the supernatant, add 100 μl sample and 100 μl 2.5N NaOH solution, and react in a water bath at 58° C. for 20 p. -Aminophenol was used to develop color. Aniline hydroxylase activity was evaluated by measuring p-aminophenol, which is formed when aniline used as a substrate is hydroxylated by CYP2E1 enzyme, at 630 nm.

그 결과, 대조군과 비교하여 형질전환 산호수 CYP2E1-2-2에서 2.02% 활성이 증가하였으며, CYP2E1-3-3과 CYP2E1-6-2를 제외하고 대조구와 비교하여 CYP2E1 활성이 증가한 것으로 확인되었다(도 12). As a result, compared to the control group, the activity of transgenic coralline CYP2E1-2-2 increased by 2.02%, and it was confirmed that CYP2E1 activity increased compared to the control group except for CYP2E1-3-3 and CYP2E1-6-2 (Figure 12).

4-5. 도입 유전자 주변 염기서열 분석4-5. Analysis of base sequences surrounding the introduced gene

형질전환 산호수 식물체에서 도입 유전자 주변 염기서열 분석을 위하여 인접 DNA 시퀀싱(Flanking DNA sequencing)을 수행하였다.Flanking DNA sequencing was performed to analyze the base sequence surrounding the introduced gene in transgenic coralline plants.

구체적으로, 형질전환 산호수 식물체 CYP2E1-27-5 및 CYP2E1-54-4 계통의 게놈 DNA를 추출한 후, 그린진 바이오에 의뢰하여 도입 유전자 주변 염기서열을 분석하였다. 그 후, CYP2E1 유전자가 도입된 산호수 식물체의 게놈내 염기서열을 NCBI Blast를 이용하여 전체 게놈 서열이 밝혀진 식물체들과 유사 서열을 비교하였다.Specifically, genomic DNA from transgenic coralline plants CYP2E1-27-5 and CYP2E1-54-4 lines was extracted, and then commissioned by Green Gene Bio to analyze the base sequences surrounding the introduced gene. Afterwards, the nucleotide sequence in the genome of coralline plants into which the CYP2E1 gene was introduced was compared for similar sequences with plants whose entire genome sequences were revealed using NCBI Blast.

그 결과, 다른 식물체와의 서열 유사성은 확인되지 않아, CYP2E1 유전자가 산호수의 고유한 유전자 내로 삽입된 것으로 확인되었다. 또한, 형질전환 산호수 CYP2E1-27-5와 CYP2E1-54-4 계통은 각각 단일 copy로 산호수 게놈 내에 삽입된 것으로 확인되었다(도 13). As a result, sequence similarity with other plants was not confirmed, and it was confirmed that the CYP2E1 gene was inserted into the unique gene of coral aquatic plants. In addition, the transgenic coralline CYP2E1-27-5 and CYP2E1-54-4 lines were each confirmed to have been inserted into the coralline genome with a single copy (Figure 13).

실시예 5. 형질전환 산호수 식물체의 톨루엔 정화 능력 검정Example 5. Test of toluene purification ability of transgenic coralline plants

비형질전환 산호수와 실시예 4-4에서 아닐린 하이드록시레이즈 활성이 증가한 것으로 확인된 CYP2E1-2-2 산호수 식물체를 온도 23±2℃, 광도 약 1500Lux의 국립원예특작과학원 도시농업과 환경 조절실에서 약 1주일간 광 순화 후 챔버(0.02㎥)에 투입하여 3시간 간격으로 3번 톨루엔을 챔버에 0.5ppm 농도로 주입하여 전처리하였다. 톨루엔 정화 능력 검정을 위하여 톨루엔과 공기를 1:6 비율로 테들러 백에 기체로 만들어 챔버 내 톨루엔이 초기농도가 0.5ppm이 되도록 챔버 안으로 주입하였다. 한 챔버 당 3시간 간격으로 12시간동안 GC/MS측정을 수행하였으며, 동일한 조건으로 3반복 수행하였다. Non-transformed corals and CYP2E1-2-2 coral plants confirmed to have increased aniline hydroxylase activity in Example 4-4 were grown in the environmental control room of the Urban Agriculture Department of the National Institute of Horticultural and Herbal Science at a temperature of 23 ± 2°C and a light intensity of approximately 1500 Lux. After light acclimatization for about a week, it was placed in a chamber (0.02㎥) and pretreated by injecting toluene at a concentration of 0.5ppm into the chamber three times at 3-hour intervals. To test the toluene purification ability, toluene and air were made into gases in a Tedler bag at a ratio of 1:6 and injected into the chamber so that the initial concentration of toluene in the chamber was 0.5 ppm. GC/MS measurements were performed for 12 hours at 3-hour intervals per chamber, and were repeated 3 times under the same conditions.

그 결과, 실시예 4-4에서 효소 활성이 가장 우수한 것으로 확인된 CYP2E1 유전자 도입 산호수 CYP2E1-2-2 계통 2개체를 대상으로 톨루엔 제거능력을 동일한 방법으로 검정한 결과, 대조군 대비 형질전환 산호수 식물체에서 처리 5시간 후 톨루엔 저감 능력이 1.86 내지 6.09배 향상되는 것으로 확인되었다(표 3 및 도 14). As a result, the toluene removal ability of two CYP2E1 gene-transduced coral aquatic plants CYP2E1-2-2 lines, which were confirmed to have the best enzyme activity in Example 4-4, was tested in the same method, the transgenic coral aquatic plants compared to the control group It was confirmed that the toluene reduction ability was improved by 1.86 to 6.09 times after 5 hours of treatment (Table 3 and Figure 14).

측정시간(min)Measurement time (min) 일반산호수
(㎍/m3)
Common coral
(㎍/m 3 )
형질전환 산호수
(CYP2E1-2-2-(1))
(㎍/m3)
Transgenic coral water
(CYP2E1-2-2-(1))
(㎍/m 3 )
형질전환 산호수
(CYP2E1-2-2-(2))
(㎍/m3)
Transgenic coral water
(CYP2E1-2-2-(2))
(㎍/m 3 )
00 0.0±0.00.0±0.0 0.0±0.00.0±0.0 0.0±0.00.0±0.0 6060 136.3±30.6 136.3±30.6 286.3±31.8286.3±31.8 831.0±64.6831.0±64.6 120120 187.3±34.1187.3±34.1 354.8±37.8354.8±37.8 976.0±66.0976.0±66.0 180180 206.2±31.2 206.2±31.2 384.6±33.9384.6±33.9 1060.4±47.81060.4±47.8 240240 169.2±38.7169.2±38.7 332.3±22.1332.3±22.1 902.9±47.4902.9±47.4 300300 156.9±28.4156.9±28.4 314.6±5.0314.6±5.0 841.3±14.9841.3±14.9

이제까지 본 발명에 대하여 그 실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, the present invention has been examined focusing on its embodiments. A person skilled in the art to which the present invention pertains will understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative rather than a restrictive perspective. The scope of the present invention is indicated in the claims, not the foregoing description, and all differences within the equivalent scope should be construed as being included in the present invention.

<110> REPUBLIC OF KOREA(MANAGEMENT : RURAL DEVELOPMENT ADMINISTRATION) <120> Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof <130> RDA-P190093 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 1482 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 2E1 <400> 1 atggctgttc tgggcatcac cgtcgccctg ctggggtgga tggtcatcct cctgttcata 60 tccgtctgga agcagatcca cagcagctgg aacctgcccc caggaccttt cccactgccc 120 atcatcggga atcttctcca gttggatttg aaggatattc ccaagtcctt tggcaggctg 180 gcagagcgct ttgggccggt gttcactgtg tacctgggct ccaggcgtgt tgtggttctg 240 cacggctaca aggcggtgag ggagatgctg ttgaaccaca agaacgagtt ctctgggcgt 300 ggcgagatcc ctgctttccg ggagtttaag gacaagggga tcattttcaa caatggaccc 360 acctggaagg acactcggcg gttctccctg accaccctcc gggactatgg gatggggaaa 420 cagggcaacg aggaccggat ccagaaggag gcccacttcc tgctggagga gctcaggaag 480 acccagggcc agcccttcga ccccaccttt gtcatcggct gcacaccctt caacgtcatc 540 gccaaaatcc tcttcaatga ccgctttgac tataaggaca agcaggctct gaggctgatg 600 agtttgttca acgagaactt ctacctgctc agtactcctt ggctgcaggt ttacaataat 660 ttttcaaact atctacagta catgcctgga agtcacagga aagtaataaa aaatgtgtct 720 gaaataaaag agtacacact cgcaagagtg aaggagcacc acaagtcgct ggaccccagc 780 tgcccccggg acttcattga cagcctgctc atagaaatgg agaaggacaa acacagcacg 840 gagcccctgt acacgctgga aaacattgct gtgactgtgg cggacatgtt ctttgcgggc 900 acggagacca ccagcaccac gctgcgatat gggctcctga tcctgctgaa gcaccccgag 960 atcgaagaga aacttcatga agaaatcgac agggtgattg ggccgagccg aatgccttct 1020 gtcagggaca gggtgcagat gccctacatg gacgctgtgg tacatgagat tcagcgattc 1080 atcgatctcg tgccctccaa tctgccgcac gaagccacac gggacaccac cttccaagga 1140 tacgtcatcc ccaagggcac tgttgtaatc ccgactctgg actccctttt gtatgacaag 1200 caagaattcc ctgatcccga gaagttcaaa ccagagcact ttctgaatga ggaggggaag 1260 ttcaagtata gcgactactt caagccgttt tccgcaggaa aacgcgtgtg tgttggagaa 1320 ggcctggctc gcatggagtt gtttctgctc ctgtctgcca ttctgcagca ttttaacctc 1380 aagcctctcg ttgacccaga ggacattgac cttcgcaata ttacggtggg ctttggccgt 1440 gtcccaccac gctacaaact ctgtgtcatt ccccgctcgt aa 1482 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Os-CYP2E1 F1 <400> 2 tctagaatgg ctgttctggg cat 23 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Oc-CYP2E1 R1 <400> 3 ttggtacctt acgagcgggg aat 23 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NPTII F <400> 4 gaggctattc ggctatgact g 21 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NPTII R1 <400> 5 atcgggagcg gcgataccgt a 21 <110> REPUBLIC OF KOREA(MANAGEMENT: RURAL DEVELOPMENT ADMINISTRATION) <120> Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof <130>RDA-P190093 <160> 5 <170> KoPatentIn 3.0 <210> 1 <211> 1482 <212> DNA <213> Artificial Sequence <220> <223> Cytochrome P450 2E1 <400> 1 atggctgttc tgggcatcac cgtcgccctg ctggggtgga tggtcatcct cctgttcata 60 tccgtctgga agcagatcca cagcagctgg aacctgcccc caggaccttt cccactgccc 120 atcatcggga atcttctcca gttggatttg aaggatattc ccaagtcctt tggcaggctg 180 gcagagcgct ttgggccggt gttcactgtg tacctgggct ccaggcgtgt tgtggttctg 240 cacggctaca aggcggtgag ggagatgctg ttgaaccaca agaacgagtt ctctgggcgt 300 ggcgagatcc ctgctttccg ggagtttaag gacaagggga tcattttcaa caatggaccc 360 acctggaagg acactcggcg gttctccctg accaccctcc gggactatgg gatggggaaa 420 cagggcaacg aggaccggat ccagaaggag gcccacttcc tgctggagga gctcaggaag 480 acccagggcc agcccttcga ccccaccttt gtcatcggct gcacaccctt caacgtcatc 540 gccaaaatcc tcttcaatga ccgctttgac tataaggaca agcaggctct gaggctgatg 600 agtttgttca acgagaactt ctacctgctc agtactcctt ggctgcaggt ttacaataat 660 ttttcaaact atctacagta catgcctgga agtcacagga aagtaataaa aaatgtgtct 720 gaaataaaag agtacacact cgcaagagtg aaggagcacc acaagtcgct ggaccccagc 780 tgcccccggg acttcattga cagcctgctc atagaaatgg agaaggacaa acacagcacg 840 gagcccctgt acacgctgga aaacattgct gtgactgtgg cggacatgtt ctttgcgggc 900 acggagacca ccagcaccac gctgcgatat gggctcctga tcctgctgaa gcaccccgag 960 atcgaagaga aacttcatga agaaaatcgac agggtgattg ggccgagccg aatgccttct 1020 gtcagggaca gggtgcagat gccctacatg gacgctgtgg tacatgagat tcagcgattc 1080 atcgatctcg tgccctccaa tctgccgcac gaagccacac gggacaccac cttccaagga 1140 tacgtcatcc ccaagggcac tgttgtaatc ccgactctgg actccctttt gtatgacaag 1200 caagaattcc ctgatcccga gaagttcaaa ccagagcact ttctgaatga ggaggggaag 1260 ttcaagtata gcgactactt caagccgttt tccgcaggaa aacgcgtgtg tgttggagaa 1320 ggcctggctc gcatggagtt gtttctgctc ctgtctgcca ttctgcagca ttttaacctc 1380 aagcctctcg ttgacccaga ggacattgac cttcgcaata ttacggtggg ctttggccgt 1440 gtcccaccac gctacaaact ctgtgtcatt ccccgctcgt aa 1482 <210> 2 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> Os-CYP2E1 F1 <400> 2 tctagaatgg ctgttctggg cat 23 <210> 3 <211> 23 <212> DNA <213> Artificial Sequence <220> <223>Oc-CYP2E1 R1 <400> 3 ttggtacctt acgagcgggg aat 23 <210> 4 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NPTII F <400> 4 gaggctattc ggctatgact g 21 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> NPTII R1 <400> 5 atcgggagcg gcgataccgt a 21

Claims (3)

삭제delete 삭제delete 서열번호 1의 염기서열로 이루어진 CYP2E1(Cytochrome P450 2E1) 유전자가 인위적으로 도입되어, CYP2E1 유전자가 존재하지 않고 CYP2E1 유전자가 인위적으로 도입되지 않은 일반 산호수에 CYP2E1 유전자가 발현 및 과발현되고, 일반 산호수 보다 톨루엔 정화 능력이 5.1 내지 6.1배 증진된 형질전환 산호수의 제조 방법으로서,
상기 형질전환 산호수의 제조 방법은,
서열번호 1의 염기서열로 이루어진 CYP2E1 유전자 전체 서열 합성 후, 상기 CYP2E1 유전자를 XbaI 및 KpnI 제한 효소로 절단하는 단계;
상기 절단된 CYP2E1 유전자를 pCAMBIA2300 플라스미드로 삽입한 후, 상기 플라스미드를 아그로박테리움 튜머파시엔스 GV3101에 형질전환하는 단계;
상기 아그로박테리움 튜머파시엔스 GV3101 균주와, 미리 온실에서 분에 심겨 자라고 있는 일반 산호수 경정부위를 소독하여 기내에 도입 후, 증식 중인 산호수 신초 줄기 단편을 1/2 MS, 티디아주론(TDZ) 0.5mgL-1, 인돌-3-부틸 엑시드(IBA) 0.5 mgL-1, 수크로오스 30g·L-1, plant agar 7g·L-1, 아세토시린곤 50μM이 첨가되고 pH 5.2로 조정된 배지에 2 내지 4일간 공동 배양하여, 상기 산호수 신초 줄기 단편에 CYP2E1 유전자가 1 내지 3 카피 포함하도록 형질전환하는 단계;
상기 형질전환된 산호수 신초 줄기 단편을 pH 5.7의 액체 배지로 세척 후, 1/2 MS, 티디아주론 0.5mgL-1, 인돌-3-부틸 엑시드 0.5 mgL-1, 수크로오스 30g·L-1, 세포탁심 200㎎·L-1, 가나마이신 5㎎·L-1, 및 plant agar 7g·L-1을 포함하는 생장 선발 배지에서 pH 5.7의 조건으로 식물체로 생장 및 증식시키는 단계;
상기 증식된 식물체를 가나마이신이 첨가된 배지에서 일차 선발하는 단계;
상기 일차 선발된 산호수 식물체의 게놈 DNA 추출 후, 서열번호 2 내지 5의 프라이머를 이용한 PCR 반응을 통해, CYP2E1이 도입된 형질전환 산호수를 선별하는 단계;
상기 선별된 산호수 식물체의 잎에서의 CYP2E1 유전자 발현 여부 및 단백질 발현 여부를 확인하는 단계로서, 상기 CYP2E1 단백질 발현 여부는 웨스턴 블롯 분석에서 53kDa 영역에서 밴드가 형성되는 것을 통해 확인하는 단계; 및
상기 CYP2E1 단백질 발현이 확인된 형질전환 산호수 식물체의 잎에서 CYP2E1 단백질의 활성을 분석하는 단계;로 순차적으로 구성되는 것인,
외래 CYP2E1 유전자 및 단백질 발현으로 톨루엔 정화 능력이 일반 산호수 보다 5.1 내지 6.1배 증진된 형질전환 산호수의 제조 방법.
The CYP2E1 (Cytochrome P450 2E1) gene, which consists of the base sequence of SEQ ID NO: 1, is artificially introduced, and the CYP2E1 gene is expressed and overexpressed in general coral water where the CYP2E1 gene does not exist and the CYP2E1 gene has not been artificially introduced, and toluene is consumed more than general coral water. A method for producing transgenic coral water with 5.1 to 6.1 times improved purification ability,
The method for producing the transgenic coral water is,
After synthesizing the entire CYP2E1 gene sequence consisting of the base sequence of SEQ ID NO: 1, cutting the CYP2E1 gene with XbaI and KpnI restriction enzymes;
Inserting the cleaved CYP2E1 gene into the pCAMBIA2300 plasmid and then transforming the plasmid into Agrobacterium tumefaciens GV3101;
After disinfecting the above-mentioned Agrobacterium tumefaciens GV3101 strain and the jugular part of a general coral tree previously planted and growing in pots in a greenhouse and introducing it into the aircraft, the growing coral tree shoot stem fragment was 1/2 MS, thidiazuron (TDZ) 0.5 mgL -1 , indole-3-butyl acid (IBA) 0.5 mgL -1 , sucrose 30g·L -1 , plant agar 7g·L -1 , acetosyringone 50μM were added and 2 to 4 in a medium adjusted to pH 5.2. Co-culturing for one day, transforming the coralline shoot stem fragment to contain 1 to 3 copies of the CYP2E1 gene;
After washing the transformed coralline shoot stem fragment with a liquid medium of pH 5.7, 1/2 MS, thidiazuron 0.5mgL -1 , indole-3-butyl acid 0.5 mgL -1 , sucrose 30g·L -1 , cells. Growing and proliferating plants under conditions of pH 5.7 in a growth selection medium containing Taxime 200 mg·L -1 , kanamycin 5 mg·L -1 , and plant agar 7g·L -1 ;
Primary selection of the propagated plants in a medium containing kanamycin;
After extracting the genomic DNA of the first selected coral plants, selecting transgenic corals into which CYP2E1 has been introduced through PCR reaction using primers of SEQ ID NOs: 2 to 5;
A step of confirming whether the CYP2E1 gene is expressed and whether the protein is expressed in the leaves of the selected coralline plants, wherein the expression of the CYP2E1 protein is confirmed through the formation of a band in the 53 kDa region in Western blot analysis; and
It sequentially consists of: analyzing the activity of CYP2E1 protein in the leaves of the transgenic coralline plant in which expression of the CYP2E1 protein was confirmed,
Method for producing transgenic coral water whose toluene purification ability is 5.1 to 6.1 times higher than that of regular coral water through expression of the exogenous CYP2E1 gene and protein.
KR1020220158632A 2019-12-13 2022-11-23 Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof KR102582262B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220158632A KR102582262B1 (en) 2019-12-13 2022-11-23 Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190166362A KR20210075384A (en) 2019-12-13 2019-12-13 Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof
KR1020220158632A KR102582262B1 (en) 2019-12-13 2022-11-23 Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190166362A Division KR20210075384A (en) 2019-12-13 2019-12-13 Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof

Publications (2)

Publication Number Publication Date
KR20220162673A KR20220162673A (en) 2022-12-08
KR102582262B1 true KR102582262B1 (en) 2023-09-26

Family

ID=76599077

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020190166362A KR20210075384A (en) 2019-12-13 2019-12-13 Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof
KR1020220158632A KR102582262B1 (en) 2019-12-13 2022-11-23 Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020190166362A KR20210075384A (en) 2019-12-13 2019-12-13 Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof

Country Status (1)

Country Link
KR (2) KR20210075384A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101152617B1 (en) 2012-03-05 2012-06-04 한밭대학교 산학협력단 Complex multifunctional air cleaner

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Daoxiang Zhang, Transgenic plants of Petunia hybrida harboring the CYP2E1 gene efficiently remove benzene and toluene pollutants~, Plant Genetics ㆍ Genet. Mol. Biol. 34 (4), 2011년 개시*
NCBI Reference Sequence, PREDICTED: Oryctolagus cuniculus cytochrome P450 2E1 (LOC100342572), mRNA, ACCESSION no. XM_002718772, 2016년 개시*
송정은, 팔손이와 산호수에 의한 휘발성유기화합물 저가’J과에 관한 연구, 2012년 개시, 한국생태환경건축학회논문집 Vol. 12, No. 4*

Also Published As

Publication number Publication date
KR20220162673A (en) 2022-12-08
KR20210075384A (en) 2021-06-23

Similar Documents

Publication Publication Date Title
Sharma et al. A simple and efficient Agrobacterium-mediated procedure for transformation of tomato
US8952219B2 (en) Methods for Agrobacterium-mediated transformation of sugar cane
EP0437320A1 (en) Recombinant DNA and its use in producing human insulin
KR101039184B1 (en) Transgenic pepper with enhanced tolerance to PepMoV and production method thereof
AU2011271024A1 (en) Methods for Agrobacterium-mediated transformation of sugar cane
KR102582262B1 (en) Transgenic Ardisia pusilla with Increased Toluene Purification using CYP2E1 Gene and Use thereof
KR101209121B1 (en) Method for producing herbicide-resistant lily plants and herbicide -resistant lily plants produced by the method
JP3141084B2 (en) Ultra-rapid transformation of monocotyledonous plants
KR100917574B1 (en) Toxoflavin lyase enzyme as a marker for selecting transformant of potato plant
JP5020253B2 (en) Method for producing Chinese cabbage transformant using flower stem tissue and transformant with improved soft rot resistance produced therefrom
JP5804420B2 (en) Genes involved in promotion of plant growth and increase in biomass and methods for using the same
KR101104905B1 (en) Salt-tolerance gene as selectable marker for plant transformation and uses thereof
Fuentes et al. A transformation procedure for recalcitrant tomato by addressing transgenic plant‐recovery limiting factors
KR101677482B1 (en) Antibiotic marker-free transgenic rice with over-expressed high affinity phosphate transporter OsPT4 gene from Oryza sativa
KR20200000018A (en) OsNFY16 promoter specific for plant seed embryo and uses thereof
CN115851821B (en) Application of BBX16 gene in improving plant salt tolerance
KR102629157B1 (en) Recombinant vector for gene editing of Solanum lycopersicum using Potato Virus X vector and uses thereof
CN114149993B (en) lncRNA for regulating and controlling content of soluble sugar in plants and application thereof
EP2839007B1 (en) Methods for increasing cotton fiber length
CN106754932A (en) A kind of DNA molecular STTM miR482a and its application
Rachmat et al. Efficiency of Agrobacterium tumefaciens-mediated transformation of tobacco (Nicotiana tabacum L.) with rice OsNAC6 gene
Lupan et al. Molecular cloning of agglutinin gene from Galanthus nivalis for lettuce transformation
KR100363122B1 (en) A method for the development of transgenic garlic plants by gene manipulation and its transgenic garlic
Kim et al. Direct regeneration of transgenic buckwheat from hypocotyl segment by agrobacterium-mediated transformation
Valimareanu Leaf disk transformation of Lactuca sativa using Agrobacterium tumefaciens

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant