KR102541331B1 - Plasma resistant material with added fine particles and manufacturing method thereof - Google Patents

Plasma resistant material with added fine particles and manufacturing method thereof Download PDF

Info

Publication number
KR102541331B1
KR102541331B1 KR1020200005486A KR20200005486A KR102541331B1 KR 102541331 B1 KR102541331 B1 KR 102541331B1 KR 1020200005486 A KR1020200005486 A KR 1020200005486A KR 20200005486 A KR20200005486 A KR 20200005486A KR 102541331 B1 KR102541331 B1 KR 102541331B1
Authority
KR
South Korea
Prior art keywords
specimen
sintering
mold
manufacturing
plasma
Prior art date
Application number
KR1020200005486A
Other languages
Korean (ko)
Other versions
KR20210092370A (en
Inventor
김돈한
김진철
설광희
Original Assignee
비씨엔씨 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비씨엔씨 주식회사 filed Critical 비씨엔씨 주식회사
Priority to KR1020200005486A priority Critical patent/KR102541331B1/en
Publication of KR20210092370A publication Critical patent/KR20210092370A/en
Application granted granted Critical
Publication of KR102541331B1 publication Critical patent/KR102541331B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/575Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/53After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone involving the removal of at least part of the materials of the treated article, e.g. etching, drying of hardened concrete
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/87Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3817Carbides
    • C04B2235/3826Silicon carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering

Abstract

본 발명에 따른 내플라즈마성 엣지링 제조방법에 의하면, 프리프레스 과정을 통해 균일성이 확보된 다수의 사전성형 시편을 이용하여 엣지링을 제조할 수 있게 되므로, 열간가압 소결 가공 시 시료 분말을 바로 사용하는 경우 대비 몰드 내 30 내지 60%의 추가 공간 확보가 가능하여 1회 공정 당 최소 2배수 이상의 엣지링을 제조할 수 있게 되며, 불순물 이입을 방지할 수 있고, 또한, 소결 가공 후 와이어 컷팅 등 별도의 후가공 과정이 최소화되는 효과가 있다. 또한, 프리프레스 과정에 의해 사전성형된 시편에 대해 냉간 등방압 가압 처리를 수행함으로써, 시편의 이물을 제거하고, 시편의 밀도 편차를 최소화하여 열간가압 소결 가공 시 시편의 뒤틀림을 효과적으로 방지할 수 있으며, 이에 따라 열간가압 소결 가공을 통해 제조된 엣지링의 소결 밀도가 이론값 대비 95 내지 99.9%에 해당하게 되는 효과가 있다. According to the plasma-resistant edge ring manufacturing method according to the present invention, since it is possible to manufacture edge rings using a plurality of pre-formed specimens whose uniformity is secured through the pre-press process, sample powder is immediately prepared during hot press sintering. It is possible to secure 30 to 60% of additional space in the mold compared to the case of using it, so that at least twice as many edge rings can be manufactured per one process, and it is possible to prevent the inflow of impurities, and also, after sintering, wire cutting, etc. There is an effect that a separate post-processing process is minimized. In addition, by performing the cold isostatic pressure treatment on the specimen preformed by the prepress process, foreign matter is removed from the specimen and the density deviation of the specimen is minimized to effectively prevent distortion of the specimen during hot press sintering. , Accordingly, there is an effect that the sintered density of the edge ring manufactured through the hot press sintering corresponds to 95 to 99.9% of the theoretical value.

Description

미립자를 첨가한 플라즈마 저항성 소재 및 그의 제조방법{PLASMA RESISTANT MATERIAL WITH ADDED FINE PARTICLES AND MANUFACTURING METHOD THEREOF}Plasma resistant material with fine particles added and manufacturing method thereof

본 발명은 세라믹 수지 복합체로 구성되는 플라즈마 저항성 소재 및 그의 제조방법에 관한 것이다.The present invention relates to a plasma resistant material composed of a ceramic resin composite and a method for manufacturing the same.

반도체 웨이퍼 제조공정은 기술의 반전을 거듭하여 선폭의 미세화와 적층 수의 증가를 통해 지속적으로 발전하고 있다. 한편, 반도체 제조 챔버 내의 플라즈마 환경이 점차 가혹해짐에 따라, 챔버 내에서 사용되는 반도체 제조용 세라믹 부품은 높은 플라즈마 저항성을 지닐 필요가 있다.The semiconductor wafer manufacturing process continues to evolve through technological reversals, miniaturization of line width and increase in the number of layers. On the other hand, as the plasma environment in the semiconductor manufacturing chamber gradually becomes harsh, ceramic parts for semiconductor manufacturing used in the chamber need to have high plasma resistance.

일례로 플라즈마 에칭이 실시되는 플라즈마 장치(챔버)는 상부 전극과 하부에 전극을 포함하는 정전 척, 그리고 플라즈마 공정 챔버 내에서 발생하는 플라즈마로부터 정전 척을 보호하도록 정전 척을 둘러싸는 커버링 어셈블리로 구성되며, 반도체 웨이퍼 혹은 유리 기판 등과 같은 기판은 정전 척의 상부 표면에 지지된다. 이러한 구성에 의해 상부 전극과 하부의 정전 척 사이에 전원이 인가됨에 따라 전계효과에 의해 플라즈마 공정 챔버 내에 플라즈마(P)가 발생하여 이온들이 정전 척을 향하는 방향으로 입사되며, 플라즈마 이온의 화학 반응 및 운동에너지를 이용하여 기판 상에 에칭이 실시되게 된다. For example, a plasma device (chamber) in which plasma etching is performed is composed of an electrostatic chuck including an upper electrode and a lower electrode, and a covering assembly surrounding the electrostatic chuck to protect the electrostatic chuck from plasma generated in the plasma process chamber. , a substrate such as a semiconductor wafer or a glass substrate is supported on the upper surface of the electrostatic chuck. With this configuration, as power is applied between the upper electrode and the lower electrostatic chuck, plasma (P) is generated in the plasma process chamber by an electric field effect, and ions are incident in a direction toward the electrostatic chuck, and chemical reactions of plasma ions and Etching is performed on the substrate using kinetic energy.

한편, 정전 척을 둘러싸는 커버링 어셈블리는 엣지링 하부면에 결합홈을 형성하고 여기에 전극링이 결합되도록 하는 구성을 가질 수 있으며, 상기 엣지링은 정전 척의 상부 표면에 지지되는 기판의 측면을 둘러싸는 구성으로, 정전 척에 의해 지지되는 기판과 동일한 높이를 유지할 수 있는 규격 및 환경의 입체적인 형상으로 제작되는 반도체 제조용 세라믹 부품이다.Meanwhile, the covering assembly surrounding the electrostatic chuck may have a configuration in which a coupling groove is formed on a lower surface of the edge ring and an electrode ring is coupled thereto, and the edge ring surrounds a side surface of a substrate supported on an upper surface of the electrostatic chuck. is a ceramic component for manufacturing a semiconductor manufactured in a three-dimensional shape of a standard and environment capable of maintaining the same height as a substrate supported by an electrostatic chuck.

한편, 기존의 엣지링은 단결정 실리콘(Silicon)이나 쿼츠(Quartz)로 제작되어 사용되고 있었으나, 이러한 조성은 가혹한 플라즈마 조건 하에서 과다하게 식각됨으로써, 짧은 시간 사용 후 유지보수 하여야 하거나 신규 부품으로 교체가 필요한 문제점이 있었다.On the other hand, conventional edge rings were made of single crystal silicon or quartz, but these compositions were excessively etched under harsh plasma conditions, requiring maintenance after a short period of use or replacement with new parts. there was

따라서 오늘날에는 탄화규소, 탄화붕소, 질화규소 등 비산화물계 구조 재료를 이용한 소결체를 이용하여 엣지링을 제조하고 있는 상황이며, 특히 열간가압 소결법은 세라믹 소재를 특정 분위기 속에서 가압하여 소결체를 제작하는 방법으로 소결체의 특성이 우수한 방법 중 하나로서, 반도체 제조용 세라믹 부품인 엣지링 제조 과정에 응용되고 있다. Therefore, today, edge rings are manufactured using sintered bodies using non-oxide-based structural materials such as silicon carbide, boron carbide, and silicon nitride. As one of the methods with excellent properties of the sintered body, it is applied to the manufacturing process of edge ring, which is a ceramic part for semiconductor manufacturing.

일반적으로, 상술한 소결체는 핫 프레스(Hot Press) 공법에 의해 성형된다. 구체적으로, 핫 프레스 공법을 수행할 경우, 서브 마이크로(sub-micro) 수준의 크기를 갖는 입자가 사용되고, 이러한 크기의 입자를 갖는 시료가 카본 몰드에 충진된 후 고온 및 고압에 의해 소결체로 성형되는 것이다.In general, the above-described sintered body is molded by a hot press method. Specifically, when performing the hot press method, particles having sub-micro size are used, and a sample having particles of this size is filled in a carbon mold and then molded into a sintered body by high temperature and high pressure. will be.

그러나, 위와 같은 공법에 의하면, 압력 구배의 차이가 불가피하므로, 시편의 미세구조에서 불균일성이 발생할 수 있는 문제점이 있다. 시편이 불균일하게 성형되면, 소결체의 물리적 강도가 감소할 뿐만 아니라, 소결체의 미세구조마다 전기적 특성이 불균일한 단점이 있다. 더 나아가, 시편을 충진시키기 위해 사용되는 몰드가 파손되는 문제점도 발생할 수 있다.However, according to the above method, since a difference in pressure gradient is unavoidable, there is a problem in that non-uniformity may occur in the microstructure of the specimen. If the specimen is molded non-uniformly, not only the physical strength of the sintered body is reduced, but also has the disadvantage of non-uniform electrical properties for each microstructure of the sintered body. Furthermore, a problem in which a mold used to fill a specimen may be damaged may occur.

본 발명의 기술적 과제는 플라즈마 저항성소재의 저항 조절 세라믹 복합체 및 그의 제조방법을 제공하는 것이다.A technical problem of the present invention is to provide a resistance-adjustable ceramic composite of a plasma-resistant material and a manufacturing method thereof.

또한, 본 발명의 목적은 반도체 제조에 사용되는 세라믹 복합체의 균일성을 향상시키기 위하여, 미립자를 첨가한 플라즈마 저항성 소재 및 그의 제조방법을 제공하는 것이다.In addition, an object of the present invention is to provide a plasma resistant material to which fine particles are added and a manufacturing method thereof in order to improve the uniformity of a ceramic composite used in semiconductor manufacturing.

이러한 문제점을 해결하기 위하여, 본 발명에서는, 반소결을 수행하고, 반소결된 시편에 첨가물을 함침함으로써, 반소결된 미세구조 사이에 첨가물을 충진하여, 반소결된 시편의 상대밀도를 올림에 따라 재소결시 열처리 올도를 낮추고 소결 밀도를 증가 시키는 것이다.In order to solve this problem, in the present invention, by performing semi-sintering and impregnating the semi-sintered specimen with additives, the additive is filled between the semi-sintered microstructures, thereby raising the relative density of the semi-sintered specimen. It is to lower the degree of heat treatment and increase the sintered density during resintering.

본 발명에 따르면 소결체의 균일성이 확보되어, 강도가 향상되는 장점이 있다. According to the present invention, there is an advantage in that the uniformity of the sintered body is secured and the strength is improved.

또한, 본 발명에 따른 소결체는 반소결 과정을 통해, 상대밀도가 낮은 상태에서 공정이 진행되므로, 가공의 편의성이 향상되는 장점도 있다.In addition, since the sintered body according to the present invention is processed in a state of low relative density through a semi-sintering process, there is an advantage in that the convenience of processing is improved.

도 1은 본 발명의 일실시예에 따른 프리프레스 공정을 간략히 나타낸 모식도이다.
도 2는 본 발명의 일실시예에 따른 프리프레스 공정을 통해 사전성형된 다수의 시편을 적층한 형상을 개략적으로 나타낸 것이다.
도 3은 본 발명의 일실시예에 따라 열간가압 소결이 수행되는 다층 적층 구조의 몰드 형상을 개략적으로 나타낸 것이다.
도 4는 본 발명의 또 다른 일실시예에 따라 열간가압 소결이 수행되는 다층 적층 구조의 몰드 형상을 개략적으로 나타낸 것이다.
도 5는 본 발명의 또 다른 일실시예에 따라 열간가압 소결 시 적층된 시편 사이에 카본시트가 구비된 것을 나타내는 단면도이다.
도 6은 본 발명의 일 실시예에 따른 세라믹 복합체 제조 방법을 나타내는 흐름도이다.
1 is a schematic diagram briefly showing a prepress process according to an embodiment of the present invention.
2 schematically shows a stacked shape of a plurality of specimens preformed through a prepress process according to an embodiment of the present invention.
3 schematically illustrates a mold shape of a multi-layer laminated structure in which hot-press sintering is performed according to an embodiment of the present invention.
4 schematically shows a mold shape of a multi-layer laminated structure in which hot-press sintering is performed according to another embodiment of the present invention.
5 is a cross-sectional view showing that carbon sheets are provided between laminated specimens during hot-press sintering according to another embodiment of the present invention.
6 is a flowchart illustrating a method of manufacturing a ceramic composite according to an embodiment of the present invention.

발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 예시하고 하기에서 상세하게 설명하고자 한다. 그러나, 이는 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.Since the invention can have various changes and various forms, specific embodiments will be exemplified and described in detail below. However, it should be understood that this is not intended to limit the invention to a particular disclosed form, and includes all modifications, equivalents, and substitutes included in the spirit and scope of the invention.

이하, 본 발명의 구체적인 실시예에 따른 내플라즈마성 엣지링 제조방법 및 이에 의해 제조되는 내플라즈마성 엣지링에 대해서 설명한다.Hereinafter, a method for manufacturing a plasma resistant edge ring according to a specific embodiment of the present invention and a plasma resistant edge ring manufactured thereby will be described.

먼저 상술한 바와 같이, 오늘날 엣지링은 탄화규소, 탄화붕소, 질화규소 등의 비산화물계 구조 재료를 열간가압 소결하여 얻은 소결체를 이용하여 제조하는데, 열간가압 소결법에 의하면 가압하는 면적이 커짐에 따라 시편의 밀도편차가 커지게 되는 문제점이 있고, 소결 시편의 불균형 발생으로 인한 몰드 파손 우려가 있다. 또한, 위 방법에 의하면 단위 작업당 기간이 길고 비표면적이 커서 1회 공정 간 제작가능한 소결체의 개수가 작아 공정 단가가 매우 높은 문제점이 있으며, 시편 제작을 위한 몰드 내 시료 장입 시 시료를 투입한 후 카본시트를 올리고, 균일 가압을 위해 스페이서를 올린 다음 다시 카본시트를 올리는 등 반복적인 공정에 의해 작업 시간이 길어지는 문제점이 있다. 또한, 위 방법에 의하면 시료 장입 절차 중 이물질이 이입되는 문제점이 있을 수 있다.First, as described above, today's edge rings are manufactured using sintered bodies obtained by hot-pressing sintering of non-oxide-based structural materials such as silicon carbide, boron carbide, and silicon nitride. According to the hot-pressing sintering method, as the area to be pressed increases, the specimen There is a problem that the deviation of the density becomes large, and there is a risk of mold damage due to the imbalance of the sintered specimen. In addition, according to the above method, there is a problem in that the unit cost of the process is very high because the number of sintered bodies that can be produced in one process is small because the period per unit operation is long and the specific surface area is large. There is a problem in that the working time is prolonged due to repetitive processes such as raising the carbon sheet, raising the spacer for uniform pressure, and then raising the carbon sheet again. In addition, according to the above method, there may be a problem in that foreign substances are introduced during the sample loading procedure.

본 발명자들은, 상기와 같은 문제점에 착안하여, 프리프레스(PrePress)와 냉간 등방압 가압(Cold Isostatic Pressing, CIP) 처리를 통해 사전성형된 시편을 열간가압 소결하는 경우, 균일성이 확보된 다수의 사전성형 시편을 이용하여 엣지링을 제조할 수 있게 되므로 열간가압 소결 가공 시 시료 분말을 바로 사용하는 경우 대비 몰드 내 30 내지 60%의 추가 공간 확보가 가능하여 1회 공정 당 최소 3배수 이상의 엣지링을 제조할 수 있게 되며, 불순물 이입을 방지할 수 있다.The inventors of the present invention, focusing on the above problems, in the case of hot pressing and sintering a preformed specimen through PrePress and Cold Isostatic Pressing (CIP) treatment, a plurality of uniformity secured Since the edge ring can be manufactured using the preformed specimen, it is possible to secure 30 to 60% of additional space in the mold compared to the case of using the sample powder directly during hot press sintering, so that the edge ring is at least 3 times more per one process. It is possible to manufacture, and the introduction of impurities can be prevented.

한편, CIP 처리를 위해서는 CIP 몰드가 필요하며, 이는 시편의 크기가 증가함에 따라 작업의 편의성을 감소시키는 문제점이 있다.On the other hand, a CIP mold is required for CIP processing, which reduces the convenience of work as the size of the specimen increases.

따라서, 본 발명에서는 시편을 완전히 소결시키기 전에 시편과 동일한 조성물로 구성된 미립자를 함침시키고, 함침이 수행된 후에 CIP 처리를 수행할 수 있다. 이에 따라 CIP 처리에 의한 균일성 향상 효과와 함께, 작업의 편의성을 확보할 수 있다.Therefore, in the present invention, before the specimen is completely sintered, the fine particles composed of the same composition as the specimen are impregnated, and the CIP treatment can be performed after the impregnation is performed. Accordingly, it is possible to secure the convenience of work together with the effect of improving the uniformity by CIP treatment.

내플라즈마성 엣지링 제조방법Plasma resistant edge ring manufacturing method

구체적으로, 본 발명의 일실시예에 따른 내플라즈마성 엣지링 제조방법은 a) 탄화규소(SiC), 탄화붕소(B4C) 및 질화규소(Si3N4)로 이루어지는 군에서 선택되는 1종 이상의 시료를 전처리 하여 과립화 분말을 제조하는 단계; b) 프리프레스(PrePress)를 통해 상기 과립화 분말을 사전성형하여 세라믹 시편으로 제조하는 단계; c) 상기 세라믹 시편을 냉간 등방압 가압(Cold Isostatic Pressing, CIP) 처리하여 시편의 밀도 편차를 제거하는 단계; 및 d) 상기 시편을 몰드 내에 적층하여 열간가압 소결하는 단계; 를 포함할 수 있다.Specifically, the plasma-resistant edge ring manufacturing method according to an embodiment of the present invention is a) one selected from the group consisting of silicon carbide (SiC), boron carbide (B 4 C) and silicon nitride (Si 3 N 4 ) Preparing a granulated powder by pre-processing the above sample; b) preparing a ceramic specimen by pre-molding the granulated powder through a prepress; c) removing the density variation of the ceramic specimen by cold isostatic pressing (CIP) treatment; and d) stacking the specimens in a mold and performing hot-press sintering; can include

먼저, 탄화규소(SiC), 탄화붕소(B4C) 및 질화규소(Si3N4)로 이루어지는 군에서 선택되는 1종 이상의 시료를 전처리 하여 과립화 분말을 제조한다(단계 a).First, at least one sample selected from the group consisting of silicon carbide (SiC), boron carbide (B 4 C) and silicon nitride (Si 3 N 4 ) is pretreated to prepare granulated powder (step a).

탄화규소(SiC), 탄화붕소(B4C) 및 질화규소(Si3N4)는 비산화물계 구조재료로서, 고강도, 고경도 및 내마모성 등의 기계적 특성과 함께 내산화성, 내부식성, 낮은 열전도성 및 열팽창계수에 의한 높은 내열충격성, 고온강도 등의 열적특성을 갖는 세라믹스의 주요 소재이다. 특히, 상기 비산화물계 구조재료는 재료 특성상 강한 공유결합을 이루고 있고, 입계의 에너지가 클 뿐만 아니라 입계의 확산속도가 낮아 소결을 통한 성형에 상당한 어려움이 있다. Silicon carbide (SiC), boron carbide (B 4 C) and silicon nitride (Si 3 N 4 ) are non-oxide-based structural materials that have mechanical properties such as high strength, high hardness and wear resistance, as well as oxidation resistance, corrosion resistance, and low thermal conductivity. It is a main material of ceramics having thermal properties such as high thermal shock resistance and high temperature strength due to thermal expansion coefficient. In particular, the non-oxide-based structural material forms a strong covalent bond due to its material characteristics, has high grain boundary energy and low grain boundary diffusion rate, making it difficult to form through sintering.

한편, 본 발명의 일실시예에 따르면, 상기 비산화물계 구조재료로서 탄화규소(SiC), 탄화붕소(B4C) 및 질화규소(Si3N4)로 이루어지는 군에서 선택되는 1종 이상의 시료를 전처리 하여 과립화 분말로 제조한다. 특히, 상기 시료를 과립화 분말로 제조하는 것은 과립화 형태는 분말 형태의 흐름성을 높일 수 있고 그로 인하여 프리프레스 공정 진행시 원활한 공정 진행을 하기 위함이며, 과립화 분말로 제조하기 위해 시료에 소포제, 이형제 및 바인더를 첨가하여 제조함으로써 약 10 내지 100㎛ 입경을 가지는 과립화 분말로 제조할 수 있다. On the other hand, according to an embodiment of the present invention, as the non-oxide-based structural material, at least one sample selected from the group consisting of silicon carbide (SiC), boron carbide (B 4 C) and silicon nitride (Si 3 N 4 ) is pretreated to obtain It is prepared as a granulated powder. In particular, the preparation of the sample with granulated powder is to increase the flowability of the powder form in the granulated form, thereby smoothing the process during the pre-press process, and to prepare the sample with granulated powder, the antifoaming agent is added to the sample. , It can be prepared into granulated powder having a particle diameter of about 10 to 100㎛ by adding a release agent and a binder.

다음으로, 프리프레스(PrePress)를 통해 상기 과립화 분말을 사전성형하여 세라믹 시편으로 제조한다(단계 b).Next, the granulated powder is pre-molded through a prepress to prepare a ceramic specimen (step b).

상기 단계의 프리프레스는 균일성이 확보된 다수의 사전성형 시편을 제조하기 위해 수행되는 과정으로서, 상기 과정을 통해 사전성형된 시편을 이용하여 후술할 열간가압 소결 가공하는 경우, 종래의 시료 분말을 바로 사용하는 방법 대비 몰드 내 30 내지 60%의 추가 공간 확보가 가능하여 1회 공정 당 최소 2수 이상의 엣지링을 제조할 수 있게 되며, 열간가압 소결 가공 시 불순물 이입을 효과적으로 방지할 수 있고, 또한 소결 가공 후 와이어 커팅 등 별도의 후가공 공정을 최소화할 수 있게 되는 효과가 있다.The prepress in the above step is a process performed to manufacture a plurality of preformed specimens with uniformity secured. In the case of hot press sintering, which will be described later, using the specimens preformed through the above process, the conventional sample powder It is possible to secure an additional space of 30 to 60% in the mold compared to the method used immediately, so that at least two edge rings can be manufactured per one process, and the inflow of impurities can be effectively prevented during hot press sintering. There is an effect of minimizing a separate post-processing process such as wire cutting after sintering.

한편, 본 단계의 프리프레스는 먼저 프리프레스용 몰드를 준비하고, 상기 a 단계에서 제조된 시료의 과립화 분말을 상기 몰드 내에 충진하고 레벨링(leveling) 한 후, 일축 가압하여 수행될 수 있다(도 1 참조). Meanwhile, the prepress of this step may be performed by first preparing a mold for prepress, filling and leveling the granulated powder of the sample prepared in step a in the mold, and then pressing one axis (Fig. 1).

구체적으로, 상기 과정은 몰드 내에 과립화 분말을 충진한 다음 상단면의 평탄화를 통하여 균일한 시료를 충진하되, 부분적인 가압이나 덜어냄 없이 분말의 자체 중량만으로 충진한 후, 불필요한 상단 부분을 밀어내는 방식으로 수행될 수 있다.Specifically, the process is to fill the granulated powder in the mold and then fill the uniform sample through flattening of the upper surface, but only by the weight of the powder without partial pressure or removal, and then push the unnecessary upper part. can be done in this way.

다음으로, 상기 충진된 과립화 분말에 대하여 일축 가압함으로써 사전성형된 시편을 제조하며, 상기 가압 조건은 50 내지 150 kg/cm2 범위 내로 가압하여 수행되는 것일 수 있다.Next, a pre-molded specimen is prepared by uniaxially pressing the filled granulated powder, and the pressing condition may be performed by pressing within a range of 50 to 150 kg/cm 2 .

다음으로, 상기 세라믹 시편을 냉간 등방압 가압(Cold Isostatic Pressing, CIP) 처리하여 시편의 밀도 편차를 제거한다(단계 c).Next, the ceramic specimen is treated with Cold Isostatic Pressing (CIP) to remove density variation of the specimen (step c).

상기 냉간 등방압 가압은 상기 b 단계를 통해 얻어진 사전성형된 시편에 대하여 시편의 이물을 제거하고, 시편의 밀도 편차를 최소화하여 후술할 열간가압 소결 가공 시 시편의 뒤틀림을 효과적으로 방지하도록 하기 위해서 수행되는 것일 수 있다. The cold isostatic pressing is performed to effectively prevent distortion of the specimen during hot pressing sintering to be described later by removing foreign matter from the specimen and minimizing the density deviation of the specimen with respect to the preformed specimen obtained through step b. it could be

구체적으로, 본 단계의 냉간 등방압 가압 방법은 시편의 밀도를 균일화하기 위하여 액체를 압력 매체로 1,000 내지 2,000 bar에서 1 내지 10분, 상세하게는 5 분 가압하여 수행되는 것일 수 있으며, 상기 과정을 통해, 사전성형된 시편은 모든 방향에서 균일한 압력을 받아 제품 간 밀도 편차가 최소화되게 된다. Specifically, the cold isostatic pressing method of this step may be performed by pressurizing a liquid as a pressure medium at 1,000 to 2,000 bar for 1 to 10 minutes, specifically 5 minutes, in order to homogenize the density of the specimen. Through this, the preformed specimen is subjected to uniform pressure in all directions, and the density deviation between products is minimized.

한편, 상기 단계를 통해 사전성형된 시편 상의 이물이 제거되며, 균일한 형태의 사전성형 시편을 얻을 수 있게 된다. 또한, 상기 단계를 통해 얻은 다수의 시편은 시편간 접합 방지를 위하여 카본시트 부재를 이용하여 시편과 시편 사이에 카본시트 부재를 삽입하여 분리를 용이하게 할 수 있으며, 상기 적층된 형태 그대로 후술할 열간가압 소결을 위한 몰드 내로 투입될 수도 있다(도 2 참조).Meanwhile, foreign matter on the preformed specimen is removed through the above steps, and a preformed specimen having a uniform shape can be obtained. In addition, the plurality of specimens obtained through the above step can be easily separated by inserting a carbon sheet member between specimens using a carbon sheet member to prevent bonding between specimens, and the laminated form will be described later by hot It may also be put into a mold for pressure sintering (see FIG. 2).

다음으로, 상기 c 단계에서 얻은 시편을 몰드 내에 적층하여 열간가압 소결한다(단계 d).Next, the specimen obtained in step c is laminated in a mold and hot-pressed sintered (step d).

한편, 세라믹스 등을 주재로 하여 이론밀도에 달하는 치밀한 소결체를 얻기 위한 소결성형 방법으로는 상압소결법, 반응소결법, 재결정법, 산화물결합법, 및 열간가압소결법 등이 있다.On the other hand, sintering molding methods for obtaining a dense sintered body reaching theoretical density using ceramics as a main material include atmospheric pressure sintering, reactive sintering, recrystallization, oxide bonding, and hot pressure sintering.

본 발명에서는 소결체 제조를 위해 난소결성인 비산화물계 세라믹스를 소결조제가 없거나 최소의 첨가량으로 상압소결보다 낮은 온도에서 이론밀도에 가까운 치밀화를 달성할 수 있게 하는 열간가압 소결법을 사용할 수 있다.In the present invention, a hot press sintering method capable of achieving densification close to theoretical density at a lower temperature than normal pressure sintering can be used to manufacture a sintered body without sintering aid or with a minimum amount of non-oxide-based ceramics.

구체적으로, 상기 c 단계에서 얻은 시편을 퍼니스(furnace) 내에 구비된 몰드 내에 장입하고, 1900 내지 2100℃ 범위의 온도 및 50kgf/cm2 내지 220kgf/cm2 압력 조건으로, 더욱 상세하게는 2100℃온도 및 186 kgf/cm2 압력 조건으로 1축 가압하여 소결체를 형성할 수 있다. Specifically, the specimen obtained in step c is loaded into a mold provided in a furnace, and at a temperature in the range of 1900 to 2100 ° C and a pressure of 50 kgf / cm 2 to 220 kgf / cm 2 , more specifically at a temperature of 2100 ° C And 186 kgf / cm 2 It is possible to form a sintered body by uniaxially pressing under a pressure condition.

한편, 상기 단계에서 사용되는 몰드는 소결체 제조를 위한 구성으로서, 일례로 그라파이트(graphite) 재질인 것이 사용될 수 있고, 복수개의 시편을 동시에 소결할 수 있는 다층 적층 구조의 몰드 내에서 수행될 수 있다. On the other hand, the mold used in the step is a configuration for manufacturing a sintered body, for example, a graphite material may be used, and it may be performed in a mold of a multi-layered structure capable of simultaneously sintering a plurality of specimens.

보다 상세하게 설명하면, 본 발명의 일실시예에 따른 몰드는 최외곽 외주면에 구비되는 몰드다이, 상기 몰드다이 내측에 구비되는 외부슬리브, 상기 외부슬리브 내측에 외부슬리브와 소정간격 이격되어 배치되는 내부슬리브, 상기 내부슬리브 내에 배치되는 코어, 상기 외부슬리브와 내부슬리브 사이의 이격된 공간의 상단에 형성되는 상부 펀치, 및 상기 이격된 공간의 하단에 형성되는 하부 펀치를 포함하는 하나 이상의 몰드 유닛(unit)과, 상기 하나 이상의 몰드 유닛의 상부 및 하부에 각각 형성되는 베이스를 포함할 수 있다.More specifically, the mold according to an embodiment of the present invention includes a mold die provided on the outermost outer circumferential surface, an outer sleeve provided inside the mold die, and an inner spaced apart from the outer sleeve at a predetermined interval inside the outer sleeve. At least one mold unit including a sleeve, a core disposed in the inner sleeve, an upper punch formed at an upper end of the spaced apart space between the outer sleeve and the inner sleeve, and a lower punch formed at a lower end of the spaced space. ), and bases respectively formed on the top and bottom of the one or more mold units.

구체적으로, 도 3에서 도시된 바와 같이, 본 발명의 일실시예에 따른 다층 적층 구조의 몰드는 상부베이스 및 하부베이스 사이에 2개의 몰드 유닛이 구비되고, 상기 2개의 몰드 유닛 사이에는 결합베이스가 구비되며, 상기 결합베이스를 경계로 각각의 몰드 유닛(unit)이 배치된다. 한편, 본 발명의 또 다른 일실시예에 따른 몰드는 2개 이상의 몰드 유닛(unit)을 포함할 수 있으며, 이 경우 상기 몰드 유닛은 상술한 바와 마찬가지로 결합베이스를 경계로 적층되어 배치될 수 있고, 결합베이스는 각 몰드 유닛 사이마다 구비되는 것일 수 있다. Specifically, as shown in FIG. 3, in the mold of the multi-layered structure according to an embodiment of the present invention, two mold units are provided between an upper base and a lower base, and a bonding base is provided between the two mold units. It is provided, and each mold unit (unit) is disposed on the boundary of the coupling base. Meanwhile, a mold according to another embodiment of the present invention may include two or more mold units, and in this case, the mold units may be stacked and disposed with the bonding base as a boundary as described above, The bonding base may be provided between each mold unit.

한편, 상기 슬리브는 사다리꼴의 단면 형상을 가지는 것으로서 소결체의 탈형을 용이하게 하기 위해 구비되는 것이며 분할된 구조일 수 있고, 다이와 소결체를 직접적으로 접촉하지 않도록 하며, 분리가 용이하고 교체가 가능한 특징이 있다. 한편, 코어는 내부슬리브를 고정하기 위해 구비되는 것으로서, 소결체 냉각에 따른 열팽창 차이에서 오는 결함을 감소시키는 특징을 가지며, 본 발명의 일실시예에 따른 코어는 4분할 또는 6분할 구조를 가지는 것일 수 있고, 이 경우 내부 코어 탈형이 용이해지므로 탈형 시 소결체의 파손을 효과적으로 방지할 수 있게 된다. On the other hand, the sleeve has a trapezoidal cross-sectional shape and is provided to facilitate demolding of the sintered body, may have a divided structure, prevent direct contact between the die and the sintered body, and is easy to separate and replace. . On the other hand, the core is provided to fix the inner sleeve, and has a feature of reducing defects resulting from a thermal expansion difference due to cooling of the sintered body. The core according to an embodiment of the present invention may have a 4- or 6-part structure. In this case, since demolding of the inner core becomes easy, it is possible to effectively prevent breakage of the sintered body during demolding.

한편, 펀치는 소결체 제조시 목적하는 형태에 따라 상부 펀치와 하부 펀치 간 간격 조절을 통해 소결체를 원하는 형태로 형성하게 하는 역할을 수행한다. On the other hand, the punch serves to form the sintered body in a desired shape by adjusting the distance between the upper punch and the lower punch according to the desired shape when manufacturing the sintered body.

한편, 상기 코어 내부에는 홀(hole)이 형성될 수 있으며, 코어 내부에 홀이 형성되는 경우 소결체 소결 후 냉각 시 수축스트레스를 감소시켜 소결체의 결함을 최소화시킨다. Meanwhile, a hole may be formed inside the core, and when the hole is formed inside the core, defects of the sintered body are minimized by reducing shrinkage stress during cooling after sintering the sintered body.

한편, 상기 몰드의 구성요소에는 카본 시트(미도시)를 추가로 구비할 수 있으며, 상기 카본 시트는 탈형을 쉽게 하고, 오염을 방지하며, 열팽창을 맞추기 위해 구비되는 것으로서, 구체적으로 0.5mm 내지 5mm 두께 범위의 카본 시트가 사용될 수 있다. Meanwhile, a carbon sheet (not shown) may be additionally provided as a component of the mold, and the carbon sheet is provided to facilitate demolding, prevent contamination, and match thermal expansion, and specifically has a thickness of 0.5 mm to 5 mm. A range of thicknesses of carbon sheet may be used.

내플라즈마성 엣지링Plasma resistant edging

한편, 본 발명의 일실시예에 따른 내플라즈마성 엣지링 제조방법에 따라 제조되는 내플라즈마성 엣지링의 소결 밀도는 이론값 대비 95내지 99.9%일 수 있고, 이러한 특성에 의해, 내플라즈마성이 및 내식각성이 이 매우 우수한 효과가 있다. On the other hand, the sintered density of the plasma-resistant edge ring manufactured according to the plasma-resistant edge ring manufacturing method according to an embodiment of the present invention may be 95 to 99.9% of the theoretical value, and due to these characteristics, the plasma resistance and corrosion resistance have this very excellent effect.

도 6에서는, 본 발명에서 제안하는 세라믹 복합체 제조방법이 도시된다.6 shows a method for manufacturing a ceramic composite according to the present invention.

도 6을 참조하면, 본 발명에 따른 세라믹 복합체 제조방법의 일 실시예는, 과립화 분말을 제조하는 단계(S601)와, 세라믹 시편을 제조하는 단계(S602), 시편을 몰드에 적층하는 단계(S603), 반소결 단계(S604), 함침단계(S605), 재소결 단계(S606)로 구성될 수 있다.Referring to FIG. 6 , an embodiment of the method for manufacturing a ceramic composite according to the present invention includes preparing granulated powder (S601), preparing a ceramic specimen (S602), and laminating the specimen in a mold (S602). S603), a semi-sintering step (S604), an impregnation step (S605), and a re-sintering step (S606).

구체적으로, 과립화 분말을 제조하는 단계(S601)에서는, 탄화규소(SiC), 탄화붕소(B4C) 및 질화규소(Si3N4)로 이루어지는 군에서 선택되는 1종 이상의 시료를 전처리할 수 있다. Specifically, in the step of preparing granulated powder (S601), one or more samples selected from the group consisting of silicon carbide (SiC), boron carbide (B 4 C) and silicon nitride (Si 3 N 4 ) may be pretreated. there is.

과립화 분말이 제조되면, 프리프레스(PrePress)를 통해 상기 과립화 분말을 사전성형하여 세라믹 시편으로 제조하는 단계(S602)가 수행될 수 있다. 이와 같이 제조된 세라믹 시편은 몰드 내에 적층될 수 있다(S603).When the granulated powder is prepared, a step (S602) of manufacturing the granulated powder into a ceramic specimen by pre-forming the granulated powder through a prepress may be performed. The ceramic specimen prepared in this way may be stacked in a mold (S603).

본 발명에 따른 세라믹 복합체 제조방법에서는, 적층된 시편 중 적어도 일부에 대해 소성을 수행하여 반소결시키는 단계(S604)를 수행할 수 있다.In the method for manufacturing a ceramic composite according to the present invention, a step (S604) of firing and semi-sintering at least a portion of the laminated specimens may be performed.

즉, 시편이 적층된 후 완전 소결을 수행하는 것이 아니라, 시편의 50% 내지 90%가 소결되도록 시편을 소성할 수 있다.That is, the specimens may be fired so that 50% to 90% of the specimens are sintered, rather than performing complete sintering after the specimens are laminated.

반소결 단계에서 열간가압을 할 경우, 다공체가 충분히 형성되지 않고, 반소결 대상체의 표면만 소결밀도가 증가되는 문제점이 발생할 수 있다. 따라서, 반소결 단계 이후 함침의 성공률을 증가시키기 위해서는, 소성을 수행하는 것이 적절하다.In the case of hot pressing in the semi-sintering step, a porous body is not sufficiently formed, and the sintering density of only the surface of the semi-sintered object may increase. Therefore, in order to increase the success rate of impregnation after the semi-sintering step, it is appropriate to perform firing.

일 예에서, 반소결 단계는, 시편의 50% 내지 90%가 소결되도록 시편을 소성함으로써 수행될 수 있다.In one example, the pre-sintering step may be performed by firing the specimen such that 50% to 90% of the specimen is sintered.

한편, 시편 중 적어도 일부가 소결된 상태에서, 시편에 소정의 첨가물을 함침시키는 단계(S605)가 수행될 수 있다.Meanwhile, in a state in which at least a part of the specimen is sintered, a step of impregnating the specimen with a predetermined additive (S605) may be performed.

마지막으로, 첨가물이 함침된 시편을 열간가압하여 재소결시키는 단계(S606)가 수행될 수 있다. 이때, 재소결은, 완전 소결이 수행되는 온도보다 낮은 온도에서 수행되는 것이 바람직하다.Finally, a step of hot-pressing and re-sintering the specimen impregnated with the additive (S606) may be performed. At this time, the re-sintering is preferably performed at a temperature lower than the temperature at which complete sintering is performed.

일 예에서, 함침되는 첨가물은, 시편과 동일한 재질로 구성될 수 있다. 보다 바람직하게는, 상기 첨가물은, 반소결된 시편의 미립자를 포함하여 구성될 수 있다.In one example, the impregnated additive may be made of the same material as the specimen. More preferably, the additive may include fine particles of the semi-sintered specimen.

다른 예에서, 함침되는 첨가물은, 저항체용 산화물, 도전체용 붕소화합물 및 전도성 금속 중 적어도 하나를 포함할 수 있다. 특히, 첨가물은, 탄화규소(SiC), 티타늄 디보라이드(TiB2),산화세라믹(ZrO2),이트륨(Y2O3), 티타늄(Ti), 철(Fe) 및 알루미늄(Al) 중 적어도 하나를 포함할 수 있다.In another example, the impregnated additive may include at least one of an oxide for a resistor, a boron compound for a conductor, and a conductive metal. In particular, the additive is at least one of silicon carbide (SiC), titanium diboride (TiB 2 ), ceramic oxide (ZrO 2 ), yttrium (Y 2 O 3 ), titanium (Ti), iron (Fe) and aluminum (Al). may contain one.

다른 실시예에서, 반소결 단계는, 소결체 표면으로부터 소정의 보론산화물을 제거하는 단계를 더 포함할 수 있다.In another embodiment, the semi-sintering step may further include removing a predetermined amount of boron oxide from the surface of the sintered body.

이상으로 설명한 본 발명의 내플라즈마성 엣지링 제조방법에 의하면, 프리프레스 과정을 통해 균일성이 확보된 다수의 사전성형 시편을 이용하여 엣지링을 제조할 수 있게 되므로, 열간가압 소결 가공 시 시료 분말을 바로 사용하는 경우 대비 몰드 내 30 내지 60%의 추가 공간 확보가 가능하여 1회 공정 당 최소2배수 이상의 엣지링을 제조할 수 있게 되며, 불순물 이입을 방지할 수 있고, 또한, 소결 가공 후 와이어 컷팅 등 별도의 후가공 과정이 최소화되는 효과가 있다. According to the plasma-resistant edge ring manufacturing method of the present invention described above, since it is possible to manufacture edge rings using a plurality of pre-formed specimens whose uniformity is secured through the pre-press process, sample powder during hot press sintering It is possible to secure 30 to 60% of additional space in the mold compared to the case of using directly, making it possible to manufacture at least twice as many edge rings per process, to prevent the inflow of impurities, and also to wire after sintering. There is an effect that separate post-processing processes such as cutting are minimized.

또한, 본 발명의 내플라즈마성 엣지링 제조방법에 의하면, 프리프레스 과정에 의해 사전성형된 시편에 대해 냉간 등방압 가압 처리를 수행함으로써, 시편의 이물을 제거하고, 시편의 밀도 편차를 최소화하여 열간가압 소결 가공 시 시편의 뒤틀림을 효과적으로 방지할 수 있으며, 이에 따라 열간가압 소결 가공을 통해 제조된 엣지링의 소결 밀도가 이론값 대비 95 내지 99.9%에 해당하여 편차가 최소화되는 효과가 있다. In addition, according to the plasma-resistant edge ring manufacturing method of the present invention, by performing a cold isostatic pressure treatment on the specimen preformed by the prepress process, foreign matter is removed from the specimen, and the density deviation of the specimen is minimized to minimize the hot It is possible to effectively prevent the distortion of the specimen during the pressure sintering process, and accordingly, the sintered density of the edge ring manufactured through the hot pressure sintering process corresponds to 95 to 99.9% of the theoretical value, thereby minimizing the deviation.

이하 발명의 구체적인 실시예를 통해 발명의 작용, 효과를 보다 구체적으로 설명하기로 한다. 다만, 이는 발명의 예시로서 제시된 것으로 이에 의해 발명의 권리범위가 어떠한 의미로든 한정되는 것은 아니다.Hereinafter, the action and effect of the invention will be described in more detail through specific examples of the invention. However, this is presented as an example of the invention, and thereby the scope of the invention is not limited in any sense.

실시예 1Example 1

탄화붕소 분말 1000 g을 준비하고, 여기에 소포제로서 CONTRASPUM 를 2 g, 이형제로서 에틸렌글리콜를 10 g, 바인더로서 폴리비닐알코올 를 30g 혼합한 다음 액상볼밀 혼합 후 스프레이 드라이하여 전처리 함으로써 과립화된 탄화붕소 분말을 얻었다.Prepare 1000 g of boron carbide powder, mix 2 g of CONTRASPUM as an antifoaming agent, 10 g of ethylene glycol as a mold release agent, and 30 g of polyvinyl alcohol as a binder, and then mix with a liquid ball mill and pre-treat by spray drying to obtain granulated boron carbide powder got

다음으로, 상기 과립화된 탄화붕소 분말을 준비된 프리프레스용 몰드에 충진하고 레벨링을 수행한 후, 80 kg/cm2으로 일축가압하여 탄화붕소 시편을 제작하고 이를 3층으로 적층하여 준비하였다.Next, the granulated boron carbide powder was filled into a prepared prepress mold, leveled, and uniaxially pressed at 80 kg/cm2 to prepare a boron carbide specimen, which was laminated in three layers.

다음으로, 상기 적층된 탄화붕소 시편을 CIP 장치를 이용하여 1500 bar 조건 하에서 5 분간 가압하여 냉간 등방압 가압 공정을 수행하였다. Next, the laminated boron carbide specimen was pressurized for 5 minutes under a condition of 1500 bar using a CIP device to perform a cold isostatic pressing process.

다음으로, 상기 단계를 통해 얻은 시편을 열간가압을 위한 몰드 내에 장입하고, 2100℃온도 및 186 kgf/cm2 압력 조건으로 1축 가압하여 소결체를 형성하였다. 상기 소결체는 별도의 후가공 과정 없이 플라즈마 장치 내의 커버링 어셈블리를 구성하는 엣지링 제품으로 사용할 수 있다. Next, the specimen obtained through the above step was loaded into a mold for hot pressing, and uniaxially pressed under conditions of a temperature of 2100° C. and a pressure of 186 kgf/cm2 to form a sintered body. The sintered body can be used as an edge ring product constituting a covering assembly in a plasma device without a separate post-processing process.

비교예 1Comparative Example 1

실시예 1과 동일한 방법으로 내플라즈마성 엣지링용 소결체로 제조하되, In the same manner as in Example 1, a plasma-resistant sintered body for edge ring was prepared,

실시예 1에서 제작된 과립화 분말로 mold 내부에 충진 후 열간가압을 위한 몰드 내에 장입하고, 2100℃온도 및 186 kgf/cm2 압력 조건으로 1축 가압하여 소결체를 형성하였다.After filling the inside of the mold with the granulated powder prepared in Example 1, it was charged into the mold for hot pressing, and uniaxially pressed under conditions of a temperature of 2100 ° C and a pressure of 186 kgf / cm2 to form a sintered body.

실시예1Example 1 비교예1Comparative Example 1 두께편차thickness deviation 0.10.1 0.50.5 밀도편차density deviation 0.2%0.2% 0.5%0.5%

a0: 과립화된 시료 분말 m: 프리프레스용 몰드
a: 사전성형된 시편 r: 평탄화수단
b: 카본시트
110: 몰드다이 120: 외부슬리브
130: 내부슬리브 140: 코어
150: 상부펀치 160: 하부펀치
20: 결합베이스 30: 상부베이스
40: 하부베이스
a0: granulated sample powder m: mold for prepress
a: preformed specimen r: flattening means
b: carbon sheet
110: mold die 120: outer sleeve
130: inner sleeve 140: core
150: upper punch 160: lower punch
20: combined base 30: upper base
40: lower base

Claims (7)

a) 탄화규소(SiC), 탄화붕소(B4C) 및 질화규소(Si3N4)로 이루어지는 군에서 선택되는 1종 이상의 시료를 전처리 하여 과립화 분말을 제조하는 단계;
b) 프리프레스(PrePress)를 통해 상기 과립화 분말을 사전성형하여 세라믹 시편으로 제조하는 단계;
c) 상기 시편을 몰드 내에 적층하는 단계;
d) 적층된 상기 시편 중 적어도 일부에 대해 소성을 수행하여 반소결시키는 단계;
e) 상기 시편 중 적어도 일부가 소결된 상태에서, 상기 시편에 소정의 첨가물을 함침시키는 단계; 및
f) 상기 첨가물이 함침된 시편을 열간가압하여 재소결시키는 단계;를 포함하고,
상기 첨가물은,
상기 시편과 동일한 재질로 구성되는 것을 특징으로 하는 세라믹 복합체 제조방법.
a) preparing a granulated powder by pre-treating at least one sample selected from the group consisting of silicon carbide (SiC), boron carbide (B 4 C) and silicon nitride (Si 3 N 4 );
b) preparing a ceramic specimen by pre-molding the granulated powder through a prepress;
c) laminating the specimen in a mold;
d) firing and semi-sintering at least a portion of the laminated specimens;
e) impregnating a predetermined additive into the specimen while at least a part of the specimen is sintered; and
f) hot-pressing and re-sintering the specimen impregnated with the additive;
The additives are
Ceramic composite manufacturing method, characterized in that composed of the same material as the specimen.
삭제delete 삭제delete 삭제delete 제 1 항에 있어서,
상기 d 단계의 반소결은, 상기 시편의 소결밀도가 50% 내지 90%가 되도록 상기 시편을 소성함으로써 수행되는 것을 특징으로 하는 세라믹 복합체 제조방법.
According to claim 1,
The semi-sintering of step d is a ceramic composite manufacturing method, characterized in that carried out by firing the specimen so that the sintered density of the specimen is 50% to 90%.
삭제delete 삭제delete
KR1020200005486A 2020-01-15 2020-01-15 Plasma resistant material with added fine particles and manufacturing method thereof KR102541331B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200005486A KR102541331B1 (en) 2020-01-15 2020-01-15 Plasma resistant material with added fine particles and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200005486A KR102541331B1 (en) 2020-01-15 2020-01-15 Plasma resistant material with added fine particles and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20210092370A KR20210092370A (en) 2021-07-26
KR102541331B1 true KR102541331B1 (en) 2023-06-09

Family

ID=77124782

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200005486A KR102541331B1 (en) 2020-01-15 2020-01-15 Plasma resistant material with added fine particles and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102541331B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102488114B1 (en) * 2021-12-15 2023-01-12 비씨엔씨 주식회사 Wafer retaining ring for semiconductor manufacturing process with reduced etch rate
CN117326871B (en) * 2023-12-01 2024-02-09 浙江吉成新材股份有限公司 Boron carbide nozzle and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080422A (en) 1998-07-10 2000-03-21 Honda Motor Co Ltd Gradient functional complex material and its preparation
JP2005112658A (en) * 2003-10-07 2005-04-28 Chubu Electric Power Co Inc Method of manufacturing metal oxide sintered compact, and metal oxide sintered compact
KR101496330B1 (en) 2013-08-29 2015-03-02 (주) 이노쎄라 Method of fabricating silicon carbide sintered body having single-heterojunction structure and silicon carbide sintered body fabricated by the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123391B1 (en) * 2009-08-19 2012-03-23 한국세라믹기술원 Method for manufacturing high density boroncarbide sintered body
KR101981543B1 (en) * 2017-04-25 2019-05-27 한국기계연구원 Pressureless sintering method of alumina-silicon carbide composites

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000080422A (en) 1998-07-10 2000-03-21 Honda Motor Co Ltd Gradient functional complex material and its preparation
JP2005112658A (en) * 2003-10-07 2005-04-28 Chubu Electric Power Co Inc Method of manufacturing metal oxide sintered compact, and metal oxide sintered compact
KR101496330B1 (en) 2013-08-29 2015-03-02 (주) 이노쎄라 Method of fabricating silicon carbide sintered body having single-heterojunction structure and silicon carbide sintered body fabricated by the same

Also Published As

Publication number Publication date
KR20210092370A (en) 2021-07-26

Similar Documents

Publication Publication Date Title
EP1930306A1 (en) Ceramics composite member and method of producing the same
KR102541331B1 (en) Plasma resistant material with added fine particles and manufacturing method thereof
KR100543735B1 (en) Ceramic sintered bodies and a method of producing the same
CN115551818A (en) Method for producing ceramic sintered body and ceramic sintered body
KR20210120847A (en) Stacked structure and semiconductor manufacturing apparatus member
KR101981543B1 (en) Pressureless sintering method of alumina-silicon carbide composites
KR102310046B1 (en) Mould of multi-layered structure for hot press sintering
KR102145545B1 (en) Method and apparatus of hot pressure sintering
KR20220144859A (en) Multilayer composite ceramic plate and method for manufacturing the same
KR101630826B1 (en) manufacturing method of high strength ceramic sheet for firing electronic ceramic and high strength ceramic sheet manufactured by the same
KR102487220B1 (en) Uniformly doped plasma resistant material and manufacturing method thereof
US7964296B2 (en) High-volume, fully dense silicon nitride monolith and method of making by simultaneously joining and hot pressing a plurality of RBSN parts
KR102427219B1 (en) Manufacturing method for plasma resistance edge ring using prepress and the plasma resistance edge ring using thereof
JP4596855B2 (en) Metal-ceramic composite structure and electrode member for plasma generation comprising the same
KR102249470B1 (en) Method for manufacturing high density boron carbide ceramic with suppressed particle growth ceramic
JP7216611B2 (en) Manufacturing method of SiC sintered member
KR20230077625A (en) Edge ring for semiconductor manufacturing process with dense boron carbide layer advantageous for minimizing particle generation, and the manufacturing method for the same
KR0139551B1 (en) Proce ss for simultaneously producing a number of ceramic sintered body by hot pressing method
KR102352039B1 (en) Manufacturing Method Edge Ring of Electrostatic Chuck and Electrostatic Chuck Comprising Same
US20140072469A1 (en) Inert high hardness material for tool lens production
JP2007070142A (en) Plasma-resistant electrode-buried body, and method for producing the same
KR20210103382A (en) Ceramic component and plasma etcher applied the same
JP3035230B2 (en) Manufacturing method of multilayer ceramics
KR101547850B1 (en) Manufacturing method for reaction bonded silicon carbide with multi layer and different composites
JP7280059B2 (en) Method for manufacturing electrode-embedded member

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right