KR102551216B1 - 가스 저감을 위한 방법 및 장치 - Google Patents

가스 저감을 위한 방법 및 장치 Download PDF

Info

Publication number
KR102551216B1
KR102551216B1 KR1020187003693A KR20187003693A KR102551216B1 KR 102551216 B1 KR102551216 B1 KR 102551216B1 KR 1020187003693 A KR1020187003693 A KR 1020187003693A KR 20187003693 A KR20187003693 A KR 20187003693A KR 102551216 B1 KR102551216 B1 KR 102551216B1
Authority
KR
South Korea
Prior art keywords
turns
coil antenna
terminal
group
turn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
KR1020187003693A
Other languages
English (en)
Korean (ko)
Other versions
KR20180025963A (ko
Inventor
롱핑 왕
지빙 젱
데이비드 무킹 호우
마이클 에스. 콕스
쳉 유안
제임스 뢰르
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Publication of KR20180025963A publication Critical patent/KR20180025963A/ko
Application granted granted Critical
Publication of KR102551216B1 publication Critical patent/KR102551216B1/ko
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4414Electrochemical vapour deposition [EVD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/507Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using external electrodes, e.g. in tunnel type reactors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32348Dielectric barrier discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32357Generation remote from the workpiece, e.g. down-stream
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32798Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
    • H01J37/32816Pressure
    • H01J37/32834Exhausting
    • H01J37/32844Treating effluent gases
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • H05H1/4645Radiofrequency discharges
    • H05H1/4652Radiofrequency discharges using inductive coupling means, e.g. coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/022Avoiding or removing foreign or contaminating particles, debris or deposits on sample or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/327Arrangements for generating the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/335Cleaning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/2406Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes
    • H05H1/2443Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube
    • H05H1/2465Generating plasma using dielectric barrier discharges, i.e. with a dielectric interposed between the electrodes the plasma fluid flowing through a dielectric tube the plasma being activated by inductive coupling, e.g. using coiled electrodes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/30Medical applications
    • H05H2245/36Sterilisation of objects, liquids, volumes or surfaces
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2245/00Applications of plasma devices
    • H05H2245/40Surface treatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Electrochemistry (AREA)
  • Plasma Technology (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Drying Of Semiconductors (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
KR1020187003693A 2015-07-24 2016-05-12 가스 저감을 위한 방법 및 장치 Active KR102551216B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201562196549P 2015-07-24 2015-07-24
US62/196,549 2015-07-24
US15/147,974 2016-05-06
US15/147,974 US10187966B2 (en) 2015-07-24 2016-05-06 Method and apparatus for gas abatement
PCT/US2016/032091 WO2017019149A1 (en) 2015-07-24 2016-05-12 Method and apparatus for gas abatement

Publications (2)

Publication Number Publication Date
KR20180025963A KR20180025963A (ko) 2018-03-09
KR102551216B1 true KR102551216B1 (ko) 2023-07-03

Family

ID=57837928

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020187003693A Active KR102551216B1 (ko) 2015-07-24 2016-05-12 가스 저감을 위한 방법 및 장치

Country Status (7)

Country Link
US (2) US10187966B2 (enExample)
EP (1) EP3326193B1 (enExample)
JP (1) JP6671472B2 (enExample)
KR (1) KR102551216B1 (enExample)
CN (1) CN107851547B (enExample)
TW (1) TWI675415B (enExample)
WO (1) WO2017019149A1 (enExample)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10187966B2 (en) * 2015-07-24 2019-01-22 Applied Materials, Inc. Method and apparatus for gas abatement
US10535506B2 (en) 2016-01-13 2020-01-14 Mks Instruments, Inc. Method and apparatus for deposition cleaning in a pumping line
CN110291611B (zh) 2017-02-09 2022-05-17 应用材料公司 利用水蒸气和氧试剂的等离子体减量技术
JP7042142B2 (ja) * 2018-03-30 2022-03-25 株式会社ダイヘン プラズマ発生装置
JP7042143B2 (ja) * 2018-03-30 2022-03-25 株式会社ダイヘン プラズマ発生装置
US11221182B2 (en) 2018-07-31 2022-01-11 Applied Materials, Inc. Apparatus with multistaged cooling
WO2020123050A1 (en) 2018-12-13 2020-06-18 Applied Materials, Inc. Heat exchanger with multi stag ed cooling
WO2020172179A1 (en) * 2019-02-22 2020-08-27 Applied Materials, Inc. Reduction of br2 and cl2 in semiconductor processes
US20200286712A1 (en) * 2019-03-05 2020-09-10 Advanced Energy Industries, Inc. Single-turn and laminated-wall inductively coupled plasma sources
JP7489171B2 (ja) * 2019-03-26 2024-05-23 株式会社ダイヘン プラズマ発生装置
US11745229B2 (en) 2020-08-11 2023-09-05 Mks Instruments, Inc. Endpoint detection of deposition cleaning in a pumping line and a processing chamber
US12065359B2 (en) 2021-04-14 2024-08-20 Applied Materials, Inc. Portable fluorine generator for on-site calibration
US11664197B2 (en) 2021-08-02 2023-05-30 Mks Instruments, Inc. Method and apparatus for plasma generation
JP7756033B2 (ja) * 2022-03-23 2025-10-17 株式会社ダイヘン プラズマ発生器
US12159765B2 (en) 2022-09-02 2024-12-03 Mks Instruments, Inc. Method and apparatus for plasma generation
CN116161802B (zh) * 2023-03-24 2025-06-03 瑞纳智能设备股份有限公司 水处理装置和水处理系统
US20250201530A1 (en) * 2023-12-19 2025-06-19 Applied Materials, Inc. Protective liner for plasma source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286536A (ja) 2005-04-04 2006-10-19 Ebara Corp プラズマ生成方法、誘導結合型プラズマ源、およびプラズマ処理装置

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696967A (ja) * 1992-09-14 1994-04-08 Ulvac Japan Ltd プロセス装置用高周波電源の整合装置
US5540824A (en) * 1994-07-18 1996-07-30 Applied Materials Plasma reactor with multi-section RF coil and isolated conducting lid
US6187072B1 (en) * 1995-09-25 2001-02-13 Applied Materials, Inc. Method and apparatus for reducing perfluorocompound gases from substrate processing equipment emissions
US6193802B1 (en) * 1995-09-25 2001-02-27 Applied Materials, Inc. Parallel plate apparatus for in-situ vacuum line cleaning for substrate processing equipment
US6315872B1 (en) * 1997-11-26 2001-11-13 Applied Materials, Inc. Coil for sputter deposition
US6164241A (en) * 1998-06-30 2000-12-26 Lam Research Corporation Multiple coil antenna for inductively-coupled plasma generation systems
US6291938B1 (en) 1999-12-31 2001-09-18 Litmas, Inc. Methods and apparatus for igniting and sustaining inductively coupled plasma
US6367412B1 (en) 2000-02-17 2002-04-09 Applied Materials, Inc. Porous ceramic liner for a plasma source
US7571697B2 (en) * 2001-09-14 2009-08-11 Lam Research Corporation Plasma processor coil
KR100513163B1 (ko) * 2003-06-18 2005-09-08 삼성전자주식회사 Icp 안테나 및 이를 사용하는 플라즈마 발생장치
FR2864795B1 (fr) * 2004-01-06 2008-04-18 Air Liquide Procede de traitement des gaz par des decharges hautes frequence
US20050194099A1 (en) 2004-03-03 2005-09-08 Jewett Russell F.Jr. Inductively coupled plasma source using induced eddy currents
US20060081185A1 (en) * 2004-10-15 2006-04-20 Justin Mauck Thermal management of dielectric components in a plasma discharge device
US20060211253A1 (en) * 2005-03-16 2006-09-21 Ing-Shin Chen Method and apparatus for monitoring plasma conditions in an etching plasma processing facility
KR100774521B1 (ko) * 2005-07-19 2007-11-08 주식회사 디엠에스 다중 안테나 코일군이 구비된 유도결합 플라즈마 반응장치
CN101390187A (zh) * 2006-01-24 2009-03-18 瓦里安半导体设备公司 具有低有效天线电压的等离子体浸润离子源
US20070170867A1 (en) 2006-01-24 2007-07-26 Varian Semiconductor Equipment Associates, Inc. Plasma Immersion Ion Source With Low Effective Antenna Voltage
US8932430B2 (en) * 2011-05-06 2015-01-13 Axcelis Technologies, Inc. RF coupled plasma abatement system comprising an integrated power oscillator
US20080236491A1 (en) 2007-03-30 2008-10-02 Tokyo Electron Limited Multiflow integrated icp source
JP4950763B2 (ja) * 2007-05-25 2012-06-13 大陽日酸株式会社 プラズマ生成装置
KR100926706B1 (ko) * 2008-02-21 2009-11-17 (주)플러스텍 반구형 나선 안테나를 구비한 반도체용 플라즈마 가공장치
US8736177B2 (en) 2010-09-30 2014-05-27 Fei Company Compact RF antenna for an inductively coupled plasma ion source
KR101196309B1 (ko) * 2011-05-19 2012-11-06 한국과학기술원 플라즈마 발생 장치
JP5578155B2 (ja) * 2011-10-27 2014-08-27 パナソニック株式会社 プラズマ処理装置及び方法
US20130146225A1 (en) * 2011-12-08 2013-06-13 Mks Instruments, Inc. Gas injector apparatus for plasma applicator
US9867238B2 (en) * 2012-04-26 2018-01-09 Applied Materials, Inc. Apparatus for treating an exhaust gas in a foreline
KR20140087215A (ko) * 2012-12-28 2014-07-09 주식회사 윈텔 플라즈마 장치 및 기판 처리 장치
US9247629B2 (en) 2013-03-15 2016-01-26 Agilent Technologies, Inc. Waveguide-based apparatus for exciting and sustaining a plasma
KR102171725B1 (ko) * 2013-06-17 2020-10-29 어플라이드 머티어리얼스, 인코포레이티드 플라즈마 반응기를 위한 강화된 플라즈마 소스
US11158526B2 (en) * 2014-02-07 2021-10-26 Applied Materials, Inc. Temperature controlled substrate support assembly
US9230780B2 (en) * 2014-03-06 2016-01-05 Applied Materials, Inc. Hall effect enhanced capacitively coupled plasma source
US9240308B2 (en) * 2014-03-06 2016-01-19 Applied Materials, Inc. Hall effect enhanced capacitively coupled plasma source, an abatement system, and vacuum processing system
CN106030755B (zh) * 2014-03-06 2020-01-03 应用材料公司 含有重原子的化合物的等离子体减量
US20150279626A1 (en) * 2014-03-27 2015-10-01 Mks Instruments, Inc. Microwave plasma applicator with improved power uniformity
US9653266B2 (en) * 2014-03-27 2017-05-16 Mks Instruments, Inc. Microwave plasma applicator with improved power uniformity
US9378928B2 (en) * 2014-05-29 2016-06-28 Applied Materials, Inc. Apparatus for treating a gas in a conduit
US10187966B2 (en) * 2015-07-24 2019-01-22 Applied Materials, Inc. Method and apparatus for gas abatement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006286536A (ja) 2005-04-04 2006-10-19 Ebara Corp プラズマ生成方法、誘導結合型プラズマ源、およびプラズマ処理装置

Also Published As

Publication number Publication date
US20190246481A1 (en) 2019-08-08
CN107851547B (zh) 2020-11-27
JP6671472B2 (ja) 2020-03-25
CN107851547A (zh) 2018-03-27
EP3326193A1 (en) 2018-05-30
TW201705274A (zh) 2017-02-01
TWI675415B (zh) 2019-10-21
US20170027049A1 (en) 2017-01-26
EP3326193A4 (en) 2019-04-10
JP2018530893A (ja) 2018-10-18
KR20180025963A (ko) 2018-03-09
EP3326193B1 (en) 2023-01-11
US10187966B2 (en) 2019-01-22
US10757797B2 (en) 2020-08-25
WO2017019149A1 (en) 2017-02-02

Similar Documents

Publication Publication Date Title
KR102551216B1 (ko) 가스 저감을 위한 방법 및 장치
KR101805612B1 (ko) 도관 내의 가스를 처리하기 위한 장치
KR102104243B1 (ko) 포어라인에서 배기 가스를 처리하기 위한 장치
US10770328B2 (en) Substrate support with symmetrical feed structure
US20160234924A1 (en) Apparatus and Method for Plasma Ignition with a Self-Resonating Device
KR100803794B1 (ko) 마그네틱 코어 블록에 매설된 플라즈마 방전 튜브를 구비한유도 결합 플라즈마 소스
CN107849694B (zh) 用于改良bcd及蚀刻深度性能的源rf功率分裂式内线圈
KR20170102326A (ko) 플라스마 처리 장치
KR100805557B1 (ko) 다중 마그네틱 코어가 결합된 유도 결합 플라즈마 소스
US20150279626A1 (en) Microwave plasma applicator with improved power uniformity
KR100972371B1 (ko) 복합 플라즈마 소스 및 이를 이용한 가스 분리 방법
KR100743842B1 (ko) 자속 채널에 결합된 플라즈마 챔버를 구비한 플라즈마반응기
KR100805558B1 (ko) 마그네틱 코어에 결합된 다중 방전 튜브를 구비한 유도 결합 플라즈마 소스
KR100772447B1 (ko) 내장 마그네틱 코어를 갖는 유도 결합 플라즈마 소스
KR101406203B1 (ko) 마이크로파 플라즈마 어플리케이터 및 원격 플라즈마 반도체 식각장비
US20250201530A1 (en) Protective liner for plasma source
KR102467297B1 (ko) 마그네틱 코어 방열패드
KR20170035139A (ko) 차폐 구조의 점화전극

Legal Events

Date Code Title Description
PA0105 International application

St.27 status event code: A-0-1-A10-A15-nap-PA0105

PG1501 Laying open of application

St.27 status event code: A-1-1-Q10-Q12-nap-PG1501

A201 Request for examination
PA0201 Request for examination

St.27 status event code: A-1-2-D10-D11-exm-PA0201

E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

St.27 status event code: A-1-2-D10-D21-exm-PE0902

E13-X000 Pre-grant limitation requested

St.27 status event code: A-2-3-E10-E13-lim-X000

P11-X000 Amendment of application requested

St.27 status event code: A-2-2-P10-P11-nap-X000

P13-X000 Application amended

St.27 status event code: A-2-2-P10-P13-nap-X000

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

St.27 status event code: A-1-2-D10-D22-exm-PE0701

GRNT Written decision to grant
PR0701 Registration of establishment

St.27 status event code: A-2-4-F10-F11-exm-PR0701

PR1002 Payment of registration fee

St.27 status event code: A-2-2-U10-U12-oth-PR1002

Fee payment year number: 1

PG1601 Publication of registration

St.27 status event code: A-4-4-Q10-Q13-nap-PG1601

R17-X000 Change to representative recorded

St.27 status event code: A-5-5-R10-R17-oth-X000

PR1001 Payment of annual fee

St.27 status event code: A-4-4-U10-U11-oth-PR1001

Fee payment year number: 4