KR102569697B1 - 대규모 전력계통의 운영 상태 모니터링을 위한 위상보조 상태추정의 분산화 방법 및 이를 이용하는 혼합 분산 상태 추정에서의 불량 데이터 처리 방법 - Google Patents
대규모 전력계통의 운영 상태 모니터링을 위한 위상보조 상태추정의 분산화 방법 및 이를 이용하는 혼합 분산 상태 추정에서의 불량 데이터 처리 방법 Download PDFInfo
- Publication number
- KR102569697B1 KR102569697B1 KR1020210140064A KR20210140064A KR102569697B1 KR 102569697 B1 KR102569697 B1 KR 102569697B1 KR 1020210140064 A KR1020210140064 A KR 1020210140064A KR 20210140064 A KR20210140064 A KR 20210140064A KR 102569697 B1 KR102569697 B1 KR 102569697B1
- Authority
- KR
- South Korea
- Prior art keywords
- state estimation
- scada
- pmu
- measurement
- data
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00006—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
- H02J13/00007—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
- H02J13/0001—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission using modification of a parameter of the network power signal
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/414—Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller
- G05B19/4148—Structure of the control system, e.g. common controller or multiprocessor systems, interface to servo, programmable interface controller characterised by using several processors for different functions, distributed (real-time) systems
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J13/00—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
- H02J13/00002—Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by monitoring
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
- G05B2219/32406—Distributed scada
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02B90/20—Smart grids as enabling technology in buildings sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/30—State monitoring, e.g. fault, temperature monitoring, insulator monitoring, corona discharge
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S20/00—Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
스카다(SCADA) 및 시간 동기 위상측정장치(PMU)의 측정으로부터 획득되는 이종 데이터를 이용한 전력계통의 운영 상태를 모니터링하기 위한 위상-보조 상태 추정의 분산화 방법 및 이를 이용하는 혼합 분산 상태 추정에서의 불량 데이터 처리 방법이 개시된다. 대규모 전력계통의 운영 상태 모니터링을 위한 위상보조 상태추정의 분산화 방법은, SCADA 시스템 및 PMU의 측정과 연관되는 네트워크 토폴로지와 각 측정 기기의 위치 정보를 토대로, 각 지역에 대한 확장 상태 변수 및 확장 상태 변수 집합을 정의하는 단계, 각 지역에 대한 SCADA 측정치 및 그 공분산 행렬을 이용하여 SCADA 기반 분산 상태 추정을 수행하고, 병렬적으로 각 지역에 대한 PMU 측정치 및 그 공분산 행렬을 이용하여 PMU 기반 분산 상태 추정을 수행하는 단계, 및 SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정의 결과들을 혼합하여 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 단계를 포함한다.
Description
본 발명은 대규모 전력계통의 운영 상태를 모니터링하기 위한 위상-보조 상태 추정의 분산화 방안에 관한 것으로, 보다 구체적으로는 스카다(SCADA: Supervisory Control And Data Acquisition) 및 시간 동기 위상측정장치(Phasor Measurement Unit, PMU)의 측정으로부터 획득되는 이종 데이터를 이용한 전력계통의 운영 상태를 모니터링하기 위한 위상-보조 상태 추정의 분산화 방법 및 이를 이용하는 혼합 분산 상태 추정에서의 불량 데이터 처리 방법에 관한 것이다.
종래의 중앙 집중식 상태추정(Centralized State Estimation, CSE)은 하나의 중앙 시스템이 대규모 전력계통에서 측정된 빅데이터 모두를 관리·분석·처리하는 기술을 필요로 한다. 그러나 전력 사용의 수요량이 증가함에 따라 전력계통의 규모가 커지고 복잡해지면서 데이터 관리 비용 증가, 고성능 통신인프라 수요 증가, 데이터 처리 연산 복잡성 증가와 같은 확장성 문제(Scalability Issue)가 발생하고 있다. 이러한 문제로 인해 중앙 집중식 상태추정의 활용 가능성이 줄어들고 상태추정 알고리즘의 분산화가 중요해졌다.
최근 상태추정 알고리즘의 분산화에 관한 연구는 계층 구조의 상태추정(Hierarchical SE, HSE)과 분산 구조의 상태추정(Distributed SE, DSE)의 2가지로 분류할 수 있다. HSE는 각 지역의 로컬 추정기로부터 얻어진 추정결과를 활용하여 하나의 중앙 집중식 추정기에서 글로벌 추정치를 찾는 구조이다. 반면 DSE는 중앙 집중식 추정기를 필요로 하지 않는다. 따라서 DSE는 HSE에 비해 높은 데이터 관리 및 송·수신 효율성, 지역 전력계통 운영 시스템 안정성 및 보안성 등에 장점이 있다.
DSE와 관련된 최근 연구 사례에서는 가십(gossip) 알고리즘, 라그랑주 완화법(Lagrangian relaxation technique), ADMM(Alternating Direction Method of Multipliers) 방법 등이 활용되고 있다.
이들 중에 ADMM을 활용한 방법은 글로벌 관측성(global observability) 조건만 만족한다면 로컬 관측성(local observability)을 만족하지 않더라도 추정 가능하므로 지역별로 필요한 측정치 제약조건이 다른 방법에 비해 완화된다. 특히, ADMM은 분산화 과정에서 발생하는 경계에서 측정 데이터의 여유도 감소로 인한 로컬 관측성 문제를 효과적으로 해결할 수 있다.
한편, 위상측정장치(Phasor Measurement Unit, PMU)는 GPS(Global Positioning System) 기반 시간 동기화된 위상 데이터를 짧은 샘플링 주기(국내 기준 60㎐ 또는 120㎐)로 제공할 수 있으므로 보다 정확한 상태추정을 가능하게 한다. 그러나 기존 상태추정에 사용되던 스카다(SCADA: Supervisory Control And Data Acquisition) 시스템의 측정 데이터는 1초 또는 2초에 한 번씩 에너지 관리 시스템(Energy Management System, EMS)으로 전송되며 시간 비동기화된 데이터이다. 따라서, 기존 상태추정의 성능을 향상하기 위해서는 보다 정확한 PMU 데이터의 활용이 필요하며, 그에 따라 특성이 다른 2가지 이종 측정 데이터를 동시에 활용하는 혼합 상태추정에 관한 연구가 광범위하게 수행되고 있다.
혼합 상태추정은 순차적 및 병렬적 접근 방법으로 분류할 수 있다. 순차적 접근법은 SCADA 데이터 기반 상태추정을 우선 수행한 후에 PMU 측정 데이터의 정보를 반영하여 상태추정 결과를 보정하는 방법이다. 한편, 병렬적 접근법은 SCADA 데이터 기반 상태추정과 PMU 데이터 기반 상태추정을 병렬적으로 수행한 후 2개의 추정결과를 통합하는 방법이다. 병렬적 접근법은 상태추정을 두 번 연속으로 수행해야 하는 순차적 방법과 비교하여 시간상으로 효율적인 장점이 있다. 다만, 병렬적 접근법을 사용하기 위해서 PMU 데이터로만 시스템의 관측성(observability)이 보장되어야 한다.
순차적 또는 병렬적 접근법에 상관없이 기존의 혼합 분산 상태추정은 일반적으로 잘 알려진 불량 데이터 처리법인 LNRT(Largest Normalized Residual Test) 방법을 사용해 왔다. 그러나 종래의 LNRT 방법은 낮은 불량 데이터 판별 정확성 및 낮은 연산 효율성, 필수 측정 데이터와 같은 특수한 측정치의 불량 여부를 판별하지 못하는 단점이 존재한다. 기존의 위상-보조 상태추정(Phasor-aided state estimation, PHASE)은 SCADA 측정치와 PMU 측정치의 교차 검증을 통해서 앞서 언급한 문제를 개선한 방법이다. 현재까지 PHASE 방법은 중앙 집중식 상태추정에서만 적용되고 있다.
본 발명은 전술한 종래 기술의 한계를 개선하기 위해 도출된 것으로, 본 발명의 목적은 스카다(SCADA: Supervisory Control And Data Acquisition) 시스템 및 시간 동기 위상측정장치(Phasor Measurement Unit, PMU)로부터 측정된 데이터를 이용하여 전력계통의 운영 상태를 모니터링하고 분석할 수 있는, 위상보조 상태추정의 분산화 방법을 제공하는데 있다.
본 발명의 다른 목적은, 전력계통 상태추정을 분산화하고 SCADA 및 PMU 측정 데이터를 이용한 혼합 분산 상태추정 알고리즘에 PHASE 방법을 적용하여 불량 데이터를 효과적으로 처리할 수 있는 불량 데이터 처리 방법을 제공하는데 있다.
본 발명의 또 다른 목적은, 혼합 분산 상태추정 알고리즘에 PHASE 방법을 적용하기 위해 SCADA 측정치 기반 관측 가능한 상태변수와 PMU 측정치 기반 관측 가능한 상태변수의 불일치 문제, 추정된 지역 상태변수의 공분산 행렬 계산 방안, SCADA 기반 지역 이득 행렬과 PMU 기반 지역 이득 행렬의 불일치 문제를 해결할 수 있는, 위상보조 상태추정의 분산화 방법 및 이를 이용하는 혼합 분산 상태 추정에서의 불량 데이터 처리 방법을 제공하는데 있다.
상기 기술적 과제를 달성하기 위해 본 발명에서는 지역 상태변수 확장 방법을 사용하고, 확장된 상태변수에 대한 공분산 행렬 계산 방안을 제공한다. 계산된 공분산 행렬을 이용하여 PHASE를 혼합 분산 상태추정의 불량 데이터를 처리한다.
즉, 상기 기술적 과제를 해결하기 위한 본 발명의 일 측면에 따른 위상보조 상태추정의 분산화 방법은, 대규모 전력계통의 운영 상태 모니터링을 위한 위상보조 상태추정의 분산화 방법으로서, 스카다(SCADA: Supervisory Control And Data Acquisition) 측정 및 위상 측정 장치(Phasor Measurement Unit, PMU) 측정과 연관되는 네트워크 토폴로지와 각 측정 기기의 위치 정보를 수신하는 단계; 각 지역(k)에 대한 확장 상태 변수 및 확장 상태 변수 집합(extended state vector set)을 정의하는 단계; 상기 각 지역에 대한 SCADA 측정 및 상기 SCADA 측정과 PMU 측정의 통합 변수의 공분산 행렬을 이용하여 SCADA 기반 분산 상태 추정을 수행하는 단계; 상기 각 지역에 대한 PMU 측정 및 SCADA 측정과 PMU 측정의 통합 변수의 공분산 행렬을 이용하여 PMU 기반 분산 상태 추정을 상기 SCADA 기반 분산 상태 추정과 병렬적으로 수행하는 단계; 및 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정의 결과들을 혼합하여 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 단계를 포함한다.
일실시예에서, 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정을 병렬적으로 수행하는 것은 인접 추정기와 상호작용하면서 ADMM(Alternating Direction Method of Multipliers) 기반 분산 구조의 상태추정(Distributed State Estimation, DSE)를 사용하여 상기 각 지역에 대한 SCADA 및 PMU 분산 상태들을 생성하는 것을 포함할 수 있다.
일실시예에서, 위상보조 상태추정의 분산화 방법은, 상기 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 단계 후에, 상기 각 지역에 대한 SCADA 측정 및 상기 각 지역에 대한 PMU 측정에 불량 데이터가 존재하는지 판단하는 단계를 더 포함할 수 있다.
일실시예에서, 위상보조 상태추정의 분산화 방법은, 상기 불량 데이터가 존재하지 않으면, 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 포함할 수 있다.
일실시예에서, 위상보조 상태추정의 분산화 방법은, 상기 불량 데이터가 존재하면, 불량 데이터를 제거하고, 매트릭스 완성 방법을 이용하여 데이터를 복원하는 단계를 더 포함할 수 있다.
일실시예에서, 위상보조 상태추정의 분산화 방법은, 상기 복원하는 단계에서 복원된 SCADA 및 PMU 데이터를 이용하여 추가 상태추정을 수행하는 단계를 더 포함할 수 있다.
일실시예에서, 상기 추가 상태 추정을 수행하는 단계는, ADMM 기반 DSE를 수행하여 추가 SCADA 데이터 및 추가 PMU 데이터를 생성할 수 있다.
일실시예에서, 위상보조 상태추정의 분산화 방법은, 상기 추가 상태 추정을 수행하는 단계 이후에, 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 포함할 수 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 다른 측면에 따른, 불량 데이터 처리 방법은, 대규모 전력계통의 운영 상태 모니터링을 위한 혼합 분산 상태 추정에서의 불량 데이터 처리 방법으로서, 스카다(SCADA: Supervisory Control And Data Acquisition) 측정에 기반한 SCADA 기반 분산 상태 추정과 위상 측정 장치(Phasor Measurement Unit, PMU) 측정에 기반한 PMU 기반 분산 상태 추정의 결과들을 혼합하여 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 단계; 및 각 지역에 대한 SCADA 측정 및 상기 각 지역에 대한 PMU 측정에 불량 데이터가 존재하는지 판단하는 단계를 포함하며, 상기 각 지역은 상기 SCADA 측정 및 상기 PMU 측정과 연관된 네트워크 토폴로지와 상기 네트워크 토폴로지에 따른 측정 기기의 위치 정보에 의해 정의되거나 한정된다.
일실시예에서, 불량 데이터 처리 방법은, 상기 불량 데이터가 존재하지 않으면, 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 포함할 수 있다.
일실시예에서, 불량 데이터 처리 방법은, 상기 불량 데이터가 존재하면, 불량 데이터를 제거하고, 매트릭스 완성 방법을 이용하여 데이터를 복원하는 단계를 더 포함할 수 있다.
일실시예에서, 불량 데이터 처리 방법은, 상기 복원하는 단계에서 복원된 SCADA 및 PMU 데이터를 이용하여 추가 상태추정을 수행하는 단계를 더 포함할 수 있다.
일실시예에서, 상기 추가 상태 추정을 수행하는 단계는, ADMM 기반 DSE를 수행하여 추가 SCADA 데이터 및 추가 PMU 데이터를 생성할 수 있다.
일실시예에서, 불량 데이터 처리 방법은, 상기 추가 상태 추정을 수행하는 단계 이후에, 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 포함할 수 있다.
일실시예에서, 불량 데이터 처리 방법은, 상기 수행하는 단계 전에, 상기 각 지역에 대한 확장 상태 변수 및 확장 상태 변수 집합(extended state vector set)을 정의하는 단계를 더 포함할 수 있다.
일실시예에서, 불량 데이터 처리 방법은, 상기 정의하는 단계 후에, 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정을 병렬적으로 수행하는 단계를 더 포함할 수 있다. 여기서 상기 병렬적으로 수행하는 단계는, SCADA 추정기 및 PMU 추정기가 인접 추정기와 상호작용하면서 ADMM(Alternating Direction Method of Multipliers) 기반 분산 구조의 상태추정(Distributed State Estimation, DSE)를 사용하여 상기 각 지역에 대한 SCADA 및 PMU 분산 상태들을 생성할 수 있다.
상기 기술적 과제를 해결하기 위한 본 발명의 또 다른 측면에 따른, 불량 데이터 처리 장치는, 대규모 전력계통의 운영 상태 모니터링을 위한 혼합 분산 상태 추정에서의 불량 데이터 처리 방법을 실행하는 장치로서, 적어도 하나의 명령을 저장하는 메모리; 및 상기 메모리에 연결되어 상기 적어도 하나의 명령을 실행하는 프로세서를 포함한다. 상기 프로세서가 실행될 때, 상기 적어도 하나의 명령은 상기 프로세서가: 스카다(SCADA: Supervisory Control And Data Acquisition) 측정에 기반한 SCADA 기반 분산 상태 추정과 위상 측정 장치(Phasor Measurement Unit, PMU) 측정에 기반한 PMU 기반 분산 상태 추정의 결과들을 혼합하여 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 단계; 및 각 지역에 대한 SCADA 측정 및 상기 각 지역에 대한 PMU 측정에 불량 데이터가 존재하는지 판단하는 단계;를 수행하도록 한다. 여기서 상기 각 지역은 상기 SCADA 측정 및 상기 PMU 측정과 연관된 네트워크 토폴로지와 상기 네트워크 토폴로지에 따른 각 측정 기기의 위치 정보에 의해 구분되거나 정의될 수 있다.
일실시예에서, 상기 적어도 하나의 명령은 상기 프로세서가: 상기 각 지역에 대한 상기 SCADA 측정 및 상기 PMU 측정에 불량 데이터가 존재하는지 판단하는 단계 후에, 상기 불량 데이터가 존재하면 불량 데이터를 제거하고 매트릭스 완성 방법을 이용하여 데이터를 복원하는 단계; 상기 복원하는 단계에서 복원된 SCADA 및 PMU 데이터를 이용하여 추가 상태추정을 수행하는 단계-여기서, 상기 추가 상태 추정을 수행하는 단계는, ADMM 기반 DSE를 수행하여 추가 SCADA 데이터 및 추가 PMU 데이터를 생성함-; 및 상기 SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 수행하도록 할 수 있다.
일실시예에서, 상기 적어도 하나의 명령은 상기 프로세서가: 상기 각 지역에 대한 상기 SCADA 측정 및 상기 PMU 측정에 불량 데이터가 존재하는지 판단하는 단계 후에, 상기 불량 데이터가 존재하지 않으면 SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 수행하도록 할 수 있다.
일실시예에서, 상기 적어도 하나의 명령은 상기 프로세서가: 상기 SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정의 결과들을 혼합하여 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 단계 전에, 상기 SCADA 측정 및 상기 PMU 측정과 연관되는 네트워크 토폴로지와 각 측정 기기의 위치 정보를 수신하는 단계; 상기 각 지역에 대한 확장 상태 변수와 확장 상태 변수 집합(extended state vector set)을 정의하는 단계; 및 상기 각 지역에 대한 SCADA 측정 및 SCADA 측정과 PMU 측정과의 통합 변수의 공분산 행렬을 이용하여 SCADA 기반 분산 상태 추정을 수행하고, 상기 SCADA 기반 분산 상태 추정과 병렬적으로 상기 각 지역에 대한 PMU 측정 및 SCADA 측정과 PMU 측정과의 통합 변수의 공분산 행렬을 이용하여 PMU 기반 분산 상태 추정을 수행하는 단계를 더 수행하도록 할 수 있다.
본 발명에 따르면 전력계통 상태추정 알고리즘의 분산화를 위해 ADMM(Alternative Direction Method of Multipliers) 방법을 적용하여, 지역간 인접 상태 정보만을 교환하여 대규모 계통의 운영 상태를 모니터링 가능하다. 또한, 경계에서 낮아지는 측정치 여유도를 지역간 데이터 교환을 통해 효과적으로 보완할 수 있다.
또한, 본 발명에 따르면 SCADA 및 PMU 데이터를 고려한 혼합 분산 상태추정에 PHASE 방법을 적용하고, PHASE가 적용된 혼합 분산 상태추정을 종래의 분산 상태추정 알고리즘과 비교하여 불량 데이터의 존재를 판별함으로써 높은 불량 데이터 판별 성공률을 얻을 수 있다.
또한, 본 발명에 따르면, 대규모 전력계통에 대해서 현재 상용화되어 사용되고 있는 중앙 집중식 상태추정 알고리즘과 비교하여 높은 계산 효율성, 낮은 불량 데이터 민감도, 높은 추정 정확성의 장점이 있는 혼합 분산 상태추정 방법이나 혼합 분산 상태추정에서의 불량 데이터 처리 방법을 제공할 수 있고, 그에 의해 최적 계통 운영을 통한 효율성 개선, 고장 상황 감지 및 고장 위치 탐색, 분산자원 최적 제어를 통한 시스템 안정화에 기여할 수 있다.
또한, 본 발명에 따르면, 대규모 전력계통에서 종래의 알고리즘들과 비교, 검증된 효과를 가지며, 다양한 사례에 대한 본 실시예의 분산화 방법의 알고리즘 성능 검증을 위해 100회 몬테카를로(Monte Carlo) 방법을 적용하여 확인한 결과, 추정 정확성, 불량 데이터 수와 불량 데이터 크기에 대한 민감도 분석, 연산 속도 평가 등에서 우수한 분산화 방법과 이를 이용하는 혼합 분산 상태 추정 방법이나 불량 데이터 처리 방법을 제공할 수 있다.
도 1은 본 발명의 일 실시예에 따른 혼합 분산 상태추정 방법에 채용할 수 있는 위상보조 상태추정의 분산화 방법을 설명하기 위한 개념도이다.
도 2는 도 1의 분산화 방법에 채용할 수 있는 두 지역을 포함한 전력계통을 나타낸 예시도이다.
도 3은 본 발명의 다른 실시예에 따른 혼합 분산 상태추정 방법의 주요 절차를 설명하기 위한 흐름도이다.
도 4는 도 3의 혼합 분산 상태추정 방법에 채용할 수 있는 14개의 버스 테스트 네트워크에서의 스카다(SCADA: Supervisory Control and Data Acquisition system) 및 PMU(Phasor measurement unit) 측정치를 설명하기 위한 모의 전력계통에 대한 예시도이다.
도 5는 도 4의 모의 전력계통에서 SCADA 불량 데이터가 포함된 경우, 전압 크기 및 위상각에 대한 추정 오차를 비교한 그래프이다.
도 6은 도 4의 모의 전력계통에서 PMU 불량 데이터가 포함된 경우, 전압 크기 및 위상각에 대한 추정 오차를 비교한 그래프이다.
도 7은 도 4의 모의 전력계통에서 SCADA 불량 데이터가 포함된 경우, 불량 데이터 오차 크기와 불량 데이터 수를 증가시키면서 추정 오차 AMAE를 비교한 그래프이다.
도 8은 도 4의 모의 전력계통에서 PMU 불량 데이터가 포함된 경우, 불량 데이터 오차 크기와 불량 데이터 수를 증가시키면서 추정 오차 AMAE(Average Maximum Absolute Error)를 비교한 그래프이다.
도 9는 도 4의 모의 전력계통에서 SCADA 및 PMU 데이터의 불량 비율이 증감함에 따라 연산시간을 비교한 그래프이다.
도 10은 본 발명의 또 다른 실시에에 따른 혼합 분산 상태추정이나 혼합 분산 상태추정에서의 불량 데이터 처리를 수행할 수 있는 장치의 주요 구성에 대한 블록도이다.
도 2는 도 1의 분산화 방법에 채용할 수 있는 두 지역을 포함한 전력계통을 나타낸 예시도이다.
도 3은 본 발명의 다른 실시예에 따른 혼합 분산 상태추정 방법의 주요 절차를 설명하기 위한 흐름도이다.
도 4는 도 3의 혼합 분산 상태추정 방법에 채용할 수 있는 14개의 버스 테스트 네트워크에서의 스카다(SCADA: Supervisory Control and Data Acquisition system) 및 PMU(Phasor measurement unit) 측정치를 설명하기 위한 모의 전력계통에 대한 예시도이다.
도 5는 도 4의 모의 전력계통에서 SCADA 불량 데이터가 포함된 경우, 전압 크기 및 위상각에 대한 추정 오차를 비교한 그래프이다.
도 6은 도 4의 모의 전력계통에서 PMU 불량 데이터가 포함된 경우, 전압 크기 및 위상각에 대한 추정 오차를 비교한 그래프이다.
도 7은 도 4의 모의 전력계통에서 SCADA 불량 데이터가 포함된 경우, 불량 데이터 오차 크기와 불량 데이터 수를 증가시키면서 추정 오차 AMAE를 비교한 그래프이다.
도 8은 도 4의 모의 전력계통에서 PMU 불량 데이터가 포함된 경우, 불량 데이터 오차 크기와 불량 데이터 수를 증가시키면서 추정 오차 AMAE(Average Maximum Absolute Error)를 비교한 그래프이다.
도 9는 도 4의 모의 전력계통에서 SCADA 및 PMU 데이터의 불량 비율이 증감함에 따라 연산시간을 비교한 그래프이다.
도 10은 본 발명의 또 다른 실시에에 따른 혼합 분산 상태추정이나 혼합 분산 상태추정에서의 불량 데이터 처리를 수행할 수 있는 장치의 주요 구성에 대한 블록도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다.
제1, 제2, A, B 등의 용어는 다양한 구성요소들을 설명하는 데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. "및/또는"이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
보통 사용되는 사전에 정의된 용어들은 관련 기술문헌과 현재 개시된 내용에 부합하는 의미를 가지는 것으로 추가 해석되고, 정의되지 않는 한 이상적이거나 매우 공식적인 의미로 해석되지 않는다.
본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 동일 또는 유사한 구성요소에 대해서는 동일한 참조 부호를 붙이도록 한다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명의 일 실시예에 따른 혼합 분산 상태추정 방법에 채용할 수 있는 위상보조 상태추정의 분산화 방법을 설명하기 위한 개념도이다.
도 1을 참조하면, 혼합 분산 상태추정 방법은, 특정 지역 k(sub-area k)에 대한 SCADA(Supervisory Control And Data Acquisition) 측정(zk,sc)과 SCADA 측정의 공분산 행렬(Rk,sc)을 입력받아 SCADA 기반 분산 상태 추정(Distributed State Estimation, DSE)을 수행하고(S131), SCADA 기반 분산 상태 추정과 병렬적으로, PMU(Phasor Measurement Unit) 측정(zk,pmu)과 PMU 측정의 공분산 행렬(Rk,pmu)을 입력받아 PMU 기반 분산 상태 추정을 수행한다(S132).
SCADA 측정(zk,sc)과 PMU 측정(zk,pmu)은 각각 SCADA 측정치과 PMU 측정치로 언급될 수 있고, 분산 상태 추정은 분산 구조의 상태 추정이나 상태 추정의 분산화를 간략히 표현한 것일 수 있다.
SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정을 병렬적으로 수행하는 것은 각 영역 k에서 SCADA 기반 추정기 및 PMU 기반 추정기가 SCADA 측정(zk,sc)과 PMU 측정(zk,pmu)을 사용하여 상태추정 결과를 병렬로 얻는 것을 포함하며, 또한 그것은 각 지역의 추정기가 인접 추정기와 상호작용하면서 ADMM(Alternating Direction Method of Multipliers) 기반 분산 상태추정을 사용하여 각 지역에 대한 SCADA 및 PMU 분산 상태들을 병렬로 생성하는 것을 포함할 수 있다. 이러한 ADMM 기반 DSE은 중앙 추정기를 사용하지 않으므로, 병렬 컴퓨팅을 쉽게 적용할 수 있다. 즉, 각 지역의 추정기는 인접 하위 영역 간의 중첩 영역에서 인접 추정기와 상태 추정 값을 공유할 수 있고, 그에 의해 확장성을 가질 수 있다.
다음, 위상보조 정규화 잔차 테스트(Phasor-aided normailized residual test)를 사용하여 데이터와 PMU 데이터를 SCADA 교차 검증(cross-validate)한다(S140).
교차 검증은, 일반적인 잔차 또는 기존 잔차(conventional residual)의 공분산 행렬 내 대각선 요소들(diagonal elements)의 제곱근으로 기존 잔차를 나누어 정규화된 잔차(normalized residual)를 얻는다. 다음, SCADA 측정과 PMU 상태추정을 이용하는 SCADA 측정의 추정과의 차이로 기존 잔차를 다시 정의한다. 여기서 PMU 상태추정을 이용하는 SCADA 측정은 SCADA 기반 측정 함수 및 PMU 기반 추정을 이용하여 계산된다.
또한, SCADA 추정은 SCADA 측정의 추정, SCADA 기반 추정 또는 SCADA 상태추정에 대응되고, PMU 추정은 PMU 측정의 추정, PMU 기반 추정 또는 PMU 상태추정에 대응될 수 있다. 여기서, SCADA 추정과 PMU 추정에는 대응하는 측정 함수들만이 적용된다. 즉, 적용되는 측정 함수는 SCADA 측정에서 SCADA 상태추정에 대한 SCADA 기반 측정 함수를 뺀 것이 SCADA 기존 잔차와 동일하다고 표현되는 제1 함수와, PMU 측정로부터 PMU 상태추정에 대한 SCADA 기반 측정 함수의 자코비안 행렬(Jacobian matrix)을 뺀 것이 PMU 기존 잔차와 동일하다고 표현되는 제2 함수를 포함할 수 있다. SCADA 기반 측정 함수의 자코비안 행렬은 SCADA 상태 변수가 SCADA 상태 추정과 같다고 가정하고 계산된다.
이러한 교차 검증에 의하면, 위상보조 상태추정 방법은 임계값보다 큰 잔차가 있는 모든 측정을 불량 데이터로 식별할 수 있다.
다음, 특정 지역 k(sub-area k)에 대한 SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정에서 불량 데이터(Bad Data, BD)가 있는지를 판단한다(S145).
위의 교차 검증 단계(S140)와 불량 데이터 판단 단계(S145)는 불량 데이터 검출 및 식별(BD detection and identification) 과정에 대응될 수 있다.
불량 데이터의 판단 단계(S145)에서의 판단 결과, 불량 데이터가 존재하면(S145의 Yes), 불량 데이터 수정 및 재추정(BD correction and re-estimation)을 수행한다(S150). 불량 데이터 수정 및 재추정은 불량 데이터를 제거하고 행렬 채우기 방법(matrix completion method) 등을 사용하여 실제 값과 유사한 데이터로 복원하는 것을 포함할 수 있다.
다음, SCADA 상태추정의 이득 행렬과 SCADA 상태추정과의 곱 및 PMU 상태추정의 이득 행렬과 PMU 상태추정과의 곱을 더하여 데이터 융합(Data fusion)을 수행한다(S170).
한편, 불량 데이터의 판단 단계(S145)에서의 판단 결과, 불량 데이터가 존재하지 않으면(S145의 No), 본 실시예의 분산화 방법을 구현하는 분산화 장치는 위상보조 정규화 잔차 테스트를 통과한 SCADA 데이터와 PMU 데이터에 대해 바로 데이터 융합을 수행할 수 있다(S170).
본 실시예에 의하면, ADMM 기반의 혼합 분산 상태 추정 방법이 위상보조 상태추정 방식과 통합되어 불량 데이터 처리 성능을 향상시킨다. 즉, 위상보조 상태추정 방법은 임계값보다 큰 잔차가 있는 모든 측정을 불량 데이터로 식별하고, 하나씩 제거하는 것이 아니라 동시에 제거할 수 있기 때문에 계산적으로 더 효율적이다. 따라서 위상보조 정규화 잔차 테스트는 다중의 상호작용하고 일치하는 불량 데이터를 효과적으로 식별할 수 있고, 이를 통해 불량 데이터를 효과적으로 제거할 수 있다. 또한, 기존의 불량 데이터 처리 방법 예컨대, LNRT와 비교할 때 불량 데이터 처리 정확도를 유의미하게 향상시킬 수 있다.
도 2는 도 1의 분산화 방법에 채용할 수 있는 두 지역을 포함한 전력계통을 나타낸 예시도이다.
도 2를 참조하면, 두 지역(sub-area 1, sub-area 2)에 설치되는 전력계통에는 1 내지 6으로 표시된 6개 모선들을 가진 전력계통의 특정 위치에 SCADA 측정과 PMU 측정을 위한 측정 장치 또는 측정 기기가 각각 설치되고, 각 측정 기기가 관측 가능한 모선을 실선으로 각각 표시하고 있다.
SCADA 측정치는 선로 유·무효 전력(active/reactive power flow), 모선 유입 유·무효 전력(active/reactive power injection), 모선 전압 크기(bus voltage magnitude)를 기재된 순서대로 동그라미, 화살표 및 사각형 모양들로 각각 표현되어 있다.
위상 측정 장치(PMU)는 설치된 특정 모선의 전압 크기 및 전압 위상각(voltage phasor)을 측정하고 동시에 특정 모선과 연결된 모든 선로(all branches)의 전류 크기 및 전류 위상각(current phasors)을 측정한다. 시스템 글로벌 관측성을 확보하기 위해 PMU 측정치 2개는 둥근 모서리를 가진 사각형 박스 내에 PMU가 적힌 모양으로 모선 2와 모선 6에 각각 설치되어 있다.
전력계통의 상태변수는 모선의 전압 크기와 위상으로 나타낸다. 그리고 주어진 측정 데이터로부터 특정 모선의 전압 크기와 위상이 계산 가능할 때, 해당 모선을 관측 가능하다고 한다.
도 2에서 지역 1(sub-area 1)에 있는 SCADA 측정치로부터 관측 가능한 모선은 모선 1 내지 모선 4이고, PMU 측정치로부터 관측 가능한 모선은 모선 1 내지 모선 3과 모선 5이며, 따라서 지역 1에서 SCADA 측정치로 관측 가능한 모선들과 PMU 측정치로 관측 가능한 모선들은 서로 다르다.
일반적으로 SCADA 측정 및 PMU 측정과 연관된 측정 기기의 위치와 측정 데이터의 종류가 다르므로 SCADA 측정치 기반 관측 가능한 상태변수와 PMU 측정치 기반 관측 가능한 상태변수는 일치하지 않는다. 또한, 추정치 합성을 위해 필요한 SCADA 측정치 기반 지역 이득 행렬과 PMU 기반 지역 이득 행렬도 서로 일치하지 않는다.
이에 본 실시예에서는 도 1을 참조하여 설명한 바와 같이 위상보조 상태추정의 분산화를 통해 전술한 SCADA 측정 및 PMU 측정과 연관된 측정 기기의 위치와 측정 데이터의 종류가 달라 발생하는 문제들을 해결한다. 이러한 위상보조 상태추정의 분산화 즉, 위산보조 상태추정을 적용한 분산 상태추정(간략히 '혼합 분산 상태 추정'이라고도 한다)에 대하여 좀더 구체적으로 설명하면 다음과 같다.
도 3은 본 발명의 다른 실시예에 따른 혼합 분산 상태추정 방법의 주요 절차를 설명하기 위한 흐름도이다.
도 3을 참조하면, 혼합 분산 상태추정 방법은, 위상보조 상태추정(Phasor-aided State Estimation, PHASE) 방법을 적용하는 과정에 있어서 크게 4가지 구성을 포함한다.
4가지 구성은 지역 상태변수 확장(Extension of local state vectors), 분산 상태추정(Distributed state estimation, DSE), 불량 데이터 처리(Bad data processing, BDP), 그리고 재추정 및 데이터 합성(Re-estimation and data fusion) 부분들(parts)을 포함한다.
지역 상태변수 확장 파트는 네트워크 토폴로지(network topology) 및 측정 기기 위치 또는 측정 포인트 정보(information on measurement points)를 수신하는 단계(Step 1)를 선택적으로 포함함으로써, 각 지역에 대한 확장 상태 변수(Extended state vector)와 확장 상태변수 집합(Extended state vector set)을 정의하는(Establishing) 단계(Step 2)만을 포함하도록 구성될 수 있다.
분산 상태추정 파트는 SCADA 측정치 및 그 공분산 행렬들을 이용하는 SCADA 기반 분산 상태 추정(SCADA-based DSE) 단계와 PMU 측정치 및 그 공분산 행렬들을 이용하는 PMU 기반 분산 상태 추정(PMU-based DSE) 단계를 포함하는 ADMM(Alternative Direction Method of Multipliers) 기반 DSE로 지칭될 수 있고, 이 경우 ADMM 기반 DSE는 SCADA 기반 분산 상태 추정 단계와 PMU 기반 분산 상태 추정 단계의 병렬적 추정 단계(Step 3)에 더하여 복원된 SCADA 추정치 및 PMU 추정치(Recovered PMU and SCADA measurements)로 앞서 추정한 상태들(the states)을 재추정하는(Re-estimating) 단계(Step 6)를 더 포함할 수 있다.
불량 데이터 처리 파트는 위상-보조 정규 잔차 테스트(Phaser-aided normalized residual test) 및 일반 정규 잔차 테스트(conventional normalized residual test)를 수행하는 단계(Step 4), 각 지역(k)에 대한 SCADA 측정치와 PMU 측정치 내에 불량 데이터(Bad data)가 있는지 판단하는 단계, 및 불량 데이터가 있을 때, 불량 데이터 제거(Bad data removal) 및 행렬 채우기 방법(Matrix completion method) 등을 이용한 데이터 복원(recovery)을 수행하는 단계(Step 5)를 포함할 수 있다.
전술한 혼합 분산 상태추정 방법을 좀더 구체적으로 설명하면 다음과 같다.
먼저, 지역 상태변수 확장 단계에서는 전력계통 네트워크 토폴로지 정보 및 측정 기기의 위치 정보를 통해 각 지역에 대한 확장 상태변수 집합을 정의한다(Step 2). 확장 상태변수 집합은 확장 상태변수를 포함할 수 있다. 이때, 네트워크 토폴로지(network topology) 및 측정 기기 위치 또는 측정 포인트 정보는 메모리나 저장 장치에 이미 저장되어 있을 수 있다.
다음, SCADA 데이터 기반 분산 상태추정 및 PMU 데이터 기반 분산 상태추정을 병렬적으로 수행한다(Step 3). 이때, 분산 상태추정은 앞서 언급한 ADMM 방법을 사용할 수 있다.
다음, PHASE 방법을 이용한 불량 데이터 처리 단계에서, 위상-보조 정규 잔차 테스트와 정규 잔차 테스트를 수행하고(Step 4), 테스트 결과의 교차 검증을 통해 불량 데이터의 존재를 판단한다.
불량 데이터로 판별된 측정 데이터는 제거되고, 행렬 채우기(matrix completion) 방법을 사용하여 실제값과 유사한 데이터로 복원할 수 있다(Step 6).
다음, 복원된 SCADA 및 PMU 데이터를 이용하여 3번째 단계(Step 3)의 분산 상태추정을 다시 수행하고, 각각의 추정 결과를 합성하여 최종적으로 상태를 추정한다(Step 7).
전술한 설명에 부가하면, 지역 상태변수 확장 단계(Step 2)에서의 상태변수 확장은 지역들 간의 경계에서 지역 상태추정기의 관측성 문제를 야기시킬 수 있다. 본 실시예에서는 이러한 문제를 ADMM 방법을 통해 해결한다.
분산 최적화 문제를 풀기 위해서 ADMM은 반복적인 인접 지역의 정보를 교환하여 전역 최적해(global optimal solution)를 구한다. 이때 인접 지역과 교환하는 정보를 의사-측정치로 활용하면 로컬 전력계통을 관측할 수 있다.
임의의 지역 k에 대한 SCADA 데이터로부터 추정 가능한 모선 집합을 , PMU 데이터로부터 추정 가능한 모선 집합을 라 할 때, 상태변수 확장을 통해 정의되는 추정 가능한 모선 집합 은 다음과 같다.
위의 도 2를 참조하여 각 데이터로부터 추정 가능한 모선 집합들을 포함하는 확장된 추정 가능한 모선 집합의 예를 들면, 지역 1(sub-area 1)의 추정 가능한 모션 집합 과 지역 2(sub-area 2)의 추정 가능한 모션 집합 은 기재된 순서대로 {B1, B2, B3, B4, B5} 및 {B2, B4, B5, B6}로 각각 정의된다. 여기서, 을 위한 SCADA 데이터로부터 추정 가능한 모선 집합은 {B1, B2, B3, B4}로, 을 위한 PMU 데이터로부터 추정 가능한 모선 집합은 {B1, B2, B3, B5}로 각각 정의된다. Bk는 k번째 모선(모선 k)을 의미한다.
또한, k 지역의 SCADA 기반 로컬 추정기로 추정 가능한 상태변수 , 확장된 상태변수 , 공유 상태변수 로 정의하면 다음과 같은 관계식으로 나타낼 수 있다.
여기서 는 치환행렬(permutation matrix)이다. 확장된 상태변수는 SCADA와 PMU에 상관없이 같은 상태를 나타내기 때문에 아래 첨자로 구분하지 않는다. PMU에 대한 나머지 상태변수들은 위의 [수학식 2]와 유사하게 표현할 수 있다.
[수학식 2]에서 지역 k의 SCADA 확장된 상태변수의 치환행렬은 SCADA 기반 추정 가능한 상태변수의 전치행렬(transpose matrix)과 공유 상태변수의 전치행렬의 곱을 전체적으로 전치행렬한 것과 같다는 속성을 가진다.
두 번째로 복수(예컨대 K개)의 지역으로 나눠진 전력계통의 분산 상태추정을 위해서 최적화 문제는 가중 최소 제곱법(weighted-least square, WLS)을 통해 다음과 같이 정식화될 수 있다.
[수학식 3]의 목적함수는 K개의 지역들의 상태추정 목적함수의 합으로 나타나며, 제약조건은 순서대로 측정치 함수, 합의(consensus) 제약조건, 지역별 WLS 목적함수를 의미한다. 그리고 [수학식 3]에서 는 지역 k에 있는 SCADA 데이터의 공분산 행렬(covariance matrix)의 역행렬이다. 위의 분산 최적화 문제의 해는 전역 상태 추정치가 된다.
분산 최적화 문제를 풀기 위해서 ADMM 방법을 적용하면 다음 수식들을 반복적으로 계산함으로써 최적해를 구할 수 있다.
[수학식 4] 내지 [수학식 6]에서 아래 첨자 k는 지역, i는 행렬 또는 벡터의 요소, l은 지역 k와 인접한 지역 l을 의미하고, 는 지역 k와 인접한 지역 집합, t는 ADMM의 반복횟수를 나타낸다.
위의 [수학식 4]는 지역별 상태변수를 추정하는 과정으로, [수학식 3]의 라그랑주 방정식(Lagrangian equation)을 통해 계산될 수 있다. 이때, 는 페널티 파라미터(penalty parameter)로 합의 제약조건의 가중치를 결정하는 요소이다.
위의 [수학식 5]와 [수학식 6]의 변수 s와 p는 라그랑주 승수(Lagrangian multiplier)와 합의 제약조건으로부터 유도된 변수이다.
[수학식 4]는 아래 [수학식 7]과 같이 계산될 수 있다.
[수학식 7]에서, 는 에서 SCADA 데이터에 대한 이득 행렬(Gain matrix)이다. 그리고 는 에서 의 자코비안 행렬(Jacobian matrix)이며, 는 (i,i) 요소를 지역 k와 인접한 지역 집합의 절대치 로 나타낸 대각행렬(diagonal matrix)이다.
SCADA 기반 최종 추정치 는 [수학식 7]을 반복 계산함으로써 구할 수 있다. 이와 유사하게 PMU에 대해서도 PMU 기반 최종 추정치 를 구할 수 있다.
ADMM 기반 분산 상태추정 이후, PHASE를 이용한 불량 데이터 처리 단계를 수행한다. PHASE는 2가지 정규 잔차 테스트의 결과를 교차 검증을 통해 불량 데이터를 판별하는 방법이며, 독립적인 측정 데이터 집합이 2가지 이상 있을 때 유용하다.
다음은 SCADA 데이터에 불량이 포함된 경우에 대한 설명이며, PMU 데이터에 대해서도 유사하게 불량 판별이 가능하다. 확장된 상태변수를 통해 아래 [수학식 8] 및 [수학식 9]을 각각 계산할 수 있다.
[수학식 8]은 일반적인 잔차이고, [수학식 9]는 위상-보조 잔차의 정의이다.
위상-보조 잔차는 SCADA 데이터와 독립적인 PMU 데이터로 계산된 추정치를 이용하여 계산된 값으로 SCADA 데이터에 불량이 포함된 경우, 상대적으로 큰 값을 갖는다. 위상-보조 잔차의 정규화를 위한 공분산 행렬 은 다음의 [수학식 10]과 같이 계산된다.
여기서, 는 에서 SCADA 측정치 함수 의 자코비안 행렬로써 다음과 같이 계산된 값이다.
즉, [수학식 10]과 같이 위상-보조 잔차 의 공분산 행렬은 SCADA 측정치와 PMU 측정치가 독립적이기 때문에 대각 요소가 SCADA 측정치의 분산으로 이루어진 행렬 과 의 공분산 행렬의 합으로 계산된다.
그리고 을 이용하여 위상-보조 잔차 를 정규화한다. 정규화된 잔차는 통계적인 수치인 임계값과 비교를 통해 불량 여부를 판단한다. 99.7%의 신뢰도를 만족하는 임계값은 3, 95.4%의 신뢰도를 만족하는 임계값은 2로 계산될 수 있다.
다음의 [수학식 11]은 위상-보조 정규 잔차 테스트를 나타낸다.
[수학식 11]에서 는 임계값을 의미한다. 임계값보다 작은 정규 잔차를 갖는 경우, 정상 데이터이며, 임계값보다 높은 정규 잔차를 갖는 경우, 해당 데이터는 불량 데이터의 후보군이 된다.
위상-보조 정규 잔차 테스트와 유사하게 일반 정규 잔차 테스트도 수행한다. 일반 정규 잔차 테스트에 활용되는 잔차는 SCADA 측정치의 불량을 판단하기 위해 SCADA로부터 추정된 상태값을 활용한다. 다음은 일반 정규 잔차 테스트이다.
위상-보조 정규 잔차와 달리 일반 정규 잔차의 공분산 행렬은 측정치의 공분산 행렬 과 의 공분산 행렬의 차로 나타난다. 해당 결과는 SCADA 측정치와 SCADA 기반 추정치가 종속적인 관계를 갖기 때문이다. 최종 불량 데이터는 2가지 잔차 테스트 모두 임계값을 넘어선 측정치가 불량으로 판별된다.
여기서 PMU 측정치에 대한 불량 판별 수식은 다루지 않는다. 단, SCADA 불량 데이터 판별 과정과 유사하게 처리됨을 언급한다.
불량으로 판별된 측정치는 제거되고, 행렬 채우기(matrix completion) 방법을 이용해 근사 측정치로 복원될 수 있다.
마지막은 SCADA 기반 추정 결과와 PMU 기반 추정 결과를 합성하는 단계이다. 확장된 지역 k의 모선 집합 에 대해서 상태추정 결과는 다음의 [수학식 13]과 같이 구할 수 있다.
[수학식 13]에서 와 는 각각 SCADA 기반 추정치 의 이득 행렬, PMU 기반 추정치 의 이득 행렬이다. 확장 상태변수 집합은 의 행과 열의 크기와 행렬의 인덱스를 와 일치시킨다. 따라서 SCADA 기반 추정치과 PMU 기반 추정치 합성이 가능하게 된다.
본 발명의 실시예는 종례의 3가지 방법과 비교하고 성능을 평가하였다. 본 발명은 PHASE를 이용한 분산 상태추정(Distributed PHASE, DPHASE)이고, 비교된 방법의 비교예 1은 불량 데이터 처리를 포함하지 않은 분산 상태추정(DSE w/o BDP), 비교예 2는 LNRT 불량 데이터 처리 방법이 적용된 분산 상태추정(DSE-LNRT), 그리고 비교예 3은 Roubst DSE(RDSE)이다. RDSE는 L1-이완(L1-relaxation)을 사용한 불량 데이터 처리 방법이다.
도 4는 도 3의 혼합 분산 상태추정 방법에 채용할 수 있는 14개의 버스 테스트 네트워크에서의 스카다(SCADA: Supervisory Control And Data Acquisition) 및 PMU(Phasor Measurement Unit) 측정치를 설명하기 위한 모의 전력계통에 대한 예시도이다.
도 4의 모의 전력계통은 본 실시예와 비교예들의 상태추정이 수행된 IEEE 14 모선 전력계통(IEEE 14-bus system)에 대응된다.
도 4를 참조하면, 모의 전력계통은 4개의 지역들(sub-area 1, sub-area 2, sub-area 3, sub-area 4)로 나누어진다. 모의 전력계통에서 PMU는 4개가 설치되며, SCADA는 선로 유·무효 전력(active/reactive power flow) 16개, 모선 유입 유·무효 전력(active/reactive power injection) 4개, 모선 전압 크기(bus voltage magnitude) 4개를 측정하도록 측정치를 설치하고 있다.
추가로 IEEE 118, IEEE 1062 모선 모의 전력계통에서의 비교 실험도 수행하였다. 표 1은 IEEE 118 모선 모의 전력계통의 지역별 모선 번호와 PMU가 설치된 위치 정보이다. 밑줄로 표시된 모선이 PMU가 설치된 모선이다.
다음은 SCADA 및 PMU 데이터에 대해 논의한다. SCADA 및 PMU 데이터의 노이즈는 정규분포를 가정하고, 평균은 0, 분산은 는 0.01(1%)로, 는 0.001(0.1%)로 각각 가정한다. PMU 측정 데이터는 시간 동기화된 데이터로 SCADA보다 정확하기 때문에 분산값을 작게 설정한다.
비교 실험의 성능 평가지표는 최대 평균 절대오차(average maximum absolute error, AMAE)를 사용하며 아래의 [수학식 14]와 같이 표현될 수 있다.
[수학식 14]에서 은 몬테카를로 시뮬레이션 횟수, 는 n번째 몬테카를로 시뮬레이션의 추정 결과 의 i번째 요소를 의미한다.
도 5는 도 4의 모의 전력계통에서 SCADA 불량 데이터가 포함된 경우, 전압 크기 및 위상각에 대한 추정 오차를 비교한 그래프이다.
도 5의 (a) 및 (b)에 나타낸 바와 같이, 선로 유·무효전력 P2-3, P5-6, P7-9, Q2-3, Q5-6, Q7-9에 불량 데이터가 포함되었으며, 추정오차는 모선별로 절대오차를 비교하여 나타내었다. 실험 결과, 본 실시예(DPHASE)에 비해 비교예들의 경우에서 절대오차가 상대적으로 큰 것을 알 수 있다. 선로 유·무효전력의 전압 크기에서의 절대오차는 비교예 1(DSE without BDP)이 제일 크고, 전압 위상각에서의 절대오차는 비교예 3(RDSE)이 제일 큰 것을 알 수 있다.
도 6은 도 4의 모의 전력계통에서 PMU 불량 데이터가 포함된 경우, 전압 크기 및 위상각에 대한 추정 오차를 비교한 그래프이다.
도 6의 (a) 및 (b)에 나타낸 바와 같이, 선로 전류 페이저 I2-3, I5-6, I7-9에 불량 데이터가 포함되었으며, 추정오차는 모선별로 절대오차를 비교하여 나타내었다. 실험 결과, 본 실시예(DPHASE)에 비해 비교예들의 경우에서 절대오차가 상대적으로 큰 것을 알 수 있다. 비교예 1(DSE without BDP)은 I7-8을 제외한 나머지 모선들에서, 비교예 2(RDSE)는 전체 모선들에서 선로 전류 페이저의 전압 위상각에서의 절대오차가 본 실시예(DPHASE)에 비해 큰 것을 알 수 있다.
도 5 및 도 6을 참조하면, 본 실시예(DPHASE)의 경우가 평균적으로 다른 비교예들의 불량 데이터 처리 알고리즘에 비해 효과적으로 추정 오차를 개선하는 것을 확인할 수 있다. 특정 모선에서는 추정 오차가 더 크게 나올 수 있는데, 그 차이는 데이터의 불확실성을 나타내는 와 보다 작다.
아래의 표 2와 표 3은 각각 SCADA 불량 데이터가 포함된 경우와 PMU 불량 데이터가 포함된 경우, AMAE를 비교한 것이다. 몬테카를로 시뮬레이션은 50회씩 수행하였고, 전체 데이터 중 불량 데이터 비율은 10%, 퍼센트 에러 크기는 실제값의 30%로 가정하였다.
표 2와 표 3을 참조하면, 본 실시예(Proposed DPHASE)가 비교예(Conventional)의 경우들에 비해 모든 시뮬레이션에서 낮은 추정오차를 나타내는 것을 확인할 수 있다. 비교예들(DSE-LNRT, RDSE)이 본 실시예(DPHASE)보다 오차가 큰 이유는 불량 데이터 처리를 성공적으로 하지 못하고 있기 때문이다.
표 4는 도 4의 전력계통에서 불량 데이터 판별 결과를 보여준다. RDSE는 불량 데이터를 판별하는 데는 사용할 수 없으므로, DPHASE와 DSE-LNRT를 비교하였다. 표 4에서 "C"와 "U"는 각각 불량 데이터를 정확하게 판별하거나, 판별하지 못한 경우를 나타내고, "M"은 실제로는 정상 데이터이지만 불량으로 잘못 판단하는 경우를 나타낸다.
표 4를 참조하면, 비교예 3(DSE-LNRT)의 경우, 특정 불량 데이터에 대해서는 식별되지 않고 남아 있었으며, 정확한 데이터를 불량으로 잘못 판단하는 것도 존재한다. 이는 정규 잔차를 계산할 때 발생하는 상관도(correlation)의 영향으로 불량 데이터가 정상 데이터의 잔차에도 영향을 주기 때문이다.
이와 대조적으로 본 실시예(DPHASE)는 불량 데이터를 성공적으로 판별하는 것을 확인할 수 있다. 그 이유는 SCADA와 PMU 데이터의 독립적인 특성으로 인해 SCADA 데이터의 불량이 PMU 추정 결과에 영향을 미치지 않고, PMU 데이터의 불량이 SCADA 추정 결과에 영향을 미치지 않기 때문이다. 그리고, 표 4에서 CASE 2를 살펴보면, 경계에 있는 측정 데이터 P5-4와 Q5-4에 대해서도 상태변수 확장을 통해 성공적으로 불량 데이터를 처리하는 것을 확인할 수 있다.
도 7은 도 4의 모의 전력계통에서 SCADA 불량 데이터가 포함된 경우, 불량 데이터 오차 크기와 불량 데이터 수를 증가시키면서 추정 오차 AMAE(Average Maximum Absolute Error)를 비교한 그래프이다. 그리고 도 8은 도 4의 모의 전력계통에서 PMU 불량 데이터가 포함된 경우, 불량 데이터 오차 크기와 불량 데이터 수를 증가시키면서 추정 오차 AMAE를 비교한 그래프이다.
본 비교 실험의 목적은 본 실시예(DPHASE)가 비교예들에 비해 불량 데이터 크기와 수에 대한 강인성을 가짐을 확인하는 것이다. 도 7 및 도 8의 각 (a)와 각 (b)에 도시한 바와 같이, 백분율 오차(Percentage error)와 불량 데이터 개수(Number of BD) 비율은 0%부터 40%까지 증가시키면서 AMAE를 확인하였다.
본 실시예(DPHASE)는 불량 데이터 크기와 불량 데이터 비율이 증가하더라도 오차가 거의 증가하지 않았으나, 비교예 1(DSE without BDP), 비교예 2(RDSE) 및 비교예 3(DSE-LNRT) 모두는 불량 데이터 크기와 비율에 따라 추정 오차가 증가하는 것을 확인할 수 있다.
이와 같이, 본 실시예(DPHASE)의 경우, 불량 데이터를 정확하게 판별하고 처리 하기 때문에, 그리고 데이터 복원 오차에 의해서만 AMAE가 증가하기 때문에 불량 데이터 크기와 비율에 강인하다. 반면, DSE-LNRT와 RDSE는 불량 데이터를 판별하지 못하거나 정상인 데이터를 잘못 판별하는 경우가 증가하면서 AMAE가 지속해서 증가한다.
표 5는 SCADA 불량 데이터가 10% 비율로 존재하거나, PMU 불량 데이터가 10% 비율로 존재하거나, 이 둘 모두에서 불량데이터가 각각 10% 비율로 존재할 때, 분산 알고리즘별 연산 속도를 비교한 것이다.
표 5를 참조하면, 본 실시예(DPHASE)의 방법은 상대적으로 비교예들의 다른 알고리즘에 비해 긴 연산시간을 갖는다. 그 이유는 정확한 불량 판별을 위해 ADMM 방법을 2번 수행하기 때문이며, 비교예 1(DSE w/o BDP)과 대비할 때, 연산 속도가 거의 1.5배만큼 차이나는 것을 알 수 있다.
본 실시예(DPHASE)의 방법은 작은 전력계통에서 실시예 3(DSE-LNRT)과 비교하면 느리지만, 큰 전력계통에서는 더 빠르게 불량 데이터를 처리할 수 있다. 즉, 다수의 불량 데이터를 처리할 때에는 LNRT에 비해 PHASE가 빠른 것을 알 수 있다.
또한, LNRT를 이용한 중앙 집중식 상태추정(Centralized state estimation, CSE)과 연산 속도를 비교하였을 때, 불량 데이터 20%의 경우, IEEE 118 모선 모의 전력계통에서 4.76[s]가 덜 걸린다. 따라서 중앙 집중식 방법에 비해 분산 처리가 효율적인 것을 알 수 있다.
도 9는 도 4의 모의 전력계통에서 SCADA 및 PMU 데이터의 불량 비율이 증감함에 따라 연산시간을 비교한 그래프이다.
도 9의 (a) 및 (b)에서는 14-버스 네트워크에서 본 실시예와 비교예들의 원리와 성능을 비교 분석한 결과를 보여준다, 즉, BD 개수의 비율이 0%에서 10%로 증가함에 따라 1062-bus 네트워크에 대한 평균 계산 시간의 변화를 보여준다.
도 9의 (a)를 참조하면, 본 실시예(DPHASE)의 연산 시간(computing time)은 불량 데이터가 증가함에 따라 지속해서 점진적으로 증가하지만, PHASE(중앙 집중식 방법)의 연산 시간은 크게 영향을 받지 않는다. 그 이유는 불량 데이터 수가 증가함에 따라 ADMM 방법의 수렴 속도가 느려지며, 전체 연산시간에 영향을 주기 때문이다.
특히 IEEE 118 및 1062 버스 네트워크에서 손상된 PMU 데이터의 경우, 본 실시예(DPHASE)의 계산 시간은 비교예 2(DSE-LNRT) 및 비교예 3(RDSE)의 계산 시간보다 짧다. 즉, 본 실시예는 1대1로 작동하는 DSE-LNRT의 경우와 달리 모든 불량 데이터를 한 번에 처리할 수 있기 때문이다.
또한, 본 실시예(DPHASE)는 RDSE와 달리 ADMM 기반 DSE에서 l1-norm 패널티 및 해당 반복 단계에 대한 변수가 필요하지 않다.
이와 같이, 비교 실험 결과, IEEE 118 및 1062 버스 네트워크와 유사한 크기의 실제 전력 네트워크에 본 실시예를 적용할 경우, 비교예들(DSE-LNRT, RDSE)에 비해 계산 효율성을 향상시킬 수 있음을 알 수 있다.
도 10은 본 발명의 다른 실시예에 따른 분산화 방법이나 불량 데이터 처리 방법에 채용할 수 있는 주요 장치 구성에 대한 블록도이다.
도 10을 참조하면, 분산화 장치 또는 불량 데이터 처리 장치로 채용할 수 있는 장치(1000)는, 컴퓨팅 장치로서, 프로세서(1010), 프로세서(1010)를 통해 실행되는 적어도 하나의 명령 및 명령 수행의 결과를 저장하는 메모리(1020) 및 네트워크와 연결되어 통신을 수행하는 송수신 장치(1030)를 포함한다.
또한, 장치(1000)는 입력 인터페이스 장치(1040), 출력 인터페이스 장치(1050), 저장 장치(1060) 등을 더 포함할 수 있다. 장치(1000)에 포함된 각각의 구성 요소들은 버스(Bus, 1070)에 의해 연결되어 서로 통신을 수행할 수 있다.
프로세서(1010)는 메모리(1020) 및 저장 장치(1060) 중에서 적어도 하나에 저장된 프로그램 명령(program command)을 실행할 수 있다. 프로세서(1010)는 중앙 처리 장치(central processing unit, CPU), 그래픽 처리 장치(graphics processing unit, GPU), 또는 본 발명의 실시예에 따른 방법들이 수행되는 전용의 프로세서를 의미할 수 있다.
메모리(1020) 및 저장 장치(1060) 각각은 휘발성 저장 매체 및 비휘발성 저장 매체 중에서 적어도 하나로 구성될 수 있다. 예를 들어, 메모리(1020)는 읽기 전용 메모리(read only memory, ROM) 및 랜덤 액세스 메모리(random access memory, RAM) 중에서 적어도 하나로 구성될 수 있다.
본 실시예의 장치(1000)가 분산화 방법에 채용되는 경우, 장치(1000) 또는 프로세서(1010)가 실행될 때, 메모리(1020) 및 저장 장치(1060) 중 적어도 어느 하나 이상에 저장되는 명령은, 프로세서(1010)에 탑재될 수 있고, 프로세서(1010)가 해당 명령을 수행하도록 기능할 수 있다.
상기의 명령은 스카다(SCADA) 측정 및 위상 측정 장치(PMU) 측정과 연관되는 네트워크 토폴로지와 각 측정 기기의 위치 정보를 수신하는 제1 명령, 각 지역(k)에 대한 확장 상태 변수 집합(extended state vector set)과 확장 상태 변수를 정의하는 제2 명령, 각 지역에 대한 SCADA 측정 및 SCADA 측정과 PMU 측정과의 통합 변수의 공분산 행렬을 이용하여 SCADA 기반 분산 상태 추정을 수행하는 제3a 명령, SCADA 기반 분산 상태 추정과 병렬적으로 각 지역에 대한 PMU 측정 및 SCADA 측정과 PMU 측정과의 통합 변수의 공분산 행렬을 이용하여 PMU 기반 분산 상태 추정을 수행하는 제3b 명령, SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정의 결과들을 혼합하여 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 제4 명령 등을 포함할 수 있다.
또한, 본 실시예의 장치(1000)가 혼합 분산 상태 추정 방법이나 혼합 분산 상태 추정에서의 불량 데이터 처리 방법에 채용되는 경우, 장치(1000) 또는 프로세서(1010)가 실행될 때, 메모리(1020) 및 저장 장치(1060) 중 적어도 어느 하나 이상에 저장되는 명령은, 프로세서(1010)에 탑재될 수 있고, 프로세서(1010)가 혼합 분산 상태 추정 방법이나 혼합 분산 상태 추정에서의 불량 데이터 처리 방법의 적어도 하나의 단계를 수행하도록 기능할 수 있다.
상기의 명령은, 전술한 제1, 제2, 제3a, 제3b 및 제4 명령들에 더하여, 각 지역에 대한 SCADA 측정 및 각 지역에 대한 PMU 측정에 불량 데이터가 존재하는지 판단하는 명령; 판단 결과, 불량 데이터가 존재하지 않으면 SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정의 결과들을 합성하는 명령; 판단 결과, 불량 데이터가 존재하면 불량 데이터를 제거하고 매트릭스 완성 방법을 이용하여 데이터를 복원하는 명령; 복원하는 단계에서 복원된 SCADA 및 PMU 데이터를 이용하여 추가 상태추정을 수행하는 명령-여기서, 추가 상태 추정을 수행하는 명령은 ADMM 기반 DSE를 수행하여 추가 SCADA 데이터 및 추가 PMU 데이터를 생성하는 명령을 포함함-; SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정의 결과들을 합성하는 명령 등을 더 포함할 수 있다.
아울러, 본 발명의 실시예에 따른 방법의 동작은 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 프로그램 또는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의해 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어 분산 방식으로 컴퓨터로 읽을 수 있는 프로그램 또는 코드가 저장되고 실행될 수 있다.
또한, 컴퓨터가 읽을 수 있는 기록매체는 롬(rom), 램(ram), 플래시 메모리(flash memory) 등과 같이 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치를 포함할 수 있다. 프로그램 명령은 컴파일러(compiler)에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터(interpreter) 등을 사용해서 컴퓨터에 의해 실행될 수 있는 고급 언어 코드를 포함할 수 있다.
본 발명의 일부 측면들은 장치의 문맥에서 설명되었으나, 그것은 상응하는 방법에 따른 설명 또한 나타낼 수 있고, 여기서 블록 또는 장치는 방법 단계 또는 방법 단계의 특징에 상응한다. 유사하게, 방법의 문맥에서 설명된 측면들은 또한 상응하는 블록 또는 아이템 또는 상응하는 장치의 특징으로 나타낼 수 있다. 방법 단계들의 몇몇 또는 전부는 예를 들어, 마이크로프로세서, 프로그램 가능한 컴퓨터 또는 전자 회로와 같은 하드웨어 장치에 의해(또는 이용하여) 수행될 수 있다. 몇몇의 실시예에서, 가장 중요한 방법 단계들의 하나 이상은 이와 같은 장치에 의해 수행될 수 있다.
실시예들에서, 프로그램 가능한 로직 장치(예를 들어, 필드 프로그래머블 게이트 어레이)가 여기서 설명된 방법들의 기능의 일부 또는 전부를 수행하기 위해 사용될 수 있다. 실시예들에서, 필드 프로그래머블 게이트 어레이는 여기서 설명된 방법들 중 하나를 수행하기 위한 마이크로프로세서와 함께 작동할 수 있다. 일반적으로, 방법들은 어떤 하드웨어 장치에 의해 수행되는 것이 바람직하다.
이상 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
Claims (20)
- 대규모 전력계통의 운영 상태 모니터링을 위한 위상보조 상태추정의 분산화 방법으로서,
스카다(SCADA: Supervisory Control And Data Acquisition) 시스템 및 위상 측정 장치(Phasor Measurement Unit, PMU)의 측정과 연관되는 네트워크 토폴로지와 각 측정 기기의 위치 정보를 토대로, 각 지역(k)에 대한 확장 상태 변수 및 확장 상태 변수 집합(extended state vector set)을 정의하는 단계;
상기 각 지역에 대한 SCADA 측정 및 상기 SCADA 측정과 PMU 측정과의 통합 변수의 공분산 행렬을 이용하여 SCADA 기반 분산 상태 추정을 수행하는 단계;
상기 SCADA 기반 분산 상태 추정과 병렬적으로 상기 각 지역에 대한 상기 PMU 측정 및 상기 SCADA 측정과 상기 PMU 측정과의 통합 변수의 공분산 행렬을 이용하여 PMU 기반 분산 상태 추정을 수행하는 단계; 및
상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정의 결과들을 혼합하여 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 단계;를 포함하는, 위상보조 상태추정의 분산화 방법. - 청구항 1에 있어서,
상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정을 병렬적으로 수행하는 것은 인접 추정기와 상호작용하면서 ADMM(Alternating Direction Method of Multipliers) 기반 분산 구조의 상태추정(Distributed State Estimation, DSE)를 사용하여 상기 각 지역에 대한 SCADA 및 PMU 분산 상태들을 생성하는 것을 포함하는, 위상보조 상태추정의 분산화 방법. - 청구항 1에 있어서,
상기 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 단계 후에, 상기 각 지역에 대한 SCADA 측정 및 상기 각 지역에 대한 PMU 측정에 불량 데이터가 존재하는지 판단하는 단계를 더 포함하는, 위상보조 상태추정의 분산화 방법. - 청구항 3에 있어서,
상기 불량 데이터가 존재하지 않으면, 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 포함하는, 위상보조 상태추정의 분산화 방법. - 청구항 3에 있어서,
상기 불량 데이터가 존재하면, 불량 데이터를 제거하고, 매트릭스 완성 방법을 이용하여 데이터를 복원하는 단계를 더 포함하는, 위상보조 상태추정의 분산화 방법. - 청구항 5에 있어서,
상기 복원하는 단계에서 복원된 SCADA 및 PMU 데이터를 이용하여 추가 상태추정을 수행하는 단계를 더 포함하는, 위상보조 상태추정의 분산화 방법. - 청구항 6에 있어서,
상기 추가 상태 추정을 수행하는 단계는, ADMM 기반 DSE를 수행하여 추가 SCADA 데이터 및 추가 PMU 데이터를 생성하는, 위상보조 상태추정의 분산화 방법. - 청구항 6에 있어서,
상기 추가 상태 추정을 수행하는 단계 이후에, 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 포함하는, 위상보조 상태추정의 분산화 방법. - 대규모 전력계통의 운영 상태 모니터링을 위한 혼합 분산 상태 추정에서의 불량 데이터 처리 방법으로서,
스카다(SCADA: Supervisory Control And Data Acquisition) 측정에 기반한 SCADA 기반 분산 상태 추정과 위상 측정 장치(Phasor Measurement Unit, PMU) 측정에 기반한 PMU 기반 분산 상태 추정의 결과들을 혼합하여 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 단계; 및
각 지역에 대한 SCADA 측정 및 상기 각 지역에 대한 PMU 측정에 불량 데이터가 존재하는지 판단하는 단계-상기 각 지역은 상기 SCADA 측정 및 상기 PMU 측정과 연관된 네트워크 토폴로지와 상기 네트워크 토폴로지에 따른 측정 기기의 위치 정보에 의해 정의됨-;
를 포함하는 혼합 분산 상태 추정에서의 불량 데이터 처리 방법. - 청구항 9에 있어서,
상기 불량 데이터가 존재하지 않으면, 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 포함하는, 혼합 분산 상태 추정에서의 불량 데이터 처리 방법. - 청구항 10에 있어서,
상기 불량 데이터가 존재하면, 불량 데이터를 제거하고, 매트릭스 완성 방법을 이용하여 데이터를 복원하는 단계를 더 포함하는, 혼합 분산 상태 추정에서의 불량 데이터 처리 방법. - 청구항 11에 있어서,
상기 복원하는 단계에서 복원된 SCADA 및 PMU 데이터를 이용하여 추가 상태추정을 수행하는 단계를 더 포함하는, 혼합 분산 상태 추정에서의 불량 데이터 처리 방법. - 청구항 12에 있어서,
상기 추가 상태 추정을 수행하는 단계는, ADMM 기반 DSE를 수행하여 추가 SCADA 데이터 및 추가 PMU 데이터를 생성하는, 혼합 분산 상태 추정에서의 불량 데이터 처리 방법. - 청구항 12에 있어서,
상기 추가 상태 추정을 수행하는 단계 이후에, 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 포함하는, 혼합 분산 상태 추정에서의 불량 데이터 처리 방법. - 청구항 9에 있어서,
상기 수행하는 단계 전에, 상기 각 지역에 대한 확장 상태 변수 및 확장 상태 변수 집합(extended state vector set)을 정의하는 단계를 더 포함하는, 혼합 분산 상태 추정에서의 불량 데이터 처리 방법. - 청구항 15에 있어서,
상기 정의하는 단계 후에, 상기 SCADA 기반 분산 상태 추정과 상기 PMU 기반 분산 상태 추정을 병렬적으로 수행하는 단계를 더 포함하며, 여기서 상기 병렬적으로 수행하는 단계는, SCADA 추정기 및 PMU 추정기가 인접 추정기와 상호작용하면서 ADMM(Alternating Direction Method of Multipliers) 기반 분산 구조의 상태추정(Distributed State Estimation, DSE)를 사용하여 상기 각 지역에 대한 SCADA 및 PMU 분산 상태들을 생성하는, 혼합 분산 상태 추정에서의 불량 데이터 처리 방법. - 대규모 전력계통의 운영 상태 모니터링을 위한 혼합 분산 상태 추정에서의 불량 데이터 처리 방법을 실행하는 장치로서,
적어도 하나의 명령을 저장하는 메모리; 및
상기 메모리에 연결되어 상기 적어도 하나의 명령을 실행하는 프로세서;
를 포함하며,
상기 프로세서가 실행될 때, 상기 적어도 하나의 명령은 상기 프로세서가:
스카다(SCADA: Supervisory Control And Data Acquisition) 측정에 기반한 SCADA 기반 분산 상태 추정과 위상 측정 장치(Phasor Measurement Unit, PMU) 측정에 기반한 PMU 기반 분산 상태 추정의 결과들을 혼합하여 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 단계; 및
각 지역에 대한 SCADA 측정 및 상기 각 지역에 대한 PMU 측정에 불량 데이터가 존재하는지 판단하는 단계;를 포함하며,
상기 각 지역은 상기 SCADA 측정 및 상기 PMU 측정과 연관된 네트워크 토폴로지와 상기 네트워크 토폴로지에 따른 각 측정 기기의 위치 정보에 의해 구분되거나 정의되는, 혼합 분산 상태 추정에서의 불량 데이터 처리 장치. - 청구항 17에 있어서,
상기 적어도 하나의 명령은 상기 프로세서가:
상기 각 지역에 대한 상기 SCADA 측정 및 상기 PMU 측정에 불량 데이터가 존재하는지 판단하는 단계 후에,
상기 불량 데이터가 존재하면 불량 데이터를 제거하고 매트릭스 완성 방법을 이용하여 데이터를 복원하는 단계;
상기 복원하는 단계에서 복원된 SCADA 및 PMU 데이터를 이용하여 추가 상태추정을 수행하는 단계-여기서, 상기 추가 상태 추정을 수행하는 단계는, ADMM 기반 DSE를 수행하여 추가 SCADA 데이터 및 추가 PMU 데이터를 생성함-; 및
상기 SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 수행하도록 하는,
혼합 분산 상태 추정에서의 불량 데이터 처리 장치. - 청구항 17에 있어서,
상기 적어도 하나의 명령은 상기 프로세서가:
상기 각 지역에 대한 상기 SCADA 측정 및 상기 PMU 측정에 불량 데이터가 존재하는지 판단하는 단계 후에,
상기 불량 데이터가 존재하지 않으면 SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정의 결과들을 합성하는 단계를 더 수행하도록 하는,
혼합 분산 상태 추정에서의 불량 데이터 처리 장치. - 청구항 17에 있어서,
상기 적어도 하나의 명령은 상기 프로세서가:
상기 SCADA 기반 분산 상태 추정과 PMU 기반 분산 상태 추정의 결과들을 혼합하여 위상-보조 정규 잔차 테스트 및 일반 정규 잔차 테스트를 수행하는 단계 전에,
상기 SCADA 측정 및 상기 PMU 측정과 연관되는 네트워크 토폴로지와 각 측정 기기의 위치 정보를 수신하는 단계;
상기 각 지역에 대한 확장 상태 변수와 확장 상태 변수 집합(extended state vector set)을 정의하는 단계; 및
상기 각 지역에 대한 SCADA 측정 및 SCADA 측정과 PMU 측정과의 통합 변수의 공분산 행렬을 이용하여 SCADA 기반 분산 상태 추정을 수행하고, 상기 SCADA 기반 분산 상태 추정과 병렬적으로 상기 각 지역에 대한 PMU 측정 및 SCADA 측정과 PMU 측정과의 통합 변수의 공분산 행렬을 이용하여 PMU 기반 분산 상태 추정을 수행하는 단계를 더 수행하도록 하는,
혼합 분산 상태 추정에서의 불량 데이터 처리 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2021/014721 WO2022086176A1 (ko) | 2020-10-21 | 2021-10-20 | 대규모 전력계통의 운영 상태 모니터링을 위한 위상보조 상태추정의 분산화 방법 및 이를 이용하는 혼합 분산 상태 추정에서의 불량 데이터 처리 방법 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20200136965 | 2020-10-21 | ||
KR1020200136965 | 2020-10-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20220052843A KR20220052843A (ko) | 2022-04-28 |
KR102569697B1 true KR102569697B1 (ko) | 2023-08-24 |
Family
ID=81446778
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020210140064A KR102569697B1 (ko) | 2020-10-21 | 2021-10-20 | 대규모 전력계통의 운영 상태 모니터링을 위한 위상보조 상태추정의 분산화 방법 및 이를 이용하는 혼합 분산 상태 추정에서의 불량 데이터 처리 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR102569697B1 (ko) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102702797B1 (ko) * | 2022-07-11 | 2024-09-04 | 연세대학교 산학협력단 | 시각동기 위상측정 데이터의 품질 유지를 위한 실시간 분산 관리 방법 |
CN117856216B (zh) * | 2023-12-13 | 2024-10-18 | 国网上海市电力公司 | 基于信任基础的智能电网弹性分布式状态估计方法及介质 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013208051A (ja) * | 2012-03-27 | 2013-10-07 | Mitsubishi Electric Corp | 電力系統のバスの状態を求める方法及びシステム |
CN104092212A (zh) * | 2014-07-24 | 2014-10-08 | 河海大学 | 一种基于pmu量测的电力系统多区域分布式状态估计方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101663525B1 (ko) * | 2015-03-25 | 2016-10-07 | 전남대학교산학협력단 | 전압 민감도 모선 임피던스 행렬 및 모선 어드미턴스 행렬을 이용한 분산전원 또는 무효전력 제어기의 최적 무효전력 제어치 계산 방법 및 그 프로그램 |
KR101848265B1 (ko) * | 2016-03-24 | 2018-04-12 | 서울과학기술대학교 산학협력단 | 외란 관측기를 이용한 계통 연계형 인버터의 제어 시스템 및 방법 |
-
2021
- 2021-10-20 KR KR1020210140064A patent/KR102569697B1/ko active IP Right Grant
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013208051A (ja) * | 2012-03-27 | 2013-10-07 | Mitsubishi Electric Corp | 電力系統のバスの状態を求める方法及びシステム |
CN104092212A (zh) * | 2014-07-24 | 2014-10-08 | 河海大学 | 一种基于pmu量测的电力系统多区域分布式状态估计方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20220052843A (ko) | 2022-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102569697B1 (ko) | 대규모 전력계통의 운영 상태 모니터링을 위한 위상보조 상태추정의 분산화 방법 및 이를 이용하는 혼합 분산 상태 추정에서의 불량 데이터 처리 방법 | |
Gao et al. | A physically inspired data-driven model for electricity theft detection with smart meter data | |
Gomez-Quiles et al. | A factorized approach to WLS state estimation | |
CN105354643A (zh) | 一种风电接入电网的风险预测评估方法 | |
CN110311392B (zh) | 一种基于spdmd的电力系统振荡模式及模态辨识方法 | |
WO2017016019A1 (zh) | 一种电力系统广域同调辨识方法及其装置 | |
Jafarzadeh et al. | Real-time transient stability prediction and coherency identification in power systems using Koopman mode analysis | |
CN105183938A (zh) | 电网不良数据辨识与估计方法 | |
JP2022503000A (ja) | ネストされたマイクログリッドのための分散型の偽データ軽減 | |
Ayiad et al. | State estimation for hybrid VSC based HVDC/AC: Unified bad data detection integrated with gaussian mixture model | |
Jiang et al. | Distributed state estimation method based on WLS-AKF hybrid algorithm for active distribution networks | |
Stefanidou-Voziki et al. | Feature selection and optimization of a ML fault location algorithm for low voltage grids | |
Wei et al. | Change detection in smart grids using errors in variables models | |
CN102738794B (zh) | 基于赛德尔式递推贝叶斯估计的电网拓扑错误辨识方法 | |
CN115795222A (zh) | 基于同步相量测量的电网不良参数辨识和校正方法 | |
Eser et al. | A computationally efficient topology identifiability analysis of distribution systems | |
Donmez et al. | A parallel framework for robust state estimation using node-breaker substation models | |
Hayes et al. | A comparison of MV distribution system state estimation methods using field data | |
Li et al. | Advances in decentralized state estimation for power systems | |
Reddy et al. | Primary voltage forecasting in distribution systems using principal component analysis | |
Mathews | An optimal hierarchical algorithm for factored nonlinear weighted least squares state estimation | |
Sarailoo et al. | Maximum Tolerance to Load Uncertainty of a Multiple-Model-Based Topology Detector | |
Lin et al. | Spatiotemporal Graph Convolutional Neural Network Based Forecasting-Aided State Estimation Using Synchrophasors | |
Dhal et al. | Performance analysis of an influence-model-based graph partitioning algorithm | |
KR20240083852A (ko) | 등식 제약조건을 이용하는 분산 상태추정 방법 및 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right |