KR102571898B1 - 고조파 보상을 구비한 필터링 회로 - Google Patents

고조파 보상을 구비한 필터링 회로 Download PDF

Info

Publication number
KR102571898B1
KR102571898B1 KR1020210050461A KR20210050461A KR102571898B1 KR 102571898 B1 KR102571898 B1 KR 102571898B1 KR 1020210050461 A KR1020210050461 A KR 1020210050461A KR 20210050461 A KR20210050461 A KR 20210050461A KR 102571898 B1 KR102571898 B1 KR 102571898B1
Authority
KR
South Korea
Prior art keywords
voltage
capacitor
freewheeling
coupled
terminal
Prior art date
Application number
KR1020210050461A
Other languages
English (en)
Other versions
KR20220030867A (ko
Inventor
치아-창 슈
웨이-팅 첸
솅-지안 첸
Original Assignee
델타 일렉트로닉스, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 델타 일렉트로닉스, 인크. filed Critical 델타 일렉트로닉스, 인크.
Publication of KR20220030867A publication Critical patent/KR20220030867A/ko
Application granted granted Critical
Publication of KR102571898B1 publication Critical patent/KR102571898B1/ko

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4266Arrangements for improving power factor of AC input using passive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • H02M1/126Arrangements for reducing harmonics from ac input or output using passive filters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/001Energy harvesting or scavenging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0006Arrangements for supplying an adequate voltage to the control circuit of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • H02M1/143Arrangements for reducing ripples from dc input or output using compensating arrangements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4216Arrangements for improving power factor of AC input operating from a three-phase input voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4275Arrangements for improving power factor of AC input by adding an auxiliary output voltage in series to the input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Rectifiers (AREA)

Abstract

교류 전압을 입력받는 브릿지 정류 회로와 입력 커패시터에 커플링 결합되는 고조파 보상을 구비한 필터링 회로에 있어서, 브릿지 정류 회로는 활선 단자, 중성선 단자, 양극 단자 및 음극 단자를 포함하여 구성되고, 필터링 회로는 프리휠링 커패시터, 프리휠링 스위치 및 단방향 스위치를 포함하여 구성된다. 프리휠링 커패시터의 일단은 활선 단자에 커플링 결합되고, 프리휠링 스위치의 일단은 프리휠링 커패시터의 타단에 커플링 결합되며, 프리휠링 스위치의 타단은 양극 단자 및 입력 커패시터에 커플링 결합된다. 단방향 스위치의 일단은 프리휠링 커패시터 및 프리휠링 스위치에 커플링 결합되고, 단방향 스위치의 타단은 전원을 입력받는다. 그 중, 프리휠링 스위치의 제1 도통 전압은 브릿지 정류 회로 중 브릿지 정류 회로의 활선 단자로부터 양극 단자까지의 제2 도통 전압보다 크다.

Description

고조파 보상을 구비한 필터링 회로{FILTER CIRCUIT WITH HARMONIC COMPENSATION}
본 발명은 고조파 보상을 구비한 필터링 회로에 관한 것으로서, 더욱 상세하게는 회로 제어 방식의 간단화 및 원가를 고려하여, 선택적으로 수동 전자 부품으로만 구성되는 고조파 보상을 구비한 필터링 회로에 관한 것이다.
총 고조파 왜곡(total harmonic distortion, THD)은 전기 신호 고조파 왜곡의 지표 중 하나로서, 통상적인 정의 방식에 따르면 모든 고조파 성분 전력의 합과 기본 주파수 신호 전력의 비례를 가리킨다. 일부 경우에는 왜곡 인자(Distortion factor)를 이용하여 표시할 수도 있다. 총 고조파 왜곡이 클 수록, 고조파 성분의 비례가 더욱 크다는 것을 의미한다. 고조파 왜곡은 비선형 요소로 인하여 원하지 않는 신호가 입력 신호에 중첩되어 초래되는 현상으로서, 상기 원하지 않는 신호는 모두 초기 입력 신호의 배수가 되는 주파수를 가진다.
종래의 대부분 전자 장치의 내부는 모두 직접 또는 간접적으로 직류 전압을 이용하여 작동된다. 따라서, 종래의 대부분 전자 장치의 입력단은 브릿지 정류기를 이용하여 교류 전압을 정류하여 직류 전압으로 변환시킨다. 브릿지 정류기의 부족한 부분은, 입력 전압과 입력 전류에 존재하는 위상 차이로 인하여 역률의 인하를 초래하고, 입력 전류에 높은 고조파 성분이 포함되는데 있다. 따라서, 입력 전압 및 입력 전류에 대하여 고조파 보상을 수행하지 않을 경우, 입력 전류 파형의 엄중한 왜곡으로 인하여 전력 시스템의 불안정이 초래될 뿐만 아니라, 심각한 경우에는 전력 공급이 중단될 위험도 있다.
이로 인하여, 본 발명의 발명인이 해결하고자 하는 주요한 과제는, 고조파 보상을 구비한 필터링 회로를 제공하고, 더 나아가서 선택적으로 완전히 수동형의 전자 부품을 사용하여 필터링 회로를 구성할 때에도 고조파 보상 효과를 달성할 수 있도록 하기 위한 것이다.
상기와 같은 문제를 해결하기 위하여, 본 발명은 고조파 보상을 구비한 필터링 회로를 제공하여 종래 기술에 존재하는 문제를 극복하고자 한다.
따라서, 본 발명은 교류 전압을 입력받는 브릿지 정류 회로와 입력 커패시터에 커플링 결합되는 고조파 보상을 구비한 필터링 회로에 있어서, 브릿지 정류 회로는 활선 단자, 중성선 단자, 양극 단자 및 음극 단자를 포함하여 구성되고, 그 중, 필터링 회로는, 일단이 활선 단자에 커플링 결합되는 프리휠링 커패시터, 일단이 프리휠링 커패시터의 타단에 커플링 결합되고 타단이 양극 단자 및 입력 커패시터에 커플링 결합되는 프리휠링 스위치, 및, 일단이 프리휠링 커패시터 및 프리휠링 스위치에 커플링 결합되고, 타단이 전원을 입력받는 단방향 스위치를 포함하여 구성된다. 상기 단방향 스위치를 통해서 상기 프리휠링 커패시터 및 상기 프리휠링 스위치 사이의 노드에 상기 전원이 순방향으로 제공된다. 그 중, 프리휠링 스위치의 제1 도통 전압은 브릿지 정류 회로 중 브릿지 정류 회로의 활선 단자로부터 양극 단자까지의 제2 도통 전압보다 크다.
본 발명의 주요한 목적 및 효과는, 클램프 회로를 이용하여 제1 다이오드를 제2 다이오드에 직렬 연결하는 회로 구조를 통하여 두개 다이오드의 크로스오버 전압(crossover voltage, 跨壓)이 브릿지 정류 다이오드의 크로스오버 전압보다 크도록 할 수 있는데 있다. 이를 통하여, 브릿지 정류 다이오드 및 프리휠링 스위치가 모두 순방향으로 도통될 때 프리휠링 커패시터에 부전압이 걸리지 않도록 함으로써, 필터링 회로가 고조파 보상을 수행할 때의 보상 효과를 향상시키는 효과를 달성할 수 있다.
본 발명에서 소정의 목적을 달성하기 위하여 사용하는 기술, 수단 및 효과를 더욱 명확하게 이해할 수 있도록, 이하 본 발명에 관한 상세한 설명 및 도면을 참조하여 본 발명의 목적, 특징 및 특점을 상세하게 설명하고자 한다. 단, 첨부된 도면은 참고 및 설명의 목적으로 사용될 뿐, 본 발명을 한정하려는 것은 아니다.
도 1은 본 발명의 고조파 보상을 구비한 필터링 회로의 회로 블록도이다.
도 2a는 본 발명의 고조파 보상을 구비한 필터링 회로가 교류 전압의 음의 반주기에 있어서의 전류 경로도이다.
도 2b는 본 발명의 고조파 보상을 구비한 필터링 회로가 교류 전압의 양의 반주기에 있어서의 전류 경로도이다.
도 3은 본 발명의 교류 전압 및 고조파 보상 후의 입력 전류의 파형 예시도이다.
이하, 첨부된 도면을 참조하여 본 발명의 기술적 내용 및 상세한 설명을 소개하면 다음과 같다.
도 1은 본 발명의 고조파 보상을 구비한 필터링 회로의 회로 블록도이다. 고조파 보상을 구비한 필터링 회로(100)는 입력 전류(Iin)에 대하여 고조파 보상을 수행함으로써 입력 전류(Iin) 파형의 고조파 왜곡을 줄일 수 있다. 브릿지형 정류 회로(200)(이하, 브릿지 정류 회로(200)로 약함)는 4개의 브릿지 정류 다이오드(Db1~Db4)를 포함하여 구성되되, 활선 단자(L) 및 접지선 단자(N)를 통하여 교류 전압(Vac)을 입력받고, 양극 단자(A) 및 음극 단자(B)를 통하여 반파 전압(Vh)를 제공한다. 반파 전압(Vh)은 입력 커패시터(Cin)에 의하여 필터링되어 안정적인 직류 전압(Vdc)를 제공함으로써, 후단에 커플링 결합되는 전자 장치(300)로 전원을 공급한다. 4개의 브릿지 정류 다이오드(Db1~Db4)를 상세하게 설명하면 다음과 같다. 필터링 회로(100)는 브릿지 정류 회로(200) 및 입력 커패시터(Cin)에 커플링 결합되고, 프리휠링 커패시터(Cf), 프리휠링 스위치(10) 및 단방향 스위치(D)를 포함하여 구성된다. 프리휠링 커패시터(Cf)의 일단은 활선 단자(L)에 커플링 결합되고, 프리휠링 커패시터(Cf)의 타단은 프리휠링 스위치(10)의 일단 및 단방향 스위치(D)의 일단에 커플링 결합되며, 프리휠링 스위치(10)의 타단은 양극 단자(A) 및 입력 커패시터(Cin)의 일단에 커플링 결합된다. 단방향 스위치(D)의 타단은 전원(Vs)에 커플링 결합되고, 전원(Vs)은 단방향 스위치(D)를 통하여 프리휠링 커패시터(Cf)를 충전시킬 수 있으며, 본 발명의 일 실시예에 있어서, 단방향 스위치(D)는 하나의 다이오드일 수 있지만 이에 한정되는 것은 아니라, 전원(Vs)이 프리휠링 커패시터(Cf)를 충전시킬 수 있고 또한 프리휠링 커패시터(Cf)가 방전할 때 에너지가 전원(Vs)으로의 역류를 방지할 수 있는 부품이라면 모두 본 실시예의 범주에 포함되는 바, 예를 들면 스위치와 대응되는 제어 회로를 조합 사용할 수 있다. 필터링 회로(100)는 전원 생성 회로(20)를 더 포함하여 구성될 수 있고, 전원 생성 회로(20)는 전원(Vs)의 공급자로 사용될 수 있다. 전원 생성 회로(20)의 일단은 단방향 스위치(D)의 타단에 커플링 결합되고, 전원 생성 회로(20)의 타단은 음극 단자(B)(즉, 접지점(GND))에 커플링 결합된다.
구체적으로 말하면, 프리휠링 스위치(10)는 주로 플리휠링 커패시터(Cf)로부터 입력 커패시터(Cin) 까지의 방전 경로를 제공한다. 일 실시예에 있어서, 프리휠링 스위치(10)는 직렬 커플링 결합되는 제1 다이오드(D1) 및 제2 다이오드(D2)를 포함하여 구성되고, 제1 다이오드(D1)의 양극은 프리휠링 커패시터(Cf)의 타단 및 단방향 스위치(D)의 일단에 커플링 결합되며, 제2 다이오드(D2)의 음극은 양극 단자(A) 및 입력 커패시터(Cin)에 커플링 결합된다. 전원 생성 회로(20)는 보조 코일(22) 및 전압 안정화 커패시터(Cs)를 포함하여 구성되고, 보조 코일(22)의 일단은 음극 단자(B)에 커플링 결합된다. 전압 안정화 커패시터(Cs)의 일단은 보조 코일(22)의 타단에 커플링 결합되고, 전압 안정화 커패시터(Cs)의 타단은 음극 단자(B)에 커플링 결합된다. 보조 코일(22)은 보조 전압(Vaux)을 생성하여 전압 안정화 커패시터(Cs)를 충전시킴으로써, 전압 안정화 커패시터의 양단에 전원(Vs)을 형성한다.
더 나아가서, 보조 코일(22)은 주로 변압기(미도시)가 구비된 전자 장치(300)(통상적으로 전력 변환 장치임)에 커플링 결합되고, 커플링 변압기를 통하여 보조 전압(Vaux)을 유도한다. 전압 안정화 커패시터(Cs)는 보조 코일(22)과 병렬 연결되여, 보조 전압(Vaux)이 안정적인 전원(Vs)이 되도록 하고 컨트롤러(IC)의 작동에 필요한 전력을 제공함으로써, 전자 장치(300)가 안정적으로 작동할 수 있도록 제어한다. 다시 말하면, 전원 생성 회로(20)는 컨트롤러(IC)에 공급되는 전력 공급원(전원(Vs))으로서, 본 발명의 일 실시예에 있어서, 전원 생성 회로(20)를 통하여 안정적인 전원(Vs)을 공급할 수 있는 동시에 공급되는 전원(Vs)을 필터링 회로(100)로 공급하여 고조파 보상의 목적으로 사용함으로써, 필터링 회로(100)가 회로 부품의 수량을 줄이고 별도의 전원 생성 회로를 추가 구성하지 않아도 되는 효과를 달성할 수 있다. 하지만, 실제적인 회로 사용 수요에 따라, 전원(Vs)은 외부의 전원으로부터 제공되거나, 또는 전압 분배 회로(미도시)를 이용하여 전자 장치(300)의 어느 노드의 전압을 분배하는 등 방식으로 취득할 수도 있다.
그 중, 전원 생성 회로(20)는 프리휠링 스위치(Dc)를 더 포함하여 구성될 수 있고, 프리휠링 스위치(Dc)의 일단은 보조 코일(22)에 커플링 결합되고 타단은 전압 안정화 커패시터(Cs)에 커플링 결합된다. 구체적으로 말하면, 전자 장치(300)의 유형(예를 들면 플라이 백 변환 장치 또는 불연속 도통 모드에서 작동하는 변환 장치 등, 단 이에 한정되는 것은 아님) 또는 보조 코일(22) 극성의 관계로 인하여, 보조 코일(22)에서 유도되는 보조 전압(Vaux)은 부전압을 포함할 수 있다. 하지만, 컨트롤러(IC)는 통상적으로 정전압에만 내성이 있고 필터링 회로(100)도 정전압의 전원(Vs)을 이용하여 고조파 보상을 수행하여야 하기 때문에, 프리휠링 스위치(Dc)는 전압 변환 시의 정류용 목적으로 보조 코일(22)을 제공할 수 있을 뿐만 아니라, 컨트롤러(IC) 및 필터링 회로(100)로 정확한 전원 극성을 제공하도록 확보할 수도 있다.
도 2a는 본 발명의 고조파 보상을 구비한 필터링 회로가 교류 전압의 음의 반주기에 있어서의 전류 경로도이고, 도 2b는 본 발명의 고조파 보상을 구비한 필터링 회로가 교류 전압의 양의 반주기에 있어서의 전류 경로도이다. 이하 다시 도 1을 참조한다. 도 2a에 도시된 바와 같이, 필터링 회로(100)는 교류 전압(Vac)의 음의 반주기에 있어서 2개의 전류 경로를 형성한다. 그 중 하나는 음의 반주기의 고조파 보상 경로(Lnh)이고, 다른 하나는 음의 반주기의 정류 경로(Lnr)이다. 교류 전압(Vac)의 음의 반주기에 있어서, 단지 2개 시점에서 전류 경로가 형성된다. 그 중 하나는 교류 전압(Vac)이 입력 커패시터(Cin) 상의 직류 전압(Vdc)보다 클 때, 음의 반주기의 정류 경로(Lnr)가 형성된다. 그 경로는 교류 전압(Vac)의 중성선 단자(N), 브릿지 정류 다이오드(Db4), 양극 단자(A), 입력 커패시터(Cin), 음극 단자(B), 브릿지 정류 다이오드(Db1), 교류 전압(Vac)의 활선 단자(L)이고, 상기 경로는 또한 통상적으로 교류 전압(Vac)을 이용하여 브릿지 정류를 거쳐 입력 커패시터(Cin)을 충전시키기 위한 전류 경로이기도 하다. 다른 하나의 전류 경로는 주로 필터링 회로(100)에 의하여 제공되는 것으로서, 주로 교류 전압(Vac)이 직류 전압(Vdc)과 전압 안정화 커패시터(Cs) 상의 전압(즉 전원(Vs))의 합보다 클 때 형성되는 음의 반주기의 고조파 보상 경로(Lnh)이다. 따라서, 음의 반주기의 고조파 보상 경로(Lnh)는 교류 전압(Vac)의 중성선 단자(N), 브릿지 정류 다이오드(Db4), 양극 단자(A), 입력 커패시터(Cin), 전압 안정화 커패시터(Cs), 단방향 스위치(D), 프리휠링 커패시터(Cf) 및 교류 전압(Vac)의 활선 단자(L)이고, 상기 경로는 필터링 회로(100)가 입력 전류(Iin)의 음의 반주기에 대하여 고조파 보상을 수행하는 전류 경로이다. 교류 파형은 양의 반주기 및 음의 반주기에서 시간에 따라 교체적으로 변화하기 때문에, 음의 반주기의 고조파 보상 경로(Lnh)에 있어서, 프리휠링 커패시터(Cf) 상의 커패시터 전압(Vcf)(즉 프리휠링 커패시터(Cf) 양단의 크로스오버 전압)이 이미 바로 전의 반주기(양의 반주기의 고조파 보상 경로(Lph)가 형성되는 양의 반주기)에서 모두 방전되어 프리휠링 커패시터(Cf)에 충전된 에너지가 없기 때문에, 음의 반주기의 고조파 보상을 수행할 때, 전원 생성 회로(20)로부터 공급되는 전원(Vs)은 단방향 스위치(D)를 통하여 프리휠링 커패시터(Cf)를 충전시킴으로써 프리휠링 커패시터(Cf)에 커패시터 전압(Vcf)이 형성되도록 한다.
도 2b에 도시된 바와 같이, 필터링 회로(100)는 교류 전압(Vac)의 양의 반주기에 있어서 마찬가지로 2개의 전류 경로를 형성한다. 그 중 하나는 양의 반주기의 고조파 보상 경로(Lph)이고, 다른 하나는 양의 반주기의 정류 경로(Lpr)이다. 교류 전압(Vac)의 양의 반주기에 있어서, 마찬가지로 단지 2개 시점에서 전류 경로가 형성된다. 그 중 하나는 교류 전압(Vac)이 입력 커패시터(Cin) 상의 직류 전압(Vdc)보다 클 때, 양의 반주기의 정류 경로(Lpr)가 형성된다. 그 경로는 교류 전압(Vac)의 활선 단자(L), 브릿지 정류 다이오드(Db2), 양극 단자(A), 입력 커패시터(Cin), 음극 단자(B), 브릿지 정류 다이오드(Db3), 교류 전압(Vac)의 중성선 단자(N)이고, 상기 경로는 또한 통상적으로 교류 전압(Vac)을 이용하여 브릿지 정류를 거쳐 입력 커패시터(Cin)을 충전시키기 위한 전류 경로이기도 하다. 다른 하나의 전류 경로는 주로 필터링 회로(100)에 의하여 제공되는 것으로서, 주로 교류 전압(Vac)과 프리휠링 커패시터(Cf) 상의 커패시터 전압(Vcf)의 합이 직류 전압(Vdc)보다 클 때 형성되는 양의 반주기의 고조파 보상 경로(Lph)이다. 따라서, 양의 반주기의 고조파 보상 경로(Lph)는 교류 전압(Vac)의 활선 단자(L), 프리휠링 커패시터(Cf), 프리휠링 스위치(10), 입력 커패시터(Cin), 음극 단자(B), 브릿지 정류 다이오드(Db3), 중성선 단자(N)이고, 상기 경로는 필터링 회로(100)가 입력 전류(Iin)의 양의 반주기에 대하여 고조파 보상을 수행하는 전류 경로이다. 그 중, 프리휠링 커패시터(Cf)가 바로 전의 반주기(음의 반주기의 고조파 보상 경로(Lnh)가 형성되는 음의 반주기)에서 커패시터 전압(Vcf)을 형성하기 때문에, 양의 반주기의 고조파 보상을 수행할 때, 프리휠링 커패시터(Cf) 중에 충전된 에너지는 프리휠링 스위치(10)를 경유하여 입력 커패시터(Cin)로 방전된다.
더 나아가서, 본 발명의 일 실시예에 있어서, 일부 전자 제품은 고조파 왜곡 규격을 만족시킬 것을 요구할 뿐, 역률의 규격(예를 들면 IEC 6100-3-2 Class A, 단 이에 한정되는 것은 아님)을 만족시킬 것은 요구하지 않는다. 상기 규격에서는 단지 고조파 왜곡율이 반드시 일정한 비례 이하일 것만 요구하기 때문에, 입력 전류(Cin)의 후단에 회로 원가가 비교적 높은 역률 보정 장치(PFC)를 커플링 결합하지 않아도 되고, 필터링 회로(100)를 이용하여 교류 전압(Vac)의 양의 반주기 및 음의 반주기에서 도 3에 도시된 바와 같은 전류 파형 I 및 III을 구현하기만 하면 고조파 왜곡을 개선할 수 있다. 또한, 선택적으로 단지 값이 싸고 쉽게 구할 수 있는 수동 전자 부품만 이용할 뿐 능동적으로 제어하는 부품 및 대응되는 제어 기술을 전혀 사용하지 않는 상태에서도, 회로 원가를 줄이고 고조파 왜곡을 개선할 수 있는 효과를 달성할 수 있다.
도 3은 본 발명의 교류 전압 및 고조파 보상 후의 입력 전류의 파형 예시도이다. 이하, 도 1~2b 및 도 2a, 2b, 3을 참조한다. 시간대 T1에서, 교류 전압(Vac)은 음의 반주기에 위치하는데, 상기 시간대에서 입력 커패시터(Cin)에는 바로 전의 반주기(즉 교류 전압(Vac)은 양의 반주기임)의 전압이 있기 때문에 입력 전류(Iin) 경로가 없다. 이 때, 단방향 스위치(D)는 도통되지 않고, 전원 생성 회로(20)는 단지 전원(Vs)을 제공하여 컨트롤러(IC)의 안정적인 작동을 유지하도록 한다. 시간대 T2에서, 프리휠링 커패시터(Cf)에 충전된 에너지가 없고(바로 전의 반주기에서 이미 방전되었음), 또한 입력 커패시턴스(Cin)과 전압 안정화 커패시터(Cs) 직렬 회로 상의 전압(즉 직류 전압(Vds)과 전원(Vs)의 합)이 교류 전압(Vac)보다 낮기 때문에, 음의 반주기 상의 고조파 보상 경로(Lnh)를 형성하여 프리휠링 커패시터(Cf)를 충전시킴으로써 프리휠링 커패시터(Cf)에 커패시터 전압(Vcf)을 형성한다.
시간대 T3에서, 프리휠링 커패시터(Cf)에 커패시터 전압(Vcf)가 형성되었기 때문에, 음의 반주기의 고조파 보상 경로(Lnh)가 차단된다. 이 때, 교류 전압(Vac)이 여전히 입력 커패시터(Cin) 상의 직류 전압(Vdc)보다 크기 때문에, 음의 반주기의 정류 경로(Lnr)가 형성되어, 교류 전압(Vac)으로 입력 커패시터(Cin)를 충전시킨다. 시간대 T4에서, 교류 전압(Vac)이 입력 커패시터(Cin) 상의 직류 전압(Vdc)보다 작기 때문에, 음의 반주기의 정류 경로(Lnr)가 차단되어, 입력 전류(Iin) 경로가 형성되지 않는다. 음의 반주기 고조파 보상 경로(Lnh)에서 전원(Vs)이 프리휠링 커패시터(Cf)를 충전시키기 때문에 시간대 T2에서 제1 보상 전류의 파형 I이 형성된다. 제1 보상 전류의 파형 I은 바로 음의 반주기 정류 경로(Lnr)가 형성되기 전의 입력 전류(Iin)의 누락 부분(즉, 음의 반주기 정류 전류 파형 II 앞의 누락 부분)을 보상할 수 있기 때문에, 보상을 거친 입력 전류(Iin)의 음의 반주기 파형(즉, 파형 I과 파형 II의 합)은 교류 전압(Vac)의 음의 반주기 파형에 근접된다.
시간대 T4 및 T5의 경계 위치에서, 교류 전압(Vac)의 전압 파형은 양의 반주기로 변환하고, 시간대 T5에서, 입력 커패시터(Cin)에는 바로 전의 반주기(즉 교류 전압(Vac)은 음의 반주기임)의 전압이 있기 때문에 입력 전류(Iin) 경로가 없다. 이 때, 단방향 스위치(D)는 도통되지 않고, 전원 생성 회로(20)는 단지 전원(Vs)을 제공하여 컨트롤러(IC)의 안정적인 작동을 유지하도록 한다. 시간대 T6에서, 프리휠링 커패시터(Cf)가 바로 전의 반주기에서 이미 커패시터 전압(Vcf)을 형성하였고 교류 전압(Vac)과 커패시터 전압(Vcf)의 합이 입력 커패시터(Cin) 상의 직류 전압(Vdc)보다 크기 때문에, 양의 반주기 고조파 보상을 수행할 때, 프리휠링 커패시터(Cf) 중에 충전된 에너지는 양의 반주기 고조파 보상 경로(Lph)를 경유하여 프리휠링 커패시터 전압(Vcf)과 교류 전압(Vac)의 합이 입력 커패시터(Cin) 상의 직류 전압(Vdc)보다 작을 때까지 입력 커패시터(Cin)를 충전시키다.
시간대 T7에서, 프리휠링 커패시터 전압(Vcf)과 교류 전압(Vac)의 합이 입력 커패시터(Cin) 상의 직류 전압(Vdc)보다 작기 때문에, 양의 반주기 고조파 보상 경로(Lph)가 차단된다. 이 때, 교류 전압(Vac)이 여전히 입력 커패시터(Cin) 상의 직류 전압(Vdc)보다 크기 때문에, 양의 반주기의 정류 경로(Lpr)가 형성되어, 교류 전압(Vac)으로 입력 커패시터(Cin)를 충전시킨다. 시간대 T8에서, 교류 전압(Vac)이 입력 커패시터(Cin) 상의 직류 전압(Vdc)보다 작기 때문에, 양의 반주기의 정류 경로(Lpr)가 차단되어, 입력 전류(Iin) 경로가 형성되지 않는다. 양의 반주기의 고조파 보상 경로(Lph)에서 프리휠링 커패시터(Cf)에 저장된 에너지가 입력 커패시터(Cin)에 대하여 방전(에너지 방출)하기 때문에, 시간대 T6에서 제2 보상 전류의 파형 III를 형성한다. 제2 보상 전류의 파형 III은 바로 양의 반주기 정류 경로(Lpr)가 형성되기 전의 입력 전류(Iin)의 누락 부분(즉, 양의 반주기 정류 전류 파형 IV 앞의 누락 부분)을 보상할 수 있기 때문에, 보상을 거친 입력 전류(Iin)의 양의 반주기 파형(즉, 파형 III과 파형 IV의 합)은 교류 전압(Vac)의 양의 반주기 파형에 근접된다.
다시 도 1~2b를 참조하면, 프리휠링 스위치(10)에서 제1 다이오드(D1)와 제2 다이오드(D2)를 직렬 연결하는 이유는, 통상적으로 브릿지 정류 다이오드(Db1~Db4)의 순방향 도통 전압은 약 1V이고, 일반적인 다이오드의 순방향 도통 전압은 약 0.7V이기 때문이다. 따라서, 프리휠링 스위치(10)에서 단일 다이오드만 사용하는 상황 하에서, 활선 단자(L)와 양극 단자(A) 사이의 브릿지 정류 다이오드(Db2)와 프리휠링 스위치(10) 중의 단일 다이오드가 모두 순방향으로 도통될 때, 브릿지 정류 다이오드(Db2)의 크로스오버 전압이 프리휠링 스위치(10) 중의 단일 다이오드의 크로스오버 전압보다 높게 된다. 이로 인하여, 프리휠링 커패시터(Cf) 상에 부전압이 걸리게 되어 필터링 회로(100)가 고조파 보상을 수행할 때 악영향을 초래하거나 심지어는 부품의 수명에 영향을 주게 된다. 상기와 같은 이유로 인하여, 본 발명의 일 실시예에 있어서, 프리휠링 스위치(10)에서 제1 다이오드(D1)와 제2 다이오드(D2)를 직렬 연결하여 사용함으로써 두개 다이오드의 크로스오버 전압을 약 1.4V로 높여 브릿지 정류 다이오드(Db2)의 크로스오버 전압(1V)보다 높게 한다. 다시 말하면, 프리휠링 스위치(10)의 제1 도통 전압(예를 들면 1.4V)이 활선 단자(L)와 양극 단자(A) 사이의 브릿지 정류 다이오드(Db2)의 제2 도통 전압(예를 들면 1V)보다 높게 된다. 이를 통하여, 브릿지 정류 다이오드(Db2) 및 프리휠링 스위치(10)가 모두 순방향으로 도통될 때 프리휠링 커패시터(Cf)에 부전압이 걸리지 않도록 함으로써, 필터링 회로(100)가 고조파 보상을 수행할 때의 보상 효과를 향상시키는 효과를 달성할 수 있다. 특별히 설명하여야 할 것은, 본 발명의 일 실시예에 있어서, 프리휠링 스위치(10)는 제1 다이오드(D1)와 제2 다이오드(D2)를 직렬 연결하는 회로 구조에만 제한되는 것은 아니다. 프리휠링 스위치(10)의 순방향 도통 전압이 브릿지 정류 다이오드(Db1~Db4)의 도통 전압보다 높게 할 수 있는 회로 구조 및 사용 방식(예를 들면 스위치 및 그 제어 기술 이용)은 모두 본 실시예의 범주에 포함되는 것으로 해석되어야 한다. 예를 들면, 도통 전압이 브릿지 정류 다이오드(Db1~Db4)의 도통 전압보다 높은 단일 다이오드를 사용하거나, 또는 복수의 다이오드를 직렬 연결함으로써 그 총 도통 전압이 브릿지 정류 다이오드(Db1~Db4)의 도통 전압보다 높게 하거나, 또는 도통될 때의 크로스오버 전압이 브릿지 정류 다이오드(Db1~Db4)가 도통될 때의 크로스오버 전압보다 높은 임의 소자를 사용할 수 있다.
다른 방면에 있어서, 전압 안정화 커패시터(Cs)는 반드시 안정적 및 지속적으로 전력을 컨트롤러(IC)로 공급해야 하고, 프리휠링 커패시터(Cf)는 단지 시간대 T2 및 T6에서만 잠시적으로 전력을 공급하여 대응되는 전류 경로를 형성하면 되기 때문에, 전압 안정화 커패시터(Cs)의 커패시턴스 값은 반드시 프리휠링 커패시터(Cf)보다 커야 하고, 전압 안정화 커패시터(Cs)는 통상적으로 전해 커패시터를 사용하는 것이 바람직하다. 프리휠링 커패시터(Cf)는 전해 커패시터, 세라믹 커패시터 또는 탄탈 커패시터를 사용할 수 있다. 또한, 프리휠링 커패시터(Cf)의 커패시턴스 값의 크기는 시간대 T2 및 T6의 전류 파형(즉 파형 I 및 III)에 영향을 주게 된다. 프리휠링 커패시터(Cf)의 커패시턴스 값이 작을 수록, 충전 및 방전할 수 있는 에너지가 더욱 적기 때문에, 시간대 T2 및 T6의 지속 시간이 비교적 짧고 파형 I 및 III이 비교적 가파르게 된다. 이와 반대이면, 시간이 비교적 길고 파형 I 및 III이 비교적 평탄하게 된다. 따라서, 설계자는 실제 수요에 따라 프리휠링 커패시터(Cf)의 커패시턴스 값을 조절함으로써, 필터링 회로(100)가 다양한 기대값의 고조파 보상 효과를 달성하도록 할 수 있다.
상기 내용은 본 발명의 바람직한 구체 실시예에 대한 상세한 설명 및 도시일 뿐, 본 발명의 특징이 이에 한정되는 것은 아니고, 이를 통하여 본 발명을 한정하려는 것이 아니며, 본 발명의 모든 범위는 첨부된 청구항의 범위를 기준으로 정의되어야 할 것이다. 본 발명의 청구항의 요지 및 그 유사한 변화에 부합되는 모든 실시예는 모두 본 발명의 범주에 포함되어야 할 것이고, 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변형 실시가 가능한 것은 물론이고, 이러한 변형 실시들은 본 발명의 기술적 사상이나 전망으로부터 구별되어 이해되어서는 안 될 것이다.
100 : 필터링 회로
Cf : 프리휠링 커패시터
10 : 프리휠링 스위치
D1 : 제1 다이오드
D2 : 제2 다이오드
D : 다이오드
20 : 전원 생성 회로
22 : 보조 코일
Cs : 전압 안정회 커패시터
Dc : 정류 스위치
200 : 브릿지 정류 회로
L : 활선 단자
N : 중성선 단자
A : 양극 단자
B : 음극 단자
Db1~Db4 : 브릿지 정류 다이오드
Cin : 입력 커패시터
GND : 접지점
300 : 전자 장치
IC : 컨트롤러
Vac : 교류 전압
Vh : 반파 전압
Vs : 전원
Vaux : 보조 전압
Vcf : 커패시터 전압
Iin : 입력 전류
Lnh : 음의 반주기의 고조파 보상 경로
Lnr : 음의 반주기의 정류 경로
Lph : 양의 반주기의 고조파 보상 경로
Lpr : 양의 반주기의 정류 경로
T1~T8 : 시간대
I~IV : 파형

Claims (12)

  1. 고조파 보상을 구비한 필터링 회로로서,
    상기 필터링 회로는 브릿지 정류 회로와 입력 커패시터에 커플링 결합되고, 상기 브릿지 정류 회로는 교류 전압을 입력받고, 상기 브릿지 정류 회로는 활선 단자, 중성선 단자, 양극 단자 및 음극 단자를 포함하여 구성되고, 그 중, 상기 필터링 회로는,
    일단이 활선 단자에 커플링 결합되는 프리휠링 커패시터,
    일단이 프리휠링 커패시터의 타단에 커플링 결합되고 타단이 양극 단자 및 입력 커패시터에 커플링 결합되는 프리휠링 스위치, 및,
    일단이 프리휠링 커패시터 및 프리휠링 스위치에 커플링 결합되고, 타단이 전원을 입력받는 단방향 스위치를 포함하여 구성되고, 상기 단방향 스위치를 통해서 상기 프리휠링 커패시터 및 상기 프리휠링 스위치 사이의 노드에 상기 전원이 순방향으로 제공되고,
    그 중, 상기 프리휠링 스위치의 제1 도통 전압은 상기 브릿지 정류 회로 중 상기 브릿지 정류 회로의 상기 활선 단자로부터 상기 양극 단자까지의 제2 도통 전압보다 큰 것을 특징으로 하는 고조파 보상을 구비한 필터링 회로.
  2. 제1항에 있어서,
    상기 프리휠링 스위치는,
    상기 프리휠링 커패시터 및 상기 단방향 스위치에 커플링 결합되는 제1 다이오드, 및,
    상기 제1 다이오드 및 상기 입력 커패시터 사이에 커플링 결합되는 제2 다이오드를 포함하여 구성되는 것을 특징으로 하는 필터링 회로.
  3. 제2항에 있어서,
    상기 제1 다이오드가 도통될 때 제1 순방향 도통 전압이 형성되고, 상기 제2 다이오드가 도통될 때 제2 순방향 도통 전압이 형성되며, 상기 제1 순방향 도통 전압과 상기 제2 순방향 도통 전압의 합이 상기 제1 도통 전압이고, 상기 활선 단자와 상기 양극 단자 사이에는 브릿지 정류 다이오드가 포함되며, 상기 제1 도통 전압은 상기 브릿지 정류 다이오드의 상기 제2 도통 전압보가 큰 것을 특징으로 하는 필터링 회로.
  4. 제1항에 있어서,
    상기 단방향 스위치 및 상기 음극 단자에 커플링 결합되는 전원 생성 회로를 더 포함하여 구성되되, 상기 전원 생성 회로는,
    일단이 상기 단방향 스위치에 커플링 결합되고, 타단이 상기 음극 단자에 커플링 결합되는 보조 코일, 및,
    상기 보조 코일에 병렬 커플링 결합되는 전압 안정화 커패시터를 포함하여 구성되고,
    그 중, 상기 보조 코일은 보조 전압을 생성하여 상기 전원으로 사용하는 것을 특징으로 하는 필터링 회로.
  5. 제4항에 있어서,
    상기 보조 코일 및 상기 전압 안정화 커패시터에 커플링 결합되는 정류 스위치를 더 포함하여 구성되는 필터링 회로.
  6. 제4항에 있어서,
    상기 전압 안정화 커패시터의 커패시턴스 값은 상기 프리휠링 커패시터의 커패시턴스 값보다 큰 것을 특징으로 하는 필터링 회로.
  7. 제4항에 있어서,
    상기 입력 커패시터는 변압기가 구비된 전자 장치에 커플링 결합되고, 상기 보조 코일은 상기 변압기에 커플링 결합됨으로써 상기 보조 전압을 생성하는 것을 특징으로 하는 필터링 회로.
  8. 제7항에 있어서,
    상기 전압 안정화 커패시터는 컨트롤러에 커플링 결합되고, 상기 컨트롤러는 상기 전자 장치를 제어하며, 상기 전원은 상기 컨트롤러의 작동에 필요한 전력을 제공하는 것을 특징으로 하는 필터링 회로.
  9. 제4항에 있어서,
    상기 교류 전압의 음의 반주기에 있어서, 상기 전원 생성 회로는 상기 프리휠링 커패시터를 충전시켜 제1 보상 전류를 형성하고, 상기 제1 보상 전류는 상기 브릿지 정류 회로가 입력받은 입력 전류의 음의 반주기의 누락 부분을 보상함으로써, 보상을 거친 상기 입력 전류의 음의 반주기의 파형이 상기 교류 전압의 음의 반주기의 파형에 근접되도록 하는 것을 특징으로 하는 필터링 회로.
  10. 제4항에 있어서,
    상기 필터링 회로의 음의 반주기의 고조파 보상 경로는 상기 양극 단자, 상기 입력 커패시터, 상기 전원 생성 회로, 상기 단방향 스위치, 상기 프리휠링 커패시터부터 상기 활선 단자까지인 것을 특징으로 하는 필터링 회로.
  11. 제1항에 있어서,
    상기 교류 전압의 양의 반주기에 있어서, 상기 교류 전압은 상기 프리휠링 커패시터를 충전시켜 제2 보상 전류를 형성하고, 상기 제2 보상 전류는 상기 브릿지 정류 회로가 입력받은 입력 전류의 양의 반주기의 누락 부분을 보상함으로써, 보상을 거친 상기 입력 전류의 양의 반주기의 파형이 상기 교류 전압의 양의 반주기의 파형에 근접되도록 하는 것을 특징으로 하는 필터링 회로.
  12. 제1항에 있어서,
    상기 필터링 회로의 양의 반주기의 고조파 보상 경로는 상기 활선 단자, 상기 프리휠링 커패시터, 상기 프리휠링 스위치, 상기 입력 커패시터부터 상기 음극 단자까지인 것을 특징으로 하는 필터링 회로.
KR1020210050461A 2020-09-03 2021-04-19 고조파 보상을 구비한 필터링 회로 KR102571898B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010914355.7 2020-09-03
CN202010914355.7A CN114142747A (zh) 2020-09-03 2020-09-03 具有谐波补偿的滤波电路

Publications (2)

Publication Number Publication Date
KR20220030867A KR20220030867A (ko) 2022-03-11
KR102571898B1 true KR102571898B1 (ko) 2023-08-28

Family

ID=75202995

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210050461A KR102571898B1 (ko) 2020-09-03 2021-04-19 고조파 보상을 구비한 필터링 회로

Country Status (3)

Country Link
EP (1) EP3965276B1 (ko)
KR (1) KR102571898B1 (ko)
CN (1) CN114142747A (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204173A (ja) 2000-01-17 2001-07-27 Matsushita Electric Ind Co Ltd 空気調和機の電源回路
JP2001211650A (ja) 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd 電源装置
CN201131076Y (zh) * 2007-12-24 2008-10-08 樊贤信 新型高压钠灯电子镇流器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5012161A (en) * 1989-01-05 1991-04-30 General Electric Company Power factor correction circuit
JPH08205519A (ja) * 1995-01-20 1996-08-09 Ricoh Co Ltd スイッチングレギュレータ
JP3377959B2 (ja) * 1999-02-17 2003-02-17 松下電器産業株式会社 電源装置
US8687388B2 (en) * 2012-01-31 2014-04-01 Delta Electronics, Inc. Three-phase soft-switched PFC rectifiers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001204173A (ja) 2000-01-17 2001-07-27 Matsushita Electric Ind Co Ltd 空気調和機の電源回路
JP2001211650A (ja) 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd 電源装置
CN201131076Y (zh) * 2007-12-24 2008-10-08 樊贤信 新型高压钠灯电子镇流器

Also Published As

Publication number Publication date
EP3965276B1 (en) 2023-07-05
EP3965276A1 (en) 2022-03-09
CN114142747A (zh) 2022-03-04
KR20220030867A (ko) 2022-03-11

Similar Documents

Publication Publication Date Title
CN109247081B (zh) 半桥谐振转换器、使用它们的电路、以及对应的控制方法
US6429604B2 (en) Power feedback power factor correction scheme for multiple lamp operation
RU2427954C2 (ru) Схема питания и устройство, содержащее схему питания
US8723428B2 (en) LED power source with over-voltage protection
Athab et al. A single-switch AC/DC flyback converter using a CCM/DCM quasi-active power factor correction front-end
US6909622B2 (en) Quasi active power factor correction circuit for switching power supply
CN108539984B (zh) 开关电源电路的pfwm控制系统
JP3475943B2 (ja) スイッチング電源装置
US20060192501A1 (en) Power supply apparatus and display apparatus
KR100724155B1 (ko) 일단형 pfc와 전력 변환기 회로
CN103763830A (zh) 发光元件驱动系统、驱动控制电路及驱动方法
KR20150044317A (ko) 컨버터 및 그 구동 방법
US6519164B1 (en) Single power stage AC/DC forward converter with power switch voltage clamping function
Divya et al. High power factor integrated buck-boost flyback converter driving multiple outputs
KR102571898B1 (ko) 고조파 보상을 구비한 필터링 회로
CN108900096B (zh) 一种具有吸收功能的同步整流供电电路
EP4049516B1 (en) An led driver for led lighting systems for replacing a high-intensity discharge lamp
CN210297569U (zh) 宽范围输入输出ac-dc变换器
TWI725915B (zh) 具有諧波補償之濾波電路
KR102142630B1 (ko) 전압구동형 동기정류기 구동회로
JP6868682B2 (ja) Dc/dcコントローラ集積回路を増強する調光led回路
Alunpipatthanachai et al. Design of a single stage PFC LED driver with a leakage energy recycling circuit
JP4430188B2 (ja) 共振型電源装置
Naraharisetti et al. Primary side regulated flyback AC-DC converter for LED's
US9318959B2 (en) Low total harmonic distortion and high power factor correction power converters

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant