JP5020253B2 - Method for producing Chinese cabbage transformant using flower stem tissue and transformant with improved soft rot resistance produced therefrom - Google Patents

Method for producing Chinese cabbage transformant using flower stem tissue and transformant with improved soft rot resistance produced therefrom Download PDF

Info

Publication number
JP5020253B2
JP5020253B2 JP2008542213A JP2008542213A JP5020253B2 JP 5020253 B2 JP5020253 B2 JP 5020253B2 JP 2008542213 A JP2008542213 A JP 2008542213A JP 2008542213 A JP2008542213 A JP 2008542213A JP 5020253 B2 JP5020253 B2 JP 5020253B2
Authority
JP
Japan
Prior art keywords
chinese cabbage
transformant
lane
tissue
gene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008542213A
Other languages
Japanese (ja)
Other versions
JP2009516524A (en
Inventor
キー キム,ジョン
ホ ファン,ビュン
ソン リー,スー
Original Assignee
チュン−アン ユニバーシティー インダストリー−アカデミー コーポレーション ファンデーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by チュン−アン ユニバーシティー インダストリー−アカデミー コーポレーション ファンデーション filed Critical チュン−アン ユニバーシティー インダストリー−アカデミー コーポレーション ファンデーション
Publication of JP2009516524A publication Critical patent/JP2009516524A/en
Application granted granted Critical
Publication of JP5020253B2 publication Critical patent/JP5020253B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8281Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for bacterial resistance
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

本発明は、花茎組織を用いたハクサイの形質転換体の製造方法及びそれから生産される軟腐病抵抗性の向上した形質転換体に関する。さらに詳細には、ハクサイの花茎組織に外来の遺伝子を導入して組織培養することによって形質転換体を得る方法と、外来の遺伝子として、軟腐病抵抗性に関連した遺伝子を導入することによって軟腐病抵抗性の向上した形質転換体とに関する。   The present invention relates to a method for producing a Chinese cabbage transformant using a flower stem tissue, and a transformant having improved resistance to soft rot produced therefrom. More specifically, a method for obtaining a transformant by introducing a foreign gene into a Chinese cabbage flower stem tissue and culturing the tissue, and a soft rot disease by introducing a gene related to soft rot resistance as the foreign gene. The present invention relates to a transformant having improved resistance.

ハクサイは、涼しい気候を好む好冷性野菜であって、韓国でキムチの主材料として使用される最も重要な野菜作物である。ハクサイは、年平均野菜消費量の25%を占め(Ministry of Agriculture and Forest, 2002)、栽培歴史が長く、かつ全国的に広範に栽培されている。   Chinese cabbage is a chilling vegetable that prefers a cool climate and is the most important vegetable crop used as the main ingredient of kimchi in Korea. Chinese cabbage accounts for 25% of annual average vegetable consumption (Ministry of Agriculture and Forest, 2002), has a long cultivation history, and is widely cultivated nationwide.

ハクサイの主な構成成分は水分であり、カルシウム及びビタミンCを多量に含む葉を食用部位とする葉菜類である。ハクサイは、生育適温が18ないし22℃である、比較的に涼しい気候を好む好冷性野菜であるので、耐暑性が弱く、弱光下でも生育が良好であり、根群分布が広い。葉序は、2/5であり、螺旋形に着生し、幹は、短縮してロゼット状を有し、自家不和合性があって他家受精をし、自殖劣勢と雑種強勢で示される。   The main component of Chinese cabbage is moisture, which is leafy vegetables with leaves containing a large amount of calcium and vitamin C as edible parts. Chinese cabbage is a chilling vegetable that prefers a relatively cool climate with a suitable growth temperature of 18 to 22 ° C., and therefore has low heat resistance, good growth even in low light, and wide root group distribution. The inflorescence is 2/5, it grows in a spiral shape, the trunk is shortened and has a rosette shape, self-incompatibility and cross-fertilization, shown by infertility and hybridity It is.

既存のハクサイの品種改良は、主にF1雑種強勢を用いた典型的な交雑育種によって行われているが、利用可能な遺伝資源が限られており、品種改良の幅を広げるに当って限界がある。最近、組織培養及び遺伝工学技術の発展によって、それを克服するための技術開発が試みられている。   Improvement of existing Chinese cabbage varieties is done mainly by typical cross breeding using F1 hybrid stress, but the available genetic resources are limited and there is a limit in expanding the range of breed improvement. is there. Recently, with the development of tissue culture and genetic engineering techniques, attempts have been made to develop techniques to overcome them.

組織培養技術は、優良個体を選抜するか、または特殊な形質を有する個体が発見された場合、その個体を維持及び増殖させるのにその目的がある。最近には、多様な植物形質転換技術が開発されて、植物体の形質転換による新品種の開発が活発に行われているが、低い再分化率が改善されねばならない。したがって、植物形質転換技術を効果的に利用するために、再分化率の高い組織培養技術の確立が求められている。   Tissue culture technology has its purpose to select and select excellent individuals or to maintain and proliferate an individual with a particular trait. Recently, various plant transformation techniques have been developed, and new varieties are actively developed through plant transformation. However, the low regeneration rate must be improved. Therefore, in order to effectively use the plant transformation technique, establishment of a tissue culture technique with a high regeneration rate is required.

植物の形質転換は、タバコにおいて最初に成功し、その後、特定の遺伝子の機能究明のための非常に強力な方法として利用され、さらに、有用な遺伝子を植物体内に導入して、新たな形質の作物を開発するための方法として利用されている。植物体内に有用な遺伝子を導入する形質転換技術としては、エレクトロポレーション(electroporation)、遺伝子直接導入(direct gene transfer)、マイクロ−インジェクション(micro-injection)、組織インジェクション(tissue injection)、PEG、Ca+2、アグロバクテリウム(Agrobacterium)を用いた技術などが開発され、有用遺伝子の導入された細胞の選抜及び植物体の再分化過程を経た後に形質転換植物体を得ることができる。 Plant transformation was first successful in tobacco and was then used as a very powerful method for investigating the function of specific genes, and by introducing useful genes into plants, It is used as a method for developing crops. Transformation techniques for introducing useful genes into plants include electroporation, direct gene transfer, micro-injection, tissue injection, PEG, and Ca. +2 A technique using Agrobacterium has been developed, and a transformed plant can be obtained after selection of cells into which a useful gene has been introduced and the process of redifferentiation of the plant.

特に、アグロバクテリウム・ツメファシエンス(Agrobacterium tumefaciens)を用いた植物の形質転換方法は、アグロバクテリウムが自身のDNAの一部を植物に転移させる機作を利用することにより、有用遺伝子を最も安定的に転移させる方法として知られており、遺伝学的、生化学的、発生学的、生理学的な基礎研究及び実際の農業への応用など、植物分野研究の全般にわたって広範に使用されている。アグロバクテリウム・ツメファシエンス及びアグロバクテリウム・リゾゲネス(A. rhizogenes)は、グラム陰性の土壌微生物であり、植物組織において傷の部位を感染させて、自身の遺伝子を植物に形質転換させることにより、根頭癌腫病(crown gall)及び毛状根(hairy root)のような癌組織を誘発させるものと知られている。   In particular, the plant transformation method using Agrobacterium tumefaciens uses the mechanism by which Agrobacterium transfers a part of its own DNA to the plant, thereby making the most useful gene stable. It is known as a method for transferring to plants, and is widely used throughout plant field research, including genetic, biochemical, developmental and physiological basic research and actual agricultural applications. Agrobacterium tumefaciens and A. rhizogenes are Gram-negative soil microorganisms that infect the site of wounds in plant tissues and transform their genes into plants to transform roots. It is known to induce cancerous tissue such as crown gall and hairy root.

アグロバクテリウム・ツメファシエンス及びアグロバクテリウム・リゾゲネスによって誘導される形質転換システムは、その微生物が持っているプラスミドによって行われる。アグロバクテリウム・ツメファシエンスの場合は、Ti(tumor inducing)プラスミドによって行われ、アグロバクテリウム・リゾゲネスの場合は、Ri(root inducing)プラスミドによって行われる。このようなTiまたはRiプラスミドによる癌組織の誘発は、微生物が持っているTiプラスミドに存在する特定のDNA断片(T−DNA)が植物細胞に転移されることによって発生し、T−DNA(transfer DNA)の転移は、Tiプラスミドに位置した病原性遺伝子(vir genes)の発現によって調節されると知られている。 The transformation system induced by Agrobacterium tumefaciens and Agrobacterium rhizogenes is performed by a plasmid possessed by the microorganism. In the case of Agrobacterium tumefaciens, it is carried out with a Ti (tumor inducing) plasmid, and in the case of Agrobacterium rhizogenes, it is carried out with a Ri (root inducing) plasmid. Induction of cancer tissue by such a Ti or Ri plasmid occurs when a specific DNA fragment (T-DNA) present in a Ti plasmid possessed by a microorganism is transferred to a plant cell, and T-DNA (transfer DNA) transfer is known to be regulated by the expression of vir genes located in the Ti plasmid.

有用遺伝子を植物体内に安定的に転移させるためには、比較的に高効率の形質転換方法の確立が何より重要である。また、アグロバクテリウムを用いた形質転換の場合には、植物組織の切片からの再分化能の高い組織培養体系の確立が、形質転換効率を向上させるのに最も大きな影響を及ぼす要因の一つとして知られている。   In order to stably transfer useful genes into plants, it is most important to establish a relatively high efficiency transformation method. In addition, in the case of transformation using Agrobacterium, the establishment of a tissue culture system with high redifferentiation ability from a section of plant tissue is one of the most influential factors in improving transformation efficiency. Known as.

アブラナ属(Brassica)植物のうち、アグロバクテリウムのベクターを用いた形質転換は、アブラナ(B. napus)で最も多く研究されているが、形質転換に利用される植物組織の部位は、幹、切片組織、表皮組織、胚軸、花粉由来の胚、子葉など、多様な組織部位が使用されている。また、キャベツ(B. oleracea)、カラシナ(B. juncea)、ブラシカ・カリナタ(B. carinata)、ブラシカ・ニグラ(B. nigra)などからも形質転換体を得ることができたと報告されているが、ハクサイ(B. campestris)の形質転換は、他のアブラナ属植物に比べてその研究成果が相対的に低いのが実情である。   Among the Brassica plants, transformation with Agrobacterium vectors is the most studied in B. napus, but the plant tissue used for transformation is the stem, Various tissue sites such as sliced tissue, epidermal tissue, hypocotyl, pollen-derived embryo and cotyledon are used. It has also been reported that transformants could be obtained from cabbage (B. oleracea), mustard (B. juncea), brassica carinata (B. carinata), brassica nigra (B. nigra), etc. In fact, the transformation of B. campestris has relatively low research results compared to other Brassica plants.

ブラシカ・カムペストリス・バライアティ・パラ(B. campestris var. para)の根にアグロバクテリウム・リゾゲネスを感染させて、毛状根が発生することを最初に観察した後、田中(Tanaka, 1985)ら及びパスコフスキー(Paszkowski, 1986)らは、カブ(B.campestris var. rapa)の葉原形質体にカリフラワー・モザイク・ウイルス(cauliflower mosaic virus)遺伝子を直接に形質転換して、遺伝子の挿入された植物体の獲得に成功したと報告し、オールソン(Ohlsson)及びエリクソン(Eriksson, 1988)は、ブラシカ・カムペストリス・バライアティ・オレイフェラ(B. campestris var. oleifera)の胚軸由来原形質体にアグロバクテリウムを感染させて、カナマイシン抵抗性カルスを得たと報告したが、形質転換された植物体を得ることはできなかった。 After first observing the occurrence of hairy roots by infecting the roots of B. campestris var. Para with Agrobacterium rhizogenes, Tanaka (1985) and others Paszkowski et al. (1986) et al. Transformed cauliflower mosaic virus gene directly into leaf protoplasts of turnip (B. campestris var. Rapa). Alls (Ohlsson) and Eriksson (1988) infect Agrobacterium in the hypocotyls of B. campestris var. Oleifera However, it was reported that a kanamycin-resistant callus was obtained, but a transformed plant could not be obtained.

ハクサイ(B.campestris)から形質転換植物体を得た例としては、ムコパディヤイ(Mukhopadhyay, 1992)らが、ブラシカ・カムペストリス・バライアティ・サーソン(B. campestris var. sarson)の胚軸に、ネオマイシン・ホスホトランスフェラーゼII遺伝子(neomycin phosphotransferase II gene, NPT II gene)及びベータ‐グルクロニダーゼ‐イントロン遺伝子(β-glucuronidase-intron gene)を含んでいるアグロバクテリウムを感染させた結果、前記遺伝子の含まれたハクサイの形質転換体の得ることに成功したことと、ジュン(June)らが、ブラシカ・カムペストリス・サブスペシス・ペキンハシドイ(B. campestris ssp. pekinensis)の子葉をアグロバクテリウムに感染させて、タバコ・モザイク・ウイルス(tobacco mosaic virus)の外被タンパク質遺伝子(coat protein gene)及びnptII遺伝子の含まれた7個の形質転換植物体の獲得に成功したことが挙げられる。このように、ハクサイに外来遺伝子を形質転換させることにより、新たな形質を有する再分化植物体を獲得した例は、他のアブラナ属植物に比べてその研究成果が不十分であることが実情である。 As an example of obtaining a transformed plant from Chinese cabbage (B. campestris), Mukhopadhyay (1992) et al. Used neomycin phospho on the hypocotyl of B. camestris var. As a result of infection with Agrobacterium containing transferase II gene (Nomycin II phosphotransferase II gene) and beta-glucuronidase-intron gene, After successful conversion, Jun et al. Infected the cotyledons of B. campestris ssp. Pekinensis with Agrobacterium, and tobacco mosaic virus ( tobacco mosaic virus) coat protein gene and npt It includes the successful acquisition of seven transformed plants that contain the I gene. As described above, examples of acquiring re-differentiated plants having new traits by transforming foreign genes into Chinese cabbage are actually insufficient in research results compared to other Brassica plants. is there.

ハクサイの組織培養は、ハクサイの子葉、胚軸、薬、葉切片などを用いた組織培養を通じて再分化植物体を獲得したという報告があるが、他のアブラナ属植物に比べて効率が低いと知られており、それについての研究が不足しているのが実情である。最近には、培地組成、植物生長調節剤の組成、培地内にAgNOを添加するなど、培養効率を改善するための研究が行われている。 It has been reported that Chinese cabbage tissue culture has obtained redifferentiated plants through tissue culture using cabbage cotyledons, hypocotyls, drugs, leaf slices, etc., but is known to be less efficient than other Brassica plants. In fact, there is a lack of research on it. Recently, research has been conducted to improve culture efficiency, such as medium composition, composition of plant growth regulator, and addition of AgNO 3 in the medium.

既存のハクサイの形質転換は、子葉及び胚軸組織を用いる方法が主に利用されてきたが、その効率が低いため、本発明者らは、それを改善するために、組織採取が容易であり、かつ置床方法の簡単な花茎組織を用いてハクサイの形質転換を行った。   For the transformation of existing Chinese cabbage, a method using cotyledon and hypocotyl tissue has been mainly used. However, since the efficiency thereof is low, the present inventors can easily extract the tissue to improve it. In addition, Chinese cabbage was transformed using a flower stem tissue with a simple placement method.

本発明の目的は、ハクサイの花茎組織を用いて形質転換率が高く、さらに改善されたハクサイの形質転換体の製造方法を提供するところにある。
本発明の他の目的は、前記方法によって製造される軟腐病抵抗性の向上したハクサイの形質転換体を提供するところにある。
An object of the present invention is to provide a method for producing a Chinese cabbage transformant having a high transformation rate and further improved by using the flower stem tissue of Chinese cabbage.
Another object of the present invention is to provide a Chinese cabbage transformant with improved soft rot resistance produced by the above method.

前記課題を解決するために、本発明は、軟腐病抵抗性に関連した遺伝子を形質転換用のベクターに導入してアグロバクテリウム属菌株に導入し、ハクサイの軟腐病抵抗性を向上させるために、ハクサイの花茎組織に前記菌株を感染させ、前記花茎組織を組織培養することにより再分化させて、形質転換率を調査し、前記再分化された形質転換体の葉組織からゲノムDNAを抽出して、PCR、DNAゲルブロット及びRT−PCRを通してハクサイが形質転換したか否かを確認し、形質転換されたハクサイで軟腐病抵抗性を調査することを特徴とする。   In order to solve the above-mentioned problems, the present invention introduces a gene related to soft rot resistance into a vector for transformation and introduces it into an Agrobacterium strain to improve the soft rot resistance of Chinese cabbage Infecting the flower stem tissue of Chinese cabbage with the strain, regenerating the flower stem tissue by tissue culture, investigating the transformation rate, and extracting genomic DNA from the leaf tissue of the redifferentiated transformant Thus, it is characterized by checking whether or not Chinese cabbage has been transformed through PCR, DNA gel blotting and RT-PCR, and investigating soft rot resistance in the transformed Chinese cabbage.

下記実施例及び実験例から分かるように、本発明は、花茎組織を用いたハクサイの形質転換体の製造方法、及びそれによって生産される軟腐病抵抗性の向上した形質転換体に係り、花茎組織を用いてハクサイの形質転換を行った結果、形質転換率が2.8%であり、既存の子葉及び胚軸を利用する方法である0.4ないし0.8%に比べて、その効率が2倍以上向上した。   As can be seen from the following examples and experimental examples, the present invention relates to a method for producing a Chinese cabbage transformant using a flower stem tissue, and a transformant with improved soft rot resistance produced thereby. As a result of the transformation of Chinese cabbage, the transformation rate is 2.8%, which is more efficient than the method using the existing cotyledons and hypocotyls of 0.4 to 0.8%. Improved by more than 2 times.

本発明の花茎組織を用いた形質転換方法をハクサイ以外の植物の形質転換に適用すれば、既存の方法より高効率の植物形質転換システムを構築することができると期待される。また、本発明は、前記形質転換方法によってハクサイを形質転換させることによって、軟腐病抵抗性の向上したハクサイの形質転換体を提供することができる。したがって、本発明は、作物産業上、非常に有用な発明である。   If the transformation method using the flower stem tissue of the present invention is applied to transformation of plants other than Chinese cabbage, it is expected that a more efficient plant transformation system can be constructed than existing methods. In addition, the present invention can provide a Chinese cabbage transformant having improved soft rot resistance by transforming Chinese cabbage by the transformation method. Therefore, the present invention is a very useful invention in the crop industry.

以下、本発明の具体的な構成及び作用について、実施例によってさらに詳細に説明する。ただし、下記の実施例は、本発明を例示するためのものであり、本発明の権利範囲がそれらに限定されるものではない。   Hereinafter, specific configurations and operations of the present invention will be described in more detail with reference to examples. However, the following examples are for illustrating the present invention, and the scope of rights of the present invention is not limited thereto.

本発明のハクサイの形質転換体の製造方法は、形質転換のためのベクターの構築及びアグロバクテリウム属菌株に導入するステップと、ハクサイの花茎組織に前記菌株を感染させるステップと、前記花茎組織を組織培養するステップと、前記再分化された形質転換体の葉組織からゲノムDNAを抽出して、PCR、DNAゲルブロット及びRT−PCRを通してハクサイが形質転換したか否かを確認するステップと、形質転換されたハクサイの軟腐病抵抗性を調査するステップと、からなる。   The method for producing a Chinese cabbage transformant of the present invention comprises the steps of constructing a vector for transformation and introducing it into an Agrobacterium strain, infecting the flower stem tissue of Chinese cabbage with the strain, and A tissue culture step, a step of extracting genomic DNA from the leaf tissue of the redifferentiated transformant, and confirming whether Chinese cabbage has been transformed through PCR, DNA gel blotting and RT-PCR; Investigating the soft rot resistance of the prepared Chinese cabbage.

本発明のハクサイの形質転換体の製造方法は、外来遺伝子の導入された植物形質転換用のベクターを含む微生物を、ハクサイの花茎組織に感染させて組織培養するステップを含むことを特徴とする。   The method for producing a Chinese cabbage transformant according to the present invention includes a step of infecting a Chinese cabbage flower stem tissue with a microorganism containing a plant transformation vector into which a foreign gene has been introduced, and culturing the tissue.

本発明のハクサイの形質転換体の製造方法で使用した前記外来遺伝子は、軟腐病抵抗性の向上のためのBcPGIP2(Polygalacturonase-inhibiting protein 2)遺伝子であるが、必要及び目的によって他の遺伝子を導入することができる。
外来遺伝子を導入するために、本発明の実施例で使用した微生物は、アグロバクテリウム属菌株であり、効率に応じて他の菌株を使用することができる。
The foreign gene used in the method for producing a Chinese cabbage transformant of the present invention is a BcPGIP2 (Polygalacturonase-inhibiting protein 2) gene for improving resistance to soft rot, but other genes are introduced depending on necessity and purpose. can do.
In order to introduce foreign genes, the microorganisms used in the examples of the present invention are Agrobacterium strains, and other strains can be used depending on the efficiency.

本発明は、外来遺伝子として軟腐病抵抗性に関連した遺伝子を導入して、前記ハクサイの形質転換体の製造方法によって製造された軟腐病抵抗性の向上したハクサイの形質転換体を提供することを特徴とする。   The present invention provides a Chinese cabbage transformant with improved soft rot resistance produced by introducing the gene related to soft rot resistance as a foreign gene and produced by the method for producing the Chinese cabbage transformant. Features.

実施例1:花茎組織を用いたハクサイの形質転換体の製造
ハクサイの花茎組織を用いたハクサイの形質転換体を製造するために、まず、形質転換のためのベクターを構築し、それをアグロバクテリウム属菌株に導入した後、ハクサイの花茎組織に感染させて組織培養し、その形質転換率を調査した。
形質転換のためのベクターの構築
ハクサイのJ3−11M−54系のPGIP2遺伝子を植物形質転換用のベクターであるpCAMBIA2300に、BamHI、KpnIサイトを用いて導入させた後、それをアグロバクテリウム・ツメファシエンスLBA4404に導入してハクサイの形質転換に利用した。
Example 1: Production of Chinese cabbage transformant using flower stem tissue To produce Chinese cabbage transformant using Chinese cabbage stem tissue, firstly, a vector for transformation was constructed, After introduction into the genus Umbrella, the flower stem tissue of Chinese cabbage was infected and cultured, and its transformation rate was investigated.
Construction of vector for transformation After introduction of PGIP2 gene of Chinese cabbage J3-11M-54 into pCAMBIA2300, which is a plant transformation vector, using BamHI and KpnI sites, it was introduced into Agrobacterium tumefaciens. It was introduced into LBA4404 and used for transformation of Chinese cabbage.

J3−11M−54系のBcPGIP2を植物形質転換用のベクターであるpCAMBIA2300に、BamHI、KpnIサイトを用いて導入させた後、それをアグロバクテリウム・ツメファシエンスLBA4404に導入してタバコ及びハクサイの形質転換に利用した(図1)。
図1は、バイナリーベクターpCAMBIA2300−BcPGIP2のT−DNA部位を示す図である。このとき、nptIIは、ネオマイシン・ホスホトランスフェラーゼII(Neomycin phosphotransferase II)を示し、35SProは、CaMV 35Sプロモーターを示し、NOSは、ノパリンシンターゼ遺伝子ターミネータ(Nopaline synthase gene terminator)を示す。
After introducing BcPGIP2 of J3-11M-54 system into a plant transformation vector pCAMBIA2300 using BamHI and KpnI sites, it was introduced into Agrobacterium tumefaciens LBA4404 to transform tobacco and Chinese cabbage. (Fig. 1).
FIG. 1 shows the T-DNA site of the binary vector pCAMBIA2300-BcPGIP2. At this time, nptII represents neomycin phosphotransferase II, 35SPro represents CaMV 35S promoter, and NOS represents nopaline synthase gene terminator.

ハクサイの形質転換
中央大学校の植物応用科学科の園芸作物品質実験室で育成して保有しているJ3−11M−3系、J3−11M−44系及びJ3−11M−54系において、BcPGIP2遺伝子の発現を通じて軟腐病抵抗性を向上させるためにハクサイを形質転換した。形質転換のための組織培養は、ハクサイの花茎組織を用いた。J3−11M−3系、J3−11M−44系及びJ3−11M−54系を種まきしてから4週目になった幼苗を4℃で4週間ないし6週間低温処理して、温室で栽培して抽台させた。抽台した花茎の幼組織を5mmの円筒形の切片に切って、70%のEtOHで30秒間消毒した。その後、滅菌水で1回洗浄し、1%の次亜塩素酸ナトリウム(sodium hypochloride)溶液に10分間浸漬した後、滅菌水で3回洗浄した。
Transformation of Chinese cabbage BcPGIP2 gene in J3-11M-3, J3-11M-44 and J3-11M-54 systems that are cultivated and held in the horticultural crop quality laboratory of Department of Plant Applied Science of Chuo University Chinese cabbage was transformed to improve soft rot resistance through the expression of. For tissue culture for transformation, Chinese cabbage stem tissue was used. Seedlings J3-11M-3, J3-11M-44 and J3-11M-54, seedlings that were 4 weeks old were chilled at 4 ° C for 4-6 weeks and grown in a greenhouse. I made a lot. The young stem of the flower stalk was cut into 5 mm cylindrical sections and sterilized with 70% EtOH for 30 seconds. Thereafter, the plate was washed once with sterilized water, immersed in a 1% sodium hypochloride solution for 10 minutes, and then washed three times with sterilized water.

滅菌された花茎組織の切片を、36時間振蕩培養したアグロバクテリウム培養液に10分間浸漬させた後、滅菌されたろ過紙で培養液を除去した。接種の終わった切片は、共同培養培地であるBI培地(MS培地4.4g/L、NAA 1.0mg/L、BAP 4.0mg/L、AgNO 4.0mg/L、フィト−アガー(Phyto-agar)8g/L、pH 5.7)に置床した後、28℃の暗条件下で72時間共同培養した。その後、切片の組織を洗浄した培地(MS培地4.4g/L、NAA 1.0mg/L、BAP 4.0mg/L、セフォタキシム(Cefotaxime)200mg/L、pH 5.7)で5分間3回洗浄し、滅菌水で3回洗浄した後、濾過紙で滅菌水を除去した。 A section of the sterilized flower stem tissue was immersed for 10 minutes in an Agrobacterium culture that was shake-cultured for 36 hours, and then the culture was removed with a sterilized filter paper. The sections after inoculation were prepared as follows: BI medium (MS medium 4.4 g / L, NAA 1.0 mg / L, BAP 4.0 mg / L, AgNO 3 4.0 mg / L, Phyto-Agar (Phyto -agar) After being placed on 8 g / L, pH 5.7), the cells were co-cultured in the dark at 28 ° C. for 72 hours. Thereafter, the tissue of the section was washed 3 times for 5 minutes in a medium (MS medium 4.4 g / L, NAA 1.0 mg / L, BAP 4.0 mg / L, cefotaxime 200 mg / L, pH 5.7). After washing and washing with sterilized water three times, the sterilized water was removed with a filter paper.

洗浄の終わった切片は、選択培地(MS培地4.4g/L、スクロース 30g/L、フィト−アガー 8g/L、AgNO 4.0mg/L、NAA 1.0mg/L、BAP 4.0mg/L、KM 25mg/L、セフォタキシム 200mg/L、pH 5.7)においてシュートが形成されるまで、23℃の温度条件、16時間の光条件、8時間の暗条件で培養した。15日間隔で継代培養を実施し、J3−11M−44で形成されたカルス組織を切って、4回ないし6回継代培養を実施した後、カナマイシンの濃度を低下させた選択培地(MS培地4.4g/L、スクロース 30g/L、フィト−アガー 8g/L、AgNO 4.0mg/L、NAA 1.0mg/L、BAP 4.0mg/L、KM 10mg/L、セフォタキシム 200mg/L、pH 5.7)において4回ないし6回継代培養を実施した。 The sections after washing were subjected to selective medium (MS medium 4.4 g / L, sucrose 30 g / L, phyto-agar 8 g / L, AgNO 3 4.0 mg / L, NAA 1.0 mg / L, BAP 4.0 mg / L). L, KM 25 mg / L, cefotaxime 200 mg / L, pH 5.7) until shoots were formed, the cells were cultured under a temperature condition of 23 ° C., a light condition of 16 hours, and a dark condition of 8 hours. Subculture was performed at 15-day intervals, the callus tissue formed with J3-11M-44 was cut, subculture was performed 4 to 6 times, and then the selective medium (MS with reduced kanamycin concentration) was used. Medium 4.4 g / L, Sucrose 30 g / L, Phyto-Agar 8 g / L, AgNO 3 4.0 mg / L, NAA 1.0 mg / L, BAP 4.0 mg / L, KM 10 mg / L, Cefotaxime 200 mg / L , PH 5.7) was subcultured 4 to 6 times.

シュートが形成されたとき、発根(rooting)培地(MS培地 4.4g/L、スクロース 30g/L、フィト−アガー 8g/L、AgNO 4.0mg/L、セフォタキシム 200mg/L、pH 5.7)に移植して発根を誘導し、完全な幼植物体に分化させた。2週間ないし3週間後、発根された幼植物体をクリーン・ベンチで滅菌された床土の入れられた直径7cmのビニール鉢に移植した後、湿度を維持するために、ビニールラップでカバーをかけて、23℃の温度条件、16時間の光条件、8時間の暗条件で5日間ないし7日間放置した。地上部の生育が正常に行われることを確認して、根の活着を点検した後、直径25cmの鉢に定植し、温室で栽培して実験に利用した。 When shoots are formed, rooting medium (MS medium 4.4 g / L, sucrose 30 g / L, phyto-agar 8 g / L, AgNO 3 4.0 mg / L, cefotaxime 200 mg / L, pH 5. 7) transplanted to induce rooting and differentiate into complete seedlings. Two to three weeks later, the rooted seedlings were transplanted into a 7 cm diameter plastic pot filled with floor soil sterilized by a clean bench, and then covered with vinyl wrap to maintain humidity. Then, it was left for 5 to 7 days under a temperature condition of 23 ° C., a light condition of 16 hours, and a dark condition of 8 hours. After confirming that the above-ground part was normally grown and inspecting the root survival, the plant was planted in a pot having a diameter of 25 cm, cultivated in a greenhouse, and used for experiments.

ハクサイのJ3−11M−3系、J3−11M−44系及びJ3−11M−54系の花茎組織の切片を、3回にかけてそれぞれ373、782、428個の組織を形質転換アグロバクテリウムを用いて接種させた結果、 J3−11M−3系及びJ3−11M−54系ではカルスの形成後、全系で白化現象が発生して、全然シュートが形成されなかった。J3−11M−44系で形成されたカルスを15日間隔で4回ないし6回選択培地で継代培養する間に、薄緑の状態を維持しつつ持続的に体積生長したが、シュートが誘導されることはなかった。その後、選択培地のカナマイシンの濃度を10mg/Lに低下させて、15日間隔で4回及び5回継代培養を実施する間に、カルスからシュートが誘導された。シュートを発根培地に移植して発根を誘導し、完全な幼植物体に分化させた。   A section of flower stem tissue of Chinese cabbage J3-11M-3, J3-11M-44, and J3-11M-54 was divided into three sections, and 373, 782, and 428 tissues were transformed with transformed Agrobacterium. As a result of inoculation, in the J3-11M-3 system and the J3-11M-54 system, after the callus was formed, a whitening phenomenon occurred in the entire system, and no shoot was formed. While the callus formed in the J3-11M-44 system was subcultured 4 to 6 times in a selective medium at 15-day intervals, it continued to grow in volume while maintaining a light green state. It was never done. Thereafter, the concentration of kanamycin in the selective medium was reduced to 10 mg / L, and shoots were induced from callus during 4 and 5 subcultures at 15 day intervals. Shoots were transplanted into a rooting medium to induce rooting, and differentiated into complete seedlings.

2週間及び3週間後、発根された幼植物体をそれぞれ名づけてT−1、T−2、T−3、T−4,T−6、T−8、T−9、T−10、T−11、T−12、T−15、T−16、T−17、T−19、T−20、T−21、T−31、T−34、T−36、T−37、T−38、T−39とし、それぞれを純化させて、温室で栽培して実験に利用した。その結果を表1及び図2に示した。特に、図2は、ハクサイの培養された花茎組織の切片において形成された不定芽と、形質転換された植物との再分化を示す。このとき、Aは、培養5週及び6週後に切片で形成されたシュートを示し、Bは、発根の間に培地に移植したシュートを示し、Cは、形質転換の幼植物体を示し、Dは、花芽が形成された形質転換植物体を示す。 After 2 weeks and 3 weeks, the rooted seedlings were named respectively T 0 -1, T 0 -2, T 0 -3, T 0 -4, T 0 -6, T 0 -8, T 0. -9, T 0 -10, T 0 -11, T 0 -12, T 0 -15, T 0 -16, T 0 -17, T 0 -19, T 0 -20, T 0 -21, T 0 -31, T 0 -34, T 0 -36, T 0 -37, T 0 -38, and T 0 -39, by purification, respectively, were utilized in the experiment was grown in a greenhouse. The results are shown in Table 1 and FIG. In particular, FIG. 2 shows the redifferentiation of adventitious buds formed in sections of flower stem tissue cultured in Chinese cabbage and transformed plants. At this time, A shows shoots formed in sections after 5 weeks and 6 weeks of culture, B shows shoots transplanted to the medium during rooting, C shows transformed seedlings, D shows the transformed plant body in which the flower bud was formed.

表1及び図2に示しているように、シュートは総52個体が誘導され、この中39個体が発根されて22個体が純化された。即ち、形質転換率が2.8%で、既存の子葉及び胚軸を利用する方法の0.4〜0.8%に比べて、その効率を2倍以上向上させることができた。
As shown in Table 1 and FIG. 2, a total of 52 individuals were induced in the shoot, of which 39 individuals were rooted and 22 individuals were purified. That is, the transformation rate was 2.8%, and the efficiency could be improved more than twice compared with 0.4 to 0.8% of the existing method using cotyledons and hypocotyls.

実施例2:ハクサイの形質転換体へ外来遺伝子が導入されたか否かの確認
前記実施例1で製造されたハクサイの形質転換体にnptII及びBcPGIP2が導入されたか否かを確認するために、PCR及びDNAゲルブロットを行った。
Example 2: Confirmation of whether or not a foreign gene was introduced into a Chinese cabbage transformant In order to confirm whether nptII and BcPGIP2 were introduced into the Chinese cabbage transformant prepared in Example 1, PCR was performed. And DNA gel blots were performed.

実験例1:PCR分析によるnptII遺伝子が導入されたか否かの確認
J3−11M−44系の花茎組織の切片にアグロバクテリウムを接種して再分化された個体を発根させた後、ビニール鉢に移植するとき、切り出した個体別の葉組織0.1gを、液体窒素及びすり鉢を用いて磨砕した後、DNeasyプラント・ミニ・キット(DNeasy Plant mini kit 、キアゲン社製)を用いてゲノムDNAを抽出した。抽出したゲノムDNAは、分光光度計(spectrophotometer)で定量した後、それを保管してPCR分析に使用した。
Experimental Example 1: Confirmation of whether or not the nptII gene has been introduced by PCR analysis After inoculating Agrobacterium into a section of the flower stem tissue of the J3-11M-44 strain and re-differentiating the individual, a plastic pot At the time of transplantation, 0.1 g of the cut leaf tissue of each individual was ground using liquid nitrogen and a mortar, and then genomic DNA was used using DNeasy Plant mini kit (manufactured by Qiagen). Extracted. The extracted genomic DNA was quantified with a spectrophotometer, then stored and used for PCR analysis.

形質転換されたハクサイに、BcPGIP2と共に導入されたカナマイシン抵抗性遺伝子であるnptII遺伝子が導入されたか否かを検証するためにPCRを行った。前記で抽出したゲノムDNA100ngを鋳型とし、AccuPower PCR premix (バイオニア社製)を用いてPCRを行った。nptII(forward)5'-ATGGGGATTGAACAAGATGGATTGC-3'及び(reverse)5'-TCAGAAGAACTCGTCAAGAAGGCGATAG-3'プライマーで94℃で5分間鋳型DNAを前変性させた後、94℃で1分間、60℃で1分間、72℃で1分間の条件で30サイクルを繰り返して行い、最終的に72℃で10分間反応させた。   In order to verify whether or not the nptII gene, which is a kanamycin resistance gene introduced together with BcPGIP2, was introduced into the transformed Chinese cabbage. PCR was performed using 100 ng of the genomic DNA extracted above as a template and AccuPower PCR premix (Bionia). The template DNA was pre-denatured at 94 ° C. for 5 minutes with nptII (forward) 5′-ATGGGGATTGAACAAGATGGATTGC-3 ′ and (reverse) 5′-TCAGAAGAACTCGTCAAGAAGGCGATAG-3 ′ primers, then at 94 ° C. for 1 minute, at 60 ° C. for 1 minute. 30 cycles were repeated at 72 ° C. for 1 minute, and the reaction was finally carried out at 72 ° C. for 10 minutes.

反応の終わった溶液に1.2%のアガロースゲル電気泳動を実施して、798bpサイズのDNA断片を確認し、その結果を図3に示した。図3において、Mは、1kbプラスDNAラダーを示し、レーン1は、対照植物体から得た増幅産物を示し、レーン2ないし15は、形質転換体から得た増幅産物を示す。特に、レーン2;T−1、レーン3;T−2、レーン4;T−3、レーン5;T−4、レーン6;T−6、レーン7;T−8、レーン8;T−9、レーン9;T−10、レーン10;T−11、レーン11;T−12、レーン12;T−15、レーン13;T−16、レーン14;T−17、レーン15;T−19を示し、Pは、陽性対照群(ベクターpCAMBIA 2300-BcPGIP2)を示す。
PCRの結果、nptIIの導入を確認することができた(図3)。
The solution after the reaction was subjected to 1.2% agarose gel electrophoresis to confirm a DNA fragment of 798 bp size, and the result is shown in FIG. In FIG. 3, M represents a 1 kb plus DNA ladder, lane 1 represents an amplification product obtained from a control plant, and lanes 2 to 15 represent amplification products obtained from a transformant. In particular, lane 2; T 0 -1, lane 3; T 0 -2, lane 4; T 0 -3, lane 5; T 0 -4, lane 6; T 0 -6, lane 7; T 0 -8, lane 8; T 0 -9, lane 9; T 0 -10, lane 10; T 0 -11, lane 11; T 0 -12, lane 12; T 0 -15, lane 13; T 0 -16, lane 14 ; T 0 -17, lane 15; indicates T 0 -19, P denotes the positive control group (vector pCAMBIA 2300-BcPGIP2).
As a result of PCR, introduction of nptII could be confirmed (FIG. 3).

実験例2:DNAゲルブロットを用いたnptIIの導入確認
J3−11M−44系から再分化された形質転換個体のDNAゲルブロット分析のために、温室で栽培されている個体の葉を採取した後、それぞれ200mgの試料を液体窒素及びすり鉢を用いて磨碎した後、65℃に予熱した抽出用の緩衝液(1.25% SDS、0.1M Tris−HCl、0.5M NaCl、0.05M EDTA、0.38%の重亜硫酸ナトリウム(sodium bisufite)、pH 8.0)700ulを加えて、65℃で20分間混合して反応させた。反応後700ulのフェノール:クロロホルム(1:1=v:v)溶液を添加して10分間ゆっくり混合した後、15℃、13,000rpmで10分間遠心分離した。上澄み液を分離して、2ulのRNase(10mg/mL)を加えて常温で10分間反応させた。反応液と同量の−20℃のEtOHを添加してゆっくり混合した後、−20℃で沈澱させた。沈澱されたDNAをパスツール・ピペットを用いて新たな1.5mLのチューブに移した後、70%のEtOHで2回洗浄した。洗浄後に乾燥させて、TE(10m MTris−Cl pH 8.0、1m MEDTA)緩衝液に懸濁して、対照群DNAと電気泳動して定量した後、それを保管してDNAゲルブロットに利用した。
Experimental Example 2: Confirmation of introduction of nptII using DNA gel blot For DNA gel blot analysis of transformed individuals redifferentiated from the J3-11M-44 system, after collecting the leaves of individuals cultivated in a greenhouse, A 200 mg sample was abraded using liquid nitrogen and a mortar and then preheated to 65 ° C. for extraction buffer (1.25% SDS, 0.1 M Tris-HCl, 0.5 M NaCl, 0.05 M EDTA, 700ul of 0.38% sodium bisufite (pH 8.0) was added, and the mixture was reacted at 65 ° C for 20 minutes. After the reaction, 700 ul of phenol: chloroform (1: 1 = v: v) solution was added and mixed slowly for 10 minutes, and then centrifuged at 15 ° C. and 13,000 rpm for 10 minutes. The supernatant was separated, 2 ul of RNase (10 mg / mL) was added, and the mixture was reacted at room temperature for 10 minutes. The same amount of EtOH at −20 ° C. as the reaction solution was added and mixed slowly, followed by precipitation at −20 ° C. The precipitated DNA was transferred to a new 1.5 mL tube using a Pasteur pipette and then washed twice with 70% EtOH. After washing and drying, the resultant was suspended in TE (10m MTris-Cl pH 8.0, 1m MEDTA) buffer, electrophoresed with control group DNA, and then quantified, and then stored and used for DNA gel blotting.

ゲノムDNA10ugをBamHI及びXhoIで切断した後、1.0%のアガロースゲルで30V電圧で16時間電気泳動した。展開されたDNAを確認した後、0.25N HCl溶液で10分間脱プリン化(depurination)し、アルカリ化転換(alkaline transfer)方法でナイロン膜(nylon membrane)に一晩中転移させた。DNAが転移したか否かは、ブロッティングさせたゲルをEtBrで染色することにより確認した。nptIIプローブは、ベクタープラスミドDNAを鋳型とし、前記実験例1の方法によってPCRを行って、生成されたDNA断片をBcaBestラベリングキット(BcaBest labelling kit、タカラ社製)を用いて準備し、65℃で24時間混成化させた。   10 ug of genomic DNA was cleaved with BamHI and XhoI, and then electrophoresed on a 1.0% agarose gel at 30 V voltage for 16 hours. After confirming the developed DNA, it was depurinated with a 0.25N HCl solution for 10 minutes, and transferred to a nylon membrane overnight by an alkali transfer method. Whether or not the DNA was transferred was confirmed by staining the blotted gel with EtBr. The nptII probe was prepared by using the vector plasmid DNA as a template, performing PCR by the method of Experimental Example 1, and preparing the generated DNA fragment using a BcaBest labeling kit (Bca Best labeling kit, manufactured by Takara) at 65 ° C. Hybridized for 24 hours.

0.1×SSC、1%のSDS溶液で65℃で30分間最終的に洗浄した後、X線フィルムに感光させて、その結果を図4に示した。図4において、Mは、ラムダDNA/HindIIIを示し、Cは、野生型対照群J3−11M−44を示し、レーン1ないし19は、形質転換体植物を示す。特に、レーン1;T−1、レーン2;T−2、レーン3;T−3、レーン4;T−6、レーン5;T−8、レーン6;T−9、レーン7;T−10、レーン8;T−11、レーン9;T−12、レーン10;T−15、レーン11;T−16、レーン12;T−17、レーン13;T−19、レーン14;T−20、レーン15;T−21、レーン16;T−34、レーン17;T−36、レーン18;T−38、レーン19;T−39を示す。また、Bは、BamHIで切断したサンプルを示し、Xは、XbaIで切断したサンプルを示す。 After final washing with 0.1 × SSC, 1% SDS solution at 65 ° C. for 30 minutes, the film was exposed to X-ray film, and the result is shown in FIG. In FIG. 4, M represents lambda DNA / HindIII, C represents the wild type control group J3-11M-44, and lanes 1 to 19 represent transformed plants. In particular, lane 1; T 0 -1, lane 2; T 0 -2, lane 3; T 0 -3, lane 4; T 0 -6, lane 5; T 0 -8, lane 6; T 0 -9, lane 7; T 0 -10, lane 8; T 0 -11, lane 9; T 0 -12, lane 10; T 0 -15, lane 11; T 0 -16, lane 12; T 0 -17, lanes 13 ; T 0 -19, lane 14; T 0 -20, lane 15; T 0 -21, lane 16; T 0 -34, lane 17; T 0 -36, lane 18; T 0 -38, lane 19; T 0 shows the -39. B represents a sample cut with BamHI, and X represents a sample cut with XbaI.

図4に示すように、nptII遺伝子の導入が確認され、T−1、T−2、T−3、T−20が、同じバンドパターンを表し、T−6、T−8、T−9、T−10、T−11、T−12、T−15、T−16、T−17、T−21、T−34、T−36、T−38、T−39が、同じバンドパターンを表した。この結果は、遺伝子の挿入時に2種類の遺伝子の組み換えが行われ、その後に形成されたシュートは、その2種類のカルスから増殖されたと思われる。 As shown in FIG. 4, introduction of the nptII gene was confirmed, and T 0 -1, T 0 -2, T 0 -3, T 0 -20 represent the same band pattern, and T 0 -6, T 0- 8, T 0 -9, T 0 -10, T 0 -11, T 0 -12, T 0 -15, T 0 -16, T 0 -17, T 0 -21, T 0 -34, T 0 - 36, T 0 -38 and T 0 -39 represented the same band pattern. This result suggests that two types of genes were recombined at the time of gene insertion, and the shoots formed thereafter were proliferated from the two types of callus.

実験例3:RT−PCRによるnptII及びBcPGIP2の発現確認
ハクサイの形質転換体T−6、T−10、T−12、T−15、T−16、T−17、T−20、T−21に導入されたnptII及びBcPGIP2の発現を確認するために、得られた個体の葉を採取して、RNeasyプラント・ミニ・キット(RNeasy Plant mini kit 、キアゲン社製)で総RNAを分離した後、分光光度計で定量した。5μgの総RNAにおいて、スーパースクリプト・ファースト‐ストランド合成キット(Superscript 1st-Strand Synthesis Kit 、米国インビトロジェン社製)を用いて合成した第1次cDNA鎖(1st strand cDNA)を鋳型として、RT−PCRを行った。nptIIの発現確認のためのRT−PCRは、実験例1の方法によって行い、BcPGIP2の発現確認のために使用したRT−PCRのプライマーは、次の通りである:
(forward): 5'-AGTCGGATCCATGGGTAAGACAACGACACTGCTTTTG-3'
(reverse): 5'-GGCTGCGGTACCCTTTTACTTGCAACTATCAAGAG-3'
Experimental Example 3: nptII and expression confirmed cabbage transformants T 0 -6 of BcPGIP2 by RT-PCR, T 0 -10, T 0 -12, T 0 -15, T 0 -16, T 0 -17, T 0 -20, in order to confirm the expression of nptII and BcPGIP2 that has been introduced into the T 0 -21, were taken leaves of the resulting solid, RNeasy plant mini kit (RNeasy plant mini kit, manufactured by QIAGEN) The total RNA was separated by using a spectrophotometer. RT-PCR was performed using 5 μg of total RNA as a template with the primary cDNA strand (1st strand cDNA) synthesized using Superscript 1st-Strand Synthesis Kit (Invitrogen, USA) as a template. went. RT-PCR for confirming the expression of nptII was carried out by the method of Experimental Example 1, and the RT-PCR primers used for confirming the expression of BcPGIP2 were as follows:
(forward): 5'-AGTCGGATCCATGGGTAAGACAACGACACTGCTTTTG-3 '
(reverse): 5'-GGCTGCGGTACCCTTTTACTTGCAACTATCAAGAG-3 '

前記プライマー対を用いて、94℃で5分間鋳型DNAを前変性させた後、94℃で1分間、58℃で1分間、72℃で1分間の条件で30サイクルを繰り返して行い、最終的に72℃で10分間反応させた。対照群としてハクサイのアクチン遺伝子を増幅するために使用したプライマーBcActinは、次の通りである:
(forward): 5'-ATGACATGGAGAAGATCTGG-3'
(reverse): 5'-TGAGCTTGTTTTGGAAGTCT-3'
Using the primer pair, template DNA was pre-denatured at 94 ° C. for 5 minutes, and then 30 cycles were repeated under the conditions of 94 ° C. for 1 minute, 58 ° C. for 1 minute, and 72 ° C. for 1 minute. And reacted at 72 ° C. for 10 minutes. The primer BcActin used to amplify the Chinese cabbage actin gene as a control group is as follows:
(forward): 5'-ATGACATGGAGAAGATCTGG-3 '
(reverse): 5'-TGAGCTTGTTTTGGAAGTCT-3 '

前記プライマー対を用いて合成した第1次cDNA鎖(1st strand cDNA)を鋳型として、RT−PCRを行った。PCRは、94℃で5分間鋳型DNAを前変性させた後、94℃で1分間、56℃で1分間、72℃で1分間の条件で30サイクルを繰り返して行い、最終的に72℃で10分間反応させた。反応の終わった溶液に1.2%のアガロースゲル電気泳動を実施して、DNA断片を確認した。   RT-PCR was performed using the primary cDNA strand (1st strand cDNA) synthesized using the primer pair as a template. PCR was performed by pre-denaturing the template DNA at 94 ° C. for 5 minutes, then repeating 30 cycles under the conditions of 94 ° C. for 1 minute, 56 ° C. for 1 minute, 72 ° C. for 1 minute, and finally at 72 ° C. The reaction was allowed for 10 minutes. The solution after the reaction was subjected to 1.2% agarose gel electrophoresis to confirm DNA fragments.

図5は、形質転換体植物でRT−PCRを用いてnptII遺伝子発現を探知した結果を示す。図5において、Mは、1kbプラスDNAラダーを示し、レーン1は、野生型のJ3−11M−44を示し、レーン2ないし9は、形質転換体植物を示す。特に、レーン2;T−6、レーン3;T−10、レーン4;T−12、レーン5;T−15、レーン6;T−16、レーン7;T−17、レーン8;T−20、レーン9;T−21を示す。 FIG. 5 shows the results of detecting nptII gene expression using RT-PCR in the transformant plants. In FIG. 5, M represents a 1 kb plus DNA ladder, lane 1 represents wild-type J3-11M-44, and lanes 2 to 9 represent transformed plants. In particular, lane 2; T 0 -6, lane 3; T 0 -10, lane 4; T 0 -12, lane 5; T 0 -15, lane 6; T 0 -16, lane 7; T 0 -17, lane 8; shows the T 0 -21; T 0 -20, lane 9.

また、図6は、形質転換体植物において、BcPGIP2遺伝子の発現を探知した結果を示す。図6において、Mは、1kbプラスDNAラダーを示し、レーン1ないし3は、野生型の植物を示し、レーン4ないし11は、形質転換体植物を示す。特に、レーン4;T−6、レーン5;T−10、レーン6;T−12、レーン7;T−15、レーン8;T−16、レーン9;T−17、レーン10;T−20、レーン11;T−21を示す。
図5及び図6に示すように、nptII及びBcPGIP2が正常に発現されていることを確認することができた。
FIG. 6 shows the results of detecting the expression of the BcPGIP2 gene in the transformant plant. In FIG. 6, M represents a 1 kb plus DNA ladder, lanes 1 to 3 represent wild type plants, and lanes 4 to 11 represent transformant plants. In particular, lane 4; T 0 -6, lane 5; T 0 -10, lane 6; T 0 -12, lane 7; T 0 -15, lane 8; T 0 -16, lane 9; T 0 -17, lane 10; T 0 -20, lane 11; shows the T 0 -21.
As shown in FIGS. 5 and 6, it was confirmed that nptII and BcPGIP2 were normally expressed.

実施例3:ハクサイの形質転換体の軟腐病抵抗性の確認
前記実施例1で形質転換されたハクサイの軟腐病に対する抵抗性を測定するために、PCR及びDNAゲルブロット及びRT−PCRを実施して、BcPGIP2遺伝子の導入及び発現を確認し、定植してから60日目になったJ3−11M−44系の形質転換ハクサイ及び野生型の葉を採取して、軟腐病に対する罹病性を調査した。葉基部接種方法(point inoculation method, Park et al., 2004)によって軟腐病原菌を1.2x10cfu/μl接種した後、6時間間隔で0、6、12、18、24、30、36時間に病斑の進展程度を調査し、その結果を図7に示した。図7Aの結果は、4個の反復区(replicates)の平均±標準偏差で示したグラフである。図7Bは、接種後12時間目のハクサイ葉を示す写真である。
Example 3: Confirmation of soft rot resistance of Chinese cabbage transformant In order to determine the resistance of Chinese cabbage transformed in Chinese cabbage to the soft rot of Example 1, PCR and DNA gel blot and RT-PCR were performed. The introduction and expression of the BcPGIP2 gene was confirmed, and the J3-11M-44 transformed Chinese cabbage and wild type leaves 60 days after planting were collected to investigate the susceptibility to soft rot. After inoculating 1.2 × 10 5 cfu / μl of soft rot pathogen by the point inoculation method (Park et al., 2004) at 0, 6, 12, 18, 24, 30, 36 hours at 6 hour intervals The extent of lesion development was investigated, and the results are shown in FIG. The result of FIG. 7A is a graph showing the mean ± standard deviation of four replicates. FIG. 7B is a photograph showing Chinese cabbage leaves 12 hours after inoculation.

図7に示すように、対照群である野生型に比べて、形質転換体であるT−21は、接種後12時間目から病斑が観察され、12時間には54.6%、18時間には52.5%、24時間には29.1%、30時間には19.7%、36時間には20.3%の病抵抗性が向上した。 As shown in FIG. 7, as compared to wild-type is a control group, T 0 -21 a transformant lesions was observed from 12 hours after inoculation 54.6% in 12 hours, 18 The disease resistance was improved by 52.5% at time, 29.1% at 24 hours, 19.7% at 30 hours, and 20.3% at 36 hours.

バイナリーベクターpCAMBIA2300−BcPGIP2のT−DNA部位を示す図である。It is a figure which shows the T-DNA site | part of binary vector pCAMBIA2300-BcPGIP2. ハクサイの培養された花茎組織の切片で形成された不定芽(adventitious shoot)及び形質転換された植物の再分化を示す写真である。It is a photograph which shows the regeneration of the adventitious shoot formed with the section of the flower stem tissue by which Chinese cabbage was cultured, and the transformed plant. ハクサイの形質転換体において、nptII遺伝子を確認するためのPCR増幅産物にアガロースゲル電気泳動を実施した結果を示す写真である。It is a photograph which shows the result of having performed the agarose gel electrophoresis to the PCR amplification product for confirming the nptII gene in the Chinese cabbage transformant. 形質転換体の植物において、nptII遺伝子の断片を用いてゲノムDNAを追跡したサザン・ブロットの分析結果を示す写真である。In plants T 0 transformants, is a photograph showing the analysis results of the Southern blot to track genomic DNA using a fragment of the nptII gene. 形質転換体の植物において、RT−PCRを用いてnptII遺伝子の発現を探知した結果を示す写真である。It is a photograph which shows the result of having detected the expression of nptII gene using RT-PCR in the plant of a transformant. 形質転換体の植物において、BcPGIP2遺伝子の発現を探知した結果を示す写真である。It is a photograph which shows the result of having detected the expression of BcPGIP2 gene in the plant of a transformant. 野生型ハクサイと形質転換体のハクサイにおいて、軟腐病の程度を比較した結果を示すグラフ及び写真である。It is the graph and photograph which show the result of having compared the degree of soft rot in a wild type Chinese cabbage and a Chinese cabbage of a transformant.

Claims (5)

軟腐病抵抗性ハクサイの形質転換体の製造方法であって、
BcPGIP2(Polygalacturonase-inhibiting
protein 2)遺伝子の導入された植物形質転換用のベクターを含む微生物を、
クサイの花茎組織に感染させて組織培養するステップを含むことを特徴とする、前記製造方法。
A method for producing a transformant of soft rot resistant Chinese cabbage,
BcPGIP2 (Polygalacturonase-inhibiting
protein 2) A microorganism containing a plant-transformed vector into which a gene has been introduced,
Characterized in that it comprises a step of tissue culture were infected with flower stalk tissue Ha Qusay, the manufacturing method.
微生物が、アグロバクテリウム・ツメファシエンス(AgrobacteriumThe microorganism is Agrobacterium tumefaciens (Agrobacterium
tumefaciens)であることを特徴とする、請求項1に記載のハクサイの形質転換体の製造方法。The method for producing a Chinese cabbage transformant according to claim 1, wherein the method is a tumefaciens).
アグロバクテリウム・ツメファシエンスが、アグロバクテリウム・ツメファシエンスLBA4404菌株であることを特徴とする、請求項に記載のハクサイの形質転換体の製造方法。The method for producing a Chinese cabbage transformant according to claim 2 , wherein the Agrobacterium tumefaciens is Agrobacterium tumefaciens LBA4404 strain. さらにnptII遺伝子を導入することを特徴とする、請求項1〜3に記載のハクサイの形質転換体の製造方法。 Further characterized by introducing the n PtII gene, method for producing a transformant of Chinese cabbage of claim 1-3. 請求項1〜4のいずれかに記載の方法によって製造される軟腐病抵抗性ハクサイの形質転換体。A transformant of soft rot resistant Chinese cabbage produced by the method according to claim 1.
JP2008542213A 2005-11-22 2005-11-23 Method for producing Chinese cabbage transformant using flower stem tissue and transformant with improved soft rot resistance produced therefrom Expired - Fee Related JP5020253B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020050111827 2005-11-22
KR10-2005-0111827 2005-11-22
PCT/KR2005/003960 WO2007061146A1 (en) 2005-11-22 2005-11-23 A method for producing chinese cabbage transformant using tissues of flower stalk and a transformant with promoted soft rot resistance obtained from the method

Publications (2)

Publication Number Publication Date
JP2009516524A JP2009516524A (en) 2009-04-23
JP5020253B2 true JP5020253B2 (en) 2012-09-05

Family

ID=38067356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008542213A Expired - Fee Related JP5020253B2 (en) 2005-11-22 2005-11-23 Method for producing Chinese cabbage transformant using flower stem tissue and transformant with improved soft rot resistance produced therefrom

Country Status (2)

Country Link
JP (1) JP5020253B2 (en)
WO (1) WO2007061146A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016140318A (en) * 2015-02-03 2016-08-08 住友ゴム工業株式会社 Recovering method of rubber tree, proliferation method of rubber tree, induction method of shoot, growth method of shoot, root method of shoot and conditioning method for infant plant
CN107787836A (en) * 2016-08-31 2018-03-13 辽宁东亚农业发展有限公司 A kind of spring Chinese Cabbage material system breeding technique
CN108642080A (en) * 2018-07-03 2018-10-12 沈阳农业大学 A kind of agriculture bacillus mediated Chinese cabbage transgenic method
CN113862392B (en) * 2021-11-15 2022-08-16 西北农林科技大学 SSR molecular marker primer linked with Chinese cabbage yellow cotyledon gene Bryc and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001078602A (en) * 1999-09-10 2001-03-27 Central Res Inst Of Electric Power Ind Method for increasing amount of growth of plant
KR100375674B1 (en) * 2000-07-12 2003-03-15 대한민국 A method of regenerating and transforming chinese cabbage(Brassica campestris ssp. pekinensis) using hypocotyl segments
WO2002061099A1 (en) * 2001-01-29 2002-08-08 Institute Of Molecular Agrobiology Control of bacterial infection by quenching quorum-sensing of plant pathogenic bacteria
KR100491102B1 (en) * 2003-01-15 2005-05-24 박은필 Tissue culture method of Iris sp.
KR100523758B1 (en) * 2004-02-10 2005-10-25 박영두 Efficient method of Agrobacterium-mediated transformation in Chinese cabbage
KR20050086077A (en) * 2004-02-24 2005-08-30 주식회사 에프앤피 Novel polygalacturonase inhibitor protein and its use

Also Published As

Publication number Publication date
WO2007061146A1 (en) 2007-05-31
JP2009516524A (en) 2009-04-23

Similar Documents

Publication Publication Date Title
Yang et al. Production of transgenic plants via Agrobacterium rhizogenes-mediated transformation of Panax ginseng
JP7121442B2 (en) Method for producing transgenic plant of Taraxacum genus plant
Kaur et al. Efficient production of transgenic tomatoes via Agrobacterium-mediated transformation
JP3174048B2 (en) Transgenic plants belonging to Cucumis Melo species
CN102725414A (en) Method for providing mature transgenic recalcitrant plants via induction of bbm during regeneration
JP2024514169A (en) Co-reproducing regenerative plant
JP5020253B2 (en) Method for producing Chinese cabbage transformant using flower stem tissue and transformant with improved soft rot resistance produced therefrom
AU706650B2 (en) Genetic modification of plants
US20180092319A1 (en) Growing strawberry plug plants at low elevation without the need for conditioning
CN111944844A (en) Method for increasing tropane alkaloid content in belladonna
CN107557384B (en) Genetic transformation system for inducing plant dwarfing and construction and application thereof
JP4228044B2 (en) Redifferentiated plant and transformed plant of Shiba spp.
JP5164093B2 (en) Method for increasing resistance of rice to pathogens and pathogen-resistant rice transformants
CN109956996B (en) Millet yield-related protein SiAMP1, and coding gene and application thereof
Khlifa et al. Agrobacterium rhizogenes-mediated transformation of Hypericum sinaicum L. for the development of hairy roots containing hypericin
KR102453800B1 (en) Method for producing SlMS10 gene knock-out tomato plant using CRISPR/Cas9 system and male-sterile tomato plant produced by the same method
KR102551529B1 (en) Method for producing tomato plant with increased tomato yellow leaf curl virus resistance using gene editing system and tomato plant produced by the same method
WO2021070549A1 (en) Method for genome editing in wheat and use thereof
JP6876877B2 (en) Method for producing transformed plants and transformants
KR100819878B1 (en) A method for producing Chinese cabbage transformant using tissues of flower stalk and a transformant with promoted soft rot resistance obtained from the method
KR100496028B1 (en) A Method for Producing Herbicide-Resistant Chili Pepper Plant
CN117143212A (en) Transcription factor AmbHLH148 and application thereof in drought resistance
KR101368284B1 (en) Method for producing transgenic reed plant and the plant thereof
KR20040075385A (en) Method for Producing Transgenic Perilla Plants, and Herbicide-Resistent Perilla Plants by the Method
CN118755755A (en) Application of NnXTH gene in regulating plant height and stem thickness

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110519

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20111227

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees