KR102548428B1 - 발광 다이오드 칩들을 위한 상호접속부들 - Google Patents

발광 다이오드 칩들을 위한 상호접속부들 Download PDF

Info

Publication number
KR102548428B1
KR102548428B1 KR1020217022507A KR20217022507A KR102548428B1 KR 102548428 B1 KR102548428 B1 KR 102548428B1 KR 1020217022507 A KR1020217022507 A KR 1020217022507A KR 20217022507 A KR20217022507 A KR 20217022507A KR 102548428 B1 KR102548428 B1 KR 102548428B1
Authority
KR
South Korea
Prior art keywords
interconnections
led chip
interconnects
type layer
led
Prior art date
Application number
KR1020217022507A
Other languages
English (en)
Other versions
KR20220012215A (ko
Inventor
마이클 첵
Original Assignee
크리엘이디, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 크리엘이디, 인크. filed Critical 크리엘이디, 인크.
Priority to KR1020237021237A priority Critical patent/KR20230096151A/ko
Publication of KR20220012215A publication Critical patent/KR20220012215A/ko
Application granted granted Critical
Publication of KR102548428B1 publication Critical patent/KR102548428B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of group III and group V of the periodic system
    • H01L33/32Materials of the light emitting region containing only elements of group III and group V of the periodic system containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0615Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • H01L2224/06151Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry being uniform, i.e. having a uniform pitch across the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/061Disposition
    • H01L2224/0612Layout
    • H01L2224/0615Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry
    • H01L2224/06152Mirror array, i.e. array having only a reflection symmetry, i.e. bilateral symmetry being non uniform, i.e. having a non uniform pitch across the array

Abstract

발광 다이오드(LED)들 및 더 구체적으로는 상호접속 구조물들을 갖는 LED 칩들을 포함하는 고체-상태 조명 디바이스들이 개시된다. n형 층에 전기적으로 결합된 제1 상호접속부들(44) 및 p형 층에 전기적으로 접속된 제2 상호접속부들(30a, 30b, 30c)을 포함하는 LED 칩들(54)이 제공된다. LED 칩들 내에서 전류 밀집의 국부적인 영역들을 감소시킴으로써 전류 확산을 개선할 수 있는 제1 및 제2 상호접속부들의 구성이 제공된다. 제1 및 제2 상호접속부들의 집합적으로 형성된 대칭 패턴들, LED 칩들에서의 상대적인 위치들에 기초하여 변하는 제1 또는 제2 상호접속부들 중 어느 소정의 것들의 직경들, 및 제1 상호접속부들로부터의 거리들에 기초하여 변하는 제2 상호접속부들의 간격들을 포함하는 다양한 구성들이 개시된다. 이와 관련하여, 개선된 전류 확산뿐만 아니라 더 높은 루멘 출력들 및 효율들을 갖는 LED 칩들이 개시된다.

Description

발광 다이오드 칩들을 위한 상호접속부들
본 개시내용은 발광 다이오드(LED)들을 포함하는 고체-상태 조명 디바이스들에 관한 것으로, 더 구체적으로는 LED 칩들 및 관련 방법들에 관한 것이다.
발광 다이오드들(LEDs) 등의 고체-상태 조명 디바이스들은 소비자용과 상업용 응용들 양쪽 모두에서 점점 더 많이 이용되고 있다. LED 기술의 발전으로, 수명이 긴 고효율의 기계적으로 견고한 광원이 탄생했다. 따라서, 현대의 LED들은 다양한 새로운 디스플레이 응용을 가능케하고 일반 조명 응용에 점점 더 많이 활용되고 있으며, 종종 백열 및 형광 광원들을 대체한다.
LED들은 전기 에너지를 광으로 변환하고, 일반적으로 반대로 도핑된 n형 층과 p형 층 사이에 배열된 반도체 재료의 하나 이상의 활성 층(또는 활성 영역)을 포함하는 고체-상태 디바이스들이다. 도핑된 층들에 걸쳐 바이어스가 인가되면, 정공들과 전자들이 하나 이상의 활성 층에 주입되고, 여기서 이들은 재결합하여 가시광 또는 자외선 방출 등의 방출을 생성한다. 활성 영역은, 예를 들어, 실리콘 탄화물, 갈륨 질화물, 갈륨 인화물, 알루미늄 질화물, 및/또는 갈륨 비소-계열의 재료들로부터 및/또는 유기 반도체 재료들로부터 제작될 수 있다. 활성 영역에 의해 생성된 광자들은 모든 방향에서 시작된다.
전형적으로, LED들을, (예를 들어, 와트당 루멘 단위의) 출력 전력과 관련하여 방출 강도에 의해 측정될 수 있는, 가장 높은 발광 효율로 작동시키는 것이 바람직하다. 방출 효율을 향상시키는 실용적인 목표는, 원하는 광 투과의 방향으로 활성 영역에 의해 방출되는 광의 추출을 최대화하는 것이다. LED의 광 추출 및 외부 양자 효율은 내부 반사를 포함한 다수의 요인에 의해 제한될 수 있다. Snell의 법칙의 널리 이해된 의미에 따르면, LED 표면과 주변 환경 사이의 표면(계면)에 도달하는 광자들은 굴절되거나 내부적으로 반사된다. 광자들이 반복적 방식으로 내부적으로 반사된다면, 이러한 광자들은 결국 흡수되어 LED에서 나오는 가시 광선을 제공하지 않는다. 광자들이 LED를 빠져 나갈 수 있는 기회를 증가시키기 위해, LED 표면과 주변 환경 사이의 계면을 패턴화, 거칠게 처리, 또는 기타의 방식으로 텍스처링하여 내부 반사에 비해 굴절 확률을 증가시켜 광 추출을 향상시키는 다양한 표면을 제공하는 것이 유용하다는 것이 밝혀졌다. 반사 표면들은 또한 생성된 광을 반사하도록 제공되어 이러한 광이 LED 칩으로부터 유용한 방출에 기여할 수 있게 할 수 있다. LED들은 생성된 광을 반사하기 위해 내부 반사 표면들 또는 층들을 이용하여 개발되었다.
LED의 양자 효율은 또한, 전류가 LED 내에서 얼마나 잘 확산될 수 있는지 등의 다른 요인들에 의해 제한될 수 있다. LED들, 특히 더 큰 면적의 LED들에 대한 전류 확산을 증가시키기 위해, LED의 하나 이상의 에피택셜 층 위에 높은 전기 전도성의 층들을 추가하는 것이 유용하다는 것이 밝혀졌다. 추가적으로, LED들을 위한 전극들은 더 큰 표면적을 가질 수 있고, LED를 통해 전류를 라우팅하고 더욱 균등하게 분배하도록 구성된 다양한 전극 연장부 또는 핑거들을 포함할 수 있다.
현대의 LED 기술의 발전이 진행됨에 따라, 이 기술은 종래의 조명 디바이스들과 연관된 과제들을 극복할 수 있는 바람직한 조명 특성을 갖는 개선된 LED들 및 고체-상태 조명 디바이스들을 계속 추구하고 있다.
본 개시내용은 발광 다이오드들(LEDs)을 포함하는 고체-상태 조명 디바이스들에 관한 것으로, 더 구체적으로는 상호접속 구조물들을 갖는 LED 칩들에 관한 것이다. 본 명세서에 개시된 LED 칩들은 n형 층에 전기적으로 결합된 제1 상호접속부 및 p형 층에 전기적으로 접속된 제2 상호접속부를 포함할 수 있다. LED 칩들 내에서 전류 밀집의 국부적인 영역을 감소시킴으로써 전류 확산을 개선할 수 있는 제1 및 제2 상호접속부의 구성이 제공된다. 소정의 실시예들에서, 제1 및 제2 상호접속부는 집합적으로 대칭 패턴들을 형성한다. 소정의 실시예들에서, 제1 및 제2 상호접속부들 중 소정의 것들의 직경들은 LED 칩들에서의 그들의 상대적 위치들에 기초하여 달라질 수 있다. 소정의 실시예들에서, 제2 상호접속부들의 간격들은 제1 상호접속부들로부터의 그들의 거리들에 기초하여 달라질 수 있다. 이와 관련하여, 개선된 전류 확산뿐만 아니라, 더 높은 루멘 출력들 및 효율들을 갖는 LED 칩들이 개시된다.
한 양태에서, LED 칩은 : n형 층, p형 층, 및 n형 층과 p형 층 사이에 배열된 활성 층을 포함하는 활성 LED 구조물; n형 층에 전기적으로 접속된 복수의 제1 상호접속부; 및 p형 층에 전기적으로 접속된 복수의 제2 상호접속부를 포함하고, 복수의 제1 상호접속부 및 복수의 제2 상호접속부는 집합적으로 LED 칩의 영역에 걸쳐 대칭 패턴을 형성한다. 소정의 실시예들에서, LED 칩은 n형 층에 전기적으로 접속된 n컨택트를 더 포함할 수 있고, 여기서 복수의 제1 상호접속부는 n컨택트와 n형 층 사이에 전기적으로 접속된 복수의 n컨택트 상호접속부를 포함한다. 소정의 실시예들에서, LED 칩은 p형 층 상에 반사 구조물을 더 포함할 수 있고, 여기서 반사 구조물은 유전체 층 및 금속 층을 포함하고, 복수의 제2 상호접속부는 유전체 층의 일부를 통해 연장되는 복수의 반사 층 상호접속부를 포함한다. 소정의 실시예들에서, 복수의 제1 상호접속부는 LED 칩의 영역에 걸쳐 제1 패턴으로 서로 균등하게 이격되도록 배열되고, 복수의 제2 상호접속부는 LED 칩의 영역에 걸쳐 제2 패턴으로 서로 균등하게 이격되도록 배열된다. 제1 패턴 및 제2 패턴은 집합적으로, LED 칩에 걸쳐 대칭 패턴을 형성할 수 있다. 소정의 실시예들에서, 복수의 제2 상호접속부의 직경들은 특정한 제1 상호접속부에 대한 각각의 개개 제2 상호접속부의 상대적 위치에 기초하여 상이하다. 소정의 실시예들에서, 특정한 제1 상호접속부에 가장 가깝게 배열된 개개의 제2 상호접속부의 직경은, 그 특정한 제1 상호접속부로부터 더 멀리 배열된 또 다른 개개의 제2 상호접속부의 직경보다 크다. 소정의 실시예들에서, 특정한 제1 상호접속부에 가장 가깝게 배열된 개개의 제2 상호접속부의 직경은, 그 특정한 제1 상호접속부로부터 더 멀리 배열된 또 다른 개개의 제2 상호접속부의 직경보다 작다. 복수의 제1 상호접속부의 직경들은 LED 칩의 영역을 가로 지르는 각각의 개개 제1 상호접속부의 상대적 위치에 기초하여 상이할 수 있다. 복수의 제1 상호접속부의 직경들은 LED 칩의 주변부로부터 LED 칩의 중심을 향하는 방향으로 점진적으로 감소할 수 있다. 소정의 실시예들에서, 복수의 제1 상호접속부 및 복수의 제2 상호접속부는 LED 칩의 상이한 영역에서 집합적으로 비대칭 패턴을 형성한다.
또 다른 양태에서, LED 칩은 : n형 층, p형 층, 및 n형 층과 p형 층 사이에 배열된 활성 층을 포함하는 활성 LED 구조물; n형 층에 전기적으로 접속된 복수의 제1 상호접속부; 및 상기 p형 층에 전기적으로 접속된 복수의 제2 상호접속부를 포함하고; 여기서, 복수의 제1 상호접속부 각각의 중심점 및 복수의 제2 상호접속부 각각의 중심점은 LED 칩에 걸쳐 균등하게 이격된 중심점들의 어레이를 형성한다. 소정의 실시예들에서, LED 칩은 n형 층에 전기적으로 접속된 n컨택트를 더 포함할 수 있고, 여기서 복수의 제1 상호접속부는 n컨택트와 n형 층 사이에 전기적으로 접속된 복수의 n컨택트 상호접속부를 포함한다. 소정의 실시예들에서, LED 칩은 p형 층 상에 반사 구조물을 더 포함할 수 있고, 여기서 반사 구조물은 유전체 층 및 금속 층을 포함하고, 복수의 제2 상호접속부는 유전체 층의 일부를 통해 연장되는 복수의 반사 층 상호접속부를 포함한다. 소정의 실시예들에서, 복수의 제1 상호접속부 각각은 약 4 마이크론 내지 약 25 마이크론 범위에 있는 동일한 직경을 포함할 수 있다. 다른 실시예들에서, 복수의 제1 상호접속부는 약 4 마이크론 내지 약 25 마이크론 범위 내에서 변화하는 직경들을 포함할 수 있다. 소정의 실시예들에서, 복수의 제2 상호접속부 각각은 약 2 마이크론 내지 약 15 마이크론 범위에 있는 동일한 직경을 포함할 수 있다. 다른 실시예들에서, 복수의 제2 상호접속부는 약 2 마이크론 내지 약 15 마이크론 범위 내에서 변화하는 직경들을 포함한다.
또 다른 양태에서, LED 칩은 : n형 층, p형 층, 및 n형 층과 p형 층 사이에 배열된 활성 층을 포함하는 활성 LED 구조물; n형 층에 전기적으로 접속된 제1 상호접속부; 및 p형 층에 전기적으로 접속된 복수의 제2 상호접속부를 포함하고; 여기서, 복수의 제2 상호접속부의 직경들은 제1 상호접속부에 대한 각각의 개개 제2 상호접속부의 상대적 위치에 기초하여 상이하다. 복수의 제2 상호접속부의 직경들은 제1 상호접속부로부터 멀어지게 증가하는 거리에 따라 점진적으로 감소할 수 있다. 복수의 제2 상호접속부의 직경들은 제1 상호접속부로부터 멀어지게 증가하는 거리에 따라 점진적으로 증가할 수 있다. 소정의 실시예들에서, 복수의 제2 상호접속부의 직경들은 제1 상호접속부로부터 멀어지게 증가하는 거리에 따라 점진적으로 증가 및 감소한다. 소정의 실시예들에서, LED 칩은 LED 칩의 영역에 걸쳐 제1 패턴으로 서로 균등하게 이격되도록 배열된 복수의 제1 상호접속부를 더 포함할 수 있고, 복수의 제2 상호접속부는 LED 칩의 영역에 걸쳐 서로 불균등하게 이격되도록 배열된다. 소정의 실시예들에서, LED 칩은 복수의 제1 상호접속부를 더 포함할 수 있고, 여기서 복수의 제1 상호접속부의 직경들은 LED 칩의 영역에 걸쳐 각각의 개개 제1 상호접속부의 상대적 위치에 기초하여 상이하다.
또 다른 양태에서, LED 칩은 : n형 층, p형 층, 및 n형 층과 p형 층 사이에 배열된 활성 층을 포함하는 활성 LED 구조물; n형 층에 전기적으로 접속된 제1 상호접속부; 및 상기 p형 층에 전기적으로 접속된 복수의 제2 상호접속부를 포함하고; 복수의 제2 상호접속부의 인접한 제2 상호접속부들 사이의 간격들은 제1 상호접속부에 대한 각각의 제2 상호접속부의 상대적 위치에 기초하여 상이하다. 소정의 실시예들에서, LED 칩은 p형 층 상에 반사 구조물을 더 포함할 수 있고, 여기서 반사 구조물은 유전체 층 및 금속 층을 포함하고, 복수의 제2 상호접속부는 유전체 층의 일부를 통해 연장되는 복수의 반사 층 상호접속부를 포함한다. 소정의 실시예들에서, 제1 상호접속부는 복수의 제1 상호접속부 중 하나이다. 복수의 제1 상호접속부 및 복수의 제2 상호접속부는 집합적으로, LED 칩의 영역에 걸쳐 대칭 패턴 또는 비대칭 패턴을 형성한다.
또 다른 양태에서, 여기서 설명된 전술된 양태들 중 임의의 것, 및/또는 다양한 별개의 양태들 및 피처들은 추가 이점을 위해 결합될 수 있다. 본 명세서에서 개시된 다양한 피처들 및 요소들 중 임의의 것은 본 명세서에서 반대로 나타내지 않는 한 하나 이상의 다른 개시된 피처 및 요소와 결합될 수 있다.
본 기술분야의 통상의 기술자라면 첨부된 도면과 연관한 바람직한 실시예들의 이하의 상세한 설명을 읽은 후에 본 개시내용의 범위를 이해하고 그 추가 양태를 깨달을 것이다.
본 명세서에 통합되고 그 일부를 형성하는 첨부된 도면들은 본 개시내용의 여러 양태를 예시하고, 설명과 함께 본 개시내용의 원리를 설명하는 역할을 한다.
도 1은 플립 칩 구성으로 배열된 대표적인 발광 다이오드(LED) 칩의 단면도이다.
도 2는 플립 칩 장착 전의 도 1의 LED 칩의 일부의 단면도이다.
도 3a는 복수의 n컨택트 상호접속부 및 복수의 반사 층 상호접속부를 포함하는 대표적인 LED 칩의 1차 발광면의 평면도이다.
도 3b는 도 3a의 LED 칩의 장착면의 저면도이다.
도 4a는 도 3a의 LED 칩의 1차 발광면의 일부의 부분 평면도 예시이다.
도 4b는 n컨택트 상호접속부들 및 반사 층 상호접속부들이 도 4a와 유사한 방식으로 비대칭 패턴들로 배열될 때 유한 요소 방법(FEM; finite element method) 모델링을 이용하는 정전장(electrostatic field)들의 모델이다.
도 5a는 대칭적으로 배열된 상호접속부들을 포함하는 LED 칩의 1차 발광면의 일부의 부분 평면도 예시이다.
도 5b는 n컨택트 상호접속부들 및 반사 층 상호접속부들이 도 5a와 유사한 방식으로 대칭 패턴으로 배열될 때 FEM 모델링을 이용한 정전장들의 모델이다.
도 6a는 도 4a에 도시된 바와 같이 배열된 상호접속부들을 포함하는 제1 세트의 LED 칩들 및 도 5a에 도시된 바와 같이 배열된 상호접속부들을 포함하는 제2 세트의 LED 칩들에 대한 광속(luminous flux) 측정치들을 나타내는 비교 플롯이다.
도 6b는 도 6a에 나타낸 동일한 세트들의 LED 칩들에 대한 와트 당 루멘 측정치들을 나타내는 비교 플롯이다.
도 7은 대칭 패턴을 집합적으로 형성하기 위해 n컨택트 상호접속부들 주위에 배열된 상이한 직경들을 갖는 반사 층 상호접속부들을 갖는 모델이다.
도 8은 n컨택트 상호접속부들로부터의 증가하는 거리에 따라 점진적으로 증가하고 직경들로 구성되고 집합적으로 대칭 패턴을 형성하는 반사 층 상호접속부들을 갖는 모델이다.
도 9는 대칭 패턴을 집합적으로 형성하기 위해 n컨택트 상호접속부들로부터의 증가하는 거리에 따라 점진적으로 감소하는 직경들로 구성된 반사 층 상호접속부들을 갖는 모델이다.
도 10은 대칭 패턴을 집합적으로 형성하기 위해 n컨택트 상호접속부들 주위에 배열된 상이한 직경들을 갖는 반사 층 상호접속부들을 갖는 모델이다.
도 11은 상이한 직경들 및 n컨택트 상호접속부들로부터의 불균일한 거리들을 갖는 반사 층 상호접속부들을 갖는 모델이다.
도 12는 대칭 패턴을 형성하는 n컨택트 상호접속부들 및 반사 층 상호접속부들을 포함하는 LED 칩의 장착면의 저면도이다.
도 13a는 LED 칩 내의 위치들에 기초하여 달라지거나 변하는 직경들을 갖는 n컨택트 상호접속부들을 포함하는 LED 칩의 장착면의 저면도이다.
도 13b는 도 13a의 LED 칩과 유사하고 반사 층 상호접속부들을 더 포함하는 LED 칩의 장착면의 저면도이다.
이하에 개시되는 실시예들은, 본 기술분야의 통상의 기술자가 본 실시예들을 실시할 수 있게 하는데 필요한 정보를 나타내며, 본 실시예들을 실시하는 최상의 모드를 나타낸다. 첨부된 도면에 비추어 이하의 설명을 판독하면, 본 기술분야의 통상의 기술자라면 본 개시내용의 개념을 이해하고 여기서 특별히 다루지 않은 이들 개념들의 응용을 인식할 것이다. 이들 개념들 및 응용들은 본 개시내용과 첨부된 청구항들의 범위 내에 든다는 것을 이해하여야 한다.
용어, 제1, 제2 등이 다양한 요소들을 설명하기 위해 본 명세서에서 사용될 수도 있지만, 이들 요소들은 이들 용어에 의해 제한되어서는 안 된다는 것을 이해할 것이다. 이들 용어는 한 요소를 또 다른 요소로부터 구분하기 위해서만 사용된다. 예를 들어, 본 개시내용의 범위로부터 벗어나지 않고, 제1 요소는 제2 요소라고 명명될 수 있고, 마찬가지로 제2 요소는 제1 요소라고 명명될 수 있다. 본 명세서에서 사용될 때, 용어 "및/또는"은 열거된 연관된 항목들 중 하나 이상의 임의의 조합 및 모든 조합을 포함한다.
층, 영역, 또는 기판 등의 요소가 또 다른 요소 "상"에 있거나 또 다른 요소 "상으로" 연장된다고 언급될 때, 이 요소는 그 다른 요소 상에 직접 있거나 그 다른 요소 상으로 직접 연장될 수 있거나, 또는 중간 요소가 존재할 수도 있다는 것을 이해할 것이다. 대조적으로, 한 요소가 또 다른 요소 "상에 직접" 있거나 또 다른 요소 "상으로 직접" 연장된다고 언급될 때, 어떠한 중간 요소도 존재하지 않는다. 마찬가지로, 층, 영역, 또는 기판 등의 요소가 또 다른 요소 "위"에 있거나 또 다른 요소 "위로" 연장된다고 언급될 때, 이 요소는 그 다른 요소 위에 직접 있거나 그 다른 요소 위로 직접 연장될 수 있거나, 또는 중간 요소가 존재할 수도 있다는 것을 이해할 것이다. 대조적으로, 한 요소가 또 다른 요소 "위에 직접" 있거나 또 다른 요소 "위로 직접" 연장된다고 언급될 때, 어떠한 중간 요소도 존재하지 않는다. 한 요소가 또 다른 요소에 "접속"되거나 "결합"된다고 언급될 때, 이 요소는 그 다른 요소에 직접 접속되거나 결합될 수 있고, 또는 중간 요소가 존재할 수도 있다는 것을 이해할 것이다. 대조적으로, 한 요소가 또 다른 요소에 "직접 접속"되거나 "직접 결합"된다고 언급될 때, 어떠한 중간 요소도 존재하지 않는다.
"아래" 또는 "위" 또는 "상위" 또는 "하위" 또는 "수평" 또는 "수직"과 같은 상대적 용어들은 본 명세서에서는, 도면에서 예시될 때 하나의 요소, 층, 또는 영역의 또 다른 요소, 층, 또는 영역에 대한 관계를 기술하기 위해 이용될 수 있다. 이들 용어들 및 전술된 용어들은 도면들에 도시된 배향 외에도 디바이스의 상이한 배향들을 포괄하도록 의도된 것임을 이해할 것이다.
여기서 사용되는 용어는 특정한 실시예를 설명하기 위한 목적일 뿐이며, 본 개시내용을 제한하고자 함이 아니다. 여기서 사용될 때, 단수 형태, "한(a)", "하나의(an)", "그 하나(the)"는, 문맥상 명확하게 달리 표시하지 않는 한, 복수 형태도 역시 포함하는 것을 의도한다. 용어 "포함한다(comprise)", "포함하는(comprising)", "내포한다(include)", 및/또는 "내포하는(including)"은 본 명세서에서 사용될 때, 진술된 피처, 완전체, 단계, 동작, 요소, 및/또는 컴포넌트의 존재를 명시하지만, 하나 이상의 다른 피처, 완전체, 단계, 동작, 요소, 컴포넌트, 및/또는 이들의 그룹의 존재나 추가를 배제하는 것은 아님을 추가로 이해할 것이다.
달리 정의되지 않는 한, 본 명세서에서 사용되는 (기술적 및 과학적 용어를 포함한) 모든 용어는 본 개시내용이 속하는 분야의 통상의 기술자가 일반적으로 이해하는 바와 동일한 의미를 가진다. 본 명세서에서 사용되는 용어들은, 본 명세서 및 관련 기술의 정황에서의 그들의 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 명세서에서 명시적으로 특별히 정의하지 않는 한, 이상적이거나 과도하게 형식적 의미로 해석되어서는 안 된다는 점을 추가로 이해할 것이다.
본 개시내용은 발광 다이오드(LED)들을 포함하는 고체-상태 조명 디바이스들에 관한 것으로, 더 구체적으로는 상호접속 구조물을 갖는 LED 칩들에 관한 것이다. 본 명세서에 개시된 LED 칩들은 n형 층에 전기적으로 결합된 제1 상호접속부 및 p형 층에 전기적으로 접속된 제2 상호접속부를 포함할 수 있다. LED 칩들 내에서 전류 밀집의 국부적인 영역을 감소시킴으로써 전류 확산을 개선할 수 있는 제1 및 제2 상호접속부의 구성이 제공된다. 소정의 실시예들에서, 제1 및 제2 상호접속부는 집합적으로 대칭 패턴들을 형성한다. 소정의 실시예들에서, 제1 및 제2 상호접속부들 중 소정의 것들의 직경들은 LED 칩들에서의 그들의 상대적 위치들에 기초하여 달라질 수 있다. 소정의 실시예들에서, 제2 상호접속부들의 간격들은 제1 상호접속부들로부터의 그들의 거리들에 기초하여 달라질 수 있다. 이와 관련하여, 개선된 전류 확산뿐만 아니라 더 높은 루멘 출력들 및 효율들을 갖는 LED 칩들이 개시된다.
LED 칩은 전형적으로 상이한 방식들로 배열된 많은 상이한 반도체 층들을 가질 수 있는 활성 LED 구조물 또는 영역을 포함한다. LED들 및 이들의 활성 구조물들의 제작 및 동작은 일반적으로 본 기술분야에 공지되어 있으며 여기서는 간략하게만 논의된다. 활성 LED 구조물의 층들은, 금속 유기 화학 기상 퇴적을 이용하는 제작되는 적절한 프로세스와 함께 공지된 프로세스를 이용하여 제작될 수 있다. 활성 LED 구조물의 층들은 많은 상이한 층들을 포함할 수 있고, 일반적으로, 모두가 성장 기판 상에서 연속적으로 형성되는, n형과 p형의 반대로 도핑된 에피택셜 층들 사이에 끼워진 활성 층을 포함한다. 버퍼 층들, 핵생성 층들, 초 격자 구조물들, 언도핑 층들, 클래딩 층들, 컨택트 층들, 및 전류 확산 층과 광 추출 층들 및 요소들을 포함한 그러나 이것으로 제한되지 않는 추가 층들 및 요소들도 역시 활성 LED 구조물에 포함될 수 있다는 것을 이해할 것이다. 활성 층은, 단일 양자 우물, 다중 양자 우물, 이중 헤테로구조물 또는, 초 격자 구조물들을 포함할 수 있다.
활성 LED 구조물은 상이한 재료 시스템들로 제작될 수 있고, 일부 재료 시스템은 III 족 질화물 기반의 재료 시스템들이다. III 족 질화물들이란, 질소(N)와, 주기율표의 III 족 원소들, 대개 알루미늄(Al), 갈륨(Ga) 및 인듐(In) 사이에 형성된 반도체 화합물들을 말한다. 갈륨 질화물(GaN)은 공통의 2원 화합물이다. III 족 질화물은 또한, 알루미늄 갈륨 질화물(AlGaN), 인듐 갈륨 질화물(InGaN), 및 알루미늄 인듐 갈륨 질화물(AlInGaN) 등의 3원 및 4원 화합물을 지칭한다. III 족 질화물의 경우, 실리콘(Si)은 공통의 n형 도펀트이고 마그네슘(Mg)은 공통의 p형 도펀트이다. 따라서, 활성 층, n형 층, 및 p형 층은, III 족 질화물에 기초한 재료 시스템을 위해 언도핑되거나 Si 또는 Mg로 도핑된 GaN, AlGaN, InGaN 및 AlInGaN의 하나 이상의 층을 포함할 수 있다. 기타의 재료 시스템들은, 실리콘 탄화물(SiC), 유기 반도체 재료들, 및 갈륨 인화물(GaP), 갈륨 비소(GaAs) 및 관련된 화합물 등의 기타의 III-V 족 시스템들을 포함한다.
활성 LED 구조물은, 사파이어, SiC, 알루미늄 질화물(AlN), GaN 등의 많은 재료를 포함할 수 있는 성장 기판 상에서 성장될 수 있고, 여기서, 적절한 기판은 SiC의 4H 폴리타입이지만, 3C, 6H 및 15R 폴리타입들을 포함한 다른 SiC 폴리타입들도 역시 이용될 수 있다. SiC는 다른 기판들보다 III 족 질화물에 더 가까운 결정 격자 정합 등의 소정의 이점들을 가지며, 결과적으로 고품질의 III 족 질화물 필름들을 생성한다. SiC는 또한 매우 높은 열전도도를 가져 SiC 상의 III 족 질화물 디바이스들의 총 출력 전력은 기판의 열 소산에 의해 제한되지 않게 한다. 사파이어는 III 족 질화물들에 대한 또 다른 공통의 기판이며, 저렴한 비용, 확립된 제조 프로세스들, 및 우수한 광 투과성 광학 속성들을 포함한, 소정의 이점들을 역시 갖는다.
활성 LED 구조물의 상이한 실시예들은, 활성 층과 n형 및 p형 층들의 조성에 따라 상이한 파장들의 광을 방출할 수 있다. 일부 실시예에서, 활성 LED 구조물은 대략 430 나노미터(nm) 내지 480 nm의 피크 파장 범위를 갖는 청색 광을 방출한다. 다른 실시예들에서, 활성 LED 구조물은 500 nm 내지 570 nm의 피크 파장 범위를 갖는 녹색 광을 방출한다. 다른 실시예들에서, 활성 LED 구조물은 600 nm 내지 650 nm의 피크 파장 범위를 갖는 적색 광을 방출한다.
LED 칩은 또한, LED 칩으로부터의 광의 적어도 일부가 하나 이상의 형광체에 의해 흡수되고 하나 이상의 형광체로부터의 특성 방출(characteristic emission)에 따라 하나 이상의 상이한 파장 스펙트럼으로 변환되도록, 형광체 등의, 하나 이상의 발광 또는 기타의 변환 재료로 덮일 수 있다. 일부 실시예에서, LED 칩과 하나 이상의 형광체의 조합은 일반적으로 백색 조합의 광을 방출한다. 하나 이상의 형광체는, 황색(예를 들어, YAG : Ce), 녹색(예를 들어, LuAg : Ce), 및 적색(예를 들어, Cai-x-ySrxEuyAlSiN3) 방출 형광체들, 및 이들의 조합을 포함할 수 있다. 본 명세서에서 설명된 발광 재료들은, 형광체, 섬광체(scintillator), 발광 잉크, 양자점 재료, 데이 글로우 테이프(day glow tape) 등 중에서 하나 이상이거나 이를 포함할 수 있다. 발광 재료는, 임의의 적절한 수단, 예를 들어 LED의 하나 이상의 표면에 직접 코팅, 하나 이상의 LED를 덮도록 구성된 캡슐화 재료에서의 분산, 및/또는 (예를 들어, 분말 코팅, 잉크젯 인쇄 등에 의한) 하나 이상의 광학적 또는 지지 요소 상의 코팅에 의해 제공될 수 있다. 소정의 실시예들에서, 발광 재료는 다운컨버팅 또는 업컨버팅일 수 있고, 다운컨버팅 및 업컨버팅 재료들 양쪽 모두의 조합이 제공될 수 있다. 소정의 실시예들에서, 상이한 피크 파장들을 생성하도록 배열된 복수의 상이한(예를 들어, 조성적으로 상이한) 발광 재료들이 하나 이상의 LED 칩으로부터의 방출을 수신하도록 배열될 수 있다. 일부 실시예에서, 하나 이상의 형광체는, 황색 형광체(예를 들어, YAG : Ce), 녹색 형광체(예를 들어,LuAg : Ce), 및 적색 형광체(예를 들어, Cai-x-ySrxEuyAlSiN3)와, 이들의 조합을 포함할 수 있다. 하나 이상의 발광 재료가 다양한 구성으로 LED 칩 및/또는 서브마운트의 하나 이상의 부분에 제공될 수 있다. 소정의 실시예들에서, LED 칩들의 하나 이상의 표면은 하나 이상의 발광 재료로 컨포멀 코팅될 수 있는 반면, 이러한 LED 칩들 및/또는 연관된 서브마운트들의 다른 표면들에는 발광 재료가 없을 수 있다. 소정의 실시예들에서, LED 칩의 상단 표면은 발광 재료를 포함할 수 있는 반면, LED 칩의 하나 이상의 측면에는 발광 재료가 없을 수 있다. 소정의 실시예들에서, LED 칩의 모든 또는 실질적으로 모든 (예를 들어, 컨택트 정의 또는 장착 표면들 이외의) 외측 표면은 코팅되거나 그렇지 않으면 하나 이상의 발광 재료로 덮인다. 소정의 실시예들에서, 하나 이상의 발광 재료는 실질적으로 균일한 방식으로 LED 칩의 하나 이상의 표면 상에 또는 그 위에 배열될 수 있다. 다른 실시예에서, 하나 이상의 발광 재료는, 재료 조성, 농도 및 두께 중 하나 이상에 관해 불균일한 방식으로 LED 칩의 하나 이상의 표면 상에 또는 위에 배열될 수 있다. 소정의 실시예들에서, 하나 이상의 발광 재료의 로딩 백분율(loading percentage)은 LED 칩의 하나 이상의 외측 표면 상에서 또는 그 중에서 변할 수 있다. 소정의 실시예들에서, 하나 이상의 발광 재료는, 하나 이상의 스트라이프, 도트, 곡선, 또는 다각형 형상을 포함하도록 LED 칩의 하나 이상의 표면의 부분들 상에서 패턴화될 수 있다. 소정의 실시예들에서, 복수의 발광 재료는 LED 칩 상에 또는 그 위에 상이한 개별 영역들 또는 개별 층들에 배열될 수 있다.
LED 칩의 활성 층 또는 영역에 의해 방출된 광은 전형적으로 램버시안 방출 패턴(lambertian emission pattern)을 갖는다. 지향성 응용의 경우, 내부 거울들 또는 외부 반사 표면들을 이용하여 원하는 방출 방향으로 가능한 한 많은 광을 방향전환할 수 있다. 내부 거울들은 단일 또는 복수의 층을 포함할 수 있다. 일부 다층 거울은 금속 반사기 층 및 유전체 반사기 층을 포함하고, 여기서, 유전체 반사기 층은 금속 반사기 층과 복수의 반도체 층 사이에 배열된다. 패시베이션 층은 금속 반사기 층과 제1 및 제2 전기 컨택트들 사이에 배열되고, 여기서 제1 전기 컨택트는 제1 반도체 층과 전도성 전기적으로 통하도록 배열되고, 제2 전기 컨택트는 제2 반도체 층과 전도성 전기적으로 통하도록 배열된다. 100% 미만인 반사율을 보이는 표면들을 포함하는 단일 또는 다층 거울들의 경우, 일부 광이 거울에 의해 흡수될 수 있다. 추가로, 활성 LED 구조물을 통해 방향전환되는 광은 LED 칩 내의 다른 층들 또는 요소들에 의해 흡수될 수 있다.
본 명세서에서 사용될 때, 발광 디바이스의 층 또는 영역은, 그 층 또는 영역에 충돌하는 방출된 복사선의 적어도 80%가 그 층 또는 영역을 통해 나올 때 "투명한" 것으로 간주될 수 있다. 더욱이, 본 명세서에서 사용될 때, LED의 층 또는 영역은, 층 또는 영역에 충돌하는 방출된 복사선의 적어도 80%가 반사될 때 "반사성"이거나 "거울" 또는 "반사기"를 구현하는 것으로 간주된다. 일부 실시예에서, 방출된 복사선은, 발광 재료들이 있거나 없는 청색 및/또는 녹색 LED들 등의 가시광을 포함한다. 다른 실시예들에서, 방출된 복사선은 비가시광을 포함할 수 있다. 예를 들어, GaN 기반의 청색 및/또는 녹색 LED들의 맥락에서, 은(Ag)은 반사 재료로 간주될 수 있다(예를 들어, 적어도 80% 반사). 자외선(UV) LED들의 경우, 원하는 반사도, 일부 실시예에서는 높은 반사도, 및/또는 원하는 흡수도, 일부 실시예에서는 낮은 흡수도를 제공하도록 적절한 재료들이 선택될 수 있다. 소정의 실시예들에서, "광 투과성" 재료는 원하는 파장의 방출된 복사선의 적어도 50%를 투과하도록 구성될 수 있다.
본 개시내용은, 수직 지오메트리 또는 측방향 지오메트리 등의, 다양한 지오메트리를 갖는 LED 칩에 유용할 수 있다. 수직 지오메트리의 LED 칩은 전형적으로 LED 칩의 대향측들에 또는 대향 면들 상에 애노드 및 캐소드 접속을 포함한다. 측방향 지오메트리 LED 칩은 전형적으로, 성장 기판 등의, 기판 반대편에 있는 LED 칩의 동일한 측에 애노드 및 캐소드 접속 양쪽 모두를 포함한다. 일부 실시예에서, 애노드 및 캐소드 접속부가 서브마운트 반대편의 LED 칩의 면에 있도록 측방향 지오메트리 LED 칩이 LED 팩키지의 서브마운트에 장착될 수 있다. 이 구성에서, 와이어 본드들은 애노드 및 캐소드 접속들과 전기적 접속들을 제공하는데 이용될 수 있다. 다른 실시예들에서, 측방향 지오메트리 LED 칩은, 애노드 및 캐소드 접속들이 서브마운트에 인접한 활성 LED 구조물의 면 상에 있도록 LED 팩키지의 서브마운트 표면에 플립 칩 장착될 수 있다. 이 구성에서, LED 칩의 애노드 및 캐소드 접속들에 전기적 접속들을 제공하기 위해 전기 트레이스들 또는 패턴들이 서브마운트에 제공될 수 있다. 플립 칩 구성에서, 활성 LED 구조물은 LED 칩의 기판과 LED 팩키지를 위한 서브마운트 사이에 구성된다. 따라서, 활성 LED 구조물로부터 방출된 광은 원하는 방출 방향으로 기판을 통과할 수 있다. 일부 실시예에서, 플립 칩 LED 칩은, 참조에 의해 본 명세서에 포함되는 공동 양도된 미국 공개 번호 제2017/0098746호에 설명된 바와 같이 구성될 수 있다. 일부 실시예에서, LED 팩키지는, 참조에 의해 본 명세서에 포함되는, 다음과 같은 공동 양도된 미국 특허들 및 미국 공개물들에 개시된 바와 같이 구성될 수 있다: 미국 특허 제8,866,169호; 9,070,850호; 9,887,327호; 및 미국 공개 번호 제2015/0179903호.
도 1은, 다른 구성도 가능하지만 플립 칩 구성으로 배열된 대표적인 LED 칩(10)의 단면도이다. LED 칩(10)은, 기판(20) 상에 형성된 p형 층(14), n형 층(16), 및 활성 층(18)을 포함하는 활성 구조물(12)을 포함한다. 일부 실시예에서, n형 층(16)은 활성 층(18)과 기판(20) 사이에 있다. 다른 실시예들에서, 도핑 순서는, 층(16)이 p형으로 도핑되고 층(14)이 n형으로 도핑되도록 역전될 수 있다. 기판(20)은 SiC 또는 사파이어 등의 많은 상이한 재료들을 포함할 수 있고, 광 추출을 향상시키기 위해 성형, 텍스처링 또는 패턴화되는 하나 이상의 표면을 가질 수 있다. 소정의 실시예들에서, 기판(20)은 광 투과성(바람직하게는 투명)이고, 활성 LED 구조물(12)에 근접하고 복수의 오목한 및/또는 융기된 피처들을 포함하는 패턴화된 표면(24)을 포함할 수 있다. 일부 실시예에서, 패턴화된 표면(24)은 활성 LED 구조물(12)의 n형 층(16)에 인접한다. 패턴화된 표면(24)은, 활성 LED 구조물(12)과 기판(20) 사이의 계면을 통한 광 추출을 촉진하기 위해 기판(20)이 사파이어를 포함하는 실시예들에서 특히 유용하다.
도 1에서, 제1 반사 층(26)은 p형 층(14) 상에 제공된다. 소정의 실시예들에서, 전류 확산 층(미도시)은 p형 층(14)과 제1 반사 층(26) 사이에 제공될 수 있다. 전류 확산 층은 ITO(indium tin oxide) 등의 투명한 전도성 산화물 또는 백금(Pt) 등의 금속의 얇은 층을 포함할 수 있지만, 다른 재료들이 이용될 수도 있다. 제1 반사 층(26)은 많은 상이한 재료들을 포함할 수 있고, 바람직하게는 활성 LED 구조물(12)로부터 생성된 광의 내부 전반사(TIR; total internal reflection)를 촉진하기 위해 활성 LED 구조물(12)을 포함하는 재료를 이용한 굴절률 스텝을 제공하는 재료를 포함한다. TIR을 경험하는 광은 흡수 또는 손실을 겪지 않고 방향전환되고, 이로써, 유용하거나 원하는 LED 칩 방출에 기여할 수 있다. 일부 실시예에서, 제1 반사 층(26)은 활성 LED 구조물(12) 재료의 굴절률보다 낮은 굴절률을 갖는 재료를 포함한다. 제1 반사 층(26)은 많은 상이한 재료들을 포함할 수 있으며, 여기서, 일부는 2.3 미만의 굴절률을 갖는 반면, 다른 것들은 2.15 미만, 2.0 미만, 및 1.5 미만의 굴절률을 가질 수 있다. 일부 실시예에서, 제1 반사 층(26)은 유전체 재료를 포함하고, 일부 실시예는 실리콘 이산화물(SiO2) 및/또는 실리콘 질화물(SiN)을 포함한다. SiN, SiNx, Si3N4, Si, 게르마늄(Ge), SiO2, SiOx, 티타늄 이산화물(TiO2), 탄탈 오산화물(Ta2O5), ITO, 마그네슘 산화물(MgOx), 아연 산화물(ZnO), 및 이들의 조합 등의 많은 유전체 재료가 이용될 수 있다는 것을 이해할 것이다. 소정의 실시예들에서, 제1 반사 층(26)은, 예를 들어, 상이한 유전체 재료들의 복수의 교대 층, 예를 들어, 대칭적으로 반복되거나 비대칭으로 배열된 SiO2 및 SiN의 교대 층들을 포함할 수 있다. GaN 등의 일부 III 족 질화물 재료는 약 2.4의 굴절률을 가질 수 있고, SiO2는 약 1.48의 굴절률을 가질 수 있으며, SiN은 약 1.9의 굴절률을 가질 수 있다. GaN을 포함하는 활성 LED 구조물(12) 및 SiO2를 포함하는 제1 반사 층(26)을 갖는 실시예들은, 광의 효율적인 TIR을 허용하기 위해 이들 둘 사이에 충분한 굴절률 스텝을 가질 수 있다. 제1 반사 층(26)은 이용되는 재료의 유형에 따라 상이한 두께들을 가질 수 있고, 일부 실시예는 적어도 0.2 마이크론(μm)의 두께를 갖는다. 이들 실시예들 중 일부에서, 제1 반사 층(26)은 0.2 ㎛ 내지 0.7 ㎛ 범위의 두께를 가질 수 있는 반면, 이들 실시예들 중 일부에서는 약 0.5 ㎛ 두께일 수 있다.
도 1에서, LED 칩(10)은, 제1 반사 층(26)이 활성 LED 구조물(12)과 제2 반사 층(28) 사이에 배열되도록, 제1 반사 층(26) 상에 있는 제2 반사 층(28)을 더 포함할 수 있다. 제2 반사 층(28)은 제1 반사 층(26)을 통과할 수 있는 활성 LED 구조물(12)로부터의 임의의 광을 반사하도록 구성된 금속 층을 포함할 수 있다. 제2 반사 층(28)은, Ag, 금(Au), Al, 또는 이들의 조합 등의 많은 상이한 재료들을 포함할 수 있다. 도시된 바와 같이, 제2 반사 층(28)은 제1 반사 층(26)을 통해 전기 전도성 경로를 제공하는 하나 이상의 반사 층 상호접속부(30)를 포함할 수 있다. 소정의 실시예들에서, 반사 층 상호접속부(30)는 반사 층 비아를 포함한다. 따라서, 제1 반사 층(26), 제2 반사 층(28), 및 반사 층 상호접속부(30)는 LED 칩(10)의 반사 구조물을 형성한다. 일부 실시예에서, 반사 층 상호접속부(30)는 제2 반사 층(28)과 동일한 재료를 포함하고 제2 반사 층(28)과 동시에 형성된다. 다른 실시예들에서, 반사 층 상호접속부(30)는 제2 반사 층(28)과는 상이한 재료를 포함할 수 있다. LED 칩(10)은 또한, Ag 등의 제2 반사 층(28) 재료가 다른 층으로 이동하는 것을 방지하기 위해 제2 반사 층(28) 상에 장벽 층(32)을 포함할 수 있다. 이러한 이동을 방지하는 것은, LED 칩(10)이 수명 내내 효율적인 작동을 유지하는데 도움이 된다. 장벽 층(32)은, 스퍼터링된 Ti/Pt에 이어 증발된 Au 벌크 재료 또는 스퍼터링된 Ti/Ni에 이어 증발된 Ti/Au 벌크 재료를 포함한 그러나 이것으로 제한되지 않는 적절한 재료와 함께 전기 전도성 재료를 포함할 수 있다. 패시베이션 층(34)은, 장벽 층(32)뿐만 아니라 장벽 층(32)에 의해 노출될 수 있는 제2 반사 층(28)의 임의의 부분들 상에 포함된다. 패시베이션 층(34)은, LED 칩(10)을 보호하고 이에 대한 전기 절연을 제공하며 유전체 재료 등의 많은 상이한 재료들을 포함할 수 있다. 일부 실시예에서, 패시베이션 층(34)은 단일 층이고, 다른 실시예들에서, 패시베이션 층(34)은 복수의 층을 포함한다. 패시베이션 층(34)에 적합한 재료는 실리콘 질화물을 포함하지만 이것으로 제한되는 것은 아니다. 일부 실시예에서, 패시베이션 층(34)은 내부에 배열된 금속 함유 중간층(36)을 포함하고, 여기서 중간층(36)은 Al 또는 다른 적합한 금속을 포함할 수 있다. 특히, 중간층(36)은 패시베이션 층(34) 내에 매립되고 LED 칩(10)의 나머지로부터 전기적으로 절연된다. 적용시, 중간층(36)은 패시베이션 층(34)을 통해 전파될 수 있는 임의의 균열에 대한 균열 정지 층으로서 기능할 수 있다. 추가적으로, 중간층(36)은 제1 반사 층(26) 및 제2 반사 층(28) 양쪽 모두를 통과할 수 있는 적어도 일부 광을 반사할 수 있다.
도 1에서, LED 칩(10)은, 패시베이션 층(34) 상에 배열되고 활성 LED 구조물(12)과의 전기적 접속을 제공하도록 구성되는 p컨택트(38) 및 n컨택트(40)를 포함한다. 애노드 컨택트라고도 할 수 있는 p컨택트(38)는, 패시베이션 층(34)을 통해 장벽 층(32) 또는 제2 반사 층(28)까지 연장되어 p형 층(14)에 전기적 경로를 제공하는 하나 이상의 p컨택트 상호접속부(42)를 포함할 수 있다. 소정의 실시예들에서, 하나 이상의 p컨택트 상호접속부(42)는 하나 이상의 p컨택트 비아를 포함한다. 캐소드 컨택트라고도 할 수 있는 n컨택트(40)는, 패시베이션 층(34), 장벽 층(32), 제1 및 제2 반사 층(28, 32), p형 층(14) 및 활성 층(18)을 통해 연장되어 n형 층(16)에 전기적 경로를 제공하는 하나 이상의 n컨택트 상호접속부(44)를 포함할 수 있다. 소정의 실시예들에서, 하나 이상의 n컨택트 상호접속부(44)는 하나 이상의 n컨택트 비아를 포함한다. 동작시, p컨택트(38)와 n컨택트(40)에 걸쳐 인가된 신호는 p형 층(14) 및 n형 층(16)으로 전도되어, LED 칩(10)이 활성 층(18)으로부터 광을 방출하게 한다. p컨택트(38) 및 n컨택트(40)는, Au, 구리(Cu), 니켈(Ni), In, Al, Ag, 주석(Sn), Pt 또는 이들의 조합 등의 많은 상이한 재료들을 포함할 수 있다. 역시 다른 실시예들에서, p컨택트(38) 및 n컨택트(40)는, 전도성 산화물, 및 ITO, 니켈 산화물(NiO), ZnO, 카드뮴 주석 산화물, 인듐 산화물, 주석 산화물, 마그네슘 산화물, ZnGa2O4, ZnO2/Sb, Ga2O3/Sn, AgInO2/Sn, In2O3/Zn, CuAlO2, LaCuOS, CuGaO2, and SrCu2O2 등의 투명한 전도성 산화물을 포함할 수 있다. 이용되는 재료의 선택은, 컨택트의 위치들과, 투명성, 접합 저항 및 시트 저항 등의 원하는 전기적 특성에 의존할 수 있다. 전술된 바와 같이, LED 칩(10)은 플립 칩 장착을 위해 배열되고, p컨택트(38) 및 n컨택트(40)는 인쇄 회로 기판 등의 표면에 장착되거나 접합되도록 구성된다. 이와 관련하여, LED 칩(10)은, 표면에 장착되도록 구성된 장착면(46)과, 장착면(46)에 대향하는 1차 발광면(48)을 포함한다. 소정의 실시예들에서, 1차 발광면(48)은 기판(20)을 포함하고, 활성 층(18)으로부터 방출된 광은 주로 기판(20)을 통해 LED 칩(10)을 빠져 나간다. 다른 실시예들에서, 기판(20)은 제거되거나 교체될 수 있다.
도 2는 플립 칩 장착 전의 도 1의 LED 칩(10)의 일부의 단면도이고, 전술된 바와 같이, 활성 LED 구조물(12), p형 층(14), n형 층(16), 활성 층(18), 기판(20), 패턴화된 표면(24), 제1 반사 층(26), 제2 반사 층(28), 하나 이상의 반사 층 상호접속부(30), 장벽 층(32), 패시베이션 층(34), 및 중간층(36)을 포함한다. 전술된 전류 확산 층(50)은 도 2에서 볼 수 있다. 도시된 바와 같이, p컨택트(38), p컨택트 상호접속부(42), n컨택트(40), 및 n컨택트 상호접속부(44)는, 패시베이션 층(34)을 통해 연장된다. 특히, n컨택트 상호접속부(44)는 p컨택트 상호접속부(42)가 연장되는 패시베이션 층(34)의 개구보다 패시베이션 층(34)의 더 큰 개구를 통해 연장된다. n컨택트 상호접속부(44)는, p형 층(14), 활성 영역(18) 및 n형 층(16)의 일부를 포함하는 활성 LED 구조물(12)의 개구를 통해 추가로 연장된다. 이와 관련하여, n형 상호접속부(44)는 p형 상호접속부(42) 및 반사 층 상호접속부들(30)보다 비교적 크다. 소정의 실시예들에서, 제1 반사 층(26)의 일부는 n형 상호접속부(44)가 형성되는 활성 LED 구조물(12)의 개구의 측벽을 따라 배열될 수 있다. 이와 관련하여, n형 상호접속부(44)를 향하는 방향으로 이동하는 활성 LED 구조물(12)로부터 생성된 적어도 일부 광은 n형 상호접속부(44)에서 흡수로 손실되지 않고 방향전환될 수 있다. 추가적으로, 제1 반사 층(26)의 일부는 또한, 다르게는 LED 칩(10)의 외부 엣지들을 따라 측방향으로 빠져 나갈 수 있는 광을 방향전환하기 위해 LED 칩(10)의 둘레 주위에 p형 층(14), 활성 영역(18) 및 n형 층(16)의 부분들을 측방향으로 또는 주변부로 결합하도록 배열될 수 있다.
도 3a는 복수의 n컨택트 상호접속부(44) 및 복수의 반사 층 상호접속부(30)를 포함하는 대표적인 LED 칩(52)의 1차 발광면(48)의 평면도이다. 예시된 바와 같이, n컨택트 상호접속부들(44)은 반사 층 상호접속부들(30)보다 크기가 더 크고 더 두드러진다. n컨택트 상호접속부들(44)은 LED 칩(52)에 걸쳐 원들의 어레이로서 나타나고, 반사 층 상호접속부들(30)은 LED 칩(52)에 걸쳐 더 작은 원들의 어레이로서 나타난다. 전술된 바와 같이, n형 상호접속부들(44)은 n형 층(16)(도 2)까지의 전기 전도성 경로들의 일부이고 반사 층 상호접속부들(30)은 p형 층(14)(도 2)까지의 전기 전도성 경로들의 일부이다. 이와 관련하여, 복수의 n컨택트 상호접속부(44) 및 복수의 반사 층 상호접속부(30)는 LED 칩(52)에 걸쳐 전류를 확산시키도록 구성된다. n컨택트 상호접속부들(44)은, 일반적으로 p형 층(14)(도 2) 및 활성 층(18)(도 2)이 제거된 영역들에 대응하는 LED 칩(52) 내의 어두운 영역들을 생성한다. 이와 관련하여, n형 상호접속부들(44)은, 광을 방출하지 않고 LED 칩(52)의 다른 영역들로부터 일부 광을 추가로 흡수할 수 있는 LED 칩(52)의 영역들을 포함한다. 따라서, n컨택트 상호접속부(44)는 일반적으로 전체 밝기에 대한 충격을 감소시키기에는 너무 크지 않으면서 적절한 전기적 접속들을 제공하기에 충분히 크도록 구성된다. 복수의 n컨택트 상호접속부(44)는 LED 칩(52)에 걸쳐 제1 패턴 또는 어레이로 서로 균등하게 이격되도록 배열된다. 유사한 방식으로, 복수의 반사 층 상호접속부(30)는 LED 칩(52)의 영역에 걸쳐 제2 패턴 또는 어레이로 서로 균등하게 이격되도록 배열된다. 반사 층 상호접속부들(30)의 제2 패턴이 n컨택트 상호접속부들(44)의 제1 패턴과 중첩하는 영역에서, 특정한 n컨택트 상호접속부(44)만이 존재한다.
도 3b는 도 3a의 LED 칩(52)의 장착면(46)의 저면도이다. 도시된 바와 같이, n컨택트 상호접속부들(44) 및 반사 층 상호접속부들(30)은 모두 장착면(46)으로부터 볼 수 있다. 전술된 p컨택트(38) 및 n컨택트(40)도 역시 장착면(46)으로부터 볼 수 있다. 도시된 바와 같이, p컨택트(38)는 좁은 직사각형의 형상으로 형성되고 수개의 p컨택트 상호접속부(42)를 포함하고, n컨택트(40)는 장착면(46) 상에 더 넓은 직사각형의 형상으로 형성된다. LED 칩(52)의 장착면(46)은, 특히, 반사 표면, 히트 싱크, 또 다른 기판, 인쇄 회로 기판, 및 조명 디바이스의 하우징을 포함한, 또 다른 표면에 장착되도록 구성된다.
도 4a는 도 3a의 LED 칩(52)의 1차 발광면(48)의 일부의 부분 평면도 예시이다. 도 4a에서, 복수의 n컨택트 상호접속부(44)는 예시 목적을 위해 단색 음영으로 도시되어 있다. 전술된 바와 같이, n컨택트 상호접속부들(44)은 서로 균등하게 이격되어 n컨택트 상호접속부들(44)의 제1 패턴 또는 어레이를 형성하고, 반사 층 상호접속부들(30)은 서로 균등하게 이격되어 LED 칩(52)에 걸쳐 반사 층 상호접속부들(30)의 제2 패턴 또는 어레이를 형성한다. n컨택트 상호접속부들(44) 및 반사 층 상호접속부들(30)은, 전술된 바와 같이 LED 칩(52)의 상이한 부분들을 접속하도록 배열되므로, 그들 각각의 패턴은 서로 독립적으로 형성된다. 예를 들어, 제1 n컨택트 상호접속부(44-1)에 가장 가까운 반사 층 상호접속부들(30-1, 30-2)은, 제2 n컨택트 상호접속부(44-2)에 가장 가까운 반사 층 상호접속부들(30-3, 30-4)과는 상이한 구성들로 배열된다. 또 다른 예로서, 제3 n컨택트 상호접속부(44-3)는 인접한 반사 층 상호접속부들(30)에 관해 더 중앙에 위치할 수 있다. 이와 관련하여, n컨택트 상호접속부들(44)의 제1 패턴은 반사 층 상호접속부들(30)의 제2 패턴과 대칭이 아니고, 그에 따라, n컨택트 상호접속부들(44)의 제1 패턴 및 반사 층 상호접속부들(30)의 제2 패턴은 LED 칩(52)에 걸쳐 집합적으로 비대칭 패턴을 형성한다. 개개의 n컨택트 상호접속부들(44)과 인접한 반사 층 상호접속부들(30) 사이의 간격이 가변적일 때, LED 칩(52)에서 확산되는 전류는 불균일할 수 있다. 특히, 반사 층 상호접속부들(30)이 개개의 n컨택트 상호접속부(44)에 너무 가깝게 배열된 영역들에서, 전류가 밀집되는 국부 영역들이 발생할 수 있다. 반대로, 반사 층 상호접속부(30)가 개개의 n컨택트 상호접속부(44)로부터 너무 멀리 배열된 영역들에서, 불충분한 전류 확산을 갖는 국부 영역들이 발생할 수 있다.
도 4b는 n컨택트 상호접속부들 및 반사 층 상호접속부들이 도 4a와 유사한 방식으로 비대칭 패턴들로 배열될 때 유한 요소 방법(FEM; finite element method) 모델링을 이용하는 정전장(electrostatic field)들의 모델이다. 도 4b의 이미지에서, n컨택트 상호접속부(44)는 n컨택트 상호접속부(44)로부터 상이한 측방향 간격들로 배열된 복수의 반사 층 상호접속부(30)에 의해 둘러싸인다. 스케일러 필드 라인(scaler field line)들은 n컨택트 상호접속부(44)로부터 바깥쪽으로 동심원으로 도시되고 각각의 라인은 대략 동일한 전위들을 갖는 영역들을 나타낸다. 전위는 스케일러 필드 라인들이 n컨택트 상호접속부(44)로부터 멀수록 더 높은 값들로부터 더 낮은 값들로 점진적으로 변한다. 도 4b의 화살표들은 전기장에 대한 벡터들을 나타낸다. 화살표들의 크기와 형상은 국부적인 전기장들의 크기, 형상 및 방향을 나타낸다. 도시된 바와 같이, n컨택트 상호접속부(44)에 관한 반사 층 상호접속부들(30)의 비대칭 간격은, 특히 소정의 반사 층 상호접속부들(30)이 n컨택트 상호접속부(44)에 가장 근접하게 배열된 영역들에서 집중된 전기장들의 국부적 영역을 초래하는 가변 스케일러 필드 라인들을 형성한다.
본 명세서에 개시된 실시예들에 따르면, 개선된 전류 확산을 가지며, 또한 개선된 밝기 및 효율을 제공할 수 있는 LED 칩들이 개시된다. 소정의 실시예들에서, 대표적인 LED 칩은, n형 층에 전기적으로 접속된 복수의 제1 상호접속부 및 p형 층에 전기적으로 접속된 복수의 제2 상호접속부를 포함한다. 복수의 제1 상호접속부 및 복수의 제2 상호접속부는, LED 칩에 걸쳐 공통 및 대칭 패턴을 형성하도록 집합적으로 배열될 수 있다. 소정의 실시예들에서, 제1 및 제2 상호접속부들은 LED 칩에 걸쳐 서로에 관해 동일한 거리들로 이격된 상호접속부들의 어레이를 집합적으로 형성하여 전류 밀집의 국부적 영역들을 감소시킬 수 있다. 소정의 실시예들에서, 복수의 제1 상호접속부는 n컨택트 상호접속부들을 포함할 수 있고 복수의 제2 상호접속부는 전술된 반사 층 상호접속부들을 포함할 수 있다.
도 5a는 대칭적으로 배열된 상호접속부들을 포함하는 LED 칩(54)의 1차 발광면(48)의 일부의 부분 평면도 예시이다. LED 칩(54)은 전술된 바와 같은 복수의 n컨택트 상호접속부(44) 및 복수의 반사 층 상호접속부(30)를 포함한다. n컨택트 상호접속부들(44)은 n컨택트 상호접속부들(44)의 제1 패턴을 형성하고, 반사 층 상호접속부들(30)은 LED 칩(54)의 영역에 걸쳐 반사 층 상호접속부들(30)의 제2 패턴을 형성한다. 도 5a에 도시된 바와 같이, n컨택트 상호접속부들(44)의 제1 패턴 및 반사 층 상호접속부들(30)의 제2 패턴은 LED 칩(54)에 걸쳐 집합적으로 대칭 패턴을 형성한다. 소정의 실시예들에서, n컨택트 상호접속부들(44)의 제1 패턴은 반사 층 상호접속부들(30)의 제2 패턴과는 상이하다. 도 5a에서, 제1 패턴은 제2 패턴의 반사 층 상호접속부들(30) 사이의 간격보다 n컨택트 상호접속부들(44) 사이의 더 큰 간격을 포함한다. 특히, 각각의 n컨택트 상호접속부(44)는 반사 층 상호접속부들(30)의 제2 패턴의 일부인 위치에 배열된다. 이러한 방식으로, 각각의 n컨택트 상호접속부(44)는, 반사 층 상호접속부들(30)이 서로 이격된 것과 동일한 거리만큼 가장 가까운 반사 층 상호접속부들(30) 중 임의의 것으로부터 이격된다. 소정의 실시예들에서, 복수의 제1 상호접속부(44) 각각의 중심점 및 복수의 제2 상호접속부(30) 각각의 중심점은, LED 칩들에 걸쳐 균등하게 이격된 중심점들의 어레이를 집합적으로 형성한다. 소정의 실시예들에서, 각각의 반사 층 상호접속부(30)의 크기 또는 직경은, 특정한 반사 층 상호접속부(30)가 특정한 n컨택트 상호접속부(44)에 얼마나 가깝게 이격되어 있는지에 기초하여 상이할 수 있다. 소정의 실시예들에서, 도 5a에 나타낸 대칭 패턴은 LED 칩의 특정한 영역에 배열될 수 있는 반면, 도 4a에 나타낸 비대칭 패턴은 동일한 LED 칩의 상이한 영역에 제공된다.
도 5a에 추가로 예시된 바와 같이, 복수의 반사 층 상호접속부(30)는, 각각 상이한 직경들을 포함하는 소정의 반사 층 상호접속부들(30a, 30b, 30c)을 포함한다. 반사 층 상호접속부들(30a)은 n컨택트 상호접속부(44)에 가장 가깝게 배열되고 다른 반사 층 상호접속부들(30b, 30c)에 비해 가장 큰 직경들을 갖는다. 반사 층 상호접속부들(30c)은 n컨택트 상호접속부들(44)로부터 가장 멀리 배열되고 다른 반사 층 상호접속부들(30a, 30b)에 비해 가장 작은 직경들을 갖는다. 마지막으로, 반사 층 상호접속부(30b)는 n컨택트 상호접속부들(44)로부터 떨어진 소정 거리와 다른 반사 층 상호접속부들(30a, 30c)의 직경들 사이의 직경으로 배열된다. 이러한 방식으로, 특정한 n컨택트 상호접속부(44)에 가장 가깝게 배열된 반사 층 상호접속부(30a)의 직경은, 그 특정한 n컨택트 상호접속부(44)로부터 더 멀리 배열된 또 다른 개개의 반사 층 상호접속부(30b, 30c)의 직경보다 크다. 전술된 바와 같이, 전위는, n컨택트 상호접속부들(44)에 가장 가까운 영역들에서 가장 높은 경향이 있고 전위는 거리가 멀어짐에 따라 점진적으로 감소한다. 이와 관련하여, 반사 층 상호접속부들(30a, 30b, 30c)은, LED 칩(54)에 걸친 전위에 대응하는 방식으로 증가 및 감소하는 상이한 직경들로 배열된다. 특히, 더 큰 반사 층 상호접속부들(30a)은 밝기 이득을 위해 가장 높은 전기장을 취급하는 영역들에 배열된다. 추가적으로, 가장 작은 전기장들을 갖는 영역들에서 가장 작은 반사 층 상호접속부들(30c)을 배열하는 것은 또한, 더 작은 반사 층 상호접속부들(30c)이 이들 영역에서 반사 층(도 2의 26)에 대해 증가된 표면적을 제공하기 때문에 밝기 이득을 제공할 수 있다. 다른 실시예에서, 모든 반사 층 상호접속부(30a, 30b, 30c)는 동일한 직경을 가질 수 있다. 역시 다른 실시예들에서, 반사 층 상호접속부들(30a, 30b, 30c)은 상이한 구성들에서 변하는 직경들을 가질 수 있다. 예를 들어, 소정의 실시예들에서, 반사 층 상호접속부들(30a, 30b, 30c)은 n컨택트 상호접속부들(44)로부터 멀어지게 증가하는 거리에 따라 크기가 점진적으로 증가하는 직경들을 포함할 수 있다. 이러한 방식으로, 특정한 n컨택트 상호접속부(44)에 가장 가깝게 배열된 개개의 반사 층 상호접속부(30a)의 직경은, 그 특정한 n컨택트 상호접속부(44)로부터 더 멀리 배열된 또 다른 개개의 반사 층 상호접속부(30b, 30c)의 직경보다 작다. 추가로, 반사 층 상호접속부들(30a, 30b, 30c)의 직경들은 발광 영역들을 조절하기 위해 동일한 LED 칩(54)의 상이한 영역들에서 상이하게 구성될 수 있다. 예를 들어, 응용에 따라, LED 칩(54)의 주변부 근처에 배열된 반사 층 상호접속부들(30)의 직경들은, 중앙에 위치한 다른 반사 층 상호접속부들(30)의 직경들보다 작거나 클 수 있다. 소정의 실시예들에서, 반사 층 상호접속부들(30)은, LED 칩(54)의 특정한 영역에서 소정의 직경 및 LED 칩(54)의 상이한 영역에서 상이한 직경을 포함할 수 있다. 추가 실시예들에서, 반사 층 상호접속부들(30)은 LED 칩(54)의 특정한 영역에서 동일한 직경을 포함할 수 있고, LED 칩(54)의 상이한 영역에서 소정 범위의 상이한 직경들을 포함할 수 있다.
소정의 실시예들에서, 반사 층 상호접속부들(30)은, 약 2 ㎛ 내지 약 15 ㎛ 범위, 또는 약 4 ㎛ 내지 약 10 ㎛ 범위 내에서 일정하거나 변화하는 직경들을 포함한다. 소정의 실시예들에서, n컨택트 상호접속부들(44)은, 약 4 μm 내지 약 25 μm의 범위, 또는 약 5 μm 내지 약 20 μm의 범위, 또는 약 15 μm 내지 약 25 μm의 범위 내에서 일정하거나 변화하는 직경들을 포함한다.
도 5b는, n컨택트 상호접속부들 및 반사 층 상호접속부들이 도 5a와 유사한 방식으로 대칭 패턴으로 배열될 때 FEM 모델링을 이용한 정전장들의 모델이다. 도 5b의 이미지에서, 복수의 반사 층 상호접속부(30) 및 n컨택트 상호접속부(44)는 집합적으로 대칭 패턴을 형성한다. 특히, 인접한 상호접속부들은, 그들이 n컨택트 상호접속부(44) 또는 임의의 반사 층 상호접속부(30)인지에 관계없이, 서로 동일한 간격으로 배열된다. 도시된 바와 같이, 스케일러 필드 라인들과 전기장 벡터 화살표들은, 도 4b에 나타낸 비대칭 패턴의 것들보다 더 균등하게 분포됨으로써, 더 균등하게 분포된 전류 확산을 제공한다.
본 명세서에 개시된 양태들에 따르면, LED 칩들에서 개선된 또는 더 균등하게 분포된 전류 확산은 또한, 개선된 밝기 및 효율을 제공할 수 있다. 이와 관련하여, 밝기 및 효율 데이터를 수집하여 LED 칩들을 상호접속부들의 대칭 및 비대칭 배열들과 비교했다. 도 6a는 도 4a에 나타낸 바와 같이 배열된 상호접속부들을 포함하는 제1 세트의 LED 칩들(LED1) 및 도 5a에 나타낸 바와 같이 배열된 상호접속부들을 포함하는 제2 세트의 LED 칩들(LED2)에 대한 광속 또는 밝기 측정을 나타내는 비교 플롯이다. y 축은 임의 단위의 광속(LumFlux)을 나타낸다. 예시된 바와 같이, LED2 칩들은 현저하게 더 높은 평균 밝기 측정치들을 보여주었다. 소정의 실시예들에서, LED2 칩들과 LED1 칩들 사이의 평균 밝기 증가는 약 1% 내지 2% 범위에서 측정되었다. 도 6b는 도 6a에 나타낸 동일한 LED1 및 LED2 칩들에 대한 효율 또는 와트 당 루멘 측정치들을 나타내는 비교 플롯이다. y 축은 임의 단위의 와트 당 루멘(LPW; Lumens per Watt)을 나타낸다. 예시된 바와 같이, LED2 칩들은 또한 LED1 칩들보다 현저하게 더 효율적이며, 이것은 도 6a의 비교 플롯에 도시된 밝기 증가를 나타낸다.
본 명세서에 개시된 실시예들에 따르면, LED 칩들은 LED 칩에 걸쳐 집합적으로 배열된 복수의 제1 상호접속부 및 복수의 제2 상호접속부를 포함할 수 있다. 소정의 실시예들에서, 제1 상호접속부들, 제2 상호접속부들, 또는 제1 및 제2 상호접속부들 양쪽 모두의 직경들은, LED 칩들 내의 그들의 위치들에 따라 달라지거나 변할 수 있다. 따라서, 전류 확산, 휘도 균일성, 및 기타 전기적 속성들은, 제1 및 제2 상호접속부들의 상이한 배열들을 갖는 다양한 응용에 맞게 조절될 수 있다. 전술된 바와 같이, 복수의 제1 상호접속부는 n컨택트 상호접속부들을 포함할 수 있고 복수의 제2 상호접속부는 반사 층 상호접속부들을 포함할 수 있다.
도 7은 대칭 패턴을 집합적으로 형성하기 위해 n컨택트 상호접속부들 주위에 배열된 상이한 직경들을 갖는 반사 층 상호접속부들을 갖는 모델이다. 도 7에서, 복수의 반사 층 상호접속부(30a, 30b, 30c)는 n컨택트 상호접속부들(44)로부터 점진적으로 더 멀리 떨어진 거리들로 배열된다. 소정의 실시예들에서, 반사 층 상호접속부들(30a, 30b, 30c) 및 n컨택트 상호접속부들(44)은 전술된 바와 같이 공통 대칭 패턴으로 배열된다. 예시된 바와 같이, 반사 층 상호접속부들(30a)은 가장 작은 직경들을 포함하고 n컨택트 상호접속부들(44)에 가장 가깝게 배열되며, 반사 층 상호접속부들(30b)은 가장 큰 직경들을 포함하고 n컨택트 상호접속부들(44)로부터 반사 층 상호접속부들(30a)보다 더 멀리 떨어져 배열되며, 반사 층 상호접속부들(30c)은 사이의 직경들을 포함하고 n컨택트 상호접속부들(44)로부터 반사 층 상호접속부(30b)보다 더 멀리 떨어져 구성된다. 따라서, 반사 층 상호접속부들(30a, 30b, 30c)은, n컨택트 상호접속부들(44)로부터 멀어지게 증가하는 거리에 따라 점진적으로 증가한 다음 감소하는 직경들로 배열될 수 있다. 비 제한적인 예로서, n컨택트 상호접속부들(44)은 약 20 μm의 직경을 포함할 수 있고, 반사 층 상호접속부들(30a, 30b, 30c)은, 각각, 약 5 μm, 12 μm, 및 8.5 μm의 직경을 포함할 수 있다.
도 8은 n컨택트 상호접속부들로부터의 증가하는 거리에 따라 점진적으로 증가하고 직경들로 구성되고 집합적으로 대칭 패턴을 형성하는 반사 층 상호접속부들을 갖는 모델이다. 도 8에서, 복수의 반사 층 상호접속부(30a, 30b, 30c)는 전술된 바와 같이 n컨택트 상호접속부들(44)로부터 점진적으로 멀어지는 거리들로 배열된다. 소정의 실시예들에서, 반사 층 상호접속부들(30a, 30b, 30c) 및 n컨택트 상호접속부들(44)은 전술된 바와 같이 공통 대칭 패턴으로 배열된다. 예시된 바와 같이, 반사 층 상호접속부들(30a)은 가장 작은 직경들을 포함하고 n컨택트 상호접속부들(44)에 가장 가깝게 배열되며, 반사 층 상호접속부들(30b)은 더 큰 직경들을 포함하고 n컨택트 상호접속부들(44)로부터 반사 층 상호접속부들(30a)보다 더 멀리 떨어져 배열되며, 반사 층 상호접속부들(30c)은 가장 큰 직경들을 포함하고 n컨택트 상호접속부들(44)로부터 반사 층 상호접속부(30b)보다 더 멀리 떨어져 구성된다. 따라서, 반사 층 상호접속부들(30a, 30b, 30c)은 n컨택트 상호접속부들(44)로부터 멀어지게 증가하는 거리에 따라 점진적으로 증가하는 직경들로 배열될 수 있다. 비 제한적인 예로서, n컨택트 상호접속부들(44)은 약 20 μm의 직경을 포함할 수 있고, 반사 층 상호접속부들(30a, 30b, 30c)은, 각각, 약 5 μm, 8.5 μm, 및 12 μm의 직경을 포함할 수 있다.
도 9는 대칭 패턴을 집합적으로 형성하기 위해 n컨택트 상호접속부들로부터의 증가하는 거리에 따라 점진적으로 감소하는 직경들로 구성된 반사 층 상호접속부들을 갖는 모델이다. 도 9에서, 복수의 반사 층 상호접속부(30a, 30b, 30c)는 전술된 바와 같이 n컨택트 상호접속부들(44)로부터 점진적으로 멀어지는 거리들로 배열된다. 소정의 실시예들에서, 반사 층 상호접속부들(30a, 30b, 30c) 및 n컨택트 상호접속부들(44)은 전술된 바와 같이 공통 대칭 패턴으로 배열된다. 예시된 바와 같이, 반사 층 상호접속부들(30a)은 가장 큰 직경들을 포함하고 n컨택트 상호접속부들(44)에 가장 가깝게 배열되며, 반사 층 상호접속부들(30b)은 더 작은 직경들을 포함하고 n컨택트 상호접속부들(44)로부터 반사 층 상호접속부들(30a)보다 더 멀리 떨어져 배열되며, 반사 층 상호접속부들(30c)은 가장 작은 직경들을 포함하고 n컨택트 상호접속부들(44)로부터 반사 층 상호접속부(30b)보다 더 멀리 떨어져 구성된다. 따라서, 반사 층 상호접속부들(30a, 30b, 30c)은 n컨택트 상호접속부들(44)로부터 멀어지게 증가하는 거리에 따라 점진적으로 감소하는 직경들로 배열될 수 있다. 비 제한적인 예로서, n컨택트 상호접속부들(44)은 약 20 μm의 직경을 포함할 수 있고, 반사 층 상호접속부들(30a, 30b, 30c)은, 각각, 약 12 μm, 8.5 μm, 및 5 μm의 직경을 포함할 수 있다. 다른 실시예들에서, 반사 층 상호접속부들(30a, 30b, 30c)은, 각각, 약 8 ㎛, 6 ㎛, 및 4 ㎛의 직경을 포함할 수 있다.
도 10은 대칭 패턴을 집합적으로 형성하기 위해 n컨택트 상호접속부들 주위에 배열된 상이한 직경들을 갖는 반사 층 상호접속부들을 갖는 모델이다. 도 10에서, 복수의 반사 층 상호접속부(30a, 30b, 30c)는 전술된 바와 같이 n컨택트 상호접속부들(44)로부터 점진적으로 멀어지는 거리들로 배열된다. 소정의 실시예들에서, 반사 층 상호접속부들(30a, 30b, 30c) 및 n컨택트 상호접속부들(44)은 전술된 바와 같이 공통 대칭 패턴으로 배열된다. 예시된 바와 같이, 반사 층 상호접속부들(30a)은 가장 큰 직경들을 포함하고 n컨택트 상호접속부들(44)에 가장 가깝게 배열되며, 반사 층 상호접속부들(30b)은 가장 작은 직경들을 포함하고 n컨택트 상호접속부들(44)로부터 반사 층 상호접속부들(30a)보다 더 멀리 떨어져 배열되며, 반사 층 상호접속부들(30c)은 사이의 직경들을 포함하고 n컨택트 상호접속부들(44)로부터 반사 층 상호접속부(30b)보다 더 멀리 떨어져 구성된다. 따라서, 반사 층 상호접속부들(30a, 30b, 30c)은, n컨택트 상호접속부들(44)로부터 멀어지게 증가하는 거리에 따라 점진적으로 감소한 다음 증가하는 직경들로 배열될 수 있다. 비 제한적인 예로서, n컨택트 상호접속부들(44)은 약 20 μm의 직경을 포함할 수 있고, 반사 층 상호접속부들(30a, 30b, 30c)은, 각각, 약 12 μm, 5 μm, 및 8.5 μm의 직경을 포함할 수 있다.
도 11은 상이한 직경들 및 n컨택트 상호접속부들로부터의 불균일한 거리들을 갖는 반사 층 상호접속부들을 갖는 모델이다. 도 11에서, 복수의 반사 층 상호접속부(30a, 30b, 30c)는 전술된 바와 같이 n컨택트 상호접속부들(44)로부터 점진적으로 멀어지는 거리들로 배열된다. 도 7 내지 도 10과는 대조적으로, 반사 층 상호접속부들(30a, 30b, 30c)은 n컨택트 상호접속부들(44)로부터 가변 거리들로 떨어져 배열된다. 예시된 바와 같이, 반사 층 상호접속부들(30a)은 가장 큰 직경들을 포함하고 n컨택트 상호접속부들(44)에 가장 가깝게 배열되며, 반사 층 상호접속부들(30b)은 더 작은 직경들을 포함하고 n컨택트 상호접속부들(44)로부터 반사 층 상호접속부들(30a)보다 더 멀리 떨어져 배열되며, 반사 층 상호접속부들(30c)은 사이의 직경들을 포함하고 n컨택트 상호접속부들(44)로부터 반사 층 상호접속부(30b)보다 더 멀리 떨어져 구성된다. 추가적으로, 인접한 반사 층 상호접속부들(30a, 30b, 30c) 사이의 간격은 균등하지 않거나 불균일하다. 특히, 반사 층 상호접속부(30a)와 반사 층 상호접속부(30b) 사이의 간격은 반사 층 상호접속부들(30b 및 30c) 사이의 간격보다 크다. 이와 관련하여, 가장 큰 직경들을 갖는 반사 층 상호접속부들(30a)은 개선된 밝기를 위해 가장 높은 전위들을 갖는 영역들에 위치하고, 다른 반사 층 상호접속부들(30b, 30c)은 n컨택트 상호접속부들(44)로부터 더 멀리 전류 밀도들을 확산시키기 위해 n컨택트 상호접속부들(44)로부터 더 멀리 위치한다. 소정의 실시예들에서, 이 구성은 또한 개선된 밝기를 제공하면서 LED 칩 수명을 증가시킬 수 있다. 이러한 방식으로, 본 명세서에 개시된 LED 칩들은 n컨택트 상호접속부들(44)에 대한 각각의 반사 층 상호접속부(30a, 30b, 30c)의 상대적 위치에 기초하여 상이한 인접한 반사 층 상호접속부들(30a, 30b, 30c) 사이의 간격들을 포함할 수 있다. 소정의 실시예들에서, 반사 층 상호접속부들(30a, 30b, 30c) 및 n컨택트 상호접속부들(44)은 집합적으로 대칭 또는 비대칭인 패턴을 형성할 수 있다.
도 12는 대칭 패턴을 형성하는 n컨택트 상호접속부들(44) 및 반사 층 상호접속부들(30)을 포함하는 LED 칩(56)의 장착면(46)의 저면도이다. 도시된 바와 같이, n컨택트 상호접속부들(44) 및 반사 층 상호접속부들(30)은 모두 장착면(46)으로부터 볼 수 있다. 전술된 p컨택트(38) 및 n컨택트(40)도 역시 장착면(46)으로부터 볼 수 있다. 도시된 바와 같이, p컨택트(38)는 좁은 직사각형의 형상으로 형성되고 수개의 p컨택트 상호접속부(42)를 포함하고, n컨택트(40)는 장착면(46) 상에 더 넓은 직사각형의 형상으로 형성된다. LED 칩(52)의 장착면(46)은, 특히, 반사 표면, 히트 싱크, 또 다른 기판, 인쇄 회로 기판, 및 조명 디바이스의 하우징을 포함한, 또 다른 표면에 장착되도록 구성된다. 도 12에 나타낸 n컨택트 상호접속부들(44) 및 반사 층 상호접속부들(30)의 대칭 패턴은 대안적인 구성으로 배열된다. 특히, 더 적은 수의 반사 층 상호접속부들(30)이 n컨택트 상호접속부들(44) 사이에 배열된다. 예를 들어, 도 12에서, 인접한 n컨택트 상호접속부들(44)의 중심점들 사이의 선형 라인은 2개의 반사 층 상호접속부들(30)만을 교차할 것이며, 여기서, 앞서 설명된 실시예들에서, 유사한 선형 라인은 3개의 반사 층 상호접속부(30)와 교차할 것이다. 상이한 수들의 반사 층 상호접속부(30)는 특정한 응용 맞게 조절될 수 있는 상이한 패턴들을 허용한다. 소정의 실시예들에서, n컨택트 상호접속부들(44)에 가장 가깝게 구성된 반사 층 상호접속부들(30a)의 직경들은, n컨택트 상호접속부들(44)로부터 더 멀리 이격된 반사 층 상호접속부들(30b)의 직경들보다 크다. 도 12에 나타낸 패턴에서, 개개의 n컨택트 상호접속부(44-1)와 모든 인접한 n컨택트 상호접속부(44) 사이의 공간은 반사 층 상호접속부(30b)(총 6개)보다 2배 많은 반사 층 상호접속부(30a)(총 12 개)로 채워진다. 소정의 실시예들에서, 반사 층 상호접속부들(30b)이 가장 큰 직경을 갖고 반사 층 상호접속부들(30a)이 가장 작은 직경을 갖도록 상대적 직경들이 역전될 수도 있다.
도 13a는, LED 칩(58) 내의 위치들에 기초하여 달라지거나 변화하는 직경들을 갖는 n컨택트 상호접속부들(44)을 포함하는 LED 칩(58)의 장착면(46)의 저면도이다. n컨택트(40), p컨택트(38), 및 p컨택트 상호접속부들(42)은 전술된 바와 같이 장착면(46)으로부터 볼 수 있다. 도 13a에서, n컨택트 상호접속부들(44) 중 상이한 것들은 LED 칩(58) 내의 그들의 위치들에 기초하여 상이한 직경들로 구성된다. 소정의 실시예들에서, n컨택트 상호접속부들(44)의 직경들은 LED 칩(58)의 주변부로부터 LED 칩(58)의 중심을 향해 점진적으로 감소한다. LED 칩들의 전류 밀도들은, 상단 또는 하단 평면도들에서 볼 때 LED 칩들의 중심들 또는 그 부근에서 더 높을 수 있다. 이와 관련하여, 밝기 강도들은 LED 칩들의 중심들로부터 가장 높은 경향이 있다. n컨택트 상호접속부들(44)의 직경들이 둘레를 따라 가장 크고 LED 칩(58)의 중앙에서 가장 작은 경우, n컨택트 상호접속부들(44)은 그에 따라, 보통은 최저 전류 밀도들을 경험할 영역들에서 더 많은 전류를 주입하도록 구성될 수 있다. 이와 관련하여, LED 칩들(58)에 걸친 전류 밀도 및 휘도 균일성이 개선될 수 있다. 소정의 실시예들에서, n컨택트 상호접속부들(44)은 LED 칩(58)의 특정한 영역에서 소정의 직경 및 LED 칩(58)의 상이한 영역에서 상이한 직경을 포함할 수 있다. 추가 실시예들에서, n컨택트 상호접속부들(44)은 LED 칩(58)의 특정한 영역에서 동일한 직경을 포함할 수 있고, LED 칩(58)의 상이한 영역에서 소정 범위의 상이한 직경들을 포함할 수 있다.
도 13b는, 도 13a의 LED 칩(58)과 유사하고 반사 층 상호접속부들(30)을 더 포함하는 LED 칩(60)의 장착면(46)의 저면도이다. 전술된 바와 같이, n컨택트(40), p컨택트(38), 및 p컨택트 상호접속부들(42)은 장착면(46)에서 볼 수 있다. 도 13b에서, n컨택트 상호접속부들(44)은 전술된 바와 같이 LED 칩(60) 내의 그들의 위치에 기초하여 상이한 직경들로 구성된다. 추가로, 반사 층 상호접속부들(30)은, n컨택트 상호접속부(44)와 함께, 전술된 바와 같이 집합적으로 대칭 패턴을 형성한다.
본 명세서에 개시된 바와 같이, LED 칩들은 n형 층에 전기적으로 접속된 복수의 제1 상호접속부 및 p형 층에 전기적으로 접속된 복수의 제2 상호접속부를 포함할 수 있다. 소정의 실시예들에서, 복수의 제1 상호접속부 및 복수의 제2 상호접속부는 집합적으로 LED 칩의 영역에 걸쳐 대칭 패턴을 형성한다. 대칭 패턴은 LED 칩의 일부 영역 또는 전체 영역에 걸쳐 연장될 수 있다. 소정의 실시예들에서, 대칭 패턴은 LED 칩의 부분적인 영역에 걸쳐 및 동일한 LED 칩의 상이한 영역에서 연장되고, 제1 상호접속부들 및 제2 상호접속부들은 집합적으로 비대칭 패턴을 형성한다. 또한 본 명세서에 개시된 바와 같이, 제1 상호접속부들 및 제2 상호접속부들 중 하나 또는 양쪽 모두의 직경은 LED 칩에 걸쳐 달라질 수 있다. 특히, 동일한 LED 칩은, 제1 또는 제2 상호접속부들이 동일한 직경을 갖는 특정한 영역, 및 제1 또는 제2 상호접속부들이 상이한 직경들을 갖는 또 다른 영역을 포함할 수 있다. 본 명세서에 추가로 개시된 바와 같이, 상이한 상호접속부 직경들 및 간격들의 조합과 함께 대칭 및 비대칭 패턴들의 조합이 동일한 LED 칩에 제공될 수 있다. 예를 들어, 특정한 LED 칩은, 동일한 직경을 갖는 상호접속부들의 대칭 패턴을 포함하는 영역, 및 상이한 직경들을 갖는 상호접속부들의 비대칭 패턴을 포함하는 또 다른 영역을 포함할 수 있다. 또 다른 예에서, 특정한 LED 칩은, 상이한 직경들을 갖는 상호접속부들의 대칭 패턴을 포함하는 영역, 및 동일한 직경을 갖는 상호접속부들의 비대칭 패턴을 포함하는 또 다른 영역을 포함할 수 있다. 또 다른 예에서, 특정한 LED 칩은, 동일한 직경을 갖는 상호접속부들의 대칭 패턴을 포함하는 영역, 및 동일한 대칭 패턴을 포함하지만 상이한 직경들을 갖는 상호접속부들을 갖는 또 다른 영역을 포함할 수 있다. 또 다른 예에서, 특정한 LED 칩은, 동일한 직경을 갖는 상호접속부들의 비대칭 패턴을 포함하는 영역, 및 상이한 직경들을 갖는 상호접속부들의 동일한 비대칭 패턴을 포함하는 또 다른 영역을 포함할 수 있다.
본 기술분야의 통상의 기술자라면, 본 개시내용의 바람직한 실시예들에 대한 개선 및 수정을 인식할 것이다. 이러한 모든 개선 및 수정은 본 명세서 및 이하의 청구항들에서 개시된 개념들의 범위 내인 것으로 간주된다.

Claims (29)

  1. 발광 다이오드(LED) 칩으로서,
    n형 층, p형 층, 및 상기 n형 층과 상기 p형 층 사이에 배열된 활성 층을 포함하는 활성 LED 구조물;
    상기 n형 층에 전기적으로 접속된 복수의 제1 상호접속부; 및
    상기 p형 층에 전기적으로 접속된 복수의 제2 상호접속부
    를 포함하고,
    상기 복수의 제1 상호접속부 및 상기 복수의 제2 상호접속부는 집합적으로 상기 LED 칩의 영역에 걸쳐 대칭 패턴을 형성하고, 상기 복수의 제2 상호접속부의 직경들은 상기 복수의 제1 상호접속부 중의 개개 제1 상호접속부에 대한 각각의 개개 제2 상호접속부의 상대적 위치에 기초하여 상이한, LED 칩.
  2. 제1항에 있어서, 상기 n형 층에 전기적으로 접속된 n컨택트를 더 포함하고, 상기 복수의 제1 상호접속부는 상기 n컨택트와 상기 n형 층 사이에 전기적으로 접속된 복수의 n컨택트 상호접속부를 포함하는, LED 칩.
  3. 제1항에 있어서, 상기 p형 층 상에 반사 구조물을 더 포함하고, 상기 반사 구조물은 유전체 층 및 금속 층을 포함하며, 상기 복수의 제2 상호접속부는 상기 유전체 층의 일부를 통해 연장되는 복수의 반사 층 상호접속부를 포함하는, LED 칩.
  4. 제1항에 있어서, 상기 복수의 제1 상호접속부는 상기 LED 칩의 영역에 걸쳐 제1 패턴으로 서로 균등하게 이격되도록 배열되고, 상기 복수의 제2 상호접속부는 상기 LED 칩의 영역에 걸쳐 제2 패턴으로 서로 균등하게 이격되도록 배열되는, LED 칩.
  5. 제4항에 있어서, 상기 제1 패턴 및 상기 제2 패턴은 집합적으로 상기 LED 칩에 걸쳐 대칭 패턴을 형성하는, LED 칩.
  6. 삭제
  7. 제1항에 있어서, 특정한 제1 상호접속부에 가장 가깝게 배열된 개개의 제2 상호접속부의 직경은, 상기 특정한 제1 상호접속부로부터 더 멀리 배열된 또 다른 개개의 제2 상호접속부의 직경보다 큰, LED 칩.
  8. 제1항에 있어서, 특정한 제1 상호접속부에 가장 가깝게 배열된 개개의 제2 상호접속부의 직경은, 상기 특정한 제1 상호접속부로부터 더 멀리 배열된 또 다른 개개의 제2 상호접속부의 직경보다 작은, LED 칩.
  9. 제1항에 있어서, 상기 복수의 제1 상호접속부의 직경들은 상기 LED 칩의 영역에 걸쳐 각각의 개개 제1 상호접속부의 상대적인 위치에 기초하여 상이한, LED 칩.
  10. 제1항에 있어서, 상기 복수의 제1 상호접속부의 직경들은 상기 LED 칩의 주변부로부터 상기 LED 칩의 중심을 향하는 방향으로 점진적으로 감소하는, LED 칩.
  11. 제1항에 있어서, 상기 복수의 제1 상호접속부 및 상기 복수의 제2 상호접속부는 상기 LED 칩의 상이한 영역에서 집합적으로 비대칭 패턴을 형성하는, LED 칩.
  12. 발광 다이오드(LED) 칩으로서,
    n형 층, p형 층, 및 상기 n형 층과 상기 p형 층 사이에 배열된 활성 층을 포함하는 활성 LED 구조물;
    상기 n형 층에 전기적으로 접속된 복수의 제1 상호접속부; 및
    상기 p형 층에 전기적으로 접속된 복수의 제2 상호접속부
    를 포함하고,
    상기 복수의 제1 상호접속부 각각의 중심점 및 상기 복수의 제2 상호접속부 각각의 중심점은 상기 LED 칩에 걸쳐 균등하게 이격된 중심점들의 어레이를 형성하고,
    상기 복수의 제2 상호접속부의 직경들은 상기 복수의 제1 상호접속부 중의 개개 제1 상호접속부에 대한 각각의 개개 제2 상호접속부의 상대적 위치에 기초하여 상이한, LED 칩.
  13. 제12항에 있어서, 상기 n형 층에 전기적으로 접속된 n컨택트를 더 포함하고, 상기 복수의 제1 상호접속부는 상기 n컨택트와 상기 n형 층 사이에 전기적으로 접속된 복수의 n컨택트 상호접속부를 포함하는, LED 칩.
  14. 제12항에 있어서, 상기 p형 층 상에 반사 구조물을 더 포함하고, 상기 반사 구조물은 유전체 층 및 금속 층을 포함하며, 상기 복수의 제2 상호접속부는 상기 유전체 층의 일부를 통해 연장되는 복수의 반사 층 상호접속부를 포함하는, LED 칩.
  15. 제12항에 있어서, 상기 복수의 제1 상호접속부 각각은 4 마이크론 내지 25 마이크론의 범위에 있는 동일한 직경을 포함하는, LED 칩.
  16. 제12항에 있어서, 상기 복수의 제1 상호접속부는 4 마이크론 내지 25 마이크론의 범위 내에서 변화하는 직경들을 포함하는, LED 칩.
  17. 제12항에 있어서, 상기 복수의 제2 상호접속부 각각은 2 마이크론 내지 15 마이크론의 범위에 있는 동일한 직경을 포함하는, LED 칩.
  18. 제12항에 있어서, 상기 복수의 제2 상호접속부는 2 마이크론 내지 15 마이크론의 범위 내에서 변화하는 직경들을 포함하는, LED 칩.
  19. 발광 다이오드(LED) 칩으로서,
    n형 층, p형 층, 및 상기 n형 층과 상기 p형 층 사이에 배열된 활성 층을 포함하는 활성 LED 구조물;
    상기 n형 층에 전기적으로 접속된 제1 상호접속부; 및
    상기 p형 층에 전기적으로 접속된 복수의 제2 상호접속부
    를 포함하고,
    상기 복수의 제2 상호접속부의 직경들은 상기 제1 상호접속부에 대한 각각의 개개 제2 상호접속부의 상대적 위치에 기초하여 상이한, LED 칩.
  20. 제19항에 있어서, 상기 복수의 제2 상호접속부의 직경들은 상기 제1 상호접속부로부터 멀어지게 증가하는 거리에 따라 점진적으로 감소하는, LED 칩.
  21. 제19항에 있어서, 상기 복수의 제2 상호접속부의 직경들은 상기 제1 상호접속부로부터 멀어지게 증가하는 거리에 따라 점진적으로 증가하는, LED 칩.
  22. 제19항에 있어서, 상기 복수의 제2 상호접속부의 직경들은 상기 제1 상호접속부로부터 멀어지게 증가하는 거리에 따라 점진적으로 증가 및 감소하는, LED 칩.
  23. 제19항에 있어서, 상기 LED 칩의 영역에 걸쳐 제1 패턴으로 서로 균등하게 이격되도록 배열된 복수의 제1 상호접속부를 더 포함하고, 상기 복수의 제2 상호접속부는 상기 LED 칩의 영역에 걸쳐 서로 불균일하게 이격되도록 배열된, LED 칩.
  24. 제19항에 있어서, 복수의 제1 상호접속부를 더 포함하고, 상기 복수의 제1 상호접속부의 직경들은 상기 LED 칩의 영역에 걸쳐 각각의 개개 제1 상호접속부의 상대적 위치에 기초하여 상이한, LED 칩.
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
KR1020217022507A 2018-12-17 2019-11-01 발광 다이오드 칩들을 위한 상호접속부들 KR102548428B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237021237A KR20230096151A (ko) 2018-12-17 2019-11-01 발광 다이오드 칩들을 위한 상호접속부들

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US16/222,173 2018-12-17
US16/222,173 US10879441B2 (en) 2018-12-17 2018-12-17 Interconnects for light emitting diode chips
PCT/US2019/059331 WO2020131231A1 (en) 2018-12-17 2019-11-01 Interconnects for light emitting diode chips

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237021237A Division KR20230096151A (ko) 2018-12-17 2019-11-01 발광 다이오드 칩들을 위한 상호접속부들

Publications (2)

Publication Number Publication Date
KR20220012215A KR20220012215A (ko) 2022-02-03
KR102548428B1 true KR102548428B1 (ko) 2023-06-27

Family

ID=68699515

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020217022507A KR102548428B1 (ko) 2018-12-17 2019-11-01 발광 다이오드 칩들을 위한 상호접속부들
KR1020237021237A KR20230096151A (ko) 2018-12-17 2019-11-01 발광 다이오드 칩들을 위한 상호접속부들

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020237021237A KR20230096151A (ko) 2018-12-17 2019-11-01 발광 다이오드 칩들을 위한 상호접속부들

Country Status (5)

Country Link
US (3) US10879441B2 (ko)
EP (2) EP4235826A3 (ko)
KR (2) KR102548428B1 (ko)
CN (1) CN113169256A (ko)
WO (1) WO2020131231A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11923481B2 (en) 2018-01-29 2024-03-05 Creeled, Inc. Reflective layers for light-emitting diodes
US10879441B2 (en) 2018-12-17 2020-12-29 Cree, Inc. Interconnects for light emitting diode chips
US10985294B2 (en) 2019-03-19 2021-04-20 Creeled, Inc. Contact structures for light emitting diode chips
US11245055B2 (en) * 2019-05-28 2022-02-08 Facebook Technologies, Llc LED arrays having a reduced pitch
US11894488B2 (en) * 2020-06-26 2024-02-06 Creeled, Inc. LED chips with irregular microtextured light extraction surfaces, and fabrication methods
CN112271241B (zh) * 2020-10-30 2022-04-22 华引芯(武汉)科技有限公司 一种大功率led芯片的制作工艺及led芯片
WO2023235366A1 (en) * 2022-06-01 2023-12-07 Creeled, Inc. Contact structures in light-emitting diode chips

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838197B1 (ko) * 2007-08-10 2008-06-16 서울옵토디바이스주식회사 개선된 전류분산 성능을 갖는 발광 다이오드
US20170098746A1 (en) * 2015-10-01 2017-04-06 Cree, Inc. Low optical loss flip chip solid state lighting device
US20190051805A1 (en) 2016-05-03 2019-02-14 Seoul Viosys Co., Ltd. Light emitting diode

Family Cites Families (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739554A (en) 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
EP1234344B1 (en) 1999-12-03 2020-12-02 Cree, Inc. Enhanced light extraction in leds through the use of internal and external optical elements
US6791119B2 (en) 2001-02-01 2004-09-14 Cree, Inc. Light emitting diodes including modifications for light extraction
US6630689B2 (en) 2001-05-09 2003-10-07 Lumileds Lighting, U.S. Llc Semiconductor LED flip-chip with high reflectivity dielectric coating on the mesa
US6709929B2 (en) 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US6747298B2 (en) 2001-07-23 2004-06-08 Cree, Inc. Collets for bonding of light emitting diodes having shaped substrates
US6888167B2 (en) 2001-07-23 2005-05-03 Cree, Inc. Flip-chip bonding of light emitting devices and light emitting devices suitable for flip-chip bonding
US6784462B2 (en) 2001-12-13 2004-08-31 Rensselaer Polytechnic Institute Light-emitting diode with planar omni-directional reflector
US6828596B2 (en) 2002-06-13 2004-12-07 Lumileds Lighting U.S., Llc Contacting scheme for large and small area semiconductor light emitting flip chip devices
US7419912B2 (en) 2004-04-01 2008-09-02 Cree, Inc. Laser patterning of light emitting devices
WO2005104147A2 (en) 2004-04-23 2005-11-03 Massachusetts Institute Of Technology Cmos-compatible light emitting aperiodic photonic structures
US7064353B2 (en) 2004-05-26 2006-06-20 Philips Lumileds Lighting Company, Llc LED chip with integrated fast switching diode for ESD protection
TWI299914B (en) 2004-07-12 2008-08-11 Epistar Corp Light emitting diode with transparent electrically conductive layer and omni directional reflector
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US7622746B1 (en) 2006-03-17 2009-11-24 Bridgelux, Inc. Highly reflective mounting arrangement for LEDs
US7211803B1 (en) 2006-04-24 2007-05-01 Eastman Kodak Company Wireless X-ray detector for a digital radiography system with remote X-ray event detection
US9159888B2 (en) 2007-01-22 2015-10-13 Cree, Inc. Wafer level phosphor coating method and devices fabricated utilizing method
TWI331816B (en) 2007-04-03 2010-10-11 Advanced Optoelectronic Tech Semiconductor light-emitting device
WO2009010762A1 (en) 2007-07-19 2009-01-22 Photonstar Led Limited Vertical led with conductive vias
US8866169B2 (en) 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
US7915629B2 (en) 2008-12-08 2011-03-29 Cree, Inc. Composite high reflectivity layer
US8368100B2 (en) 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
US8575633B2 (en) 2008-12-08 2013-11-05 Cree, Inc. Light emitting diode with improved light extraction
US9640737B2 (en) 2011-01-31 2017-05-02 Cree, Inc. Horizontal light emitting diodes including phosphor particles
US9461201B2 (en) 2007-11-14 2016-10-04 Cree, Inc. Light emitting diode dielectric mirror
US8026527B2 (en) 2007-12-06 2011-09-27 Bridgelux, Inc. LED structure
US8940561B2 (en) 2008-01-15 2015-01-27 Cree, Inc. Systems and methods for application of optical materials to optical elements
US10008637B2 (en) 2011-12-06 2018-06-26 Cree, Inc. Light emitter devices and methods with reduced dimensions and improved light output
US8570470B2 (en) 2008-08-20 2013-10-29 Lg Chem, Ltd. Adhesive agent
US8017963B2 (en) 2008-12-08 2011-09-13 Cree, Inc. Light emitting diode with a dielectric mirror having a lateral configuration
US9362459B2 (en) 2009-09-02 2016-06-07 United States Department Of Energy High reflectivity mirrors and method for making same
US8471280B2 (en) * 2009-11-06 2013-06-25 Koninklijke Philips Electronics N.V. Silicone based reflective underfill and thermal coupler
US8550647B2 (en) * 2010-06-15 2013-10-08 Micron Technology, Inc. Solid state lighting device with different illumination parameters at different regions of an emitter array
KR20120015651A (ko) 2010-08-12 2012-02-22 서울옵토디바이스주식회사 개선된 광 추출 효율을 갖는 발광 다이오드
JP5633477B2 (ja) * 2010-08-27 2014-12-03 豊田合成株式会社 発光素子
US8664684B2 (en) * 2010-08-31 2014-03-04 Micron Technology, Inc. Solid state lighting devices with improved contacts and associated methods of manufacturing
US9070851B2 (en) 2010-09-24 2015-06-30 Seoul Semiconductor Co., Ltd. Wafer-level light emitting diode package and method of fabricating the same
US9000470B2 (en) 2010-11-22 2015-04-07 Cree, Inc. Light emitter devices
WO2012086483A1 (ja) 2010-12-21 2012-06-28 コニカミノルタオプト株式会社 蛍光体塗布装置および発光装置の製造方法
US9673363B2 (en) 2011-01-31 2017-06-06 Cree, Inc. Reflective mounting substrates for flip-chip mounted horizontal LEDs
US8680556B2 (en) 2011-03-24 2014-03-25 Cree, Inc. Composite high reflectivity layer
US9728676B2 (en) 2011-06-24 2017-08-08 Cree, Inc. High voltage monolithic LED chip
US8686429B2 (en) 2011-06-24 2014-04-01 Cree, Inc. LED structure with enhanced mirror reflectivity
US9666764B2 (en) 2012-04-09 2017-05-30 Cree, Inc. Wafer level packaging of multiple light emitting diodes (LEDs) on a single carrier die
USD691973S1 (en) 2011-07-08 2013-10-22 Cree, Inc. Lamp packages
US8624482B2 (en) 2011-09-01 2014-01-07 Toshiba Techno Center Inc. Distributed bragg reflector for reflecting light of multiple wavelengths from an LED
US9496458B2 (en) 2012-06-08 2016-11-15 Cree, Inc. Semiconductor light emitting diodes with crack-tolerant barrier structures and methods of fabricating the same
US9887327B2 (en) 2012-06-11 2018-02-06 Cree, Inc. LED package with encapsulant having curved and planar surfaces
US10468565B2 (en) 2012-06-11 2019-11-05 Cree, Inc. LED package with multiple element light source and encapsulant having curved and/or planar surfaces
US9461212B2 (en) 2012-07-02 2016-10-04 Seoul Viosys Co., Ltd. Light emitting diode module for surface mount technology and method of manufacturing the same
US10666017B2 (en) 2013-02-20 2020-05-26 Vertically Integrated (Vi) Systems Gmbh Optoelectronic device based on a surface-trapped optical mode
KR20140130618A (ko) 2013-05-01 2014-11-11 서울바이오시스 주식회사 솔더 페이스트를 통해 접착된 발광 다이오드를 갖는 발광 다이오드 모듈 및 발광 다이오드
CN105378951B (zh) 2013-07-18 2019-11-05 亮锐控股有限公司 高度反射倒装芯片led管芯
WO2015053595A1 (ko) 2013-10-11 2015-04-16 주식회사 세미콘라이트 반도체 발광소자
US9368939B2 (en) 2013-10-18 2016-06-14 Soraa Laser Diode, Inc. Manufacturable laser diode formed on C-plane gallium and nitrogen material
CN104037277A (zh) 2014-06-26 2014-09-10 圆融光电科技有限公司 倒装led芯片的制备方法及倒装led芯片
US10658546B2 (en) 2015-01-21 2020-05-19 Cree, Inc. High efficiency LEDs and methods of manufacturing
US9412907B1 (en) 2015-04-17 2016-08-09 Cree, Inc. Graded vias for LED chip P- and N- contacts
TWI583020B (zh) 2015-07-06 2017-05-11 隆達電子股份有限公司 發光元件及發光裝置
DE102015114587A1 (de) 2015-09-01 2017-03-02 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zu dessen Herstellung
JP6555043B2 (ja) 2015-09-18 2019-08-07 日亜化学工業株式会社 発光素子及び発光装置
US9851056B2 (en) 2015-10-16 2017-12-26 Seoul Viosys Co., Ltd. Compact light emitting diode chip and light emitting device having a slim structure with secured durability
KR102496476B1 (ko) 2015-11-19 2023-02-06 삼성전자주식회사 전자기파 반사체 및 이를 포함하는 광학소자
JP6697275B2 (ja) * 2016-01-22 2020-05-20 スタンレー電気株式会社 半導体発光装置、照明装置、および、車両用照明装置
US10529696B2 (en) 2016-04-12 2020-01-07 Cree, Inc. High density pixelated LED and devices and methods thereof
JP6683003B2 (ja) 2016-05-11 2020-04-15 日亜化学工業株式会社 半導体素子、半導体装置及び半導体素子の製造方法
WO2018080860A1 (en) 2016-10-24 2018-05-03 Glo Ab Indium gallium nitride red light emitting diode and method of making thereof
KR102555005B1 (ko) 2016-11-24 2023-07-14 삼성전자주식회사 반도체 발광 소자 및 반도체 발광 소자의 제조 방법
CN107546303B (zh) 2017-08-25 2019-06-21 扬州乾照光电有限公司 一种AlGaInP基发光二极管及其制造方法
CN107452846A (zh) 2017-09-25 2017-12-08 广东工业大学 一种紫外led倒装芯片
US11031527B2 (en) 2018-01-29 2021-06-08 Creeled, Inc. Reflective layers for light-emitting diodes
US10879441B2 (en) 2018-12-17 2020-12-29 Cree, Inc. Interconnects for light emitting diode chips

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100838197B1 (ko) * 2007-08-10 2008-06-16 서울옵토디바이스주식회사 개선된 전류분산 성능을 갖는 발광 다이오드
US20170098746A1 (en) * 2015-10-01 2017-04-06 Cree, Inc. Low optical loss flip chip solid state lighting device
US20190051805A1 (en) 2016-05-03 2019-02-14 Seoul Viosys Co., Ltd. Light emitting diode

Also Published As

Publication number Publication date
CN113169256A (zh) 2021-07-23
US20200194644A1 (en) 2020-06-18
EP4235826A2 (en) 2023-08-30
EP3888139B1 (en) 2023-08-23
US20200395524A1 (en) 2020-12-17
US10879441B2 (en) 2020-12-29
WO2020131231A1 (en) 2020-06-25
EP4235826A3 (en) 2023-11-01
KR20230096151A (ko) 2023-06-29
US11398591B2 (en) 2022-07-26
EP3888139A1 (en) 2021-10-06
US11817537B2 (en) 2023-11-14
KR20220012215A (ko) 2022-02-03
US20220246816A1 (en) 2022-08-04

Similar Documents

Publication Publication Date Title
KR102548428B1 (ko) 발광 다이오드 칩들을 위한 상호접속부들
US20210288226A1 (en) Reflective layers for light-emitting diodes
CN108369977B (zh) 低光学损失倒装芯片固态照明设备
US20230261157A1 (en) Contact structures of led chips for current injection
JP7315665B2 (ja) 発光ダイオードパッケージ
US11545595B2 (en) Contact structures for light emitting diode chips
US11145689B2 (en) Indicia for light emitting diode chips
US11387389B2 (en) Reflective layers for light-emitting diodes
KR20130119616A (ko) 발광 소자
KR101944410B1 (ko) 발광 소자
TWI837759B (zh) 在發光二極體晶片中用於光整形的邊緣結構
US11870009B2 (en) Edge structures for light shaping in light-emitting diode chips
US20230395747A1 (en) Current spreading layer structures for light-emitting diode chips
US11923481B2 (en) Reflective layers for light-emitting diodes
US20240072099A1 (en) Light-emitting diode chip structures
TW202349743A (zh) 用於發光二極體晶片的電流分散層結構
US20230395756A1 (en) Interconnect structures for improved light-emitting diode chip performance
WO2023154738A1 (en) Contact structures of led chips for current injection
TW202412256A (zh) 用於減少接合金屬之空洞的發光二極體晶片中的接觸結構
TW202412339A (zh) 用於將發光二極體晶片調光的金屬層

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent