KR102580742B1 - Atomic layer deposition having precursor feeding and purging process for controlling crystalline properties of the film - Google Patents

Atomic layer deposition having precursor feeding and purging process for controlling crystalline properties of the film Download PDF

Info

Publication number
KR102580742B1
KR102580742B1 KR1020220137320A KR20220137320A KR102580742B1 KR 102580742 B1 KR102580742 B1 KR 102580742B1 KR 1020220137320 A KR1020220137320 A KR 1020220137320A KR 20220137320 A KR20220137320 A KR 20220137320A KR 102580742 B1 KR102580742 B1 KR 102580742B1
Authority
KR
South Korea
Prior art keywords
thin film
atomic layer
layer deposition
precursor
delete delete
Prior art date
Application number
KR1020220137320A
Other languages
Korean (ko)
Other versions
KR20230059747A (en
Inventor
박태주
한지원
박재찬
Original Assignee
한양대학교 에리카산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한양대학교 에리카산학협력단 filed Critical 한양대학교 에리카산학협력단
Publication of KR20230059747A publication Critical patent/KR20230059747A/en
Application granted granted Critical
Publication of KR102580742B1 publication Critical patent/KR102580742B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/405Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02181Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing hafnium, e.g. HfO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 기존 원자층 증착법의 공정 순서를 재배치하여, 기존 기술과 동일한 재료, 시간, 설비를 사용하면서도 박막의 물리적, 화학적 물성이 큰 폭으로 개선되는 원자층 증착법을 제공함으로써, 형성되는 박막의 결정 특성을 개선할 수 있는 원자층 증착법을 제공한다.
이를 위하여, (1)임의의 기준 시간 동안 1회 이루어지는 전구체 주입 단계 및 상기 주입된 전구체 퍼지 단계를, 상기 기준 시간을 n회(n≥2) 분할한 회수만큼 반복하여 수행하는 단계; (2)반응제를 주입하는 단계; 및 (3)상기 반응제를 퍼지하는 단계를 포함하며, 상기 단계 (1) 내지 단계 (3)을 단위 공정으로 하고, 상기 단위 공정을 다수 사이클 반복 수행하여 박막을 형성하는 것을 특징으로 하는 원자층 증착법을 제공한다.
The present invention rearranges the process sequence of the existing atomic layer deposition method and provides an atomic layer deposition method that significantly improves the physical and chemical properties of the thin film while using the same materials, time, and equipment as the existing technology, thereby improving the crystallization of the formed thin film. An atomic layer deposition method that can improve properties is provided.
To this end, (1) repeating the precursor injection step and the injected precursor purge step performed once during an arbitrary reference time, the number of times the reference time is divided by n times (n≥2); (2) Injecting a reactive agent; and (3) purging the reactive agent, wherein steps (1) to (3) are unit processes, and the unit processes are repeated for multiple cycles to form a thin film. A deposition method is provided.

Description

박막 결정 특성 제어를 위한 전구체 주입 및 퍼지 단계를 갖는 원자층 증착법{ATOMIC LAYER DEPOSITION HAVING PRECURSOR FEEDING AND PURGING PROCESS FOR CONTROLLING CRYSTALLINE PROPERTIES OF THE FILM}Atomic layer deposition method with precursor injection and purging steps for controlling thin film crystal properties {ATOMIC LAYER DEPOSITION HAVING PRECURSOR FEEDING AND PURGING PROCESS FOR CONTROLLING CRYSTALLINE PROPERTIES OF THE FILM}

본 발명은 원자층 증착법에 대한 것이며, 보다 구체적으로는 전구체 주입 및 퍼지 공정을 개선함으로써 형성되는 박막의 결정 특성을 제어할 수 있는 원자층 증착법에 대한 것이다.The present invention relates to an atomic layer deposition method, and more specifically, to an atomic layer deposition method that can control the crystal properties of a thin film formed by improving the precursor injection and purge process.

원자층 증착법(atomic layer deposition)은 기판 상에 원자 수준의 박막을 형성하는 증착 방법이다.Atomic layer deposition is a deposition method that forms an atomic-level thin film on a substrate.

보다 구체적으로, 원자층 증착법은 기판의 표면 상에, 제공된 반응 기체가 기판의 표면과 화학적 흡착 반응하여 단일 원자층 또는 분자층의 박막을 형성하고, 반응 기체의 부산물의 탈착시켜 원자층 또는 분자층을 형성하는 증착방법이다. 또한, 원자층 증착법은, 종래 기술인 화학기상증착법보다 단차피복성(step coverage) 및 박막의 균일성을 개선할 수 있다.More specifically, in the atomic layer deposition method, a provided reaction gas undergoes a chemical adsorption reaction with the surface of the substrate to form a thin film of a single atomic layer or molecular layer, and the by-product of the reaction gas is desorbed to form an atomic layer or molecular layer. It is a deposition method to form. Additionally, the atomic layer deposition method can improve step coverage and thin film uniformity compared to the conventional chemical vapor deposition method.

이에 따라, 원자층 증착법은 반도체, 디스플레이, 태양전지, 이차전지, 분리막, 센서 등 다양한 산업 분야에 활용될 수 있다.Accordingly, atomic layer deposition can be used in various industrial fields such as semiconductors, displays, solar cells, secondary batteries, separators, and sensors.

그러나, 종래의 원자층 증착법을 이용한 박막은 모재로 사용되는 금속 전구체의 형태로 인해 가림 효과(screening effect)및 입체 방해 효과(steric hindrance effect)가 필연적으로 발생하게 된다. 따라서 박막을 증착하려는 표면을 금속 전구체로써 완벽하게 도포하기 어렵다. 그로 인해, 증착되는 박막에 대해 원하는 결정성을 얻기 어려운 문제가 있었다. However, thin films using conventional atomic layer deposition inevitably generate screening effects and steric hindrance effects due to the type of metal precursor used as a base material. Therefore, it is difficult to completely coat the surface on which a thin film is to be deposited with a metal precursor. As a result, there was a problem that it was difficult to obtain the desired crystallinity for the deposited thin film.

본 발명은 전술한 종래 기술의 문제를 해결하기 위한 것으로서, 형성되는 박막의 결정립 크기, 밀도, 불순물 농도 등의 결정 특성을 개선할 수 있는 원자층 증착법을 제공하기 위한 것이다.The present invention is intended to solve the problems of the prior art described above and to provide an atomic layer deposition method that can improve crystal properties such as grain size, density, and impurity concentration of the formed thin film.

또한, 본 발명은 기존 원자층 증착법의 공정 순서를 재배치하여, 기존 기술과 동일한 재료, 시간, 설비를 사용하면서도 박막의 물리적, 화학적 물성 등의 결정 특성이 큰 폭으로 개선되는 원자층 증착법을 제공하기 위한 것이다.In addition, the present invention rearranges the process sequence of the existing atomic layer deposition method to provide an atomic layer deposition method that significantly improves the crystal properties such as physical and chemical properties of thin films while using the same materials, time, and equipment as existing technologies. It is for.

전술한 종래 기술의 문제점을 해결하기 위해, 본 발명에서는 아래와 같은 구성으로 이루어지는 원자층 증착법을 제공한다.In order to solve the problems of the prior art described above, the present invention provides an atomic layer deposition method having the following configuration.

(1)임의의 기준 시간 동안 1회 이루어지는 전구체 주입 단계 및 상기 주입된 전구체 퍼지 단계를, 상기 기준 시간을 n회(n≥2) 분할한 회수만큼 반복하여 수행하는 단계;(1) repeating the precursor injection step and the injected precursor purge step performed once during an arbitrary reference time, the number of times divided by the reference time n times (n≥2);

(2)반응제를 주입하는 단계; 및(2) Injecting a reactive agent; and

(3)상기 반응제를 퍼지하는 단계를 포함하며,(3) including purging the reactive agent,

상기 단계 (1) 내지 단계 (3)을 단위 공정으로 하고, 상기 단위 공정을 다수 사이클 반복 수행하여 박막을 형성하는 것을 특징으로 하는 원자층 증착법.An atomic layer deposition method characterized in that steps (1) to (3) are unit processes, and the unit processes are repeated for multiple cycles to form a thin film.

기존의 원자층 증착법은 공정에 사용되는 금속 전구체의 형태로 인해, 이상적인 원자층 증착 이론과 달리 완벽한 표면 피복율을 확보하기 어렵다. 이는 밀도, 불순물 농도, 결정립 크기 등과 같은 박막의 물리화학적 특성 열화를 발생시킨다.Unlike the ideal atomic layer deposition theory, it is difficult for the existing atomic layer deposition method to secure perfect surface coverage due to the type of metal precursor used in the process. This causes deterioration of the physicochemical properties of the thin film, such as density, impurity concentration, and grain size.

본 발명에서는 기존 공정과 동일한 시간에 대해, 전구체의 공급 단계 및 퍼지 단계를 2 이상의 짧은 시간 단위로 분할하고, 기존의 전구체 공급과 퍼지 대신 짧은 전구체 공급 단계와 퍼지 단계를 분할된 횟수만큼 반복한다.In the present invention, for the same time as the existing process, the precursor supply step and purge step are divided into two or more short time units, and instead of the existing precursor supply and purge step, the short precursor supply step and purge step are repeated the divided number of times.

즉 본 발명에서 상기 단계 (1)의 수행 시간은 임의의 기준 시간, 예를 들어 동일한 공정 조건의 원자층 증착법에서 이루어지는 전구체 주입과 전구체 퍼지 공정의 시간과 같다. 이때, 동일한 조건이라 함은 증착 물질이나 대상 기판, 공정 압력, 온도 등의 모든 조건이 같은 경우의 비교 대상이 되는 공정 조건을 의미한다. 예를 들어 동일한 조건의 기존 원자층 증착법에서 단계 (1)의 전구체 주입이 4초, 전구체 퍼지가 20초 동안 이루어진다면, 본 발명에서는 단계 (1)의 전구체 주입이 2초, 전구체 퍼지가 10초 동안 이루어지며, 이러한 공정이 2회 수행된다. 따라서, 기존 원자층 증착법과 비교할 때 공정에 소요되는 전체 시간은 동일하다.That is, in the present invention, the performance time of step (1) is the same as an arbitrary reference time, for example, the time of the precursor injection and precursor purge processes performed in the atomic layer deposition method under the same process conditions. At this time, the same conditions mean the process conditions to be compared when all conditions such as deposition material, target substrate, process pressure, and temperature are the same. For example, in the existing atomic layer deposition method under the same conditions, if the precursor injection in step (1) is performed for 4 seconds and the precursor purge is performed for 20 seconds, in the present invention, the precursor injection in step (1) is performed for 2 seconds and the precursor purge is performed for 10 seconds. This process is performed twice. Therefore, compared to the existing atomic layer deposition method, the overall time required for the process is the same.

이와 같이 단속적으로 원료 물질을 공급하는 원자층 증착법에 의해, 다른 전구체 분자 위에 물리적으로 흡착된 전구체 분자를 제거하여, 전구체 흡착을 방해하는 가림 효과를 최소화할 수 있어, 표면피복성이 크게 향상된다. 결과적으로, 동일한 양의 전구체를 사용하면서도 기존 공정 대비 고품질 박막을 형성할 수 있다.By using this atomic layer deposition method of intermittently supplying raw materials, precursor molecules physically adsorbed on other precursor molecules can be removed, thereby minimizing the blocking effect that hinders precursor adsorption, thereby greatly improving surface coverage. As a result, high-quality thin films can be formed compared to existing processes while using the same amount of precursor.

이때 전구체 공급과 퍼지를 분할하는 시간 간격은 특히 한정되지 않으며, 기준이 되는 시간, 즉 동일한 조건의 종래 원자층 증착법에서의 시간을 2회, 3회, 4회 또는 그 이상으로 나누어 수행할 수 있다.At this time, the time interval for dividing the precursor supply and purge is not particularly limited, and the standard time, that is, the time in the conventional atomic layer deposition method under the same conditions, can be divided into 2, 3, 4 or more times. .

즉 단계 (1)의 전구체 주입이 4초, 전구체 퍼지가 20초인 기준 시간의 경우를 고려할 때, 3회로 나눌 경우는 1.3초 동안의 전구체 공급과 6.7초 동안의 전구체 퍼지가 3회 반복되며, 4회로 나눌 경우는 1초의 전구체 공급과 5초의 전구체 퍼지가 4회 반복된다. 어느 경우에나 전구체 공급 시간의 합은 4초이고, 퍼지 시간은 20초로서 기준 시간과 동일하다.That is, considering the standard time of step (1) where the precursor injection is 4 seconds and the precursor purge is 20 seconds, if divided into 3 times, the precursor supply for 1.3 seconds and the precursor purge for 6.7 seconds are repeated 3 times, 4 When dividing the circuit, 1 second of precursor supply and 5 seconds of precursor purge are repeated four times. In either case, the sum of the precursor supply times is 4 seconds, and the purge time is 20 seconds, which is the same as the reference time.

이와 같이 전구체 공급과 퍼지가 반복되는 단계 (1) 이후, (2)반응제를 주입하는 단계 및 (3)상기 반응제를 퍼지하는 단계가 수행된다.After step (1) in which precursor supply and purging are repeated, (2) injecting a reactive agent and (3) purging the reactive agent are performed.

그리고 단계 (1) 내지 단계 (3)을 단위 공정으로 하고, 이러한 단위 공정을 다수 사이클 반복 수행하여 박막을 형성한다.Steps (1) to (3) are used as unit processes, and these unit processes are repeated for multiple cycles to form a thin film.

본 발명에 의해 증착되는 박막은 전구체의 표면피복성 향상에 따라 결정립 크기가 감소하고 박막이 비정질화되는 특징이 있다. 또한 면밀도, 비저항, 박막의 일함수, 유전율, 계면트랩밀도, 누설전류, 절연파괴강도 등에서도 종래에 비해 우수한 특성을 나타낸다.The thin film deposited by the present invention is characterized by a decrease in grain size and an amorphization of the thin film as the surface coverage of the precursor is improved. In addition, it shows superior characteristics compared to the conventional one in area density, resistivity, thin film work function, dielectric constant, interface trap density, leakage current, and dielectric breakdown strength.

본 발명에 따르면, 기존 원자층 증착 공정의 문제를 극복하여 박막의 물리, 화학적 물성을 크게 개선하는 효과가 있다.According to the present invention, the problems of the existing atomic layer deposition process are overcome and the physical and chemical properties of thin films are greatly improved.

특히, 전구체의 표면피복성 향상에 따라, 결정립 크기가 감소하고 박막이 비정질화되는 효과가 있다.In particular, as the surface coverage of the precursor improves, the grain size decreases and the thin film becomes amorphous.

또한 본 발명에 따르면, 기존 원자층 증착과 동일한 설비에서 동일한 재료와 시간으로도 형성되는 박막의 물성을 개선할 수 있어, 추가적인 설비, 재료 및 시간을 소모할 필요가 없는 효과가 있다. 그러면서도, 원자층 증착 공정의 장점인 우수한 대면적 균일도 및 단차피복성과 세밀한 두께 제어가 여전히 가능하다. In addition, according to the present invention, the physical properties of a thin film formed using the same materials and time can be improved in the same equipment as existing atomic layer deposition, which has the effect of eliminating the need to consume additional equipment, materials, and time. However, excellent large-area uniformity, step coverage, and precise thickness control, which are the advantages of the atomic layer deposition process, are still possible.

도 1은 본 발명의 실시예에 따라 Ru을 증착하는 경우의 원자층 증착법의 순서도이다.
도 2는 (a)본 발명의 실시예에 따라 SiO2 기판 상에 10 ALD 사이클의 Ru 증착 후 핵생성밀도를 나타내는 그래프, (b)종래 기술로 증착한 40 nm Ru의 표면 분석 결과 및 (c)본 발명의 실시예에 따라 증착한 40 nm Ru의 표면 분석 결과를 나타내는 전자현미경 사진이다.
도 3은 본 발명 실시예(4회 분할)와 종래기술에 따라 증착된 30 nm Ru 박막의 XRD 분석 결과이다.
도 4는 본 발명의 실시예(4회 분할, D4)에 따라 각각 (a)50, (b)85, (c)200 ALD 사이클로 각각 형성한 Ru 박막과 종래 기술(Control)에 의해 제조된 Ru 박막의 전자현미경(TEM) 사진이다.
도 5는 본 발명의 실시예(D4) 및 종래 기술(Control)에서 원자층 증착 사이클 수에 따른 (a)Ru 면밀도, (b)사이클 당 성장량(growth per cycle), (c)공칭 밀도(nominal density)의 분석결과를 나타내는 그래프이다.
도 6은 본 발명의 실시예(D4) 및 종래 기술(Control)에 의해 증착된 Ru 박막의 (a)박막 표면과 내부에 대한 XPS 분석 결과, (b)3 nm 두께에서 공정별 비저항, (c)두께에 따른 비저항, (d)Ru 박막 일함수 산출 결과를 나타내는 그래프이다.
도 7은 본 발명의 실시예에 따라 TiN을 증착하는 경우의 원자층 증착법의 순서도이다.
도 8은 본 발명의 실시예에 따라 형성된 TiN 박막 내 Ti의 면밀도 변화를 나타내는 그래프이다.
도 9는 본 발명의 실시예(D2, D4)와 종래 기술(Control)에 의해 TiN 박막 내 (a)Ti, (b)N, (c)C의 화학적 결합상태를 XPS 분석을 통해 확인한 결과를 나타내는 그래프이다.
도 10은 본 발명의 실시예에 따라 형성된 20 nm ALD TiN 박막의 비저항 변화를 나타내는 그래프이다.
도 11은 본 발명의 실시예에 따라 HfO2을 증착하는 경우의 원자층 증착법의 순서도이다.
도 12는 (a)본 발명의 실시예(D4) 및 종래 기술(Control)에 의해 증착된 HfO2 박막의 두께에 따른 Hf 면밀도를 나타내는 그래프, (b)종래 기술로 증착한 20 nm HfO2의 표면 분석 결과 및 (c)본 발명 실시예에 따라 증착된 20 nm HfO2의 표면 분석 결과를 나타내는 전자현미경 사진이다.
도 13은 종래 기술 및 본 발명 실시예에 따라 증착한 20 nm HfO2 박막의 XRD 분석 결과이다.
도 14는 (a)종래 기술(Control) 및 (b)본 발명 실시예(D4)에 따라 증착된 HfO2 박막의 단면 HRTEM 분석 결과를 나타내는 전자현미경 사진이다.
도 15는 본 발명 실시예(D4) 및 종래 기술(Control)에 따라 증착된 HfO2 박막 내 (a)Hf, (b)Si, (c)O의 XPS 분석 결과 및 (d)ToF-SIMS 분석 결과를 나타내는 그래프이다.
도 16은 본 발명 실시예(D4) 및 종래 기술(Control)에 따라 증착된 HfO2 박막의 (a)유전율, (b)계면트랩밀도, (c)누설전류, (d)절연파괴강도 분석 결과를 나타내는 그래프이다.
1 is a flowchart of an atomic layer deposition method for depositing Ru according to an embodiment of the present invention.
Figure 2 is (a) a graph showing the nucleation density after 10 ALD cycles of Ru deposition on a SiO 2 substrate according to an embodiment of the present invention, (b) the surface analysis results of 40 nm Ru deposited by conventional technology, and (c) ) This is an electron microscope photo showing the results of surface analysis of 40 nm Ru deposited according to an example of the present invention.
Figure 3 shows the XRD analysis results of a 30 nm Ru thin film deposited according to an embodiment of the present invention (split 4 times) and a conventional technique.
Figure 4 shows Ru thin films formed with (a) 50, (b) 85, and (c) 200 ALD cycles, respectively, according to an embodiment of the present invention (4 divisions, D4) and Ru produced by conventional technology (Control). This is an electron microscope (TEM) photo of a thin film.
Figure 5 shows (a) Ru areal density, (b) growth per cycle, and (c) nominal density according to the number of atomic layer deposition cycles in the embodiment (D4) of the present invention and the prior art (Control). This is a graph showing the analysis results of density.
Figure 6 shows (a) XPS analysis results for the surface and interior of the Ru thin film deposited by Example (D4) of the present invention and the conventional technology (Control), (b) resistivity by process at 3 nm thickness, (c) ) Resistivity according to thickness, (d) This is a graph showing the calculation results of Ru thin film work function.
Figure 7 is a flow chart of the atomic layer deposition method when depositing TiN according to an embodiment of the present invention.
Figure 8 is a graph showing the change in area density of Ti in the TiN thin film formed according to an embodiment of the present invention.
Figure 9 shows the results of confirming the chemical bonding state of (a) Ti, (b) N, and (c) C in the TiN thin film through XPS analysis according to the examples (D2, D4) of the present invention and the prior art (Control). This is a graph that represents
Figure 10 is a graph showing the change in resistivity of a 20 nm ALD TiN thin film formed according to an embodiment of the present invention.
Figure 11 is a flowchart of the atomic layer deposition method when depositing HfO 2 according to an embodiment of the present invention.
Figure 12 is (a) a graph showing the Hf areal density according to the thickness of the HfO 2 thin film deposited by Example (D4) of the present invention and the conventional technology (Control), (b) of the 20 nm HfO 2 deposited by the conventional technology This is an electron microscope photograph showing the surface analysis results and (c) the surface analysis results of 20 nm HfO 2 deposited according to an example of the present invention.
Figure 13 shows the results of XRD analysis of a 20 nm HfO 2 thin film deposited according to the prior art and an embodiment of the present invention.
Figure 14 is an electron micrograph showing the cross-sectional HRTEM analysis results of the HfO 2 thin film deposited according to (a) the prior art (Control) and (b) Example (D4) of the present invention.
Figure 15 shows the XPS analysis results and (d) ToF-SIMS analysis of (a) Hf, (b) Si, and (c) O in the HfO 2 thin film deposited according to the present invention example (D4) and the prior art (Control) This is a graph showing the results.
Figure 16 shows (a) dielectric constant, (b) interfacial trap density, (c) leakage current, and (d) dielectric breakdown strength analysis results of HfO 2 thin films deposited according to Example (D4) of the present invention and conventional technology (Control). This is a graph representing .

이하, 첨부도면을 참조하여 본 발명을 바람직한 실시예를 통해 구체적으로 설명한다. Hereinafter, the present invention will be described in detail through preferred embodiments with reference to the accompanying drawings.

실시예에서는 증착 대상 물질로서 Ru, Ti, HfO2를 채택하였으나, 본 발명은 이들 물질의 증착에만 한정되는 것은 아니며 금속, 산화물, 질화물 등 다양한 물질의 박막 증착에도 동일하게 적용될 수 있다.In the embodiment, Ru, Ti, and HfO 2 were selected as deposition target materials, but the present invention is not limited to the deposition of these materials and can equally be applied to thin film deposition of various materials such as metals, oxides, and nitrides.

이하의 실시예에서 박막이 증착되는 기판은 SiO2 기판을 사용하였다. 그러나, 본 발명에서 사용되는 기판 역시 한정되지 않으며 금속, 산화물, 질화물, 유전체 등의 다양한 기판에 적용될 수 있다.In the following examples, a SiO 2 substrate was used as the substrate on which the thin film was deposited. However, the substrate used in the present invention is also not limited and can be applied to various substrates such as metal, oxide, nitride, and dielectric.

또한, 본 발명 기술의 적용을 위한 최적 공정 분할 횟수는 아래 실시예의 경우에 한정되는 것은 아니며, 공정 설비 및 조건에 따라 다르게 할 수 있다.Additionally, the optimal number of process divisions for application of the present technology is not limited to the examples below and may vary depending on process equipment and conditions.

실시예 1. 루테늄(Ru) 박막 증착Example 1. Ruthenium (Ru) thin film deposition

본 실시예에서는 본 발명의 방법에 따라 Ru 박막을 형성하였다.In this example, a Ru thin film was formed according to the method of the present invention.

Ru 박막 형성을 위한 전구체로는 bis(ethylcyclopentadienyl) Ruthenium [Ru(EtCp2)], η4-2,3-dimethylbutadiene ruthenium tricarbonyl [Ru(DMBD)(CO)3], (ethylbenzene)(1-ethyl-1,4-cyclohexadiene)Ru [EBECHRu], RuO4, cis-dicarbonyl bis(5-methylhexane-2,4-dionate)Ru [Carish Ru], 반응제로는 H2O, H2O2, O2, O3, NH3, H2, N2, tBuNH2, AyNH2, Me2NNH2 또는 이들의 혼합기체가 사용 가능하다.Precursors for forming Ru thin films include bis(ethylcyclopentadienyl) Ruthenium [Ru(EtCp 2 )], η4-2,3-dimethylbutadiene ruthenium tricarbonyl [Ru(DMBD)(CO) 3 ], (ethylbenzene)(1-ethyl-1) ,4-cyclohexadiene)Ru [EBECHRu], RuO 4 , cis-dicarbonyl bis(5-methylhexane-2,4-dionate)Ru [Carish Ru], reactants include H 2 O, H 2 O 2 , O 2 , O 3 , NH 3 , H 2 , N 2 , tBuNH 2 , AyNH 2 , Me 2 NNH 2 , or a mixture thereof can be used.

도 1에 나타난 바와 같이 기존 ALD 기술 기반의 Ru 박막 형성 공정에서 전구체 주입 및 전구체 퍼지 단계를 2회로 분할하여, 짧은 전구체 주입과 짧은 전구체 퍼지를 번갈아 분할 횟수만큼 반복하여 단위 공정을 수행하였다. 즉, 총 공정 시간 및 모재 소모량은 분할하지 않은 경우와 동일하였다. 명시된 공정 시간은 정해진 것이 아니며, 증착장비 혹은 조건에 따라 달라질 수 있다. 이후 상기 단위 공정에 대해 1.5초의 반응제 공급과 15초의 퍼지 공정을 수행하여 한 사이클을 완성하고, 이러한 사이클을 반복 수행하였다. 또한, 전구체 주입 및 전구체 퍼지 단계를 3회 및 4회로 분할한 경우에 대해서도 동일한 사이클을 수행하였다.As shown in Figure 1, in the Ru thin film formation process based on existing ALD technology, the precursor injection and precursor purge steps were divided into two, and the unit process was performed by alternating short precursor injection and short precursor purge, repeating the divided number of times. In other words, the total process time and base material consumption were the same as in the case of no division. The specified process time is not fixed and may vary depending on deposition equipment or conditions. Afterwards, for the unit process, one cycle was completed by supplying the reactant for 1.5 seconds and purging for 15 seconds, and this cycle was repeated. In addition, the same cycle was performed when the precursor injection and precursor purge steps were divided into three and four times.

이와 같은 전구체 주입 단계 및 전구체 퍼지 단계의 반복, 반응제 주입 단계, 반응제 퍼지 단계로 구성된 일련의 공정을 단위 공정으로 하고, 이러한 단위 공정을 수 사이클 수행함으로써 Ru 박막을 형성하였다.A series of processes consisting of repetition of the precursor injection step and precursor purge step, the reactant injection step, and the reactant purge step were set as a unit process, and a Ru thin film was formed by performing several cycles of these unit processes.

형성된 Ru 박막의 표면 형태(morphology)를 원자력현미경(atomic force microscope, AFM)을 통해 분석한 결과를 도 2에 도시하였다. 도 2의 (a)에 10 ALD 사이클의 Ru 증착 공정을 진행한 후, 표면 분석을 통해 산출한 핵생성밀도를 나타내었다. 종래 기술을 통해 증착된 Ru 박막을 control(Ctrl)로 표기하였으며, 전구체 주입 및 퍼지 단계를 n회 분할한 본 실시예에 따른 공정을 Dn으로 표기하였다.The results of analyzing the surface morphology of the formed Ru thin film using an atomic force microscope (AFM) are shown in Figure 2. Figure 2(a) shows the nucleation density calculated through surface analysis after performing the Ru deposition process of 10 ALD cycles. The Ru thin film deposited through the conventional technique was denoted as control (Ctrl), and the process according to this embodiment in which the precursor injection and purge steps were divided n times was denoted as Dn.

도 2의 (a)로부터 종래 기술에 비해 D2, D3, D4로 갈수록, 즉 분할 횟수가 증가함에 따라 핵생성밀도가 증가함을 확인할 수 있다. 또한, 도 2의 (b)와 (c)에 종래 기술(Ctrl) Ru 박막과 본 실시예(D4)에 따른 Ru 박막의 표면 형태를 AFM과 주사전자현미경(SEM)을 통해 관찰한 결과를 도시하였다. 도면으로부터 본 실시예의 박막에서 Ru 결정립의 크기가 감소했음을 확인할 수 있다.From (a) of Figure 2, it can be seen that the nucleation density increases as the number of divisions increases toward D2, D3, and D4 compared to the prior art. In addition, Figures 2 (b) and (c) show the results of observing the surface morphology of the prior art (Ctrl) Ru thin film and the Ru thin film according to this example (D4) through AFM and scanning electron microscopy (SEM). did. From the drawing, it can be seen that the size of Ru crystal grains in the thin film of this example has decreased.

도 3은 본 발명 실시예(4회 분할)와 종래기술에 따라 증착된 30 nm Ru 박막의 XRD 분석 결과이다. 도면으로부터 실시예에 따라 증착된 박막은 결정립 크기가 감소하고 결정성이 약화됨을 확인하였다. 즉 종래 기술(Ctrl)에 의한 경우의 결정립 크기는 8 nm이나, 본 실시예(D4)에 의한 경우의 결정립 크기는 5 nm로 현저히 감소하여 비정질에 가깝게 되었다. Figure 3 shows the XRD analysis results of a 30 nm Ru thin film deposited according to an embodiment of the present invention (split 4 times) and a conventional technique. From the drawing, it was confirmed that the grain size of the thin film deposited according to the example was reduced and the crystallinity was weakened. That is, the grain size in the case of the prior art (Ctrl) was 8 nm, but in the case of the present example (D4), the grain size was significantly reduced to 5 nm, becoming close to amorphous.

도 4에 각각 50, 85, 200 ALD 사이클의 종래 기술(Ctrl) 및 본 실시예(D4)에 따른 Ru 박막의 투과전자현미경(TEM) 단면분석 결과를 도시하였다. 도 4의 (a)에서 50 ALD 사이클을 진행한 경우 종래 기술에 따른 Ru 박막은 불연속적인 부분이 존재함과 달리, 본 실시예에 따른 Ru 박막은 동일한 두께에서도 연속적인 박막이 형성되었음을 확인할 수 있다. 또한, 도 4의 (b)와 (c)에서는 약 6 nm와 12 nm의 Ru 박막을 형성한 경우 본 실시예의 Ru 박막의 밀도가 종래 기술의 Ru 박막에 비해 우수함을 시각적으로 확인할 수 있으며, 표면의 거칠기 또한 실시예의 Ru 박막이 더 낮음을 알 수 있다.Figure 4 shows the results of transmission electron microscopy (TEM) cross-sectional analysis of Ru thin films according to the prior art (Ctrl) and this example (D4) at 50, 85, and 200 ALD cycles, respectively. When 50 ALD cycles were performed in (a) of Figure 4, it can be seen that, unlike the Ru thin film according to the prior art, which had discontinuous parts, the Ru thin film according to this embodiment was formed as a continuous thin film even at the same thickness. . In addition, in Figures 4 (b) and (c), it can be visually confirmed that when Ru thin films of about 6 nm and 12 nm are formed, the density of the Ru thin film of this example is superior to that of the prior art Ru thin film, and the surface It can be seen that the roughness of the Ru thin film of the example is also lower.

도 5의 (a)에 X선형광분석(Xray Fluorescence, XRF)을 통해, 증착된 Ru 박막의 면밀도를 사이클 수에 대해 도시하였다. 모든 ALD 사이클에 걸쳐 실시예(D4) 박막의 면밀도가 종래 기술(Control) 박막에 비해 높음을 확인할 수 있다. 이는 본 발명의 기술이 적용됨에 따라 전구체 피복율이 증가되어 단위 공정 당 Ru 증착량이 증가하였기 때문이다. 단위 공정 당 Ru 증착량과 핵생성 밀도 향상에 따라, 연속적 박막을 형성하기 위한 ALD 사이클의 수가 실시예의 Ru 박막에서 더 적으며, 이는 도 5의 (b)에서 확인할 수 있다. 결과적으로 도 5의 (c)에 도시한 바와 같이 실시예에 따라 제조된 Ru 박막의 밀도가 종래 기술에 비해 50~200 사이클 구간에서 약 3.5~4.5 g/cm3으로 크게 향상되었음을 확인할 수 있다.In Figure 5 (a), the areal density of the deposited Ru thin film is plotted against the number of cycles through X-ray fluorescence (XRF) analysis. It can be seen that the areal density of the thin film of Example (D4) is higher than that of the prior art (Control) thin film across all ALD cycles. This is because, as the technology of the present invention is applied, the precursor coverage rate increases and the amount of Ru deposition per unit process increases. As the amount of Ru deposition per unit process and the nucleation density are improved, the number of ALD cycles to form a continuous thin film is less in the Ru thin film of the example, which can be seen in (b) of FIG. 5. As a result, as shown in (c) of FIG. 5, it can be seen that the density of the Ru thin film manufactured according to the example was greatly improved to about 3.5 to 4.5 g/cm 3 in the 50 to 200 cycle range compared to the prior art.

한편, X선 광전자분광법(X-ray Photoelectron Spectroscopy, XPS)을 통해 박막 내 Ru의 화학적 결합상태를 분석하였으며, 결과를 도 6의 (a)에 도시하였다. 박막 내부(etched)에서는 시료 간의 유의미한 차이가 없었으나, 실시예(D4)에 따른 시료의 표면(as-dep) 분석 결과에서 종래 기술(Control) 대비 Ru 산화물(RuOx)이 상당 부분 감소하였다. 이는 본 발명에 따른 물리적 물성 향상에서 기인한다.Meanwhile, the chemical bonding state of Ru in the thin film was analyzed through X-ray Photoelectron Spectroscopy (XPS), and the results are shown in Figure 6 (a). There was no significant difference between the samples inside the thin film (etched), but in the surface (as-dep) analysis results of the sample according to Example (D4), Ru oxide (RuOx) was significantly reduced compared to the prior art (Control). This is due to the improvement in physical properties according to the present invention.

도 6의 (b)에 도시한 바와 같이 종래 기술을 통해 형성된 두께 3 nm의 Ru 박막은 전도성을 나타내지 않으며, 이는 물리적인 연속성이 낮기 때문이다. 반면 실시예(D2~D4)에 의한 시료는 낮은 비저항을 나타내며, 특히 분할 횟수가 가장 높은 D4는 60 uΩ·cm의 낮은 비저항을 확보하였음을 확인 가능하다. 박막 두께가 충분히 증가한 경우에도 D4 시료의 비저항이 더 우수하였으며, 도 6의 (c)에 그 결과를 도시하였다. 실시예에 따른 Ru 박막의 물리화학적 물성이 향상되면서, 도 6의 (d)에 도시한 바와 같이 D4 시료에서 박막의 일함수가 증가하였으며, 이론적 수치에 근접한 값을 나타내었다.As shown in (b) of FIG. 6, the 3 nm thick Ru thin film formed through the prior art does not exhibit conductivity, which is due to low physical continuity. On the other hand, it can be confirmed that the samples according to Examples (D2 to D4) showed low resistivity, and in particular, D4, which had the highest number of divisions, secured a low resistivity of 60 uΩ·cm. Even when the thin film thickness was sufficiently increased, the resistivity of the D4 sample was superior, and the results are shown in Figure 6 (c). As the physical and chemical properties of the Ru thin film according to the example were improved, the work function of the thin film increased in the D4 sample, as shown in (d) of FIG. 6, and showed a value close to the theoretical value.

실시예 2. TiN 박막 증착Example 2. TiN thin film deposition

본 실시예에서는 본 발명의 방법에 따라 TiN 박막을 형성하였다.In this example, a TiN thin film was formed according to the method of the present invention.

TiN 박막 형성을 위해 전구체로는 Ti(NEt2)4[TDEATi], Ti(NEtMe)4[TEMATi], Ti(NMe2)4[TDMATi], Ti(CpMe5)(OMe)3, 반응제로는 H2O, H2O2, O2, O3, NH3, H2, N2, tBuNH2, AyNH2, Me2NNH2 또는 이들의 혼합기체가 사용 가능하다.To form a TiN thin film, Ti(NEt 2 ) 4 [TDEATi], Ti(NEtMe) 4 [TEMATi], Ti(NMe 2 ) 4 [TDMATi], Ti(CpMe 5 )(OMe) 3 are used as precursors, and reactants are used as precursors. H 2 O, H 2 O 2 , O 2 , O 3 , NH 3 , H 2 , N 2 , tBuNH 2 , AyNH 2 , Me 2 NNH 2 or a mixture thereof can be used.

도 7의 공정 순서도와 같이, 종래 원자층 증착법의 TiN 증착 공정에 본 발명 기술을 적용하였다. 전구체 주입 및 전구체 퍼지 단계를 2회로 분할한 후 전구체 주입 및 전구체 퍼지 단계를 분할 횟수만큼 번갈아가며 단위 공정을 수행하였다. 즉, 총 공정 시간 및 모재 소모량은 분할하지 않은 경우와 동일하였다. 명시된 공정 시간은 정해진 것이 아니며, 공정 설비 및 조건에 따라 달라질 수 있다. 이후 상기 단위 공정에 대해 40초의 반응제 공급과 50초의 퍼지 공정을 수행하여 한 사이클을 완성하였다. 또한, 전구체 주입 및 전구체 퍼지 단계를 4회로 분할한 경우에 대해서도 동일한 사이클을 수행하였다.As shown in the process flow chart of FIG. 7, the present invention technology was applied to the TiN deposition process of the conventional atomic layer deposition method. After dividing the precursor injection and precursor purge steps into two, the unit process was performed by alternating the precursor injection and precursor purge steps as many times as the division. In other words, the total process time and base material consumption were the same as in the case of no division. The specified process time is not fixed and may vary depending on process equipment and conditions. Afterwards, for the unit process, a 40-second reactant supply and a 50-second purge process were performed to complete one cycle. In addition, the same cycle was performed when the precursor injection and precursor purge steps were divided into four times.

이와 같은 전구체 주입 단계 및 전구체 퍼지 단계의 반복, 반응제 주입 단계, 반응제 퍼지 단계로 구성된 일련의 공정을 단위 공정으로 하고, 이러한 단위 공정을 수 사이클 수행함으로써 TiN 박막을 형성하였다.A series of processes consisting of repetition of the precursor injection step and precursor purge step, a reactant injection step, and a reactant purge step were set as a unit process, and a TiN thin film was formed by performing several cycles of these unit processes.

도 8의 (a)에 도시한 TiN 박막의 면밀도 측정 결과에서, 본 실시예에 의한 2회 분할(D2), 4회 분할(D4) 경우의 TiN 박막 내 Ti 면밀도가 종래 기술(Ctrl)로 증착된 시료에 비해 향상됨을 알 수 있다. 또 본 발명 실시예 중에서도 분할 횟수가 더 많은 D4 시료가 D2 시료보다 면밀도가 더 높았다. 한편, 본 발명 기술의 적용을 위한 최적 공정 분할 횟수는 본 실시예에서는 2회 및 4회로 하였으나, 이는 공정 설비 및 조건에 따라 달라질 수 있으며, 더 많은 횟수로 분할 가능하다.From the areal density measurement results of the TiN thin film shown in (a) of Figure 8, the Ti areal density in the TiN thin film in the case of 2 divisions (D2) and 4 divisions (D4) according to this embodiment was deposited using the conventional technique (Ctrl). It can be seen that there is an improvement compared to the prepared sample. Also, among the examples of the present invention, the D4 sample with a greater number of divisions had a higher areal density than the D2 sample. Meanwhile, the optimal number of process divisions for application of the present invention technology is 2 and 4 in this embodiment, but this may vary depending on process equipment and conditions, and may be divided more times.

도 9에 TiN 박막의 화학적 조성 및 결합상태를 XPS로 분석한 결과를 도시하였다. 도 9의 (a)로부터 본 실시예의 경우 Ti-N peak이 증가함을 알 수 있으며, 이는 박막 물성 향상에 따라 산화가 억제되면서 증착 시 형성된 Ti-N 결합이 대기 노출 시에도 유지되기 때문이다. 도 9의 (b), (c)에서는 전구체의 리간드로부터 발생하는 C-N peak과 박막 산화로 인해 발생하는 carbonate peak이 감소함을 알 수 있다. 이는 발명 기술 적용 시 표면 반응 효율이 증대되어 리간드가 효과적으로 제거되며, 그로 인해 박막의 물성과 내산화성이 향상됨을 의미한다.Figure 9 shows the results of XPS analysis of the chemical composition and bonding state of the TiN thin film. From Figure 9 (a), it can be seen that the Ti-N peak increases in this example, and this is because oxidation is suppressed as the thin film properties are improved and the Ti-N bond formed during deposition is maintained even when exposed to air. In Figures 9 (b) and (c), it can be seen that the C-N peak generated from the precursor ligand and the carbonate peak generated due to thin film oxidation decrease. This means that when the invention technology is applied, the surface reaction efficiency is increased and the ligand is effectively removed, thereby improving the physical properties and oxidation resistance of the thin film.

도 10에 도시한 TiN 박막의 비저항 측정 결과에서, 20 nm TiN 박막의 비저항이 종래기술(Ctrl), 본 실시예 D2, 본 실시예 D4의 순서로 감소함을 확인하였다. 이는 본 발명 기술의 적용에 의해 박막의 물리화학적 특성이 향상됨에 기인한다.In the resistivity measurement results of the TiN thin film shown in Figure 10, it was confirmed that the resistivity of the 20 nm TiN thin film decreased in the order of the prior art (Ctrl), Example D2, and Example D4. This is due to the improvement of the physicochemical properties of the thin film by applying the present technology.

실시예 3. HfOExample 3. HfO 22 박막 증착 thin film deposition

본 실시예에서는 본 발명의 방법에 따라 HfO2 박막을 형성하였다.In this example, an HfO 2 thin film was formed according to the method of the present invention.

HfO2 박막 형성을 위해 전구체로는 Hf(NEtMe)4[TDMAHf], Hf(Cp)(NMe2)3, Hf(NEt2)4[TDEAHf], Hf(NEtMe)4[TEMAHf], 반응제로는 H2O, H2O2, O2, O3, NH3, H2, N2, tBuNH2, AyNH2, Me2NNH2 또는 이들의 혼합기체가 사용 가능하다.To form the HfO 2 thin film, Hf(NEtMe) 4 [TDMAHf], Hf(Cp)(NMe 2 ) 3 , Hf(NEt 2 ) 4 [TDEAHf], and Hf(NEtMe) 4 [TEMAHf] are used as precursors, and as reactants, H 2 O, H 2 O 2 , O 2 , O 3 , NH 3 , H 2 , N 2 , tBuNH 2 , AyNH 2 , Me 2 NNH 2 or a mixture thereof can be used.

도 11의 공정 순서도와 같이 본 실시예에서는 종래의 HfO2 ALD 공정에 본 발명 기술을 적용하였으며, 기존 원자층 증착 공정의 전구체 주입 시간 및 전구체 퍼지 시간을 4회로 분할한 후 분할한 횟수만큼 반복하여 단위 공정을 수행하였다. 즉, 총 공정 시간 및 모재 소모량은 분할하지 않은 경우와 동일하였다. 명시된 공정 시간은 정해진 것이 아니며, 공정 장비 혹은 조건에 따라 달라질 수 있다. 이후 상기 단위 공정에 대해 4초의 반응제 공급과 40초의 퍼지 공정을 수행하여 한 사이클을 완성하였다.As shown in the process flow chart of FIG. 11, in this embodiment, the present invention technology was applied to the conventional HfO 2 ALD process, and the precursor injection time and precursor purge time of the existing atomic layer deposition process were divided into 4 times and then repeated as many times as the division. A unit process was performed. In other words, the total process time and base material consumption were the same as in the case of no division. The specified process time is not fixed and may vary depending on process equipment or conditions. Afterwards, for the unit process, a 4 second supply of reactant and a 40 second purge process were performed to complete one cycle.

상기 전구체 주입 및 퍼지 단계, 반응제 주입 및 퍼지 단계로 구성된 일련의 공정을 단위 공정으로 하고, 단위 공정을 연속적으로 다수 사이클 반복함으로써 HfO2 박막을 형성하였다.A series of processes consisting of the precursor injection and purge steps, and the reactant injection and purge steps were set as unit processes, and the unit processes were continuously repeated for multiple cycles to form an HfO 2 thin film.

도 12의 (a)에 도시한 HfO2 박막의 면밀도 측정 결과로부터, 발명 기술을 적용한 D4 HfO2 박막 내 Hf 면밀도가 종래 기술(Control)의 시료 대비 향상되었으며, Hf 면밀도와 HfO2 박막의 두께를 이용해 산출한 공칭 밀도 또한 향상되었음을 확인할 수 있다. 도 12의 (b)와 (c)에는 각각 종래 기술과 본 실시예 기술로 증착한 20 nm 두께의 HfO2 박막에 대한 AFM 표면 분석 결과를 도시하였다. 본 실시예의 기술을 적용한 경우 HfO2 박막의 평균적인 결정립 크기가 감소하였고 이를 통해 핵생성 밀도가 증가함을 알 수 있다.From the areal density measurement results of the HfO 2 thin film shown in (a) of Figure 12, the Hf areal density in the D4 HfO 2 thin film to which the invention technology was applied was improved compared to the sample of the prior art (Control), and the Hf areal density and the thickness of the HfO 2 thin film were It can be seen that the nominal density calculated using this method has also improved. Figures 12 (b) and (c) show the results of AFM surface analysis of a 20 nm thick HfO 2 thin film deposited using the conventional technology and the present example technology, respectively. When the technology of this example was applied, the average grain size of the HfO 2 thin film decreased, and it can be seen that the nucleation density increased.

도 13은 종래 기술 및 본 발명 실시예에 따라 증착한 20 nm HfO2 박막의 XRD 분석 결과이다. 도면에서 본 발명 실시예(DF-ALD)에 따른 경우, 종래 기술(Control)에 의한 경우에 비해 결정립 크기가 감소하고 결정성이 약화됨을 확인하였다. 즉 종래 기술에 의한 경우의 결정립 크기는 4.5 nm이나, 본 실시예에 따른 박막의 결정립 크기는 2.4 nm로서 현저히 감소하여 비정질에 가깝게 되었다.Figure 13 shows the results of XRD analysis of a 20 nm HfO 2 thin film deposited according to the prior art and an embodiment of the present invention. In the drawing, it was confirmed that according to the embodiment of the present invention (DF-ALD), the grain size was reduced and crystallinity was weakened compared to the case according to the prior art (Control). That is, the grain size in the case of the prior art was 4.5 nm, but the grain size of the thin film according to this example was significantly reduced to 2.4 nm, becoming close to amorphous.

도 14에 종래 기술 및 본 실시예 기술을 적용한 HfO2 박막의 단면 HRTEM 분석 결과를 도시하였다. 도 14의 (a)에서 종래 기술(Control)의 HfO2 박막은 Si 기판과의 사이에 약 1.8 nm의 계면층(interfacial layer, IL)이 형성된 반면, 도 14의 (b)에 나타난 본 실시예(D4)에 따라 형성된 HfO2 박막은 약 0.6 nm의 IL이 형성되어 상당 부분 감소한 것을 확인할 수 있다. 이는 본 실시예에 따라 Si 기판의 산화 억제에 기인한 효과이다.Figure 14 shows the results of cross-sectional HRTEM analysis of the HfO 2 thin film using the conventional technology and the technology of this example. In Figure 14 (a), the HfO 2 thin film of the prior art (Control) has an interfacial layer (IL) of about 1.8 nm formed between it and the Si substrate, while the present embodiment shown in Figure 14 (b) It can be seen that in the HfO 2 thin film formed according to (D4), IL of about 0.6 nm was formed and decreased significantly. This is an effect due to suppression of oxidation of the Si substrate according to this embodiment.

도 15에 HfO2 박막의 화학적 결합상태 및 박막 내 조성을 XPS 및 time-of-flight secondary ion mass spectrometry(ToF-SIMS)로 분석한 결과를 도시하였다. 도 15의 (a)로부터 본 실시예에 따른 HfO2 층의 화학적 결합 상태에는 변화가 없는 것을 알 수 있다. 도 15의 (b), (c)로부터 본 실시예 기술의 적용을 통한 HfO2/Si 계면에서의 화학적 결합 상태 차이를 확인할 수 있는데, 이는 발명 기술 적용 시 전구체의 표면 충진율이 향상되고 그에 따라 SiOx가 감소하였음을 의미하며, 이는 도 14에 도시한 HRTEM 분석 결과와 경향성이 일치한다.Figure 15 shows the results of analyzing the chemical bonding state of the HfO 2 thin film and the composition within the thin film using XPS and time-of-flight secondary ion mass spectrometry (ToF-SIMS). From Figure 15 (a), it can be seen that there is no change in the chemical bonding state of the HfO 2 layer according to this embodiment. From Figures 15 (b) and (c), the difference in chemical bonding state at the HfO 2 /Si interface can be confirmed through application of the technology of this example, which means that when applying the inventive technology, the surface filling ratio of the precursor is improved, and accordingly, SiO This means that x has decreased, and this trend is consistent with the HRTEM analysis results shown in FIG. 14.

도 16의 (a)에 도시한 종래 기술 및 본 실시예 기술로 증착한 HfO2 박막의 유전율 측정 결과로부터 본 실시예(D4)에 따른 HfO2에서 유전율이 향상됨을 확인하였다. 실시예 기술 적용에 따른 계면트랩밀도의 레벨 및 편차(variation)의 개선 효과를 확인하였으며 그 결과를 도 16의 (b)에 도시하였다. From the dielectric constant measurement results of the HfO 2 thin film deposited using the conventional technology and the present embodiment technology shown in (a) of FIG. 16, it was confirmed that the dielectric constant was improved in the HfO 2 according to this embodiment (D4). The effect of improving the level and variation of the interface trap density according to the application of the example technology was confirmed, and the results are shown in (b) of FIG. 16.

도 16의 (c)에 HfO2 박막의 두께에 따른 누설전류 값을 도시하였는데, 실시예의 경우 박막의 두께에 관계 없이 누설전류가 감소함을 알 수 있다. 종래 기술 및 본 실시예 기술로 증착한 HfO2 박막의 절연파괴강도 분석 결과를 도 16의 (d)에 도시하였는데, 평균적인 절연파괴강도는 실시예 기술을 적용한 경우 증가함을 확인하였다. 이와 같이 본 실시예에 따른 HfO2 박막의 다양한 전기적 특성 개선은 상기한 물리화학적 특성 향상에 기인한다.In Figure 16 (c), the leakage current value according to the thickness of the HfO 2 thin film is shown. In the example, it can be seen that the leakage current decreases regardless of the thickness of the thin film. The results of the analysis of the dielectric breakdown strength of the HfO 2 thin film deposited using the conventional technology and the present technology are shown in (d) of FIG. 16, and it was confirmed that the average dielectric breakdown strength increased when the example technology was applied. As such, the improvement in various electrical properties of the HfO 2 thin film according to this embodiment is due to the improvement in physical and chemical properties described above.

이상 본 발명을 바람직한 실시예를 통해 설명하였는데, 상기 실시예는 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것이며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 기술 사상의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서 본 발명의 보호 범위는 특정 실시예가 아닌 청구범위에 의하여 해석되어야 할 것이다.The present invention has been described above through preferred embodiments, which are merely illustrative examples of the technical idea of the present invention, and those skilled in the art will understand the essential characteristics of the technical idea. Various modifications and variations will be possible without departing from the scope. Therefore, the scope of protection of the present invention should be interpreted in terms of the claims rather than the specific embodiments.

Claims (10)

SiO2 기판 상에 Ru 박막을 형성하는 원자층 증착법으로서,
(1)임의의 기준 시간 동안 1회 이루어지는 전구체 주입 단계 및 상기 주입된 전구체 퍼지 단계를, 상기 기준 시간을 n회(n≥2) 분할한 회수만큼 반복하여 수행하는 단계;
(2)반응제를 주입하는 단계; 및
(3)상기 반응제를 퍼지하는 단계를 포함하며,
상기 단계 (1) 내지 단계 (3)을 단위 공정으로 하고, 상기 단위 공정을 다수 사이클 반복 수행하되, 전체 공정 시간은 동일한 조건의 종래 원자층 증착 공정과 같아지도록 박막을 형성하며,
상기 전구체는 bis(ethylcyclopentadienyl) Ruthenium [Ru(EtCp2)], η4-2,3-dimethylbutadiene ruthenium tricarbonyl [Ru(DMBD)(CO)3], RuO4, cis-dicarbonyl bis(5-methylhexane-2,4-dionate)Ru [Carish Ru] 중 어느 하나이며, 상기 반응제는 H2O, H2O2, O2, O3, NH3, H2, N2, tBuNH2, AyNH2, Me2NNH2 중 어느 하나 또는 이들의 혼합기체이며,
상기 기준 시간은 전구체 주입에 대해서 4초, 전구체 퍼지에 대해 20초이고, n은 4이며,
상기 반응제를 주입하는 단계는 1.5초 동안 이루어지며,
상기 반응제를 퍼지하는 단계는 15초 동안 이루어지며,
형성된 Ru 박막은 두께가 30nm이며 결정립 크기가 5nm인 비정질인 것을 특징으로 하는 원자층 증착법.
An atomic layer deposition method for forming a Ru thin film on a SiO 2 substrate,
(1) repeating the precursor injection step and the injected precursor purge step performed once during an arbitrary reference time, the number of times divided by the reference time n times (n≥2);
(2) Injecting a reactive agent; and
(3) including purging the reactive agent,
Steps (1) to (3) are set as unit processes, and the unit processes are repeated for multiple cycles to form a thin film so that the total process time is the same as the conventional atomic layer deposition process under the same conditions,
The precursors include bis(ethylcyclopentadienyl) Ruthenium [Ru(EtCp 2 )], η4-2,3-dimethylbutadiene ruthenium tricarbonyl [Ru(DMBD)(CO) 3 ], RuO 4 , cis-dicarbonyl bis(5-methylhexane-2, 4-dionate)Ru [Carish Ru], and the reactive agent is H 2 O, H 2 O 2 , O 2 , O 3 , NH 3 , H 2 , N 2 , tBuNH 2 , AyNH 2 , Me 2 Any one of NNH 2 or a mixture thereof,
The reference time is 4 seconds for precursor injection and 20 seconds for precursor purge, n is 4,
The step of injecting the reactive agent takes place for 1.5 seconds,
The step of purging the reactant is performed for 15 seconds,
An atomic layer deposition method, characterized in that the formed Ru thin film is amorphous with a thickness of 30 nm and a grain size of 5 nm.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020220137320A 2021-10-26 2022-10-24 Atomic layer deposition having precursor feeding and purging process for controlling crystalline properties of the film KR102580742B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210143140 2021-10-26
KR1020210143140 2021-10-26

Publications (2)

Publication Number Publication Date
KR20230059747A KR20230059747A (en) 2023-05-03
KR102580742B1 true KR102580742B1 (en) 2023-09-20

Family

ID=86380890

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220137320A KR102580742B1 (en) 2021-10-26 2022-10-24 Atomic layer deposition having precursor feeding and purging process for controlling crystalline properties of the film

Country Status (1)

Country Link
KR (1) KR102580742B1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080064259A (en) * 2007-01-04 2008-07-09 재단법인서울대학교산학협력재단 Thin film deposition method comprising improved metal precursor feeding and purging step
KR20090044649A (en) * 2007-11-01 2009-05-07 주식회사 하이닉스반도체 Method for fabricating non-volatile random access memory
KR101309043B1 (en) * 2012-01-31 2013-09-17 영남대학교 산학협력단 Method for forming ruthenium thin film by atomic layer deposition and ruthenium thin film using the same
KR101628843B1 (en) * 2014-02-24 2016-06-10 영남대학교 산학협력단 Method for forming ruthenium containing thin film by atomic layer deposition
US9478411B2 (en) * 2014-08-20 2016-10-25 Lam Research Corporation Method to tune TiOx stoichiometry using atomic layer deposited Ti film to minimize contact resistance for TiOx/Ti based MIS contact scheme for CMOS
KR102048128B1 (en) * 2017-12-06 2019-11-22 부산대학교 산학협력단 Method for the formation of Ru-TaN thin films by Plasma-enhanced atomic layer deposition, and the semiconductor device

Also Published As

Publication number Publication date
KR20230059747A (en) 2023-05-03

Similar Documents

Publication Publication Date Title
KR102013927B1 (en) Deposition of smooth metal nitride films
CN109661481B (en) Using MoOC14CVD Mo deposition
US7135207B2 (en) Chemical vapor deposition method using alcohol for forming metal oxide thin film
JP5184357B2 (en) Method for producing vanadium oxide thin film
US7052953B2 (en) Dielectric material forming methods and enhanced dielectric materials
KR102218668B1 (en) Fluorine-containing conductive films
Ahn et al. Characteristics of TiN thin films grown by ALD using TiCl 4 and NH 3
US20200131628A1 (en) Method for forming molybdenum films on a substrate
JP2010508661A (en) Vapor phase growth of metal carbide films.
KR20090039083A (en) Method of depositing ruthenium film
Kwon et al. Atomic layer deposition of Ru thin films using (2, 4-dimethyloxopentadienyl)(ethylcyclopentadienyl) Ru and the effect of ammonia treatment during the deposition
CN110735128A (en) Erosion resistant metal fluoride coatings deposited by atomic layer deposition
CN110735129A (en) Erosion resistant metal oxide coatings deposited by atomic layer deposition
JP7321623B2 (en) Nanocrystalline graphene and method of forming nanocrystalline graphene
JP2009111275A (en) Method for manufacturing lanthanum oxide compound
EP2049705A2 (en) Improved methods for atomic layer deposition
KR102580742B1 (en) Atomic layer deposition having precursor feeding and purging process for controlling crystalline properties of the film
US20230139917A1 (en) Selective deposition using thermal and plasma-enhanced process
KR20210069731A (en) continuous linerless amorphous metal films
Wang et al. Influences of oxygen source and substrate temperature on the unusual growth mechanism of atomic layer deposited magnesium oxide using bis (cyclopentadienyl) magnesium precursor
KR100996884B1 (en) Semiconductor device empolying an oxide layer prepared by ecr-ald, preparation method thereof and the uses therof
KR20110103185A (en) Method of depositing ruthenium oxide film using ruthenium tetroxide
US20240301552A1 (en) Ultra high-k hafnium oxide and hafnium zirconium oxide films
Kim et al. Atomic layer deposition of HfO2 onto Si using Hf (NMe2) 4
KR20070114519A (en) Dielectric layer in capacitor and fabricating using the same and capacitor in semiconductor device and fabricating using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)