KR102559142B1 - 금속 기판을 냉각하기 위한 프로세스 및 기기 - Google Patents
금속 기판을 냉각하기 위한 프로세스 및 기기 Download PDFInfo
- Publication number
- KR102559142B1 KR102559142B1 KR1020187016478A KR20187016478A KR102559142B1 KR 102559142 B1 KR102559142 B1 KR 102559142B1 KR 1020187016478 A KR1020187016478 A KR 1020187016478A KR 20187016478 A KR20187016478 A KR 20187016478A KR 102559142 B1 KR102559142 B1 KR 102559142B1
- Authority
- KR
- South Korea
- Prior art keywords
- cooling
- cooling fluid
- metal substrate
- substrate
- jet
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/667—Quenching devices for spray quenching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B45/00—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
- B21B45/02—Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
- B21B45/0203—Cooling
- B21B45/0209—Cooling devices, e.g. using gaseous coolants
- B21B45/0215—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
- B21B45/0218—Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/02—Hardening articles or materials formed by forging or rolling, with no further heating beyond that required for the formation
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
- C21D11/005—Process control or regulation for heat treatments for cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/52—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
- C21D9/54—Furnaces for treating strips or wire
- C21D9/56—Continuous furnaces for strip or wire
- C21D9/573—Continuous furnaces for strip or wire with cooling
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Metal Rolling (AREA)
Abstract
종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스로서, 상기 프로세스는 상기 금속 기판 (1) 의 제 1 표면에서 적어도 하나의 제 1 냉각 유체 제트 및 상기 금속 기판 (1) 의 제 2 표면에서 적어도 하나의 제 2 냉각 유체 제트를 토출하는 단계를 포함하고, 상기 제 1 및 제 2 냉각 유체 제트들은, 상기 제 1 표면 및 상기 제 2 표면에 제 1 층류 냉각 유체 유동 및 제 2 층류 유동을 각각 형성하도록, 5 m/s 이상의 냉각 유체 속력으로 토출되고, 상기 제 1 및 제 2 층류 냉각 유체 유동들은 기판 (1) 에 접선이고, 상기 제 1 및 제 2 층류 냉각 유체 유동들은 기판 (1) 의 제 1 미리 정해진 길이 및 제 2 미리 정해진 길이에 대해 각각 연장되고, 기판이 핵 비등에 의해 제 1 온도에서 제 2 온도로 냉각되도록 상기 제 1 및 제 2 길이들이 결정된다.
Description
본 발명은 금속 기판을 냉각하기 위한 프로세스에 관한 것이다.
특히, 본 발명은, 금속 기판의 제조 중, 특히 금속 기판의 열간 압연의 종반에 또는 열 처리 중, 그 금속 기판, 예를 들어 강판의 냉각에 적용된다.
이러한 냉각 중, 냉각 종반에, 원하는 미세조직과 기계적 특성들을 획득하는 것을 보장하도록 냉각률이 가능한 한 많이 제어되어야 한다.
EP 1 428 589 A1 은 강판을 냉각하기 위한 방법을 개시하고, 냉각 유체 풀 (pool) 은 판의 상부 표면에서 슬릿 노즐로부터 그리고 판의 하부 표면에서 관형 노즐들로부터 냉각 유체의 제트들을 주입함으로써 형성되고, 강판은 이 냉각 유체 풀로 통과함으로써 냉각된다.
하지만, 이런 냉각 방법의 적용은 판의 표면들의 평탄도 결함들을 이끌 수도 있다. 이런 결함들은 판 내 냉각률의 불균질성에 의해, 특히 판의 상부 표면과 그것의 하부 표면 사이, 그리고 또한 판들의 표면들과 코어 사이 냉각률 차이로 유발될 수도 있다.
따라서, 본 발명의 목적은, 기판 내에서, 특히 기판의 두께에서 온도 불균질성을 유발하지 않으면서 금속 기판의 신속하고 제어된 냉각을 허용하는 기판을 냉각하기 위한 프로세스 및 기기를 제공하는 것이다.
이 목적으로, 본 발명의 목적은 종방향으로 이동하는 금속 기판을 냉각하기 위한 프로세스로서, 상기 프로세스는 상기 금속 기판의 제 1 표면에서 적어도 하나의 제 1 냉각 유체 제트 및 상기 금속 기판의 제 2 표면에서 적어도 하나의 제 2 냉각 유체 제트를 토출하는 단계를 포함하고,
상기 제 1 및 제 2 냉각 유체 제트들은, 상기 제 1 표면 및 상기 제 2 표면에 제 1 층류 냉각 유체 유동 및 제 2 층류 냉각 유체 유동을 각각 형성하도록, 5 m/s 이상의 냉각 유체 속력으로 토출되고, 상기 제 1 및 제 2 층류 냉각 유체 유동들은 상기 금속 기판에 접선이고, 상기 제 1 및 제 2 층류 냉각 유체 유동들은 상기 금속 기판의 제 1 미리 정해진 길이 및 제 2 미리 정해진 길이에 대해 각각 연장되고, 상기 금속 기판이 핵 비등에 의해 제 1 온도로부터 제 2 온도로 냉각되도록 상기 제 1 및 제 2 길이들이 결정된다.
본 발명에 따른 프로세스는, 개별적으로 또는 임의의 기술적으로 가능한 조합에 따라 취한, 다음 특징들 중 하나 또는 여러 개를 포함할 수도 있다:
- 제 1 길이와 제 2 길이 간 차이는 제 1 및 제 2 길이들 평균의 10% 보다 낮고;
- 제 1 냉각 유체 제트와 제 2 냉각 유체 제트는 기판의 정중면에 대해 대칭이고;
- 상기 제 1 및 상기 제 2 냉각 유체 제트들은 각각 상기 제트들의 토출 중 종방향과 미리 정해진 각도를 형성하고, 상기 미리 정해진 각도는 5° ~ 25° 이고;
- 상기 제 1 및 상기 제 2 냉각 유체 제트들은 각각 상기 제 1 및 제 2 표면들에서 미리 정해진 거리 (H) 로부터 토출되고, 상기 미리 정해진 거리 (H) 는 50 ~ 200 ㎜ 이고;
- 상기 제 1 및 제 2 미리 정해진 길이들 각각은 0.2 m ~ 1.5 m 이고;
- 상기 제 1 온도는 600 ℃ 이상이고;
- 상기 제 1 온도는 800 ℃ 이상이고;
- 상기 금속 기판은 0.2 m/s ~ 4 m/s 의 속도로 이동하고;
- 상기 제 1 온도로부터 상기 제 2 온도로 냉각하는 동안 상기 제 1 및 제 2 표면들 각각으로부터 추출된 평균 열 유속은 3 ~ 7 ㎿/㎡ 이고;
- 상기 금속 기판은 2 ~ 9 ㎜ 의 두께를 가지고, 상기 금속 기판은 200 ℃/s 이상의 냉각률로 800 ℃ 에서 550 ℃ 로 냉각되고;
- 상기 제 1 및 제 2 냉각 유체 제트들 각각은 360 ~ 2700 L/분/㎡ 의 특정 냉각 유체 유량으로 토출되고;
- 상기 금속 기판은 강판이고;
- 상기 제 1 및 제 2 층류 냉각 유체 유동들은 상기 금속 기판의 폭에 대해 연장된다.
본 발명의 목적은 또한 금속 기판을 열간 압연하기 위한 방법으로서, 상기 방법은 상기 금속 기판을 열간 압연하는 단계, 및 본 발명에 따른 프로세스로 열간 압연된 금속 기판을 냉각하는 단계를 포함한다.
본 발명의 목적은 또한 금속 기판을 열 처리하기 위한 방법으로서, 상기 방법은 상기 금속 기판을 열 처리하는 단계, 및 본 발명에 따른 프로세스로 열 처리된 금속 기판을 냉각하는 단계를 포함한다.
본 발명의 목적은 또한 금속 기판의 냉각 기기로서,
- 상기 금속 기판의 제 1 표면에서 적어도 하나의 제 1 냉각 유체 제트를 토출하도록 구성된 제 1 냉각 유닛,
- 상기 금속 기판의 제 2 표면에서 적어도 하나의 제 2 냉각 유체 제트를 토출하도록 구성된 제 2 냉각 유닛을 포함하고,
상기 제 1 및 제 2 냉각 유닛들은, 상기 제 1 표면과 상기 제 2 표면에서 제 1 층류 냉각 유체 유동과 제 2 층류 냉각 유체 유동을 각각 형성하도록, 5 m/s 이상의 냉각 유체 속력으로 제 1 및 제 2 냉각 유체 제트들을 각각 토출하도록 구성되고, 상기 제 1 및 제 2 층류 냉각 유체 유동들은 상기 금속 기판에 접선이고 상기 금속 기판의 제 1 미리 정해진 길이 및 제 2 미리 정해진 길이에 대해 각각 연장된다.
본 발명에 따른 냉각 기기는 개별적으로 또는 임의의 기술적으로 가능한 조합에 따라 취한, 다음 특징들 중 하나 또는 여러 개를 포함할 수도 있다:
- 상기 제 1 냉각 유닛은 상기 제 1 냉각 유체 제트를 토출하도록 구성된 적어도 하나의 제 1 냉각 헤더를 포함하고, 상기 제 2 냉각 유닛은 상기 제 2 냉각 유체 제트를 토출하도록 구성된 적어도 하나의 제 2 냉각 헤더를 포함하고;
- 상기 제 1 냉각 헤더 및 상기 제 2 냉각 헤더는 각각 상기 제 1 냉각 유체 제트 및 상기 제 2 냉각 유체 제트를 각각 토출하기 위한 노즐 개구를 포함하는 헤더 노즐을 포함하고;
- 각각의 헤더 노즐은 종방향과 미리 정해진 각도를 형성하고, 상기 미리 정해진 각도는 5°~ 25°이고;
- 상기 제 1 및 제 2 냉각 유닛들 중 적어도 하나는, 상기 제 1 미리 정해진 길이 및/또는 상기 제 2 미리 정해진 길이 하류에서 임의의 냉각 유체 유동을 방지하도록 된, 냉각 유체 유동을 중단시키기 위한 기기를 포함하고;
- 상기 제 1 냉각 헤더 및 상기 제 2 냉각 헤더는 각각 냉각 유체 공급 회로에 연결되고, 상기 냉각 유체 공급 회로는 1 ~ 2 바의 냉각 유체 압력을 갖는 냉각 유체를 공급받고;
- 냉각 유체가 최대한 2m/s 의 속력으로 냉각 유체 공급 회로에서 순환하도록 각각의 냉각 유체 공급 회로가 구성된다.
본 발명의 목적은 또한 본 발명에 따른 냉각 기기를 포함하는 열간 압연 설비이다.
본 발명의 목적은 또한 본 발명에 따른 냉각 기기를 포함하는 열 처리 설비이다.
본 발명은, 단지 예로서 제공되고 첨부 도면을 참조하여 이루어지는, 하기 설명을 읽음으로써 더 잘 이해될 것이다.
- 도 1 은 본 발명의 실시형태에 따른 냉각 장치를 포함한 열간 압연 라인의 개략도이다.
- 도 2 는 도 1 의 냉각 장치의 냉각 모듈의 개략도이다.
- 도 3 은 도 2 의 냉각 모듈의 공급 회로 및 냉각 헤더에 의해 형성된 어셈블리의, 정면에서 본, 부분 절개 개략도이다.
- 도 4 는 도 3 의 어셈블리의, 도 3 의 평면 Ⅳ-Ⅳ 에 따른, 단면도이다.
- 도 5 는 판의 표면에서 상이한 냉각 유체 제트 토출률들에 대해, 판의 표면의 온도에 대한, 도 2 내지 도 4 의 냉각 모듈에 의해 판으로부터 추출된 열 흐름을 도시한 그래프이다.
- 도 6 및 도 7 은 기판의 표면에 형성된 유체 유동에 대한 기판의 이동 방향으로 냉각 유체 제트들에 의해 형성된 각도 (α) 의 영향을 도시한 개략도들이다.
- 도 8 은 도 2 내지 도 4 에 따른 냉각 모듈에 의한 냉각 중 판의 상부 및 하부 표면들의 온도에서 시간에 따른 변화를 도시한 그래프이다.
- 도 9 는 도 2 내지 도 4 에 따른 장치의 냉각 모듈의 입구 및 출구에서, 판의 헤드로부터 테일 (tail) 까지 종방향으로 판의 표면의 온도 프로파일을 도시한 그래프이다.
- 도 10 은 종래 기술에 따른 프로세스에 의해 냉각된 기판의 평탄도를 도시한 그래프이다.
- 도 11 은 본 발명에 따른 프로세스에 의해 냉각된 기판의 평탄도를 도시한 그래프이다.
- 도 12 는 다른 실시형태에 따른 냉각 모듈의 공급 회로 및 냉각 헤더에 의해 형성된 어셈블리의, 정면에서 본, 부분 절개 개략도이다.
- 도 13 은 도 12 의 어셈블리의, 도 12 의 평면 Ⅸ-Ⅸ 에 따른, 단면도이다.
- 도 2 는 도 1 의 냉각 장치의 냉각 모듈의 개략도이다.
- 도 3 은 도 2 의 냉각 모듈의 공급 회로 및 냉각 헤더에 의해 형성된 어셈블리의, 정면에서 본, 부분 절개 개략도이다.
- 도 4 는 도 3 의 어셈블리의, 도 3 의 평면 Ⅳ-Ⅳ 에 따른, 단면도이다.
- 도 5 는 판의 표면에서 상이한 냉각 유체 제트 토출률들에 대해, 판의 표면의 온도에 대한, 도 2 내지 도 4 의 냉각 모듈에 의해 판으로부터 추출된 열 흐름을 도시한 그래프이다.
- 도 6 및 도 7 은 기판의 표면에 형성된 유체 유동에 대한 기판의 이동 방향으로 냉각 유체 제트들에 의해 형성된 각도 (α) 의 영향을 도시한 개략도들이다.
- 도 8 은 도 2 내지 도 4 에 따른 냉각 모듈에 의한 냉각 중 판의 상부 및 하부 표면들의 온도에서 시간에 따른 변화를 도시한 그래프이다.
- 도 9 는 도 2 내지 도 4 에 따른 장치의 냉각 모듈의 입구 및 출구에서, 판의 헤드로부터 테일 (tail) 까지 종방향으로 판의 표면의 온도 프로파일을 도시한 그래프이다.
- 도 10 은 종래 기술에 따른 프로세스에 의해 냉각된 기판의 평탄도를 도시한 그래프이다.
- 도 11 은 본 발명에 따른 프로세스에 의해 냉각된 기판의 평탄도를 도시한 그래프이다.
- 도 12 는 다른 실시형태에 따른 냉각 모듈의 공급 회로 및 냉각 헤더에 의해 형성된 어셈블리의, 정면에서 본, 부분 절개 개략도이다.
- 도 13 은 도 12 의 어셈블리의, 도 12 의 평면 Ⅸ-Ⅸ 에 따른, 단면도이다.
도 1 은, 노 (2) 및 압연 밀 (3) 로부터 배출시, 이동 방향 (A) 으로 이동되는 금속 기판 (1) 을 도시한다. 예를 들어, 기판 (1) 의 이동 방향 (A) 은 실질적으로 수평이다.
기판 (1) 은 그 후 냉각 장치 (4) 를 통과하고, 이 장치에서 기판은 예를 들어 기판의 압연 종반에서 온도와 실질적으로 동일한 초기 온도로부터, 예를 들어 실온, 즉 약 20 ℃ 인 최종 온도까지 냉각된다.
기판 (1) 은 바람직하게 0.2 ~ 4 m/s 의 이동 속도에서 이동 방향 (A) 으로 냉각 장치 (4) 를 통과한다.
기판 (1) 은 예를 들어 3 ~ 110 ㎜ 의 두께를 가지는 금속 판이다.
초기 온도는 예를 들어 600 ℃ 이상이고, 특히 800 ℃ 이상이고, 또는 심지어 1000 ℃ 를 초과한다.
냉각 장치 (4) 에서, 적어도 하나의 제 1 냉각 유체 제트는 기판 (1) 의 제 1 표면에서 토출되고, 적어도 하나의 제 2 냉각 유체 제트는 기판 (1) 의 제 2 표면에서 토출된다. 냉각 유체는 예를 들어 물이다.
제 1 및 제 2 냉각 유체 제트들은, 제 1 표면 및 제 2 표면에서 제 1 층류 냉각 유체 유동 및 제 2 층류 냉각 유체 유동을 각각 형성하도록, 5 m/s 이상의 냉각 유체 속력에서 이동 방향 (A) 으로 토출된다.
제 1 및 제 2 냉각 유체 제트들은 바람직하게 360 ~ 2700 L/분/㎡ 의 특정 냉각 유체 유량으로 방출된다.
제 1 및 제 2 냉각 유체 제트들의 토출 속력은 예를 들어 20 m/s 이하이고, 보다 바람직하게 12 m/s 이하이다.
바람직하게, 제 1 냉각 유체 제트의 토출 속력 및 제 2 냉각 유체 제트의 토출 속력은 실질적으로 동일하다.
냉각 유체 제트들의 토출 속력은 여기에서 절대적 방식으로, 즉 이동하는 기판 (1) 이 아니라, 냉각 장치 (4) 의 고정부에 대해 표현된다.
발명자들은 실제로 제 1 및 제 2 냉각 유체 제트들의 토출이 5 m/s 이상의 속력이라면, 냉각 유체의 층류 유동이 제 1 및 제 2 표면들 모두에서, 적어도 0.2 m, 일반적으로 적어도 0.5 m, 최대 1.5 m 의 길이에 대해 획득될 수 있음을 발견하였다. 특히, 기판 (1) 이 수평 평면에서 이동할 때, 중력이 하부 표면인 제 2 표면에서 유동하는 냉각 유체에 가해질지라도, 냉각 유체의 층류 유동은 제 1 및 제 2 표면들에서, 적어도 0.2 m, 일반적으로 적어도 0.5 m, 최대 1.5 m 의 길이에 대해 획득될 수 있다.
바람직하게, 제 1 냉각 유체 제트 및 제 2 냉각 유체 제트는, 기판 (1) 의 정중면, 즉 기판 (1) 의 제 1 및 제 2 표면들에 평행하고 상기 제 1 및 제 2 표면들로부터 절반 (half) 거리에 위치한 종방향 평면에 대해 대칭인 충돌 라인들에서 제 1 및 제 2 표면들에 각각 충돌한다.
제 1 및 제 2 층류 냉각 유체 유동들은 기판 (1) 에 접선이고 기판 (1) 의 폭에 대해 연장된다. 더욱이, 제 1 및 제 2 층류 냉각 유체 유동들은 각각 기판 (1) 의 미리 정해진 길이에 대해 연장된다. 특히, 제 1 층류 냉각 유체 유동은 기판 (1) 의 제 1 미리 정해진 길이 (L1) 에 대해 연장되고, 제 2 냉각 유체 유동은 기판의 제 2 미리 정해진 길이 (L2) 에 대해 연장된다.
제 1 미리 정해진 길이 (L1) 와 제 2 미리 정해진 길이 (L2) 는 비슷하다. 특히, 제 1 미리 정해진 길이 (L1) 와 제 2 미리 정해진 길이 (L2) 간 차이는 제 1 및 제 2 미리 정해진 길이들의 평균의 10% 미만이다.
냉각 유체 속력과 조합된 제 1 및 제 2 냉각 유체 제트들의 이런 대칭은 기판 (1) 의 정중면에 대해 실질적으로 대칭인 제 1 표면 및 제 2 표면에서 냉각 유체 유동들을 형성하여서, 두께로 기판 (1) 의 균질한 냉각을 획득하는 것을 허용한다.
기판 (1) 은 핵 비등에 의해 제 1 온도로부터 제 2 온도로 냉각되도록 제 1 및 제 2 미리 정해진 길이들 (L1, L2) 이 결정된다.
바람직하게, 제 1 및 제 2 미리 정해진 길이들 (L1, L2) 각각은 0.2 m ~ 1.5 m, 보다 바람직하게 0.5 m ~ 1.5 m 이다.
핵 비등은 천이 비등 및 막 비등과 구별될 것이다.
막 비등은, 이 기판의 고온에서, 즉 기판의 표면들의 온도가 고온 한계값보다 더 높을 때, 기판 냉각시 일반적으로 발생한다. 핵 비등은, 기판의 저온에서, 즉 기판의 표면들의 온도가 저온 한계값보다 낮을 때 발생한다. 천이 비등은, 중간 온도에서, 특히 기판의 표면들의 온도가 저온 한계값과 고온 한계값 사이에서 이루어질 때 발생한다.
천이 비등에서, 냉각 중 추출된 열 흐름은 온도의 감소 함수이다. 그 결과, 기판의 최저 온도들을 갖는 영역들은 기판의 나머지보다 더 빠르게 냉각된다. 특히, 천이 비등에서, 기판의 두 표면들의 온도 불균질성은 표면들 사이 냉각률 차이를 유발하고, 이는 기판의 온도의 초기 불균질성을 높이는 경향이 있다.
이 온도 불균질성은, 기판에서, 비대칭적 내부 제약들을 발생시키고, 이것은 차례로 기판의 변형 및 기판의 표면들의 평탄도 결함들을 유발한다.
반대로, 핵 비등에서, 냉각 중 추출된 열 흐름은 온도의 증가 함수이다. 그 결과, 기판의 가장 차가운 영역들은 보다 느리게 냉각되고, 이는 기판의 온도 불균질성의 감쇠를 유발한다 .
일반적으로, 기판의 냉각은 천이 비등에서 개시되고, 이는 기판의 온도 불균질성을 악화시키는 경향이 있다.
하지만, 발명자들은, 기판에 접선이고 미리 정해진 길이에 대해 연장되는 층류 냉각 유체 유동을 기판의 각각의 표면에 형성하기 위해서, 5 m/s 이상의 냉각 유체 속력으로 냉각 유체 제트를 기판의 각각의 표면에 토출하면, 고온, 특히 600 ℃ 보다 높을 수 있고 심지어 800 ℃ 또는 1000 ℃ 보다 높을 수 있는 온도로부터 핵 비등에서 기판을 냉각하는 것을 허용한다는 점을 발견하였다.
따라서, 기판 (1) 이 그것의 냉각 전 제공할 수 있는 온도 불균질성을 감쇠시키려는 경향이 있는 조건들 하에서만 기판 (1) 이 오로지 냉각된다.
제 1 냉각 유체 제트와 상기 제 2 냉각 유체 제트는, 제트들의 토출 중, 바람직하게 5° ~ 25°의 종방향에 대해 미리 정해진 각도를 형성한다. 더욱이, 제 1 및 제 2 냉각 유체 제트들은 각각 제 1 및 제 2 표면들로부터 미리 정해진 거리로부터 토출되고, 이 미리 정해진 거리는 바람직하게 50 ~ 200 ㎜ 이다.
실제로, 발명자들은 5° ~ 25°의 각도 및/또는 50 ~ 200 ㎜ 의 미리 정해진 거리가 기판의 각각의 표면에서 층류 냉각 유체 유동의 형성을 촉진하고, 높은 냉각률들을 제공하는 것을 발견하였다. 특히, 제 1 온도에서 제 2 온도로 기판의 냉각 중, 각각의 표면으로부터 추출된 평균 열 유속은 예를 들어 3 ~ 7 ㎿/㎡ 이다.
특히, 발명자들은 5° ~ 25°의 각도가 기판의 각각의 표면에서 층류 냉각 유체 유동의 형성을 허용하고 고온으로부터 핵 비등에서 기판 냉각을 허용하는 것을 발견하였다. 반면에, 발명자들은, 제트들의 토출 중 제 1 및/또는 제 2 냉각 유체 제트들에 의해 형성된 종방향에 대한 각도가 25° 보다 크다면, 기판의 이동 방향 (A) 에 반대 방향으로 유체의 역류가 발생하는 것을 발견하였다. 이 역류는 냉각 유체의 유동을 교란하고, 이것은 그 결과 층류로 되지 않는다. 결과적으로, 기판은 핵 비등에 의해 냉각되지 않는다.
예를 들어, 기판이 2 ~ 9 ㎜ 의 두께를 가질 때, 기판은 200 ℃/s 이상의 냉각률로 800 ℃ 에서 550 ℃ 로 냉각될 수도 있다.
본 발명의 실시형태에 따른 냉각 장치 (4) 는 도 2, 도 3 및 도 4 에서 더 상세히 도시되어 있다.
도시된 실시예에서, 기판 (1) 은 수평으로 이동하여서, 기판 (1) 의 제 1 표면은 기판 (1) 의 이동 중 위로 배향된 상부 표면이고, 기판 (1) 의 제 2 표면은 기판 (1) 의 이동 중 아래로 배향되고 롤러들 상에 지지되는 하부 표면이다.
다음 모든 경우, 선택된 배향들을 표시하고 도면들과 관련하여 의미된다. 특히, ≪ 상류 ≫ 및 ≪ 하류≫ 의 용어들은 도면들에서 선택된 배향으로 상대적으로 의미된다. 이 용어들은 이동하는 기판 (1) 과 관련하여 사용된다. 더욱이, ≪ 횡방향 ≫, ≪ 종방향 ≫ 및 ≪ 수직 ≫ 의 용어들은 종방향인 기판 (1) 의 이동 방향 (A) 과 관련하여 이해되어야 한다. 특히, ≪ 종방향 ≫ 의 용어는 기판 (1) 의 이동 방향 (A) 에 평행한 방향을 지칭하고, ≪ 횡방향 ≫ 의 용어는 기판 (1) 의 이동 방향 (A) 에 직교하고 기판 (1) 의 제 1 및 제 2 표면들에 평행한 평면에 포함된 방향을 지칭하고, ≪ 수직 ≫ 의 용어는 기판 (1) 의 이동 방향 (A) 에 직교하고 기판 (1) 의 제 1 및 제 2 표면들에 직교하는 방향을 지칭한다.
더욱이, ≪ 길이 ≫ 라고 하면 종방향으로 물체 치수를 지칭하고, ≪ 폭 ≫ 이라고 하면 횡방향으로 물체 치수를 지칭하고, ≪ 높이 ≫ 라고 하면 수직 방향으로 물체 치수를 지칭할 것이다.
도 2 에 도시된 장치 (4) 는 적어도 하나의 냉각 모듈 (5) 을 포함하고, 냉각 모듈 (5) 은 미리 규정된 수의 냉각 기기들 (8) 을 포함한다.
각각의 냉각 기기 (8) 는 이동 방향 (A) 으로 기판 (1) 의 이동을 허용하고, 이런 이동 중, 핵 비등에서 제 1 온도로부터 제 2 온도로 기판 (1) 을 냉각하도록 구성된다.
특히, 이하 더 상세히 설명한 대로, 각각의 냉각 기기 (8) 는 기판 (1) 의 제 1 표면 및 제 2 표면에서 냉각 유체의 층류 유동을 발생시키도록 구성되고, 이 층류 유동은, 기판 (1) 의 이동 방향 (A) 을 따라, 기판 (1) 의 전체 폭에 대해 그리고 기판 (1) 의 미리 정해진 길이 (L1, L2) 에 대해 연장된다.
이 목적으로, 각각의 냉각 기기 (8) 는 기판 (1) 의 제 1 표면에 제 1 냉각 유체 제트를 토출하고 기판 (1) 의 제 2 표면에 제 2 냉각 유체 제트를 토출하도록 구성되고, 제 1 및 제 2 냉각 유체 제트들의 토출 속력은 5 m/s 이상이다.
도시된 실시예에서, 냉각 모듈 (5) 은 기판 (1) 의 이동 방향 (A) 으로 서로 뒤따르는 2 개의 냉각 기기들 (8) 을 포함한다.
따라서, 제 1 기기 (8) 는 제 1 온도로부터 제 2 온도로 기판 (1) 을 냉각하도록 의도되고, 기판 (1) 의 이동 방향으로 제 1 기기 (8) 로부터 하류에 배치된 제 2 기기 (8) 는 제 2 온도로부터 제 3 온도로 기판 (1) 을 냉각하도록 의도된다.
각각의 냉각 기기 (8) 는 제 1 유닛 (9) 및 제 2 유닛 (10) 을 포함한다.
기판의 냉각 중 기판 (1) 의 제 1 표면 전방에, 이 실시예에서는 기판 위에 위치결정되도록 의도된 제 1 유닛 (9) 은 기판 (1) 의 제 1 표면에서 냉각 유체의 층류 유동을 발생시키도록 구성되고, 이 층류 유동은 기판 (1) 의 전체 폭에 대해 그리고 기판 (1) 의 제 1 미리 정해진 길이 (L1) 에 대해 연장된다.
기판의 냉각 중 기판 (1) 의 제 2 표면 전방에, 이 실시예에서는 기판 아래에 위치결정되도록 의도된 제 2 유닛 (10) 은 기판 (1) 의 이동을 보장하고 기판 (1) 의 제 2 표면에서 냉각 유체의 층류 유동을 발생시키도록 구성되고, 이 층류 유동은 기판 (1) 의 전체 폭에 대해 그리고 기판 (1) 의 제 2 미리 정해진 길이 (L2) 에 대해 연장된다.
이 목적으로, 제 1 유닛 (9) 은 제 1 냉각 헤더 (11), 개략적으로 도 2 에 도시되고 도 3 및 도 4 에 더 상세히 도시된, 제 1 냉각 헤더 (11) 의 냉각 유체 공급을 위한 회로 (13), 및 제 1 냉각 헤더 (11) 에 의해 발생된 냉각 유체의 유동을 중단시켜서 이 냉각 유체 유동이 미리 정해진 길이보다 긴 기판 (1) 의 길이에 대해 연장하는 것을 피하도록 된, 냉각 유체의 유동을 중단하기 위한 기기 (15) 를 포함한다.
냉각 기기 (8) 의 제 2 유닛 (10) 은, 제 1 유닛 (9) 과 유사하게, 제 2 냉각 헤더 (17) 및 냉각 유체를 제 2 냉각 헤더 (17) 로 공급하기 위한 회로 (19) 를 포함한다. 제 2 유닛 (10) 은 기판 (1) 의 이동을 보장하도록 구성된 제 2 롤러 (20) 를 추가로 포함한다.
제 1 냉각 헤더 (11) 및 제 2 냉각 헤더 (17) 는 냉각 프로세스의 적용 중 기판 (1) 의 정중면에 대해 실질적으로 대칭이다.
또한, 공급 회로들 (13, 19) 은 냉각 프로세스의 적용 중 기판 (1) 의 정중면에 대해 실질적으로 대칭이다.
그 후, 제 1 냉각 헤더 (11) 및 공급 회로 (13) 는 도 3 및 도 4 를 참조하여 설명될 것이고, 이 설명은, 대칭으로, 제 2 냉각 헤더 (17) 및 공급 회로 (19) 에 적용할 수 있는 것으로 간주된다.
바람직하게, 냉각 모듈 (5) 의 제 1 기기 (8) 는, 제 1 및 제 2 유닛들 (9, 10) 이외에, 제 1 상류 롤러 (23) 및 제 2 상류 롤러 (21) 를 포함한, 2 개의 상류 롤러들을 포함한다. 상류 롤러들 (21, 23) 은, 기판 (1) 의 이동 방향에 대해, 제 1 기기 (8) 의 제 1 및 제 2 유닛들 (9, 10) 로부터 상류에 위치결정된다.
제 2 상류 롤러 (21) 는 기판 (1) 의 이동을 보장하도록 의도된다.
제 1 상류 롤러 (23) 는 일반적인 원통형 형상을 가지고, 기판 (1) 의 전체 폭에 대해 횡방향으로 연장된다.
제 1 상류 롤러 (23) 는, 냉각 모듈 (5) 로부터 기판 (1) 의 상류측을 향하여 냉각 유체 유동을 방지하기 위해서, 기판 (1) 의 이동하는 제 1 표면과 접촉하도록 구성된다. 제 1 상류 롤러 (23) 는 또한 기판 (1) 과 제 1 냉각 헤더 (11) 간 가능한 접촉을 방지하도록 의도된 안전 기기이다.
더욱이, 설명한 실시예에서 제 2 기기 (8) 인, 냉각 모듈 (5) 의 마지막 기기는, 냉각 모듈 (5) 로부터 하류에서 임의의 냉각 유체 유동을 방지하도록 된, 냉각 유체 유동을 중단시키기 위한 부가적 기기 (25) 를 포함한다.
각각의 기기 (8) 는, 기기 (8) 의 하류에서 냉각 유체 유출을 보내고 제어하도록 구성된, 상부 디플렉터 (27) 및 하부 디플렉터 (28) 를 추가로 포함한다. 특히, 상부 디플렉터 (27) 는, 기기 (15) 에 의해 중단된, 이동하는 냉각 유체가 기판 (1) 에서 역류하는 것을 방지한다.
제 1 냉각 헤더 (11) 및 연관된 공급 회로 (13) 는 개략적으로 도 3 및 도 4 에 도시된다.
도 3 은 제 1 냉각 헤더 (11) 및 공급 회로 (13) 에 의해 형성된 어셈블리의, 부분 절개된, 이동 방향 (A) 에 반대 방향을 따른 정면도이고, 도 4 는 도 3 에 도시된 어셈블리의, 도 3 의 평면 Ⅳ-Ⅳ 를 따른 단면도이다.
제 1 냉각 헤더 (11) 는 공급 회로 (13) 를 통하여 가압 냉각 유체를 공급받고, 기판 (1) 의 제 1 표면에서 적어도 하나의 제 1 냉각 유체 제트를 토출하도록 구성된다. 이 냉각 유체 제트는 바람직하게 기판 (1) 의 전체 폭에 대해 횡방향으로 연장되는 연속 제트이다.
제 1 냉각 헤더 (11) 는 헤더 노즐 (33) 및 채널 (35) 을 포함한다.
헤더 노즐 (33) 은, 냉각될 기판 (1) 의 폭 이상인 폭에 걸쳐, 이동하는 기판 (1) 에 대해 횡방향으로 연장된다.
헤더 노즐 (33) 은 냉각 유체를 운반하기 위한 도관 (37) 을 형성하는 관통 오리피스를 구비한다. 도관 (37) 은 냉각될 기판 (1) 의 폭 이상인 폭에 대해 횡방향으로 연장되고, 채널 (35) 에 연결된 상류 단부와 하류 단부 사이에서 수직 종방향 평면에 연장된다. 하류 단부는 애퍼처 (aperture) 를 형성하고, 이 애퍼처를 통하여, 공급 회로 (13) 에 의해 주입되고 채널 (35) 과 그 후 도관 (37) 을 가로지르는 냉각 유체는 기판 (1) 에서 냉각 유체 제트로서 토출된다.
애퍼처는 이동하는 기판 (1) 에 대해 횡방향으로 연장되는 연속 슬롯 또는 개구 (39) 를 형성한다. 개구 (39) 는 냉각될 기판 (1) 의 폭보다 크거나 같은 폭을 갖는다.
바람직하게, 도관 (37) 은 도관 (37) 의 상류측으로부터 하류측으로 감소하는 섹션을 가지고, 이것은 2 m/s 미만의 공급 회로 (13) 에서 냉각 유체의 초기 속력으로부터 적어도 5 m/s 의 속력으로 토출된 냉각 유체 제트의, 개구 (39) 의 출구에서 형성을 허용한다. 실제로, 이하 설명하는 것처럼, 2 m/s 미만의 속력으로 공급 회로 (13) 에서 냉각 유체의 순환은 이 공급 회로 (13) 에서 압력 손실의 최소화와, 따라서 회로 (13) 에 공급하는데 필요한 압력 감소를 허용한다.
바람직하게, 도관 (37) 의 하류 단부는 5° ~ 25°, 특히 10° ~ 20°의 이동 방향 (A) 에 대한 각도 (α) 를 형성한다. 따라서, 제 1 냉각 헤더 (11) 에 의한 냉각 유체 제트의 토출 중, 이 냉각 유체 제트는 이동 방향 (A) 에 대해 5° ~ 25°, 특히 10° ~ 20°의 각도 (α) 를 형성한다.
이러한 각도 (α) 는 기판 (1) 에서 냉각 유체의 층류 유동을 획득하는 것을 허용하고 기판 (1) 의 신속한 냉각률에 도달하는데 기여한다. 실제로, 전술한 대로, 25° 보다 큰 각도 (α) 는 기판의 이동 방향 (A) 에 반대 방향으로 유체의 역류를 발생시킬 것이다. 이 역류는 냉각 유체의 유동을 교란할 것이고, 이것은 결과적으로 층류로 되지 않을 것이다.
더욱이, 기판 (1) 의 냉각시, 개구 (39) 가 기판 (1) 의 제 1 표면으로부터 미리 정해진 거리 (H) 에 위치결정되도록 제 1 냉각 헤더 (11) 는 이동하는 기판 (1) 위에 위치결정되도록 구성된다.
거리 (H) 는 바람직하게 50 ~ 200 ㎜ 이다.
기판 (1) 의 표면으로부터 미리 정해진 거리 (H) 에서 개구 (39) 의 위치결정 때문에, 기판 (1) 과 충돌시 냉각 유체 제트의 속력이 제어될 수 있다. 특히, 기판 (1) 의 표면에서 냉각 유체 유동은 층류로 유지되고, 냉각 유체의 이런 유동은 기판 (1) 의 신속한 냉각을 획득하기 위해 미리 정해진 길이 (L) 에 대해 충분한 속력을 갖는다.
채널 (35) 은 공급 회로 (13) 에 의해 제공된 냉각 유체를 헤더 노즐 (33) 까지 운반하기 위해 구성된다.
채널 (35) 은 개구 (39) 의 폭과 실질적으로 동일한 폭에 대해 횡방향으로 연장되고, 공급 회로 (13) 에 연결되도록 의도된 상류 단부와 도관 (37) 의 상류 단부에 연결된 하류 단부 사이에서 실질적으로 수직 방향으로 연장된다. 따라서, 채널 (35) 은 실질적으로 수직 방향으로 도관 (37) 을 연장시킨다.
채널 (35) 은 2 개의 실질적으로 수직 횡방향 벽들 (35a, 35b) 에 의해 구획된다.
바람직하게, 채널 (35) 은 그것의 상류 단부와 그것의 하류 단부 사이에 실질적으로 일정한 섹션을 갖는다. 특히, 채널 (35) 의 양 횡방향 벽들 (35a, 35b) 은 평행하다.
공급 회로 (13) 는 냉각 유체 분배 망으로부터 수용된 냉각 유체 유동을 제 1 냉각 헤더 (11) 까지 운반하도록 의도된다.
공급 회로 (13) 는, 하류에서 상류로, 냉각 헤더 (11) 의 공급 도관 (43), 분배 도관 (45), 및 냉각 유체를 제공하기 위한 메인 도관 (47) 을 포함한다. 따라서, 냉각 유체 분배 망으로부터 수용된 냉각 유체 유동은 메인 도관 (47) 에 의해, 그 후 분배 도관 (45) 에 의해, 그 후 공급 도관 (43) 에 의해, 냉각 헤더 (11) 까지, 특히 채널 (35) 까지 운반된다.
공급 도관 (43) 은 냉각 유체를 채널 (35) 로 공급하도록 의도된다.
공급 도관 (43) 은 채널 (35) 의 폭과 실질적으로 동일한 폭에 대해 횡방향으로 연장된다. 공급 도관 (43) 은 일반적인 원통형 형상을 가지고, 실질적으로 원통형 측벽과 2 개의 말단벽들을 포함한다. 따라서, 공급 도관 (43) 의 양 단부들은 폐쇄된다.
공급 도관 (43) 은 그것의 측벽에, 이하 설명하는 것처럼, 메인 도관 (47) 의 통과를 허용하는 실질적으로 원형 애퍼처를 포함한다.
공급 도관 (43) 은 더욱이 그것의 측벽에, 채널 (35) 의 상류 단부에 연결된 횡방향 애퍼처 (51) 를 포함한다. 애퍼처 (51) 는 공급 도관 (43) 의 폭의 실질적으로 전체에 대해 횡방향으로 연장된다.
바람직하게, 애퍼처 (51) 는, 채널 (35) 의 제 1 벽 (35a) 의 상부 에지에 연결된 공급 도관 (43) 의 제 1 횡방향 에지와 채널 (35) 의 제 2 벽 (35b) 에 연결된 제 2 횡방향 에지 사이에서, 이 제 2 벽 (35b) 의 상부 에지로부터 떨어져 규정된다.
분배 도관 (45) 은 냉각 유체를 제공하기 위해 메인 도관 (47) 에 의해 제공된 냉각 유체 유동을 공급 도관 (43) 의 전체 폭에 대해 분배하도록 의도된다.
분배 도관 (45) 은, 공급 도관 (43) 내부에서, 채널 (35) 의 폭 및 공급 도관 (43) 의 폭과 실질적으로 동일한 폭에 대해 횡방향으로 연장된다.
분배 도관 (45) 은 일반적인 원통형 형상을 가지고, 실질적으로 원통형 측벽과 2 개의 말단벽들을 포함한다. 따라서, 분배 도관 (45) 의 양 단부들은 폐쇄된다.
분배 도관 (45) 의 측벽은, 공급 도관 (43) 의 측벽과, 공급 도관 (43) 내부에서 냉각 유체의 순환을 위한 공간 (53) 을 규정한다. 공간 (53) 은 일반적으로 링 형상이다.
분배 도관 (45) 은, 이하 설명하는 것처럼, 그것의 측벽에 메인 도관 (47) 과 연결을 허용하는 실질적으로 원형 애퍼처 (55) 를 포함한다. 애퍼처 (55) 는 공급 도관 (43) 의 측벽에 만들어진 대응하는 애퍼처와 정렬된다.
바람직하게, 이 애퍼처들은 도관들 (33, 35) 의 단부들로부터 절반 거리에 위치결정된다.
분배 도관 (45) 의 측벽은 더욱이 공급 도관 (43) 의 공간 (53) 으로 분배 도관 (45) 에 포함된 냉각 유체의 분배를 허용하도록 의도된 복수의 오리피스들 (57) 을 구비한다.
오리피스들 (57) 은 예를 들어 횡방향으로 정렬되고, 분배 도관 (45) 의 전체 폭에 대해 연장된다.
오리피스들 (57) 은 예를 들어 등거리에 있다.
따라서, 오리피스들 (57) 은 분배부 (45) 로부터 공급 도관 (43) 으로 냉각 유체의 분배를 보장할 수 있도록 허용하고, 이것은 횡방향을 따라 균일하다.
바람직하게, 도 4 에 도시된 대로, 분배 도관 (45) 의 측벽은 채널 (35) 의 제 2 벽 (35b) 의 상부 에지와 연결되고, 오리피스들 (57) 은 채널 (35) 의 제 2 벽 (35b) 을 대면하는 분배 도관 (45) 의 하부에 위치결정된다.
이런 식으로, 공급 도관 (43) 의 공간 (53) 은 오리피스들 (57) 로부터 채널 (35) 까지 냉각 유체를 운반하기 위한 단일 방향 채널을 형성한다.
이러한 배열은 횡방향을 따라 도관 (43) 의 공간 (53) 의 전체에서 냉각 유체의 균일한 분배를 보장하고, 도관 (43) 내부에서 압력 강하 최소화를 허용한다.
냉각 유체를 제공하기 위한 메인 도관 (47) 은 냉각 유체 분배 망에 연결되고 이 망에 의해 제공된 냉각 유체를 분배 도관 (45) 까지 운반하도록 구성된다.
따라서, 메인 도관 (47) 은 냉각 유체 분배 망에 연결되도록 의도된 상류 단부와 분배 도관 (45) 에 연결된 하류 단부 사이에 연장된다.
특히, 메인 도관 (47) 의 하류 단부는, 공급 도관 (43) 의 대응하는 애퍼처를 통하여, 분배 도관 (45) 의 애퍼처 (55) 에 연결된다.
메인 도관 (47) 은 횡방향으로 연장되는 원통형 형상을 갖는 제 1 부분 (47a), 및 제 1 부분을 분배 도관 (45) 의 애퍼처 (55) 에 연결하는 원형 섹션을 갖는 제 2 벤트 부분 (47b) 을 포함한다.
애퍼처 (49) 의 에지들은, 애퍼처 (49) 를 통하여 공급 도관 (43) 외부로 어떠한 냉각 유체 누설도 피하도록, 메인 도관 (47) 과 밀봉 연결된다.
이런 식으로 설계될 때, 공급 회로 (13) 는, 360 ~ 2,700 L/분/㎡ 의 표면 유량으로, 제 1 냉각 헤더 (11) 의 출구에서, 5 m/s 초과 속력으로 토출된 냉각 유체 제트를 획득하도록 제 1 냉각 헤더 (11) 까지 냉각 유체 분배 망에 의해 2 바 이하의 압력으로 제공된 냉각 유체의 유동을 전달할 수 있다.
특히, 공급 회로 (13) 는 압력 강하를 최소화하고, 이것은 비교적 저압으로부터 이런 토출 속력을 획득하는 것을 허용한다. 특히, 전술한 공급 회로 (13) 의 구성 때문에, 2 m/s 미만의 냉각 유체의 순환 속력은 이 회로 (13) 에서 유지되고, 이것은 압력 강하의 최소화를 허용한다.
2 바 이하, 예를 들어 1 바 초과의 저압을 사용하면 냉각 장치 (1) 의 에너지 소비량을 최소화하고, 특히 냉각 유체 분배 망의 압력이 4 바인 장치와 비교해 냉각 유체 공급부에 요구되는 전력 소비량의 약 5 배만큼 감소한다.
냉각 유체 유동을 중단하기 위한 기기 (15) 는 제 1 냉각 헤더 (11) 에 의해 발생된 냉각 유체 유동을 중단시켜서 이 냉각 유체 유동이 미리 정해진 길이 (L) 보다 긴 기판 (1) 의 길이에 대해 연장되는 것을 피하도록 되어 있다.
냉각 유체 유동을 중단하기 위한 기기 (15) 는 기판 (1) 의 이동 방향으로 제 1 냉각 헤더 (11) 로부터 하류에 위치결정된다. 냉각 유체 유동을 중단하기 위한 기기 (15) 는 예를 들어, 기판 (1) 의 이동 방향으로 제 1 냉각 헤더 (11) 로부터 제 1 롤러 (61) 너머 냉각 유체의 유동을 방지하기 위해서, 이동하는 기판 (1) 의 제 1 표면과 접촉하도록 구성된 제 1 롤러 (61) 를 포함한다.
제 1 롤러 (61) 는 일반적인 원통형 형상을 가지고, 기판 (1) 의 전체 폭에 대해 횡방향으로 연장된다.
기판 (1) 의 제 1 표면에서 제 1 냉각 헤더 (11) 에 의해 토출된 냉각 유체 제트의 충돌 영역과 기판 (1) 의 제 1 표면에서 제 1 롤러 (61) 의 접촉 영역 사이 거리가 미리 정해진 거리 (L) 와 동일하도록 제 1 롤러 (61) 는 제 1 냉각 헤더 (11) 로부터 하류에 위치결정된다.
제 2 롤러 (20) 는 바람직하게 이동하는 기판 (1) 의 정중면에 대해 제 1 롤러 (61) 에 대칭으로 위치결정된다.
설명한 실시예에서 제 2 기기 (8) 의 제 1 유닛 (9) 으로부터 하류에 위치결정된, 냉각 유체 유동을 중단시키기 위한 부가적 기기 (25) 는 미리 정해진 길이 (L1) 너머로 냉각 모듈 (5) 하류에서 어떠한 냉각 유체 유동도 방지하도록 의도된다.
이 부가적 중단 기기 (25) 는 제 1 롤러 (61) 로부터 하류에 위치결정된다.
기기 (25) 는 예를 들어 기판에 직교하거나 기판 (1) 의 이동 방향 (A) 에 반대인 방향으로 기판 (1) 상에 가압 냉각 유체 제트를 보내도록 구성된 노즐을 포함한다. 예를 들어, 기판의 이동 방향 (A) 과 이 가압 냉각 유체 제트 사이에 형성된 각도는 60° ~ 90°이다.
작동 중, 기판 (1) 은 바람직하게 0.5 m/s ~ 2.5 m/s 의 이동 속력에서 이동 방향 (A) 으로 롤러들 (3, 21, 19) 에 의해 이동되도록 설정된다.
이런 이동 중, 기판 (1) 은 냉각 모듈 (5) 에서, 특히 각각의 냉각 기기 (8) 에서 순환한다.
냉각 모듈 (5) 로 진입 중 기판 (1) 의 초기 온도는 600 ℃ 보다 높고, 특히 800 ℃ 보다 높다. 예를 들어, 냉각 모듈 (5) 로 진입시 기판 (1) 의 초기 온도는 900 ℃ 보다 높다.
각각의 기기 (8) 에서 기판 (1) 의 이동 중, 제 1 냉각 유체 제트는 기판 (1) 의 제 1 표면에서 제 1 냉각 헤더 (11) 에 의해 토출되고 제 2 냉각 유체 제트는 기판 (1) 의 제 2 표면에서 제 2 냉각 헤더 (17) 에 의해 토출된다.
이 목적으로, 냉각 유체 분배 망은 2 바 미만, 바람직하게 1 바 초과 압력 하에 냉각 유체 공급 회로들 (13, 19) 각각에 공급한다.
냉각 유체 유동은 각각의 회로들 (13, 19) 에서 냉각 유체를 제공하기 위한 메인 도관 (47) 에, 그 후 분배 도관 (45) 에, 그 후, 오리피스들 (57) 을 통하여, 공급 도관 (43) 에, 이 도관 (43) 의 전체 폭에 걸쳐 순환한다.
냉각 유체 유동은 2m/s 이하의 속력으로 각각의 회로들 (13, 19) 에서 순환한다.
냉각 유체 유동은 그 후 제 1 헤더 (17) 및 제 2 헤더 (11) 각각의 채널 (35) 에서, 그 후 헤더 노즐 (33) 의 도관 (37) 에서 순환한다.
온도가 바람직하게 30 ℃ 미만인 냉각 유체는 그 후 제 1 헤더 (11) 및 제 2 헤더 (17) 의 개구들 (39) 을 통하여 제 1 및 제 2 냉각 유체 제트들로서 토출된다.
제 1 및 제 2 냉각 유체 제트들은, 기판 (1) 의 제 1 및 하부 표면들 각각에 기판 (1) 과 실질적으로 평행한 냉각 유체의 층류 유동을 형성함으로써 5 m/s 이상, 바람직하게 12 m/s 미만의 토출 속력에서 기판 (1) 의 이동 방향 (A) 으로 토출된다.
이 냉각 유체 유동은 기판 (1) 의 전체 폭에 대해, 기판 (1) 의 제 1 표면에서 제 1 미리 정해진 길이 (L1) 에 대해, 기판 (1) 의 제 2 표면에서 제 2 미리 정해진 길이 (L2) 에 대해 연장된다.
따라서, 기판 (1) 은 핵 비등에서 제 1 온도로부터 제 2 온도로 냉각된다.
제 1 온도는 제 1 및 제 2 냉각 유체 제트들의 충돌 영역에서 기판 (1) 의 온도에 대응하고, 제 2 온도는 중단 기기 (15) 에서 기판 (1) 의 온도에 대응한다.
특히, 제 1 냉각 기기 (8) 의 입구에서 기판 (1) 의 온도는 냉각 모듈 (5) 의 입구에서 기판 (1) 의 초기 온도와 같다. 따라서, 제 1 냉각 기기 (8) 에 통과하는 동안, 기판 (1) 은 핵 비등 조건들 하에 600 ℃ 초과, 특히 800 ℃ 초과, 예를 들어 900 ℃ 초과 온도로부터 냉각된다.
따라서, 본 발명에 따른 냉각 기기 및 프로세스는, 특히 기판의 제 1 표면과 제 2 표면 사이에서, 기판 내에 어떠한 온도 불균질성도 유발하지 않으면서 기판을 제어된 방식으로 효과적으로 냉각하는 것을 허용한다.
발명자들은, 도 2 내지 도 4 의 장치로부터, 기판 (1) 의 온도에 따라, 기판의 제 1 및 제 2 표면들에서 냉각 유체 유동들에 의한 기판 (1) 으로부터 추출된 열 흐름에 대한 냉각 유체의 토출 속력의 영향을 연구하였다. 이 영향은 도 5 에 도시된다.
이 도 5 에서, 냉각 유체의 토출 속력이 5 m/s 미만이고, 예를 들어 2.8 m/s 일 때 (곡선 A), 기판 (1) 은, 기판 (1) 의 온도가 370 ℃ 미만일 때만 핵 비등에서 냉각되는 것을 알 수 있다.
이 조건들 하에, 기판 (1) 또는 냉각된 기판 (1) 의 영역의 온도가 더 낮을수록, 추출된 열 흐름이 더 낮다. 이런 조건들 하에, 기판 (1) 의 가장 차가운 영역들은 보다 느리게 냉각되고, 이것은 기판 (1) 의 가능한 온도 불균질성을 감쇠시킬 수 있는 가능성을 제공한다.
그럼에도 불구하고, 냉각 유체 토출 속력이 2.8 m/s 일 때, 기판 (1) 의 온도가 370 ℃ 미만이고, 따라서 열간 압연 또는 열 처리 후 기판 (1) 의 냉각 초반에 획득되지 않을 때만 핵 비등 조건들이 단지 달성된다.
실제로, 기판 (1) 의 온도가 약 370 ℃ ~ 800 ℃ 일 때, 기판 (1) 은 천이 비등에서 냉각된다. 이 조건들 하에, 기판 (1) 또는 냉각된 기판 (1) 의 영역의 온도가 더 낮을수록, 추출된 열 흐름이 더 많다. 이런 조건들 하에, 기판 (1) 의 가장 차가운 영역들은 보다 빠르게 냉각되고, 이것은 기판 (1) 의 가능한 온도 불균질성을 높이는 경향이 있다.
기판 (1) 의 온도가 약 800 ℃ 보다 높을 때, 기판 (1) 은 막 비등에서 냉각된다. 이 조건들 하에, 추출된 열 흐름은 실질적으로 온도에 따라 변하지 않지만, 예를 들어 400 ℃ 로, 핵 비등에서 추출될 수도 있는 열 흐름보다 적게 유지한다.
따라서, 냉각 유체 토출 속력이 5 m/s 미만일 때, 예를 들어 이 속력이 2.8 m/s 일 때, 600 ℃ 초과, 또는 심지어 800 ℃ 초과 또는 심지어 900 ℃ 의 초기 온도로부터, 냉각 초반에 획득된 냉각 조건들은 천이 비등 조건들이거나, 후에 천이 비등 조건들이 뒤따르는 막 비등 조건들인 것을 알 수 있다.
이 두 경우 모두, 기판 (1) 은, 온도 불균질성을 악화시키는 경향이 있는, 천이 비등에서 초기 온도로부터 최종 온도로 적어도 부분적으로 냉각된다.
기판 (1) 의 제 1 및 제 2 표면들을 향해 냉각 유체의 토출 속력이 증가할 때, 예를 들어 그것이 4 m/s 일 때 (곡선 B), 보다 높은 온도 (약 400 ℃) 까지 핵 비등 조건들이 획득되는 것을 알 수 있다.
또한, 천이 비등에서, 온도에 따른 추출된 열 흐름의 변화, 즉 온도에 대한 추출된 열 흐름의 대표 곡선의 기울기는 절대값이 감소한다.
환언하면, 냉각 유체 토출 속력이 4 m/s 일 때, 천이 비등 조건들에서 냉각은, 냉각 유체 토출 속력이 2.8 m/s 일 때보다 기판 (1) 의 온도 불균질성을 더 적은 정도로 악화시킨다.
냉각 유체 토출 속력이 추가로 증가하여 5 m/s 보다 커지고, 특히 6 m/s (곡선 C) 및 7.4 m/s (곡선 D) 와 같아질 때, 기판 (1) 으로부터 추출된 열 흐름은, 온도가 900°에 달하거나 심지어 초과할 때까지 확장되는 온도 범위에 대해 기판 (1) 의 온도의 증가 함수이다.
따라서, 기판 (1) 은 오로지 핵 비등에서만 900 ℃ 초과 온도로부터 실온까지 냉각될 수도 있다.
따라서, 도 5 는, 제 1 및 제 2 냉각 유체 제트들의 토출 속력이 5 m/s 이상일 때, 기판 (1) 은 오로지 핵 비등에서 600 ℃ 초과, 또는 심지어 800 ℃ 초과, 또는 심지어 900 ℃ 초과 초기 온도로부터 냉각될 수 있음을 보여준다.
따라서, 기판 (1) 은, 기판 (1) 이 냉각 전 포함할 수 있는 온도 불균질성을 감쇠시키려는 경향이 있는 조건들 하에서만 오로지 냉각될 수도 있다.
또한, 도 5 에서, 냉각 유체 제트들의 토출 속력이 높기 때문에, 적어도 400 ℃ ~ 1,000 ℃ 의 온도 범위에서, 기판 (1) 으로부터 추출된 열 흐름은 모두 더 크다는 것을 알 수 있다.
따라서, 도 5 는 5 m/s 이상의 속력에서 제 1 및 제 2 냉각 유체 제트들의 토출이 기판 (1) 의 효과적인 냉각을 얻을 수 있도록 허용하는 것을 보여준다.
발명자들은 더욱이 기판 (1) 에 대해, 기판 (1) 의 냉각률에 대한, 개구 (39) 와 기판 (1) 의 표면 사이 거리 (H), 및 이동 방향 (A) 에 대해 토출 중 제 1 또는 하부 냉각 유체 제트에 의해 형성된 각도 (α) 의 영향을 연구하였다.
이 영향은 각각 아래 표 1 과 표 2 및 도 6 과 도 7 에서 보여준다.
표 1 에, 다른 거리들 (H) 에 대해 획득된 상대 냉각률이 보고된다. 상대 냉각률들은 표 1 에서 거리 (H) 에 따라 획득된 냉각률 대 거리 H = 60 ㎜ 일 때 획득된 냉각률의 비로서 산출된다.
표 2 에, 다른 각도들 (α) 에 대해 획득된 상대 냉각률이 보고된다. 상대 냉각률들은 표 2 에서 각도 (α) 에 따라 획득된 냉각률 대 각도 α = 10° 일 때 획득된 냉각률의 비로서 산출된다.
도 6 및 도 7 은 두 가지 다른 각도들 (α) 에 대한 기판 (1) 에서 유체 유동을 도시한다. 도 6 및 도 7 에, 단지 기판 (1) 의 제 1 표면과 냉각 유체 제트 및 유동이 도시된다.
도 6 에서, 종방향 (A) 에 대해 냉각 유체 제트에 의해 형성된 각도 (α) 는 약 35°이고, 즉 25°보다 크다. 도 6 에 도시된 대로, 이 각도 때문에, 냉각 유체의 일부가 이동 방향 (A) 에 반대로 역류 (B) 하고, 결과적으로, 기판의 표면의 냉각 유체 유동은 교란되어 층류로 되지 않아서, 기판은 전적으로 핵 비등에 의해 냉각되지 않고, 오히려 적어도 부분적으로 천이 비등에 의해 냉각된다.
반면에, 도 7 에서는, 종방향 (A) 에 대해 냉각 유체 제트에 의해 형성된 각도 (α) 는 25° 이다. 이 각도에 대해, 이동 방향 (A) 에 반대로 냉각 유체가 역류하지 않는다. 오히려, 이동 방향 (A) 을 따라 냉각 유체 유동들은 층류로 되어서, 기판은 전적으로 핵 비등에 의해서만 냉각된다.
냉각률에 대한 냉각 유체 표면 유량의 영향을 연구하고, 동일한 표면 유량으로, 획득된 냉각률들과 종래 기술에 따른 프로세스에 의해 획득된 냉각률을 비교하기 위해서 테스트들이 또한 수행되었다.
따라서, 표 3 은 3,360 L/s/㎡ 의 표면 유량 및 1020 L/s/㎡ 의 표면 유량에 대해, 냉각된 기판 (1) 의 두께에 대한, 800 ℃ 와 550 ℃ 사이에서, 본 발명에 따른 프로세스에 의해 획득된 냉각률 (단위: ℃/s) 을 보여준다.
이 성능들은, 3360 L/s/㎡ 및 1020 L/s/㎡ 의 냉각 유체 표면 유량들에 대해, 냉각 유체 제트들이 기판 (1) 의 표면에 직교하여 토출되는, 종래 기술의 표준 프로세스에 의해 획득된 성능들과 비교된다.
표 3 은, 최소 표면 유량 (1,020 L/s/㎡) 에 대해 본 발명에 따른 프로세스에 의해 획득된 기판 (1) 의 냉각률들이, 특히 최대 표면 유량 (3,360 L/s/㎡) 에 대해 획득된 비율에서, 표준 프로세스에 의해 획득된 기판 (1) 의 냉각률들보다 더 큰 것을 보여준다.
따라서, 이 테스트들은, 본 발명에 따른 프로세스가 기판 (1) 의 특히 효과적인 냉각을 획득할 수 있는 가능성을 제공하지만, 기존의 프로세스들보다 더 큰 냉각 유체 유동 속력을 요구하지 않는 것을 보여준다.
발명자들은 또한 약 1,150 ℃ 의 초기 온도로부터 실온까지, 30 ㎜ 의 두께를 갖는 기판 (1) 의 제 1 및 제 2 표면들의 냉각 프로파일을 연구하였다.
따라서, 도 8 은, 시간에 대한, 상부 및 하부 표면들인 기판 (1) 의 제 1 표면 (곡선 I) 및 제 2 표면 (곡선 J) 의 온도의 시간에 따른 변화를 보여준다. 이 도면은 기판 (1) 의 제 1 표면과 제 2 표면의 냉각 프로파일들이 비슷하다는 것을 나타낸다.
특히, 5 m/s 이상의 토출 속력에서 이 실시예에서는 하부 표면에서 냉각 유체 제트들의 토출은, 기판 (1) 의 하부 표면에 형성된 냉각 유체 유동이 제 2 길이 (L2) 에 대해 기판 (1) 의 하부 표면과 접촉한 상태로 유지하도록 보장할 수 있는 가능성을 제공하고, 이는 기판 (1) 의 상부 및 하부 표면들의 대칭 냉각을 획득하여서, 두께로 기판 (1) 을 균질하게 냉각할 수 있는 가능성을 제공한다.
이 도면은 또한 기판 (1) 의 냉각이 매우 빠르고, 상부 표면과 하부 표면이 50 초 미만에 1,150°에서 200 ℃ 미만의 온도로 냉각되는 것을 보여준다.
도 9 는 도 2 및 도 4 에 도시된 대로 냉각 모듈 (5) 의 입구 (곡선 K) 에서 그리고 이 모듈 (5) 의 출구 (곡선 L) 에서 종방향으로 기판 (1) 의 표면에 대한 온도의 분배를 보여준다.
이 곡선들의 가로 좌표는 종방향으로 기판 (1) 에서 측정점의 표준화한 위치를 나타낸다.
따라서, 기판 (1) 은 냉각 모듈 (5) 로 진입 전 기판 (1) 의 헤드와 테일 사이에서 종방향으로 온도 불균질성을 가지고, 이 불균질성은 모듈 (5) 의 출구에서 강하게 감쇠되는 것을 알 수 있다.
따라서, 도 9 는 기판 (1) 이 오로지 핵 비등 조건들 하에서만 모듈 (5) 에 의해 냉각되고, 이는 기판 (1) 의 헤드와 테일 사이에서 초기에 존재하는 온도 불균질성의 감쇠를 허용한다는 사실을 보여준다.
본 발명에 따른 프로세스는 그 결과 매우 양호한 평탄도 품질을 갖는 기판 (1) 을 획득할 수 있도록 허용한다.
예와 비교로서, 도 10 및 도 11 은 종래 기술 (도 10) 에 따른 또는 본 발명 (도 11) 에 따른 냉각 프로세스에 의해 냉각된, 기판의 폭에 대해, 두 기판들의 표면의 프로파일을 도시한다.
도 10 및 도 11 에서, x 축은 기판의 폭에 대한 측정점들의 위치를 나타내고, y 축은 평탄도=(ε11-(ε11)평균)·105 로 표현된 각각의 측정점에서 평탄도를 알려주고, 여기에서 (ε11)평균 은 기판의 폭에 대한 ε11 의 평균값이다.
도 10 의 기판은 적어도 부분적으로 천이 비등에 의해 냉각되었고, 반면에 도 11 의 기판은 본 발명에 따라 오로지 핵 비등에 의해서만 냉각되었다.
이 도면들을 비교하면, 기판이 핵 비등에 의해 냉각되는 본 발명에 따른 프로세스가 종래 기술의 프로세스와 비교해 개선된 기판 평탄도를 달성할 수 있음을 보여준다.
도 12 및 도 13 은 도 3 및 도 4 에 도시된 어셈블리의 다른 실시형태에 따른 냉각 헤더 (11') 및 공급 회로 (13') 를 도시한다.
이 실시형태는 주로 냉각 헤더 (11') 가 채널 (35) 을 포함하지 않고, 공급 회로 (13') 가 냉각 유체를 제공하기 위한 어떠한 메인 도관 (47) 도 포함하지 않는다는 점에서 도 3 및 도 4 를 참조로 설명된 실시형태와 상이하다.
따라서, 이 실시형태에서, 냉각 헤더 (11') 는 헤더 노즐 (71) 을 가지고 형성된다.
헤더 노즐 (71) 은 도 3 및 도 4 를 참조로 설명한 헤더 노즐 (33) 과 기능적으로 유사하다.
특히, 헤더 노즐 (71) 은 냉각될 기판 (1) 의 폭 이상인 폭에 걸쳐 이동하는 기판 (1) 에 대해 횡방향으로 연장된다.
헤더 노즐 (71) 은 냉각 유체를 운반하기 위한 도관 (73) 을 형성하는 관통 오리피스를 구비한다. 도관 (73) 은 냉각될 기판 (1) 의 폭 이상인 폭에 대해 횡방향으로 연장되고, 상류 단부와 하류 단부 사이에서 수직 종방향 평면에 연장된다. 도관 (73) 의 상류 단부는 공급 회로 (13') 에 직접 연결된다. 하류 단부는 애퍼처를 형성하고, 이 애퍼처를 통하여, 공급 회로 (13') 에 의해 주입되고 도관 (37) 을 가로지르는 냉각 유체는 기판에서 냉각 유체 제트로서 토출된다.
애퍼처는 도 3 및 도 4 를 참조로 설명된 개구 (39) 와 유사한 개구 (75) 를 형성한다.
도관 (73) 은 도관 (73) 의 상류측으로부터 하류측으로 감소하는 섹션을 가지고, 이는 2 m/s 미만의 공급 회로 (13') 로 냉각 유체의 초기 속력으로부터 적어도 5 m/s 의 속력으로 토출된 냉각 유체 제트의 개구 (75) 의 출구에서 형성을 허용한다. 실제로, 이하 설명하는 것처럼, 2 m/s 미만의 속력으로 공급 회로 (13') 에서 냉각 유체의 순환은 이 공급 회로 (13') 에서 압력 강하의 최소화와, 따라서 회로 (13') 에 공급하는데 필요한 압력 감소를 허용한다.
바람직하게, 도관 (73) 의 하류 단부는 5° ~ 25°, 특히 10° ~ 20°의 이동 방향 (A) 에 대한 각도 (α) 를 형성한다.
더욱이, 이 대안예에 따르면, 공급 회로 (13') 는 냉각 헤더 (11') 의 공급 도관 (83) 및 분배 도관 (85) 을 포함한다. 따라서, 냉각 유체 분배 망으로부터 수용된 냉각 유체의 유동은 분배 도관 (85) 을 통하여, 그 후 공급 회로 (83) 를 통하여, 냉각 헤더 (11') 까지 운반된다.
공급 회로 (83) 는 헤더 노즐 (73) 에 냉각 유체를 공급하도록 의도된다.
공급 도관 (83) 은 헤더 노즐 (73) 의 폭과 실질적으로 동일한 폭에 대해 횡방향으로 연장된다. 공급 도관 (83) 은 일반적 원통 형상을 가지고, 실질적으로 원통형 측벽과 2 개의 말단벽들을 포함한다. 이 말단벽들 양자는, 각각, 이하 설명하는 것처럼, 공급 도관 (83) 의 통과를 허용하도록 의도된, 실질적으로 원형 관통 오리피스 (87) 를 구비한다.
공급 도관 (83) 은 더욱이 그것의 측벽에, 도관 (73) 으로 개방되는 횡방향 애퍼처 (89) 를 포함한다. 애퍼처 (89) 는 공급 도관 (83) 의 폭의 실질적으로 전체에 대해 횡방향으로 연장된다.
분배 도관 (85) 은 냉각 유체 분배 망에 연결되고, 공급 도관 (83) 의 전체 폭에 대해 이 분배 망에 의해 제공된 냉각 유체 유동을 분배하도록 의도된다.
분배 도관 (85) 은 일반적인 원통 형상을 가지고, 2 개의 단부들 (85a, 85b) 사이에 횡방향으로 연장되고, 각각의 단부는 냉각 유체 분배 망에 연결된다. 도관 (85) 은, 단부들 (85a, 85b) 사이에, 공급 도관 (83) 내부로 연장되는 중심부를 포함한다. 양 단부들 (85a, 85b) 은 공급 도관 (83) 으로부터 관통 오리피스들 (87) 을 통하여 개방된다.
따라서, 분배 도관 (85) 의 측벽은 공급 도관 (83) 의 측벽과 공급 도관 (83) 내부에서 냉각 유체의 순환을 위한 공간 (91) 을 규정한다. 공간 (91) 은 일반적으로 링 형상이다.
분배 도관 (85) 의 측벽은 또한 분배 도관 (85) 으로부터 공간 (91) 으로 냉각 유체의 분배를 허용하도록 의도된 복수의 오리피스들 (95) 을 구비한다.
오리피스들 (95) 은 예를 들어 횡방향으로 정렬되고, 도관 (85) 의 전체 폭에 걸쳐 연장된다.
오리피스들 (95) 은 예를 들어 등거리에 있다.
이 대안예에 따르면, 공급 회로 (13') 는, 1,000 ~ 3,500 L/분/㎡ 의 표면 유량으로, 냉각 헤더 (11') 의 출구에서, 5 m/s 초과 속력으로 토출된 냉각 유체 제트를 획득하도록 냉각 헤더 (11') 까지 냉각 유체 분배 망에 의해 2 바 이하의 압력으로 제공된 냉각 유체 유동을 전달할 수 있다.
특히, 공급 회로 (13') 는, 회로 (13) 와 같이, 압력 강하의 최소화를 허용하고, 이는 비교적 저압으로부터 5 m/s 초과의 토출 속력을 획득할 수 있는 가능성을 제공한다.
위에서 나타낸 예시적 실시형태들은 비제한적이라는 점을 이해해야 한다.
특히, 다른 실시형태에 따르면, 냉각 장치와 모듈은 열 처리 라인으로 통합된다. 그 후 냉각 장치와 모듈은 기판의 열 처리 온도와 실질적으로 동일한 초기 온도에서 실온으로 기판을 ??칭 (quenching) 함으로써 핵 비등에서 기판 (1) 을 냉각하도록 의도된다. 초기 온도는 예를 들어 800 ℃ 보다 높고, 심지어 100 ℃ 보다 높을 수도 있다.
게다가, 설명한 모듈 (5) 이 2 개의 냉각 기기들 (8) 을 포함할지라도, 모듈에서 기기들 (8) 의 수는 달라질 수도 있고 2 개보다 많거나 적을 수도 있다.
또, 디플렉터들은 생략될 수도 있고, 또는 기기들은 단 하나의 상부 또는 단 하나의 하부 디플렉터만 포함할 수도 있다.
또한, 대안예에 따르면, 냉각 유체 유동을 중단시키기 위한 기기 (15) 는, 롤러 (61) 에 부가적으로 또는 대체물로서, 기판에 직교하거나 기판 (1) 의 이동 방향에 반대인 방향으로 기판 (1) 상에 가압 냉각 유체 제트를 보내도록 구성된 노즐을 포함한다.
Claims (24)
- 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스로서,
상기 프로세스는 상기 금속 기판 (1) 의 제 1 표면에서 적어도 하나의 제 1 냉각 유체 제트 및 상기 금속 기판 (1) 의 제 2 표면에서 적어도 하나의 제 2 냉각 유체 제트를 토출하는 단계를 포함하고,
상기 제 1 냉각 유체 제트 및 상기 제 2 냉각 유체 제트는, 상기 제 1 표면 및 상기 제 2 표면에 제 1 층류 냉각 유체 유동 및 제 2 층류 냉각 유체 유동을 각각 형성하도록, 5 m/s 이상의 냉각 유체 속력으로 토출되고, 상기 제 1 층류 냉각 유체 유동 및 상기 제 2 층류 냉각 유체 유동은 상기 금속 기판 (1) 에 접선이고, 상기 제 1 층류 냉각 유체 유동 및 상기 제 2 층류 냉각 유체 유동은 상기 금속 기판 (1) 의 미리 정해진 제 1 길이 (L1) 및 미리 정해진 제 2 길이 (L2) 에 대해 각각 연장되고,
상기 제 1 냉각 유체 제트 및 상기 제 2 냉각 유체 제트는 각각 상기 제 1 냉각 유체 제트 및 상기 제 2 냉각 유체 제트의 토출 중 상기 종방향 (A) 과 미리 정해진 각도 (α) 를 형성하고, 상기 미리 정해진 각도 (α) 는 5° ~ 25° 이고 상기 금속 기판 (1) 이 핵 비등에 의해 제 1 온도로부터 제 2 온도로 냉각되도록 미리 정해진 상기 제 1 길이 (L1) 및 미리 정해진 상기 제 2 길이 (L2) 가 결정되는, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 1 항에 있어서,
미리 정해진 상기 제 1 길이 (L1) 와 미리 정해진 상기 제 2 길이 (L2) 간 차이는 미리 정해진 상기 제 1 길이 (L1) 와 미리 정해진 상기 제 2 길이 (L2) 의 평균의 10% 미만인, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 1 항 또는 제 2 항에 있어서,
상기 제 1 냉각 유체 제트 및 상기 제 2 냉각 유체 제트는 상기 금속 기판 (1) 의 정중면에 대해 대칭인, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 1 항 또는 제 2 항에 있어서,
상기 제 1 냉각 유체 제트 및 상기 제 2 냉각 유체 제트는 각각 상기 제 1 표면 및 상기 제 2 표면에서 미리 정해진 거리 (H) 로부터 토출되고, 상기 미리 정해진 거리 (H) 는 50 ~ 200 ㎜ 인, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 1 항 또는 제 2 항에 있어서,
미리 정해진 상기 제 1 길이 (L1) 및 미리정해진 상기 제 2 길이 (L2) 각각은 0.2 m ~ 1.5 m 인, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 1 항 또는 제 2 항에 있어서,
상기 제 1 온도는 600 ℃ 이상인, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 6 항에 있어서,
상기 제 1 온도는 800 ℃ 이상인, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 1 항 또는 제 2 항에 있어서,
상기 금속 기판 (1) 은 0.2 m/s ~ 4 m/s 인 속도로 이동하는, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 1 항 또는 제 2 항에 있어서,
상기 제 1 온도로부터 상기 제 2 온도로 냉각하는 동안 상기 제 1 표면 및 상기 제 2 표면 각각으로부터 추출된 평균 열 유속은 3 ~ 7 ㎿/㎡ 인, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 1 항 또는 제 2 항에 있어서,
상기 금속 기판은 2 ~ 9 ㎜ 의 두께를 가지고, 상기 금속 기판은 200 ℃/s 이상의 냉각률로 800 ℃ 에서 550 ℃ 로 냉각되는, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 1 항 또는 제 2 항에 있어서,
상기 제 1 냉각 유체 제트 및 상기 제 2 냉각 유체 제트 각각은 360 ~ 2700 L/분/㎡ 의 특정 냉각 유체 유량으로 토출되는, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 1 항 또는 제 2 항에 있어서,
상기 금속 기판은 강판인, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 제 1 항 또는 제 2 항에 있어서,
상기 제 1 층류 냉각 유체 유동 및 상기 제 2 층류 냉각 유체 유동은 상기 금속 기판 (1) 의 폭에 대해 연장되는, 종방향 (A) 으로 이동하는 금속 기판 (1) 을 냉각하기 위한 프로세스. - 금속 기판을 열간 압연하기 위한 방법으로서,
상기 방법은 상기 금속 기판을 열간 압연하는 단계, 및
제 1 항 또는 제 2 항에 따른 프로세스로 열간 압연된 금속 기판을 냉각하는 단계를 포함하는, 금속 기판을 열간 압연하기 위한 방법. - 금속 기판을 열 처리하기 위한 방법으로서,
상기 방법은 상기 금속 기판을 열 처리하는 단계, 및
제 1 항 또는 제 2 항에 따른 프로세스로 열 처리된 금속 기판을 냉각하는 단계를 포함하는, 금속 기판을 열 처리하기 위한 방법. - 금속 기판 (1) 의 냉각 기기 (8) 로서:
- 상기 금속 기판 (1) 의 제 1 표면에서 적어도 하나의 제 1 냉각 유체 제트를 토출하도록 구성된 제 1 냉각 유닛 (9),
- 상기 금속 기판 (2) 의 제 2 표면에서 적어도 하나의 제 2 냉각 유체 제트를 토출하도록 구성된 제 2 냉각 유닛 (10) 을 포함하고,
상기 제 1 냉각 유체 제트 및 상기 제 2 냉각 유체 제트가 종방향 (A) 과 미리 정해진 각도 (α) 를 형성하기 위해 상기 제 1 냉각 유닛 (9) 및 제 2 냉각 유닛 (10) 은 상기 제 1 냉각 유체 제트 및 상기 제 2 냉각 유체 제트를 각각 토출하도록 구성되고, 상기 미리 정해진 각도 (α) 는 5° ~ 25°이고,
상기 제 1 냉각 유닛 (9) 및 제 2 냉각 유닛 (10) 은, 상기 제 1 표면과 상기 제 2 표면에서 제 1 층류 냉각 유체 유동과 제 2 층류 냉각 유체 유동을 각각 형성하기 위해, 5 m/s 이상의 냉각 유체 속력으로 제 1 냉각 유체 제트 및 상기 제 2 냉각 유체 제트을 각각 토출하도록 구성되고, 상기 제 1 냉각 유체 유동 및 상기 제 2 층류 냉각 유체 유동은 상기 금속 기판 (1) 에 접선이고 상기 금속 기판 (1) 의 미리 정해진 제 1 길이 (L1) 및 미리 정해진 제 2 길이 (L2) 에 대해 각각 연장되는, 금속 기판 (1) 의 냉각 기기 (8). - 제 16 항에 있어서,
상기 제 1 냉각 유닛 (9) 은 상기 제 1 냉각 유체 제트를 토출하도록 구성된 적어도 하나의 제 1 냉각 헤더 (11 ;11') 를 포함하고, 상기 제 2 냉각 유닛 (10) 은 상기 제 2 냉각 유체 제트를 토출하도록 구성된 적어도 하나의 제 2 냉각 헤더 (17) 를 포함하는, 금속 기판 (1) 의 냉각 기기 (8). - 제 17 항에 있어서,
상기 제 1 냉각 헤더 (11; 11') 및 상기 제 2 냉각 헤더 (17) 는 각각 상기 제 1 냉각 유체 제트 및 상기 제 2 냉각 유체 제트를 각각 토출하기 위한 노즐 개구 (39; 75) 를 포함하는 헤더 노즐 (33; 71) 을 포함하는, 금속 기판 (1) 의 냉각 기기 (8). - 제 18 항에 있어서,
각각의 헤더 노즐 (33; 71) 은 종방향 (A) 과 상기 미리 정해진 각도 (α) 를 형성하는, 금속 기판 (1) 의 냉각 기기 (8). - 제 17 항 내지 제 19 항 중 어느 한 항에 있어서,
상기 제 1 냉각 헤더 (11; 11') 및 상기 제 2 냉각 헤더 (17) 각각은 냉각 유체 공급 회로 (13, 19; 13') 에 연결되고, 상기 냉각 유체 공급 회로는 1 ~ 2 바의 냉각 유체 압력을 갖는 냉각 유체를 공급받는, 금속 기판 (1) 의 냉각 기기 (8). - 제 20 항에 있어서,
냉각 유체가 최대한 2m/s 의 속력으로 냉각 유체 공급 회로 (13, 19; 13') 에서 순환하도록 각각의 냉각 유체 공급 회로 (13, 19; 13') 가 구성되는, 금속 기판 (1) 의 냉각 기기 (8). - 제 16 항 내지 제 19 항 중 어느 한 항에 있어서,
상기 제 1 냉각 유닛 (9) 및 상기 제 2 냉각 유닛 (10) 중 적어도 하나는, 미리 정해진 상기 제 1 길이 (L1) 및/또는 미리 정해진 상기 제 2 길이 (L2) 하류에서 임의의 냉각 유체 유동을 방지하도록 된, 냉각 유체 유동을 중단시키기 위한 기기 (25) 를 포함하는, 금속 기판 (1) 의 냉각 기기 (8). - 제 16 항 내지 제 19 항 중 어느 한 항에 따른 냉각 기기를 포함하는 열간 압연 설비.
- 제 16 항 내지 제 19 항 중 어느 한 항에 따른 냉각 기기를 포함하는 열 처리 설비.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IBPCT/IB2015/060051 | 2015-12-30 | ||
PCT/IB2015/060051 WO2017115110A1 (en) | 2015-12-30 | 2015-12-30 | Process and device for cooling a metal substrate |
PCT/EP2016/082887 WO2017114927A1 (en) | 2015-12-30 | 2016-12-29 | Process and device for cooling a metal substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180098542A KR20180098542A (ko) | 2018-09-04 |
KR102559142B1 true KR102559142B1 (ko) | 2023-07-24 |
Family
ID=55221464
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187016478A KR102559142B1 (ko) | 2015-12-30 | 2016-12-29 | 금속 기판을 냉각하기 위한 프로세스 및 기기 |
Country Status (17)
Country | Link |
---|---|
US (1) | US11072839B2 (ko) |
EP (1) | EP3397781B1 (ko) |
JP (1) | JP6853256B2 (ko) |
KR (1) | KR102559142B1 (ko) |
CN (1) | CN108431240B (ko) |
AU (1) | AU2016381035B2 (ko) |
BR (1) | BR112018010960B1 (ko) |
CA (1) | CA3004528C (ko) |
ES (1) | ES2787875T3 (ko) |
HU (1) | HUE049536T2 (ko) |
MA (1) | MA43531B1 (ko) |
MX (1) | MX2018008101A (ko) |
PL (1) | PL3397781T3 (ko) |
RU (1) | RU2731118C2 (ko) |
SI (1) | SI3397781T1 (ko) |
WO (2) | WO2017115110A1 (ko) |
ZA (1) | ZA201802722B (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108160725A (zh) * | 2017-12-25 | 2018-06-15 | 武汉钢铁有限公司 | 一种层流冷却控制系统 |
DE102018220319A1 (de) | 2018-11-27 | 2020-05-28 | Sms Group Gmbh | Kühlvorrichtung und Kühlsystem zum Kühlen eines Kühlguts |
CA3156599A1 (en) * | 2019-11-18 | 2021-05-27 | Jonathan Dube | Working roller for a rolling mill for laminating a sheet of alkali metal or alloy thereof into a film |
WO2023042545A1 (ja) * | 2021-09-16 | 2023-03-23 | Jfeスチール株式会社 | 厚鋼板の製造方法および製造設備 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005021984A (ja) | 2003-06-13 | 2005-01-27 | Jfe Steel Kk | 厚鋼板の制御冷却方法及び装置 |
JP2006212666A (ja) | 2005-02-03 | 2006-08-17 | Jfe Steel Kk | 厚鋼板の冷却装置および冷却方法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0238283B2 (ja) * | 1983-02-09 | 1990-08-29 | Mitsubishi Heavy Ind Ltd | Kohanreikyakusochi |
DE4134599C1 (ko) * | 1991-10-18 | 1993-02-25 | Thyssen Stahl Ag, 4100 Duisburg, De | |
JP4678112B2 (ja) | 2001-09-21 | 2011-04-27 | Jfeスチール株式会社 | 鋼板の冷却方法および装置 |
WO2004014577A1 (ja) | 2002-08-08 | 2004-02-19 | Jfe Steel Corporation | 熱延鋼帯の冷却装置、熱延鋼帯の製造方法および熱延鋼帯の製造ライン |
DE102004040375A1 (de) * | 2004-06-09 | 2005-12-29 | Sms Demag Ag | Verfahren und Walzgerüst zum Kaltwalzen von metallischem Walzgut, insbesondere von Walzband, mit Düsen für gasförmige oder flüssige Behandlungsmedien |
JP4518107B2 (ja) | 2006-07-27 | 2010-08-04 | Jfeスチール株式会社 | 熱延鋼帯の冷却装置および冷却方法 |
KR101052453B1 (ko) | 2006-07-27 | 2011-07-28 | 제이에프이 스틸 가부시키가이샤 | 열연강대의 냉각 장치 및 냉각 방법 |
JP4518117B2 (ja) | 2006-08-21 | 2010-08-04 | Jfeスチール株式会社 | 熱延鋼帯の冷却装置および冷却方法 |
JP4586791B2 (ja) * | 2006-10-30 | 2010-11-24 | Jfeスチール株式会社 | 熱延鋼帯の冷却方法 |
RU2410177C2 (ru) | 2007-07-30 | 2011-01-27 | Ниппон Стил Корпорейшн | Устройство и способ для охлаждения горячего стального листа |
CN102548680B (zh) | 2009-06-30 | 2015-04-01 | 新日铁住金株式会社 | 热轧钢板的冷却装置、冷却方法、制造装置及制造方法 |
CN202185466U (zh) | 2011-07-19 | 2012-04-11 | 东北大学 | 一种超快速冷却技术的轧后超快冷装置 |
CN102513383B (zh) | 2011-12-09 | 2015-03-11 | 东北大学 | 一种中厚板超快速和常规层流冷却方法 |
CN102756000A (zh) | 2012-07-06 | 2012-10-31 | 上海交通大学 | 钢板窄缝水套通道内射流冷却方法及装置 |
DE102013019619A1 (de) * | 2013-11-25 | 2015-05-28 | Loi Thermprocess Gmbh | Verfahren zum Wärmebehandeln und Abschreckeinrichtung zum Kühlen von platten- oder bahnförmigem Blech aus Metall |
RU2570712C1 (ru) | 2014-08-20 | 2015-12-10 | Публичное акционерное общество "Северсталь" (ПАО "Северсталь") | Способ горячей прокатки полос из низколегированной стали |
CN204799691U (zh) | 2015-07-20 | 2015-11-25 | 东北大学 | 一种中厚板轧后冷却喷水系统 |
-
2015
- 2015-12-30 WO PCT/IB2015/060051 patent/WO2017115110A1/en active Application Filing
-
2016
- 2016-12-29 ES ES16826754T patent/ES2787875T3/es active Active
- 2016-12-29 AU AU2016381035A patent/AU2016381035B2/en active Active
- 2016-12-29 WO PCT/EP2016/082887 patent/WO2017114927A1/en active Application Filing
- 2016-12-29 SI SI201630783T patent/SI3397781T1/sl unknown
- 2016-12-29 HU HUE16826754A patent/HUE049536T2/hu unknown
- 2016-12-29 JP JP2018533138A patent/JP6853256B2/ja active Active
- 2016-12-29 CN CN201680076785.8A patent/CN108431240B/zh active Active
- 2016-12-29 CA CA3004528A patent/CA3004528C/en active Active
- 2016-12-29 BR BR112018010960-6A patent/BR112018010960B1/pt active IP Right Grant
- 2016-12-29 EP EP16826754.0A patent/EP3397781B1/en active Active
- 2016-12-29 RU RU2018123359A patent/RU2731118C2/ru active
- 2016-12-29 PL PL16826754T patent/PL3397781T3/pl unknown
- 2016-12-29 MA MA43531A patent/MA43531B1/fr unknown
- 2016-12-29 MX MX2018008101A patent/MX2018008101A/es unknown
- 2016-12-29 US US15/779,961 patent/US11072839B2/en active Active
- 2016-12-29 KR KR1020187016478A patent/KR102559142B1/ko active IP Right Grant
-
2018
- 2018-04-24 ZA ZA2018/02722A patent/ZA201802722B/en unknown
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005021984A (ja) | 2003-06-13 | 2005-01-27 | Jfe Steel Kk | 厚鋼板の制御冷却方法及び装置 |
JP2006212666A (ja) | 2005-02-03 | 2006-08-17 | Jfe Steel Kk | 厚鋼板の冷却装置および冷却方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3397781A1 (en) | 2018-11-07 |
AU2016381035B2 (en) | 2022-03-10 |
HUE049536T2 (hu) | 2020-10-28 |
PL3397781T3 (pl) | 2020-09-07 |
BR112018010960A2 (pt) | 2018-12-04 |
CA3004528C (en) | 2024-03-26 |
ES2787875T3 (es) | 2020-10-19 |
US20180355456A1 (en) | 2018-12-13 |
CN108431240A (zh) | 2018-08-21 |
BR112018010960B1 (pt) | 2021-09-14 |
SI3397781T1 (sl) | 2020-09-30 |
JP6853256B2 (ja) | 2021-03-31 |
MA43531B1 (fr) | 2020-05-29 |
WO2017114927A1 (en) | 2017-07-06 |
RU2018123359A3 (ko) | 2020-04-21 |
JP2019505388A (ja) | 2019-02-28 |
MA43531A (fr) | 2018-11-07 |
MX2018008101A (es) | 2018-11-12 |
WO2017115110A1 (en) | 2017-07-06 |
CA3004528A1 (en) | 2017-07-06 |
RU2018123359A (ru) | 2019-12-27 |
EP3397781B1 (en) | 2020-03-18 |
KR20180098542A (ko) | 2018-09-04 |
CN108431240B (zh) | 2020-02-18 |
ZA201802722B (en) | 2018-12-19 |
US11072839B2 (en) | 2021-07-27 |
RU2731118C2 (ru) | 2020-08-28 |
AU2016381035A1 (en) | 2018-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4449991B2 (ja) | 熱延鋼帯の冷却装置及び方法 | |
KR102559142B1 (ko) | 금속 기판을 냉각하기 위한 프로세스 및 기기 | |
JP4586791B2 (ja) | 熱延鋼帯の冷却方法 | |
KR101162070B1 (ko) | 열연 강판의 냉각 장치 | |
US8881568B2 (en) | Cooling equipment and cooling method for hot rolled steel plate | |
KR101335815B1 (ko) | 열연 강판의 냉각 장치 | |
US10974316B2 (en) | Secondary cooling method and secondary cooling device for casting product in continuous casting | |
KR20200085880A (ko) | 후강판의 냉각 장치 및 냉각 방법 그리고 후강판의 제조 설비 및 제조 방법 | |
JPWO2018056164A1 (ja) | 熱延鋼板の冷却装置及び冷却方法 | |
JP5685861B2 (ja) | 熱鋼板の水切り装置、水切り方法および冷却設備 | |
EP2979770B1 (en) | Thick steel plate manufacturing device and manufacturing method | |
WO2016031168A1 (ja) | 厚鋼板の製造設備および製造方法 | |
JP5387093B2 (ja) | 熱鋼板の冷却設備 | |
JP3867073B2 (ja) | 熱間圧延鋼板の冷却装置および冷却方法 | |
JP2006281220A (ja) | H形鋼の冷却設備及び冷却方法 | |
JP5228720B2 (ja) | 厚鋼板の冷却設備 | |
JP5347781B2 (ja) | 熱鋼板の冷却設備および冷却方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |