KR102531212B1 - 동시 판독을 위해 다수 마이크로볼로미터를 선택하는 방법 및 장치 - Google Patents

동시 판독을 위해 다수 마이크로볼로미터를 선택하는 방법 및 장치 Download PDF

Info

Publication number
KR102531212B1
KR102531212B1 KR1020207021987A KR20207021987A KR102531212B1 KR 102531212 B1 KR102531212 B1 KR 102531212B1 KR 1020207021987 A KR1020207021987 A KR 1020207021987A KR 20207021987 A KR20207021987 A KR 20207021987A KR 102531212 B1 KR102531212 B1 KR 102531212B1
Authority
KR
South Korea
Prior art keywords
microbolometers
microbolometer
switches
reading
control signal
Prior art date
Application number
KR1020207021987A
Other languages
English (en)
Other versions
KR20200101976A (ko
Inventor
브라이언 비. 시모론
나심 와이. 아지즈
Original Assignee
텔레다인 플리어, 엘엘시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 텔레다인 플리어, 엘엘시 filed Critical 텔레다인 플리어, 엘엘시
Publication of KR20200101976A publication Critical patent/KR20200101976A/ko
Application granted granted Critical
Publication of KR102531212B1 publication Critical patent/KR102531212B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/33Transforming infrared radiation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J5/22Electrical features thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/30Measuring the intensity of spectral lines directly on the spectrum itself
    • G01J3/36Investigating two or more bands of a spectrum by separate detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/20Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using resistors, thermistors or semiconductors sensitive to radiation, e.g. photoconductive devices
    • G01J2005/202Arrays

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

동시 판독을 위해 다수의 마이크로볼로미터 선택을 용이하게 하는 기술이 개시되어 있다. 일 예에서, 장치는 복수의 마이크로볼로미터를 포함한다. 복수의 마이크로볼로미터는 제 1 세트 및 제 2 세트의 직렬 연결된 마이크로볼로미터를 포함한다. 이 장치는 복수의 마이크로볼로미터를 선택적으로 단락시키도록 설정된 제 1 복수의 스위치를 더 포함한다. 이 장치는 복수의 마이크로볼로미터를 접지에 선택적으로 연결하도록 설정된 제 2 복수의 스위치를 더 포함한다. 이 장치는 복수의 마이크로볼로미터에 바이어스 신호를 선택적으로 제공하도록 설정된 제 3 복수의 스위치를 더 포함한다. 이 장치는 제 1 세트의 하나의 마이크로볼로미터와 제 2 세트의 하나의 마이크로볼로미터를 동시에 판독하도록 제 1 복수의 스위치, 제 2 복수의 스위치 및 제 3 복수의 스위치를 설정도록 구성된 처리 회로를 더 포함한다. 관련된 방법 및 시스템도 제공된다.

Description

동시 판독을 위해 다수 마이크로볼로미터를 선택하는 방법 및 장치
관련 출원에 대한 상호 참조
본 출원은 2017년 12월 29일자로 출원되고 발명의 명칭이 " 동시 판독을 위한 다수의 마이크로볼로미터(microbolometer) 선택"인 미국 임시 특허출원 제62/611,711호의 우선권의 이익을 주장하며, 이 문헌의 전체는 참고로 본 명세서에 포함된다.
미국 임시 특허출원 제62/611,711호는 2010년 3월 16일자로 공고된 발명의 명칭 "마이크로볼로미터 초점 평면 어레이 내에서 마이크로볼로미터들을 선택하는 시스템 및 방법"의 미국 특허 제7,679,04호와 2006년 4월 25일자 공고된 발명의 명칭 "마이크로볼로미터 초점 평면 어레이 시스템 및 방법"의 미국 특허 제7,034,301호와 관련이 있으며, 이 문헌들의 전체 내용은 참고로 본 명세서에 포함된다.
기술분야
하나 이상의 실시 예는 마이크로볼로미터 보다 구체적으로는, 예를 들면, 동시 판독을 위한 다수의 마이크로볼로미터 선택에 관한 것이다.
마이크로볼로미터 구조는 일반적으로 마이크로볼로미터들의 어레이를 형성하기 위해 모놀리식 실리콘 기판 상에 제조되며, 각 마이크로볼로미터는 2 차원 이미지의 일부를 생성하기 위한 픽셀로서 기능한다. 일부 경우에서, 각 마이크로볼로미터의 저항 변화는 판독 집적회로(ROIC)에 의해 시간 다중화된 전기 신호로 변환된다. ROIC와 마이크로볼로미터 어레이의 조합은 흔히 마이크로볼로미터 초점 평면 어레이(FPA: focal plane array)로 지칭된다.
하나 이상의 실시 예들에서, 장치는 복수의 마이크로볼로미터를 포함한다. 상기 복수의 마이크로볼로미터는 제1 세트의 직렬 연결된 마이크로볼로미터들 및 제2 세트의 직렬 연결된 마이크로볼로미터들을 포함한다. 상기 장치는 제1 복수의 스위치를 더 포함하고, 여기서 제1 복수의 스위치 각각은 복수의 마이크로볼로미터의 각 하나를 선택적으로 단락시키도록 구성된다. 상기 장치는 제2 복수의 스위치를 더 포함하고, 여기서 제2 복수의 스위치 각각은 복수의 마이크로볼로미터의 각 하나를 접지에 선택적으로 연결하도록 구성된다. 상기 장치는 제3 복수의 스위치를 더 포함하고, 여기서 제3 복수의 스위치 각각은 복수의 마이크로볼로미터의 각 하나에 바이어스 신호를 선택적으로 제공하도록 구성된다. 상기 장치는 상기 제1 세트의 하나의 마이크로볼로미터와 상기 제2 세트의 하나의 마이크로볼로미터를 동시에 판독하도록 제1 복수의 스위치, 제2 복수의 스위치 및 제3 복수의 스위치를 설정하는 처리 회로를 더 포함한다.
하나 이상의 실시 예에서, 본 발명의 방법은 복수의 마이크로볼로미터를 제공하는 단계를 포함한다. 상기 복수의 마이크로볼로미터는 제 1 세트의 직렬 연결된 마이크로볼로미터들 및 제 2 세트의 직렬 연결된 마이크로볼로미터들을 포함한다. 상기 방법은 제 1 세트의 제 1 마이크로볼로미터 및 제 2 세트의 제 1 마이크로볼로미터를 선택하는 단계를 더 포함한다. 상기 방법은, 제 1 세트의 상기 선택된 제 1 마이크로볼로미터 및 제 2 세트의 상기 선택된 제 1 마이크로볼로미터에 기초하여: 복수의 마이크로볼로미터 중 하나 이상을 선택적으로 단락시키도록 제 1 복수의 스위치를 설정하는 단계; 복수의 마이크로볼로미터 중 하나 이상을 접지 세트에 선택적으로 연결하도록 제 2 복수의 스위치를 설정하는 단계; 및 복수의 마이크로볼로미터 중 하나 이상에 각각의 바이어스 신호를 선택적으로 제공하도록 제 3 복수의 스위치를 설정하는 단계를 포함한다. 상기 방법은 제 1 세트의 상기 선택된 제 1 마이크로볼로미터와 제 2 세트의 상기 선택된 제 1 마이크로볼로미터를 동시에 판독하는 단계를 더 포함한다.
본 발명의 범위는 청구항들에 의해 정의하며, 청구항들은 참조에 의해 이 부분에 포함된다. 본 발명의 부가적인 이점의 실현뿐만 아니라 본 발명의 실시 예들에 대한 보다 완전한 이해는 하나 이상의 실시 예들에 대한 다음의 상세한 설명을 고려함으로써 당업자에게 제공될 것이다. 먼저 간략하게 설명될 첨부 도면을 참조 할 것이다.
도 1은 본 개시의 하나 이상의 실시 예에 따른 예시적인 이미징 시스템의 블록도를 도시한다.
도 2는 본 개시의 하나 이상의 실시 예에 따른 예시적인 FPA의 블록도를 도시한다.
도 3a 내지 도 3f는 본 개시의 하나 이상의 실시 예에 따른 동시 판독을 위해 다수의 마이크로볼로미터 선택을 용이하게 하기 위한 마이크로볼로미터 줄(string) 및 관련된 선택 회로를 가진 회로의 예시적인 동작 시퀀스를 도시한다.
도 4는 본 개시의 하나 이상의 실시 예에 따른 마이크로볼로미터 줄의 동시 판독을 위해 다수의 마이크로볼로미터 선택을 용이하게 하기 위한 도 3a 내지 도 3f의 선택 회로에 대한 예시적인 타이밍도를 도시한다.
도 5a 내지 도 5f는 본 개시의 하나 이상의 실시 예에 따른 동시 판독을 위해 다수의 마이크로볼로미터 선택을 용이하게 하기 위한 마이크로볼로미터 줄 및 관련된 선택 회로를 갖는 회로의 동작 시퀀스를 도시한다.
도 6은 본 개시의 하나 이상의 실시 예에 따른 마이크로볼로미터 줄의 동시 판독을 위해 다수의 마이크로볼로미터 선택을 용이하게 하기 위한 도 5a 내지 도 5f의 선택 회로에 대한 예시적인 타이밍도를 도시한다.
도 7은 본 개시의 하나 이상의 실시 예에 따른 선택 회로에 대한 예시적인 타이밍도를 도시한다.
본 개시의 실시 예들 및 그들의 장점은 다음의 상세한 설명을 참조함으로써 가장 잘 이해된다. 하나 이상의 도면에 도시된 유사한 요소를 식별하기 위해 유사한 참조 번호가 사용됨을 이해해야 한다.
아래 설명된 상세한 설명은 주제 기술의 다양한 구성의 설명으로서 의도되며, 주제 기술이 실시될 수 있는 유일한 구성을 나타내기 위한 것은 아니다. 첨부된 도면은 본 명세서에 포함되며 상세한 설명의 일부를 구성한다. 상세한 설명은 주제 기술에 대한 철저한 이해를 제공하기 위한 특정 세부 사항을 포함한다. 그러나, 주제 기술은 본 명세서에 설명된 특정 세부 사항에 제한되지 않으며 하나 이상의 실시 예를 사용하여 실시될 수 있다는 것이 당업자에게 분명하고 명백할 것이다. 하나 이상의 예에서, 주제 기술의 개념을 모호하게 하는 것을 피하기 위해 구조 및 구성요소가 블록도 형태로 도시된다. 본 개시의 하나 이상의 실시 예는 하나 이상의 도면에 의해 도시되고 및/또는 설명되며 청구 범위에 기재된다. 도 1은 본 개시의 하나 이상의 실시 예에 따른 예시적인 이미징 시스템(100)(예를 들어, 열적 IR 이미징 시스템)의 블록도를 도시한다. 도시된 컴포넌트 모두가 필요한 것은 아니지만, 하나 이상의 실시 예는 도면에 도시되지 않은 추가 컴포넌트를 포함할 수 있다. 컴포넌트의 배열 및 유형의 변화는 본 명세서에 기재된 청구 범위의 사상 또는 범위를 벗어나지 않고서 이루어질 수 있다. 추가 컴포넌트, 상이한 컴포넌트 및/또는 더 적은 컴포넌트가 제공될 수도 있다.
이미징 시스템(100)은 적외선(IR) 이미징 장치(105), 처리 회로(120), 메모리(125), 디스플레이(130), 및/또는 기타 컴포넌트(135)를 포함한다. IR 이미징 장치(105)는 IR 이미지 검출기 회로(110)(예를 들어, 열적 IR 검출기 회로) 및 판독 회로(115)(예를 들어, ROIC)를 포함한다. 일부 양태에서, IR 이미지 검출기 회로(110)는 약 700 nm 내지 약 2 mm 범위 또는 그 일부의 파장을 갖는 IR 방사선을 캡처(예를 들어, 검출, 감지)할 수 있다. 예를 들어, 일부 양태에서, IR 이미지 검출기 회로(110)는 중파 IR(MWIR) 방사선(예를 들어, 2-5 pm의 파장을 갖는 전자기 방사선) 및/또는 장파 IR(LWIR) 방사선(예를 들어, 파장이 7-14 pm인 전자기 방사선), 또는 임의의 원하는 IR 파장(예를 들어, 일반적으로 0.7 내지 14 pm 범위)에 민감할 수 있다(예를 들어, 더 잘 검출할 수 있다).
IR 이미지 검출기 회로(110)는 장면(예를 들어, 실제 장면)과 관련된 IR 이미지를 캡처할 수 있다. IR 이미지를 캡처하기 위해, IR 이미지 검출기 회로(110)는 그 장면과 관련된 IR 이미지 데이터(140)(예를 들어, IR 방사선의 형태)를 검출하고 IR 이미지 데이터(140)에 기초하여 IR 이미지의 픽셀 값을 생성한다. IR 이미지는 IR 프레임 또는 IR 이미지 프레임으로 지칭될 수 있다. 일부 경우에, IR 이미지 검출기 회로(110)는 IR 방사선을 검출하고, 검출된 IR 방사선을 전기 신호(예를 들어, 전압, 전류 등)로 변환하고, 그 전기 신호에 기초하여 픽셀 값을 생성할 수있는 IR 검출기들의 어레이를 포함할 수 있다. 상기 어레이 내의 각각의 IR 검출기는 IR 이미지 데이터(140)의 각 부분을 캡처하고 IR 검출기에 의해 캡처된 각 부분에 기초하여 픽셀 값을 생성할 수 있다. IR 검출기에 의해 생성된 픽셀 값은 IR 검출기의 출력으로 지칭될 수 있다. IR 검출기는 검출기, 센서 또는 IR 센서로 지칭될 수 있다.
IR 이미지는, 픽셀들을 포함하고 IR 이미지 데이터(140)의 표현인 데이터 구조이거나 데이터 구조로 간주될 수 있으며, 각 픽셀은 픽셀 값을 가지며, 픽셀 값은 장면의 일부에서 방출되거나 반사되고 픽셀 값을 생성하는 IR 검출기에 의해 수신된 IR 방사선을 나타낸다. 맥락에 기초하여, 픽셀은 관련된 픽셀 값을 생성하는 IR 이미지 검출기 회로(110)의 IR 검출기 또는 생성된 픽셀 값들로부터 형성된 IR 이미지의 픽셀(예를 들어, 픽셀 위치, 픽셀 좌표)를 지칭할 수 있다. 일 양태에서, IR 이미지 검출기 회로(110)에 의해 생성된 픽셀 값들은 검출된 IR 방사선을 변환함으로써 획득된 전기 신호들에 기초하여 생성된 디지털 카운트 값들로 표현될 수 있다. 예를 들어, IR 이미지 검출기 회로(110)가 ADC(analog-to-digital converter) 회로를 포함하거나 아니면 ADC회로에 연결되는 경우, ADC 회로는 전기 신호에 기초하여 디지털 카운트 값을 생성할 수 있다. 14 비트를 사용하여 전기 신호를 나타낼 수 있는 ADC 회로의 경우 디지털 카운트 값의 범위는 0에서 16,383 사이일 것이다. 이러한 경우에, IR 검출기의 픽셀 값은 ADC 회로로부터 출력된 디지털 카운트 값일 수 있다. 다른 경우(예를 들어, ADC 회로가 없는 경우), 픽셀 값은 본질적으로 전기 신호의 값이거나 이를 나타내는 값을 갖는 아날로그일 수 있다. 일반적으로,더 많은 양의 IR 방사선이 입사되고 IR 이미지 검출기 회로(110)에 의해 검출되는 것은 더 높은 디지털 카운트 값 및 더 높은 온도와 관련된다.
판독 회로(115)는, IR 이미지 데이터(140)를 검출하는 IR 이미지 검출기 회로(110)와, 판독 회로(115)에 의한 판독으로서 상기 검출된 IR 이미지 데이터(140)를 처리하는 처리 회로(120) 사이의 인터페이스로서 이용될 수 있다. 이미지 캡처 프레임 속도(frame rate)는 IR 이미지가 IR 이미지 검출기 회로(110)에 의해 순차적으로 검출되어 판독 회로(115)에 의해 처리 회로(120)에 제공되는 속도(예를 들어, 초당 이미지)를 지칭할 수 있다. 판독 회로(115)는 적분 시간(integration time)(적분 기간으로도 지칭됨)에 따라 IR 이미지 검출기 회로(110)에 의해 생성된 픽셀 값들을 판독할 수 있다. 검출기에 대한 적분 시간은, 검출기에 충돌하는 입사 방사선이 신호가 판독되기 전에 저장되는 전자들로 변환되는 시간의 양에 상응할 수 있다(예를 들면, 개방 또는 단락되는 적분 캐패시터에서).
다양한 실시 예에서, IR 이미지 검출기 회로(110)와 판독 회로(115)의 조합은 FPA이거나, FPA를 포함하거나, 함께 FPA를 제공할 수도 있다. 일부 양태들에서, IR 이미지 검출기 회로(110)는 마이크로볼로미터들의 어레이를 포함할 수 있고, IR 이미지 검출기 회로(110)와 판독 회로(115)의 조합은 마이크로볼로미터 FPA로 지칭될 수 있다. 일부 경우에서, 마이크로볼로미터들의 어레이는 행과 열로 배열될 수 있다. 마이크로볼로미터는 IR 방사선을 검출하고 검출된 IR 방사선에 기초하여 픽셀 값을 생성할 수 있다. 예를 들어, 일부 경우에, 마이크로볼로미터는 열 에너지의 형태로 IR 방사선을 검출하고 검출된 열 에너지의 양에 기초하여 픽셀 값을 생성하는 열적 IR 검출기일 수 있다. 마이크로볼로미터 FPA는 비정질 실리콘(a-Si), 바나듐 산화물(VOx), 이들의 조합, 및/또는 다른 검출 재료와 같은 IR 검출 재료를 포함할 수 있다. 한 양태에서, 마이크로볼로미터 FPA의 경우, 적분 시간은 마이크로볼로미터가 바이어스되는 시간 간격이거나, 시간 간격을 나타낼 수 있다. 이 경우, 더 긴 적분 시간은 IR 신호의 더 높은 이득과 관련될 수 있지만, 더 많은 IR 방사선이 수집되지는 않는다. IR 방사선은 마이크로볼로미터들에 의해 열 에너지 형태로 수집될 수 있다.
일부 경우에, IR 이미징 장치(105)는 일부 파장의 IR 방사선을 통과하지만, 다른 파장의 IR 방사선을 실질적으로 차단하는 하나 이상의 필터를 포함할 수 있다(예를 들어 MWIR 필터, 열적 IR 필터, 및 협대역 필터). 이러한 필터는 IR 파장의 원하는 대역에 대한 감도를 증가시키기 위해 IR 이미징 장치(105)를 조정하는데 이용될 수 있다. 일 양태에서, IR 이미징 장치가 열적 IR 이미지를 캡처하기 위해 조정될 때, 상기 IR 이미징 장치는 열적 이미징 장치로 지칭될 수 있다. 상기 열적 범위 밖의 IR 이미지를 캡처하도록 조정된 IR 이미징 장치를 포함하는 다른 이미징 장치들은 비 열적(non-thermal) 이미징 장치로 지칭될 수 있다.
처리 회로(120)는 판독 회로(115)에서 수신된 픽셀 값들을 처리하기 위한 동작들을 수행할 수 있다. 비 제한적인 예로서, 처리 회로(120)는 픽셀 값들에 대해 불균일 보정(NUC: non-uniformity correction), 공간적 및/또는 시간적 필터링, 및/또는 방사선 변환(radiometric conversion)과 같은 동작을 수행할 수 있다. 처리 회로(120)는 중심 처리 장치(CPU), 그래픽 처리 장치(GPU), 디지털 신호 프로세서(DSP), 논리 장치, 마이크로 컨트롤러, 특정용도집적회로(ASIC), 프로그램 가능 논리 장치(PLD), 이들의 조합 및/또는 다른 장치와 같은 임의의 적절한 처리 장치로서 구현될 수 있다. 처리 회로(120)는 하드웨어 및 소프트웨어 처리 기능의 조합을 포함할 수 있고, 메모리에 저장된 소프트웨어 명령 및/또는 처리 파라미터(예를 들어, 필터링 계수, NUC 보정 항목(terms))와 같은 적절한 명령을 실행하기 위해 다른 컴포넌트가 제공되거나, 다른 컴포넌트에 제공되거나, 다른 컴포넌트와 통신 가능하게 연결될 수 있다. 다양한 실시 예에서, 처리 회로(120)는 본 명세서에 설명된 방식으로 다양한 방법, 프로세스 또는 동작을 수행하기 위해 메모리(125)에 저장된 소프트웨어 명령을 실행하도록 구성될 수 있다. 일부 양태들에서, 판독 회로(115) 및/또는 처리 회로(120)는 IR 이미지 검출기 회로(110)에 의해 캡처된 이미지 데이터의 판독을 용이하게 하기 위해 클록 신호들 및/또는 제어 신호들을 생성 및 제공하기 위한 회로를 포함하거나 그 회로에 연결될 수 있다. 일부 경우에, 클록 신호 및 제어 신호는 스위치들을 원하는 상태(예를 들어, 온 또는 오프 상태)로 설정하기 위한 적절한 타이밍을 제공할 수 있다.
메모리(125)는 이미징 시스템(100)의 동작을 용이하게 하기 위한 정보를 저장하기 위해 이용될 수 있다. 메모리(125)는 이미징 시스템(100)의 다양한 컴포넌트(예를 들어, 판독 회로(115) 및/또는 처리 회로(120))에 의해 실행되는 명령, 처리 동작(예를 들어, 마이크로볼로미터 스위칭 방식)과 관련된 파라미터, 이전에 생성된 이미지와 관련된 정보(예를 들어, 시간적 필터링을 위해), 및/또는 다른 정보와 같은 정보를 저장할 수 있다. 비 제한적인 예로서, 메모리(125)는 비 휘발성 메모리, 예를 들어, 판독 전용 메모리(ROM), 프로그램 가능 ROM(PROM), 소거 가능 프로그램 가능 ROM(EPROM), 전기 소거 가능 프로그램 가능 ROM(EEPROM), 플래시, 비 휘발성 랜덤 액세스 메모리(NVRAM) 등을 포함할 수 있다. 메모리(125)는 휘발성 메모리, 예를 들어, 랜덤 액세스 메모리(RAM), 동적 RAM(DRAM), 정적 RAM(SRAM) 등을 포함할 수 있다. 일부 양태에서, 메모리(125) 또는 그 일부는 이미징 시스템(100)의 외부에 있을 수 있다(예를 들어, 이미징 시스템(100)에 의해 액세스 가능한 외부 메모리).
디스플레이(130)(예를 들어, 스크린, 터치 스크린, 모니터) 캡처 및/또는 처리된 이미지 및/또는 다른 이미지, 데이터, 및/또는 정보(예를 들면, 이미지 내의 색과 온도를 관련시키는 범례)를 디스플레이하기 위해 사용될 수 있다. 예를 들어, 이미지(또는 이미지의 시각적 표현)는 개별 정적 이미지로서 및/또는 비디오 시퀀스 내의 일련의 이미지로서 디스플레이될 수 있다. 또한, 이미징 시스템(100)은 다른 컴포넌트(135)를 포함할 수 있다. 비 제한적인 예로서, 다른 컴포넌트(135)는, 클록, 배터리, 모션 센서, 온도 센서, 가시광 이미징 장치, 통신 컴포넌트, 및/또는 다른 컴포넌트와 같은 다양한 응용에 요구될 수 있는 이미징 시스템(100)의 임의의 특징을 구현하는 데 사용될 수 있다.
일 예로서, 모션 센서는 하나 이상의 가속도계, 자이로스코프, 및/또는 이미징 시스템(100)의 움직임을 검출하는데 사용될 수 있는 다른 적절한 장치에 의해 구현될 수 있다. 모션 센서에 의해 제공된 정보는, 예를 들어 장면 내의 모션과 이미징 시스템(100)의 모션 사이의 구별을 용이하게 함으로써, 처리 회로(120)에 의해 수행되는 이미지 처리 동작(예를 들어, 공간적 필터링, 시간적 필터링)을 용이하게 수 있다. 추가의 예로써, 통신 컴포넌트는 이미징 시스템(100) 내의 컴포넌트들 사이에 및/또는 이미징 시스템(100)과 다른 시스템들 사이에 유선 및/또는 무선 통신을 용이하게 할 수 있다. 통신 컴포넌트의 예는 범용 직렬 버스(USB), 이더넷, WiFi, 블루투스, 셀룰러, 적외선, 라디오, 및/또는 다른 유선 또는 무선 프로토콜을 사용하여 통신을 용이하게 하기 위한 컴포넌트(예를 들어, 인터페이스, 연결)를 포함할 수 있다.
도 2는 본 개시의 하나 이상의 실시 예에 따른 예시적인 FPA(200)의 블록도를 도시한다. 도시된 컴포넌트 모두가 필요한 것은 아니지만, 하나 이상의 실시 예는 도면에 도시되지 않은 추가 컴포넌트를 포함할 수 있다. 컴포넌트의 배열 및 유형의 변화는 본 명세서에 기재된 청구 범위의 사상 또는 범위를 벗어나지 않고 이루어질 수 있다. 추가 컴포넌트, 상이한 컴포넌트 및/또는 더 적은 컴포넌트가 제공될 수 있다. 일 실시 예에서, FPA(200)는 IR 이미지 검출기 회로(110) 및 판독 회로(115)를 포함하거나, 그 일부이거나, 이것들에 의해 집합적으로 제공될 수있다. 일부 양태들에서, FPA(200)는 마이크로볼로미터 FPA일 수 있다.
FPA(200)는 단위 셀 어레이(unit cell array)(205), 열 멀티플렉서(column multiplexer)(210, 215), 열 증폭기(column amplifier)(220, 225), 행 멀티플렉서(row multiplexer)(230), 제어 바이어스 및 타이밍 회로(235), 디지털-아날로그 변환기(DAC)(240), 및 데이터 출력 버퍼(245)를 포함한다. 단위 셀 어레이(205)는 단위 셀들의 어레이를 포함한다. 일 양태에서, 각각의 단위 셀은 검출기(예를 들어, 마이크로볼로미터) 및 인터페이스 회로를 포함할 수 있다.
각 단위 셀의 인터페이스 회로는 단위 셀의 검출기에 의해 제공되는 검출기 신호에 응답하여 출력 신호(예컨대, 출력 전압 또는 전류)를 제공할 수 있다. 상기 출력 신호는 검출기에 의해 수신된 EM 방사선의 크기를 나타낼 수 있다. 열 멀티플렉서(215), 열 증폭기(220), 행 멀티플렉서(230) 및 데이터 출력 버퍼(245)는, 단위 셀 어레이(205)로부터의 출력 신호를 데이터 출력 신호로서 데이터 출력 라인(250) 상에 제공하기 위해 사용될 수 있다. 데이터 출력 신호는 FPA(200)의 경우 픽셀 값들로 형성된 이미지일 수 있다. 이와 관련하여, 열 멀티플렉서(215), 열 증폭기(220), 행 멀티플렉서(230) 및 데이터 출력 버퍼(245)는 FPA(200)의 ROIC(또는 그 일부)를 집합적으로 제공할 수 있다.
일 양태에서, 열 증폭기(225)는 일반적으로 특정 응용(아날로그 및/또는 디지털)에 적절한 임의의 열(column) 처리 회로를 나타낼 수 있으며, 아날로그 신호를 위한 증폭 회로에 제한되지 않는다. 이와 관련하여, 열 증폭기(225)는 이러한 측면에서 더 일반적으로 열 프로세서(column processor)로 지칭될 수 있다. 아날로그 버스 상의 아날로그 신호 및/또는 디지털 버스 상의 디지털 신호와 같은 열 증폭기(225)에 의해 수신된 신호는 신호의 아날로그 또는 디지털 특성에 따라 처리될 수 있다. 예로서, 열 증폭기(225)는 디지털 신호를 처리하기 위한 회로를 포함할 수 있다. 다른 예로서, 열 증폭기들(225)은 단위 셀 어레이로부터의 디지털 신호들이 열 멀티플렉서(215)에 도달하기 위해 통과하는 경로(예를 들어, 처리 없음)일 수 있다. 다른 예로서, 열 증폭기(225)는 아날로그 신호를 디지털 신호로 변환하기 위한 ADC를 포함할 수 있다. 이들 디지털 신호는 열 멀티플렉서(215)에 제공될 수 있다.
각각의 단위 셀은 단위 셀의 검출기를 바이어스하기 위한 바이어스 신호(예를 들어, 바이어스 전압, 바이어스 전류)를 수신하여, 예를 들어 온도 변화, 제조 편차 및/또는 기타 요인에 기여할 수 있는 단위 셀의 상이한 응답 특성을 보상한다. 예를 들어, 제어 바이어스 및 타이밍 회로(235)는 바이어스 신호를 생성하고 그것들을 단위 셀에 제공한다. 각 단위 셀에 적절한 바이어스 신호를 제공함으로써, 단위 셀 어레이(205)는 단위 셀의 검출기들에 입사되는 광(예를 들어, IR 광)에 응답하여 정확한 이미지 데이터를 제공하도록 효과적으로 교정될 수 있다.
일 양태에서, 바이어스 제어 및 타이밍 회로(235)는 바이어스 값, 타이밍 제어 전압, 및 스위치 제어 전압을 생성할 수 있다. 일부 경우에, DAC(240)는 데이터 입력 신호 라인(255) 상의 데이터 입력 신호로서 또는 그 일부로서 수신된 바이어스 값을 열 멀티플렉서(210), 열 증폭기(220) 및 행 멀티플렉서(230)의 동작을 통해 개별 유닛 셀에 제공되는 바이어스 신호(예를 들어, 아날로그 신호 라인(들)(260) 상의 아날로그 신호)로 변환할 수 있다. 다른 양태에서, 제어 바이어스 및 타이밍 회로(235)는 바이어스 신호들(예를 들어, 아날로그 신호들)을 생성하고 그 바이어스 신호들을 DAC(240)를 이용하지 않고 단위 셀에 제공할 수 있다. 이와 관련하여, 일부 구현들은 DAC(240), 데이터 입력 신호 라인(255) 및/또는 아날로그 신호 라인(들)(260)을 포함하지 않는다. 일 실시 예에서, 제어 바이어스 및 타이밍 회로(235)는 도 1의 판독 회로(115) 및/또는 처리 회로(120)이거나, 이들을 포함하거나, 그 일부이거나, 또는 이들에 연결될 수 있다.
일 양태에 있어서, FPA(200)는 이미징 시스템(예: 100)의 일부로서 구현될 수있다. FPA(200)의 다양한 컴포넌트에 더하여, 이미징 시스템은 또한 하나 이상의 프로세서, 메모리, 로직, 디스플레이, 인터페이스, 렌즈, 및/또는 다양한 구현에서 적절할 수 있는 다른 컴포넌트를 포함할 수 있다. 일 양태에서, 데이터 출력 라인(250) 상의 데이터 출력 신호는 추가 처리를 위해 프로세서들(미도시)에 제공될 수 있다. 예를 들어, 데이터 출력 신호는 FPA(200)의 단위 셀들로부터의 픽셀 값들로 형성된 이미지일 수 있다. 프로세서는 NUC, 공간적 및/또는 시간적 필터링, 및/또는 다른 동작들과 같은 동작을 수행할 수 있다. 이미지들(예를 들어, 처리된 이미지들)은 메모리(예를 들어, 이미징 시스템의 외부 또는 로컬 메모리)에 저장될 수 있고 및/또는 디스플레이 장치(예를 들어, 이미징 시스템의 외부에 및/또는 통합되어)에 디스플레이될 수 있다.
비 제한적인 예로서, 상기 단위 셀 어레이(205)는 512 x 512(예를 들면, 512 행 및 512 열의 마이크로볼로미터들), 1024 x 1024, 2048 x 2048, 4096 x 4096, 8192 x 8192 및/또는 다른 어레이 크기를 가질 수 있다. 일부 경우에, 어레이 크기는 열 크기(예를 들어, 한 열 내의 검출기 수)와 행 크기(예를 들어, 한 행 내의 검출기 수)가 다를 수 있다. 프레임 속도의 예는 30Hz, 60Hz 및 120Hz를 포함할 수 있다. 일부 양태에서, 마이크로볼로미터 어레이는 인접한(adjacent) 마이크로볼로미터들 사이에 공유된 접점(contact)을 가진 마이크로볼로미터들을 포함할 수 있다. 인접한 마이크로볼로미터들 사이에 공유된 접점을 가짐으로써, 접점이 공유되지 않는 경우에 비해 더 적은 수의 접점이 사용되므로 칩 면적이 보존될 수 있다. 따라서, 칩상의 더 많은 면적이 접점을 제공하기보다는 장면 에너지를 검출하기 위해 마이크로볼로미터를 제공하는 데 사용될 수 있다. 일부 경우에, 마이크로볼로미터 및 관련된 선택 회로(예를 들어, 마이크로볼로미터에 연결된 스위치의 타이밍 및 제어)는 공유된 접점 또는 그 사용과 관련될 수 있는 누화(crosstalk), 정전용량(capacitive) 저하, 및/또는 스위치 저항을 감소시키기 위해 제공될 수 있다.
일부 실시 예에서, 동시 또는 실질적으로 동시에 판독하기 위해 하나의 마이크로볼로미터 어레이의 다수 마이크로볼로미터의 선택을 가능하게 하고, 따라서 더 높은 샘플링 속도(예를 들어, 판독 속도라고도 함)를 제공하는 기술이 제공된다. 일부 양태들에서, 이러한 기술들은 추가적인 스위치들과 그러한 판독이 용이하도록 스위치들을 동작시키기 위해 적용되는 특정 타이밍을 포함할 수 있다. 일부 경우에, 상기 특정 타이밍은 유해한 기생 특성(예를 들어, 기생 저항, 기생 캐패시턴스) 및/또는 다른 성능 문제를 감소시켜서, 개선된 성능을 제공할 수 있다. 큰 어레이들, 높은 프레임 속도, 및/또는 다른 응용을 포함하는 응용에서 고속 샘플링이 이용될 수 있다. 일 실시 예에서, 상기 기술들은 그러한 기술이 이용되지 않는 경우에 비해 2배의 샘플링 속도를 제공하기 위해 동시 또는 거의 동시 판독을 위한 2개의 마이크로볼로미터의 선택을 가능하게 할 수 있다. 일부 양태에서, 더 높은 샘플링 속도는 공유된 접점을 갖는 마이크로볼로미터들로 구현될 수 있다.
도 3a 내지 3f는 마이크로볼로미터 줄(305)과 본 개시의 하나 이상의 실시 예에 따른 동시에 판독을 위해 다수의 마이크로볼로미터의 선택을 용이하게 하기 위한 관련된 선택 회로를 가진 회로(300)의 예시적인 동작 시퀀스를 도시한다. 회로(300)의 동작 시퀀스는 도 4을 참조하여 설명되며, 도 4는 본 개시의 하나 이상의 실시 예에 따라 마이크로볼로미터 줄(305)(예를 들어, 마이크로볼로미터 줄(305)을 포함하는 마이크로볼로미터 어레이)의 판독을 용이하게 하기 위한 도 3a 내지 도 3f의 선택 회로에 대한 예시적인 타이밍도(400)를 도시한다.
상기 회로(300)의 마이크로볼로미터 줄(305)은 마이크로볼로미터(305A-J)를 포함한다. 접점(310A-I) 각각은 마이크로볼로미터 줄(305)의 인접한 마이크로볼로미터 의해 공유된다. 예를 들어, 마이크로볼로미터(305B, 305C)는 접점(310C)을 공유하고, 마이크로볼로미터(305C, 305D)는 접점(310D)을 공유한다. 접점을 공유함으로써, 마이크로볼로미터를 위한 접점 수가 줄어들고, 그 결과 접점에 필요한 면적이 줄어든다. 일 실시 예에서, 마이크로볼로미터 줄(305)은 마이크로볼로미터들의 어레이(예를 들어, 단위 셀 어레이(205))의 행 또는 열이거나 그 일부일 수 있다. 일부 경우에, 접점(310A-I)은 어레이의 인접한 열 또는 행(예를 들어, 이웃하는 열 또는 행이라고도 함) 간에 공유될 수 있다. 열 또는 행에 대한 참조는 부분적인 열 또는 부분적인 행을 포함할 수 있으며 열 및 행 용어는 응용에 따라 상호 교환될 수 있음을 유의해야 한다. 설명을 위해, 마이크로볼로미터 줄(305)은 어레이의 열(또는 그 일부)이며, 마이크로볼로미터(305A-J)의 각각은 어레이의 상이한 행의 부품이다.
상기 회로(300)의 선택 회로는 볼로미터 단락(BS: bolometer short) 스위치(315A-J), 스위치(320A-L), 및 스위치(325A-J)를 포함한다. BS 스위치(315A-J)는 각각의 마이크로볼로미터(305A-J)와 병렬이다. 도 3a 내지 도 3f에서, BS 스위치(315A-J), 스위치(320A-L) 및 스위치(325A-J) 각각은 관련된 스위치에 인접하여 도시된 제어 신호에 의해 제어된다. 예를 들어, 제어 신호(SHE)는 BS 스위치(315E)를 켜기 위해(예를 들어, 폐쇄) 하이(high)가 되고 끄기 위해(예를 들면, 개방) 로우(low)가 될 수 있으며, 제어 신호(RSF)는 스위치(325F)를 켜기 위해 하이가 되고 끄기 위해 로우가 될 수 있다. 일 양태에서, 제어 신호(예를 들어, 적절한 타이밍을 가진)는 판독 회로(예를 들어, 115) 및/또는 처리 회로(예를 들어, 120)에 의해 선택 회로에 제공될 수 있다.
일 실시 예에서, BS 스위치(315A-J), 스위치(320A-L) 및 스위치(325A-J)는 적절한 타이밍으로 작동되어(예를 들어, 온/오프) 마이크로볼로미터 줄(305)의 2개의 마이크로볼로미터를 동시에 판독하는 것을 가능하게 한다. 이러한 동시 판독을 용이하게 하기 위해, 도 3a 내지 도 3f에 도시된 바와 같은 일 실시 예에서, 회로(300)는 상반부와 하반부로 분할될 수 있으며, 상반부의 하나의 마이크로볼로미터와 하반부의 하나의 마이크로볼로미터가 동시에 또는 실질적으로 동시에 판독된다. 마이크로볼로미터 줄(305)의 상반부는 마이크로볼로미터(305A-E)를 포함하고, 마이크로볼로미터 줄(305)의 하반부는 마이크로볼로미터(305F-J)를 각각 포함한다. 격리(isolation)를 증가(예를 들어, 최대화)시키고 누화를 감소(예를 들어, 최소화)시키기 위해, 마이크로볼로미터 줄(305)의 상반부(예를 들어, 마이크로볼로미터 줄(305)을 포함하는 마이크로볼로미터 어레이의 상부 절반) 및 마이크로볼로미터 줄(305)의 하반부에 대해 별도의 접지가 이용될 수 있다. 마이크로볼로미터 줄(305)의 각 절반이 동시에 판독되는 것을 허용하기 위해 마이크로볼로미터 줄(305)의 상반부 및 하반부에 대해 별도의 바이어스 레벨이 제공(예를 들어, 인가)될 수 있다. 이와 관련하여, 마이크로볼로미터(305A-E)는 라인(340)(예를 들어, 접지 라인)을 통해 접지(330)에 선택적으로 연결될 수 있고 및/또는 라인(350)(예를 들어, 바이어스 라인)을 통해 바이어스(예를 들어, 바이어스 전압)이 선택적으로 제공될 수 있으며, 마이크로볼로미터(305F-J)는 라인(345)을 통해 접지(335)에 선택적으로 연결될 수 있고 및/또는 라인(355)을 통해 바이어스가 선택적으로 제공될 수 있다.
일 양태에서, 도 3a 내지 도 3f에 도시된 회로(300)의 선택 회로 및 도 4에 도시된 타이밍도(400)와 관련된 특정 스위칭 방식(예를 들어, 각 스위치의 온 오프 상태의 타이밍)은 마이크로볼로미터 FPA 내부의 결함(예를 들어, 열간(column-to-column) 단락 결함), 잡음 감소, 누화 감소 및/또는 감소된 기생 커패시턴스에 대한 감도의 감소를 촉진할 수 있다. 예를 들어, 스위치들(320A-L)은 마이크로볼로미터 어레이 내에서 원하는 행의 선택을 허용하기 위해 사용될 수 있고, BS 스위치들(315A-J)은 그들 각각의 마이크로볼로미터(305A-J)를(예를 들어, 열간 단락 결함으로부터) 격리시키기 위해 사용될 수 있다. 일부 경우에 있어서, 이전에 판독된 마이크로볼로미터 및 선택 회로의 그와 관련된 부분은 현재 판독 중인 마이크로볼로미터를 격리하는데 사용될 수 있다.
설명을 위해, 도 3a 내지 도 3f 및 도 4를 참조하면, 각각의 스위치들(예를 들어, 315A-J, 320A-L 및 325A-J)은 로직 하이 제어 신호에 응답하여 온되고 로직 로우 신호에 응답하여 오프된다. 그러나, 사용된 스위칭 기술의 유형에 따라, 스위치는 로직 하이 제어 신호에 응답하여 오프될 수 있고 로직 로우 제어 신호에 응답하여 온될 수 있다.
도 3a에서, 프레임의 시작(예를 들어, 판독 전)에서, BS 스위치(315A-J) 및 스위치(320A-L)는 폐쇄되고, 스위치(325A-J)는 개방된다. 따라서, 마이크로볼로미터 줄(305)의 상반부는 접지(330)에 단락되고, 마이크로볼로미터 줄(305)의 하반부는 접지(335)에 단락된다.
도 3b에서, 동시 또는 거의 동시의 판독은 마이크로볼로미터 줄(305)의 상반부 및 하반부의 마이크로볼로미터(305E, 305J)에 의해 각각 캡처된 픽셀 값에 대해 용이해진다. 마이크로볼로미터(305E)의 판독을 용이하게 하기 위해, 스위치(320E) 및 스위치(325E)는 닫히고, BS 스위치(315E) 및 스위치(320A-D, 320F)는 도 3a의 각각의 개방 및 폐쇄 위치로부터 개방된다. 스위치(320E)가 닫힌 상태에서, 마이크로볼로미터(305E)는 접지(330)에 연결된다. 스위치(325E)가 닫힌 상태에서, 바이어스 전압이 마이크로볼로미터(305E)에 인가될 수 있다. 마이크로볼로미터(305E)를 가로 지르는 전압 차이(예를 들어, 스위치(325E)를 통해 마이크로볼로미터(305E)의 한 측에 그리고 스위치(320E)를 통해 접지(330)에 연결된 마이크로볼로미터(305E)의 다른 측에 인가된 전압 바이어스)에 의해, 전류가 스위치(325E), 마이크로볼로미터(305E) 및 스위치(320E)를 통해서 흐를 수 있다. 따라서 마이크로볼로미터(305E)에 의해 캡처된 픽셀 값이 마이크로볼로미터(305E)로부터 판독될 수 있으며, 이러한 신호는 마이크로볼로미터(305E)에 의해 관련된 ROIC의 관련된 또는 추가 회로에 제공된다.
마찬가지로, 마이크로볼로미터(305J)로부터의 판독을 허용하기 위해, 스위치(320K), 스위치(325J)가 폐쇄되고, BS 스위치(315J) 및 스위치(320G-J, 320L)가 도 3a에서 그들 각각의 개방 및 폐쇄 위치로부터 개방된다. 스위치(320K)가 폐쇄되면, 마이크로볼로미터(305J)는 접지(335)에 연결된다. 스위치(325J)가 닫힌 상태이면, 바이어스 전압이 마이크로볼로미터(305J)에 인가될 수 있다. 마이크로볼로미터(305J)를 가로지르는 전압 차이(예를 들어, 스위치(325J)를 통해 마이크로볼로미터(305J)의 한 측에 그리고 스위치(320K)를 통해 접지(335)에 연결된 마이크로볼로미터(305J)의 다른 측에 인가된 전압 바이어스)에 의해, 전류가 스위치(325J), 마이크로볼로미터(305J) 및 스위치(320K)를 통해서 흐를 수 있다. 따라서, 마이크로볼로미터(305J)에 의해 캡처된 픽셀 값은 마이크로볼로미터(305J)로부터 판독될 수 있으며, 이러한 신호는 마이크로볼로미터(305J)에 의해 관련된 ROIC의 관련된 또는 추가 회로에 제공된다.
일 양태에서, 타이밍 다이어그램(400)의 부분(405)은 도 3b에 도시된 바와 같은 마이크로볼로미터 줄(305)의 동작과 관련된다. 부분(405)은 시간 t1에서 시간 t2까지 지속된다. 시간 t1+(예를 들어, 도 4에 도시된 시간 t1 직후)에서, RSE 및 ENE 제어 신호가 하이가 되고(예를 들어, 로직 하이) SHE 제어 신호는 로우가 되며(예를 들어, 로직 로우), SHD 제어 신호는 하이가 되고 RSD 및 END 제어 신호가 로우가 된다. 다른 제어 신호와 관련하여, SHc, SHB 및 SHA 제어 신호가 하이가 되고, RSc, ENc, RSB, ENB, RSA 및 ENA 제어 신호가 로우가 된다.
도 3c에서, 마이크로볼로미터(305E)의 판독에서 벗어나 마이크로볼로미터(305D)의 판독을 허용하는 것으로 전환하기 위해, 도 3b에 도시된 각각의 위치로부터 스위치(320E)는 개방되고, BS 스위치(315D)는 개방되며, 스위치(320D)는 폐쇄된다. 전환 동안, 스위치(325E)는 닫힌 상태로 유지되고 스위치(325D)는 열린 상태로 유지된다. 유사하게, 마이크로볼로미터(305J)의 판독에서 벗어나 마이크로볼로미터(305I)을 판독할 수 있도록 전환하기 위해, 도 3b에 도시된 각각의 위치로부터 스위치(320K)가 개방되고, BS 스위치(315I)가 개방되며, 스위치(320J)는 폐쇄된다. 상기 전환 동안, 스위치(325J)는 닫힌 상태로 유지되고 스위치(325I)는 열린 상태로 유지된다. 이와 같이, 제어 신호(ENE)의 로우와 제어 신호(RSD)의 궁극의 하이 사이의 비-중첩 시간(예를 들어, 짧은 비-중첩 시간)으로 인한 전환 동안, 전류는 마이크로볼로미터(305D, 305E)를 통해 흐른다. 유사하게, 상기 전환 동안, 전류는 마이크로볼로미터(305I, 305J)를 통해 흐른다. 이 시간 동안, 마이크로볼로미터(305D, 305E)는 모두 인에이블된 것으로 지칭될 수 있고, 마찬가지로 마이크로볼로미터(305I, 305J)는 모두 인에이블된 것으로 지칭될 수 있다.
일 양태에서, 타이밍도(400)의 부분(410)은 도 3c에 도시된 바와 같은 회로(300)의 동작과 관련된다. 부분(410)은 시간 t2에서 시간 t3까지 지속된다. 시간 t2+에서, RSE 제어 신호는 하이가 되고 SHE 및 ENE 제어 신호는 로우가 되는 반면, END 제어 신호는 하이가 되고 RSD 및 SHD 제어 신호는 로우가 된다. 다른 제어 신호와 관련하여, SHC, SHB 및 SHA 제어 신호는 하이가 되고 RSC, ENC, RSB, ENB, RSA 및 ENA 제어 신호는 로우가 된다.
도 3d에 도시된 바와 같이, 마이크로볼로미터 줄(305)의 상반부 및 하반부의 마이크로볼로미터(305D 및 305I)에 의해 각각 캡처된 픽셀 값은 동시에 또는 실질적으로 동시에 판독된다. 마이크로볼로미터(305D)의 판독을 허용하기 위해, 도 3c에 도시된 각각의 위치로부터 스위치(325D)는 닫히고 스위치(325E)는 개방되는 반면, BS 스위치(315D)는 개방된 상태로 유지되고 스위치(320D)는 폐쇄된 상태로 유지된다. 스위치(325D), 마이크로볼로미터(305D) 및 스위치(320D)를 통해 전류가 흐른다. BS 스위치(315E)가 열린 상태에서, 마이크로볼로미터(305E)는, 예를 들어 접점(310E)과 관련된 노드에서 잠재적 단락(예를 들어, 열간 결함)으로부터, 마이크로볼로미터(305D)를 격리시키는 기능을 할 수 있다. 이 시간 동안, 마이크로볼로미터(305E)는 격리 마이크로볼로미터로 지칭될 수 있다.
유사하게, 마이크로볼로미터(305I)를 판독할 수 있도록, 도 3c에 도시된 각각의 위치로부터 스위치(325I)는 닫히고 스위치(325J)는 개방되는 반면, BS 스위치(315I)는 개방된 상태로 유지되고 스위치(320J)는 폐쇄된 상태로 유지된다. 스위치(325I), 마이크로볼로미터(305I) 및 스위치(320J)를 통해 전류가 흐른다. BS 스위치(315J)가 개방된 상태에서, 예를 들어 마이크로볼로미터(305J)는 접점(310I)과 관련된 노드에서 잠재적 단락(예를 들어, 열간 결함)으로부터, 마이크로볼로미터(305I)를 격리시키는 기능을 할 수 있다.
일 양태에서, 타이밍도(400)의 부분(415)은 도 3d에 도시된 바와 같은 회로(300)의 동작과 관련된다. 부분(415)은 시간 t3에서 시간 t4까지 지속된다. 시간 t3+에서, RSE, SHE 및 ENE 제어 신호는 로우가 되는 반면, RSD 및 END 제어 신호는 하이가 되고 SHD 제어 신호는 로우가 된다. 다른 제어 신호와 관련하여, SHC, SHB 및 SHA 제어 신호는 하이가 되고, RSC, ENC, RSB, ENB, RSA 및 ENA 제어 신호는 로우가 된다.
도 3c 및 3d에 도시된 바와 같이, BS 스위치(315E)는, 마이크로볼로미터(305D)(예컨대, 현재 판독되고 있는 마이크로볼로미터)를 마이크로볼로미터(305D) 위의 마이크로볼로미터들로부터 격리(예를 들어, 마이크로볼로미터(305E)로부터 격리)하기 위해 개방 상태로 유지된다. 유사하게, BS 스위치(315J)는, 마이크로볼로미터(305I) 아래의 마이크로볼로미터로부터(예를 들어, 마이크로볼로미터(305J)로부터) 마이크로볼로미터(305I)를 격리하기 위해 개방 상태로 유지된다. 이 경우, 마이크로볼로미터(305E, 305J)는 격리 마이크로볼로미터로 지칭될 수 있다. 일부 경우에, 개방된 BS 스위치(315E 및 315J)에 의해 제공되는 높은 저항은 (예를 들어, 열간 단락으로부터) 격리를 제공할 수 있는 반면, 다른 마이크로볼로미터들은 단락되어 마이크로볼로미터 줄(305)이거나 이를 포함할 수 있는 전체 마이크로볼로미터 줄의 시간 상수(예를 들어, RC 시간 상수)를 최소화시킨다.
도 3e에서, 마이크로볼로미터(305D)의 판독으로부터 벗나나 마이크로볼로미터(305C)를 판독할 수 있도록 전환하기 위해, 도 3d에 도시된 각각의 위치로부터 스위치(320D)는 개방되고, BS 스위치(315C)는 개방되며, 스위치(320C)는 폐쇄된다. 전환 동안, 스위치(325D)는 닫힌 상태로 유지되고 스위치(325C)는 열린 상태로 유지된다. 유사하게, 마이크로볼로미터(305I)의 판독에서 벗어나 마이크로볼로미터(305H)를 판독할 수 있도록 전환하기 위해, 도 3d에 도시된 각각의 위치로부터 스위치(320J)가 개방되고, BS 스위치(315H)가 개방되며, 스위치(320I)는 폐쇄된다. 상기 전환 동안, 스위치(325I)는 닫힌 상태로 유지되고 스위치(325H)는 열린 상태로 유지된다. 따라서, 상기 전환 동안, 전류가 마이크로볼로미터(305C-D) 및 마이크로볼로미터(305H-I)를 통해 흐른다. BS 스위치(315E 및 315J)는 닫혀 있다. 일부 경우에, BS 스위치(315E 및 315J)는 격리를 제공하기 위해 이전에 개방되었고, 전체 마이크로볼로미터 줄의 시간 상수(예를 들어, RC 시간 상수)를 최소화하기 위해 폐쇄된다.
일 양태에서, 타이밍도(400)의 부분(420)은 도 3e에 도시된 바와 같은 회로(300)의 동작과 관련된다. 부분(420)은 시간 t4에서 시간 t5까지 지속된다. 시간 t4+에서, SHE 및 ENC 제어 신호가 하이가 되고 END 및 SHC 제어 신호가 로우가 된다. 다른 제어 신호와 관련하여, RSD, SHB 및 SHA 제어 신호가 하이가 되고 RSE, ENE, SHD, RSC, RSB, ENB, RSA 및 ENA 제어 신호가 로우가 된다.
도 3f에 도시된 바와 같이, 마이크로볼로미터 줄(305)의 상반부 및 하반부의 마이크로볼로미터(305C 및 305H)에 의해 각각 캡처된 픽셀 값은 동시에 또는 실질적으로 동시에 판독된다. 마이크로볼로미터(305C)의 판독을 허용하기 위해, 도 3e에 도시된 각각의 위치로부터 스위치(325C)는 닫히고 스위치(325D)는 개방되는 반면, BS 스위치(315C)는 개방된 상태로 유지되고 스위치(320C)는 폐쇄된 상태로 유지된다. 스위치(325C), 마이크로볼로미터(305C) 및 스위치(320C)를 통해 전류가 흐른다. 유사하게, 마이크로볼로미터(305H)를 판독할 수 있도록, 도 3e에 도시된 각각의 위치로부터 스위치(325H)는 닫히고 스위치(325I)는 개방되는 반면, BS 스위치(315H)는 개방된 상태로 유지되고 스위치(320I)는 폐쇄된 상태로 유지된다. 스위치(325H), 마이크로볼로미터(305H) 및 스위치(320I)를 통해 전류가 흐른다.
일 양태에서, 타이밍도(400)의 부분(425)은 도 3f에 도시된 바와 같은 회로(300)의 동작과 관련된다. 부분(425)은 시간 t5에서 시간 t6까지 지속된다. 시간 t5+에서, RSC 제어 신호가 하이가 되고 RSD 제어 신호가 로우가 된다. 다른 제어 신호와 관련하여, SHE, ENC, SHB 및 SHA 제어 신호가 하이가 되고 RSE, ENE, SHD, END, SHC, RSB, ENB, RSA 및 ENA 제어 신호가 로우가 된다.
도 3e 및 도 3f에 도시된 바와 같이, BS 스위치(315D)는 마이크로볼로미터(305C) 위의 마이크로볼로미터들로부터 마이크로볼로미터(305C)를 격리(예를 들어, 마이크로볼로미터(305E 및 305D)로부터 격리)시키기 위해 개방 상태로 유지된다. 유사하게, BS 스위치(315I)는 마이크로볼로미터(305H) 아래의 마이크로볼로미터들로부터 마이크로볼로미터(305H)를 격리(예를 들어, 마이크로볼로미터(305J 및 305I)로부터 격리)시키기 위해 개방 상태로 유지된다.
유사한 방식으로, 마이크로볼로미터 줄(305)의 나머지 마이크로볼로미터는 예를 들어 행 단위로(row-by-row) 순차 방식으로 선택될 수 있다. 마이크로볼로미터(305A-J)를 샘플링 한 후, 제어 신호(ENA 내지 ENL)는 다시 하이가 될 수 있는 반면, 제어 신호 RSA 내지 RSJ는 로우 상태에 있고, 제어 신호 SHA 내지 SHJ는 하이 상태에 있다. 일 양태에서, 선택 회로의 이런 상태는 도 3a에 도시된다. 일 양태에서, 이러한 방식으로 BS 스위치들(315A-J) 및 스위치들(320A-L)을 폐쇄함으로써, 유해한 기생 저항 및 커패시턴스 특성이 감소될 수 있고(예를 들어, 최소화될 수 있고) 잠재적 결함들이 격리될 수 있어, 개선된 마이크로볼로미터 FPA 성능을 제공할 수 있다.
도시되지는 않았지만, 마이크로볼로미터(305B 및 305G)의 판독 및 마이크로볼로미터(305A 및 305F)의 판독은 도 3a 내지 3f에 도시된 것과 유사한 순서를 통해 수행될 수 있다. 또한, 타이밍도(400)가 마이크로볼로미터 줄(305)의 상반부에 대해 제공되지만, 타이밍도(400)는 또한 마이크로볼로미터 줄(305)의 하반부에 적용될 수도 있다(예를 들어, 하반부에 대한 타이밍도는 약간의 작은 타이밍 차이를 가지면서 동일하거나 거의 동일할 수 있다). 예를 들어, 타이밍도(400)를 참조하면, 부분들(405, 410, 415, 420, 425) 및 타이밍도(400)의 나머지 부분 동안의 RSE, SHE 및 ENE에 대한 신호 레벨은 각각 RSJ, SHJ 및 ENK에 대한 신호 레벨에 대응한다. 다른 예로서, 부분들(405, 410, 415, 420, 425) 및 타이밍도(400)의 임의의 나머지 부분 동안의 RSA, SHA 및 ENA에 대한 신호 레벨은 각각 RSF, SHF 및 ENG에 대한 신호 레벨에 대응한다. 이와 관련하여, 마이크로볼로미터 줄(305)의 상반부 및 하반부는 동작 시 대칭으로 또는 서로 미러로 간주된다. 타이밍 다이어그램(400)을 참조하면, 일 양태에서, 마이크로볼로미터 줄(305)의 상반부는 라인 시간당 하나의 마이크로볼로미터가 판독(예를 들어, 샘플링)되도록 동작된다. 이 양태에서, 하반부의 하나의 마이크로볼로미터의 판독과 병행하여 상반부의 하나의 마이크로볼로미터의 판독을 수행함에 있어서, 마이크로볼로미터 줄(305)은 라인 시간당 2개의 판독(예를 들어, 샘플)을 제공하도록 동작된다.
도 3a-3f에서 마이크로볼로미터(305E)의 위 및 마이크로볼로미터(305J)의 아래의 타원은, 하나 이상의 추가의 마이크로볼로미터가 마이크로볼로미터(305E) 위와 마이크로볼로미터(305J) 아래에 존재하거나, 마이크로볼로미터가 마이크로볼로미터(305E) 위와 마이크로볼로미터(305J) 아래에 존재하지 않음을 나타낸다. 일 실시 예에서, 마이크로볼로미터(305E) 위와 마이크로볼로미터(305J) 아래에 마이크로볼로미터가 있는 경우, 마이크로볼로미터 줄의 동시 판독은 마이크로볼로미터 줄의 최상단 및 최하단 마이크로볼로미터에서 시작하여 상반부 및 하반부로부터 중심 마이크로볼로미터(305A 및 305F)를 향하여 쌍으로 판독을 진행할 수 있다.
따라서, 다양한 실시 예들에서, 동일한 마이크로볼로미터 줄(예, 305) 내에서 다수의 마이크로볼로미터들은 소정의 어레이 크기에 대해 프레임 속도를 증가시키기 위해 동시 판독(예, 샘플링)될 수 있다. 일부 양태에서, 동일한 줄(예를 들어, 하나의 마이크로볼로미터 어레이의 동일 행 또는 동일 열)에서 함께 연결되는 다수의 마이크로볼로미터를 샘플링하는 것과 관련된 누화를 감소(예를 들어, 최소화)하면서, 마이크로볼로미터 줄 내의 두 마이크로볼로미터가 동시에 또는 실질적으로 동시에 판독될 수 있다. 이와 관련하여, 공유된 마이크로볼로미터 줄의 2 개의 픽셀(예를 들어, 마이크로볼로미터들)은, 예를 들어 큰 어레이들에서 및/또는 높은 프레임 속도에서 바람직한 고속 샘플링을 가능하게 하기 위해, 완화된 누화를 가지고 샘플링될 수 있다. 예를 들어, 하나의 마이크로볼로미터 줄의 2 개의 마이크로볼로미터가 한 번에 샘플링될 때, 1024 개의 마이크로볼로미터를 갖는 마이크로볼로미터 줄(예를 들어, 열)은, 한 번에 하나의 마이크로볼로미터가 샘플링되는 512 개의 마이크로볼로미터를 가진 마이크로볼로미터 줄과 거의 동시에 샘플링될 수 있다. 일부 경우에는, 마이크로볼로미터 줄에서 함께 부착된 마이크로볼로미터들이 전체 마이크로볼로미터 줄의 시간 상수(예컨대, RC 시간 상수)를 최소화하기 위해(예컨대, 각각의 BD 스위치를 통해) 단락될 수 있으며 격리로서 사용되도록 (예컨대, 열간 단락의 영향을 최소화하기 위해) 개방될 수 있다. 일 실시 예에서, 동시에 판독되는 다수의 마이크로볼로미터들 사이에 최소의 누화를 유지하면서 다수의 마이크로볼로미터들이 샘플링될 수 있다.
마이크로볼로미터는 바이어스되고 그들에 대해 다른 장면 콘텐츠를 가질 때(예를 들면, 각 마이크로볼로미터가 장면의 다른 부분을 캡처함), 접지(예를 들어, 마이크로볼로미터 줄(305)의 상반부 및 하반부 각각을 위한 접지(330 및 335))를 통해 배출되는 전류는 상이한 마이크로볼로미터들의 판독 동안 변한다. 일부 경우에, 마이크로볼로미터 어레이의 상반부 및 하반부에 대한 접지들의 분리는 마이크로볼로미터 어레이의 상반부와 하반부 사이의 누화를 감소시킬 수 있다. 2 개의 상이한 마이크로볼로미터가 동시에 또는 실질적으로 동시에 판독될 수 있도록 별도의 바이어스가 사용될 수 있다.
도 3a 내지 도 3f에 도시된 바와 같이, 분리된 접지(330 및 335)에 의해, 마이크로볼로미터 쌍(예를 들어, 상반부의 하나의 마이크로볼로미터 및 하반부의 하나의 마이크로볼로미터)에 의해 인출된 전류는 그들 각각의 접지로 배출(sink)되며, 상반부의 마이크로볼로미터는 그들의 전류를 접지(330)를 통해 배출하고 하반부의 마이크로볼로미터는 그들의 전류를 접지(335)를 통해 배출하여, 전류가 마이크로볼로미터 어레이의 상반부와 하반부 사이에서 격리된다. 상반부 및 하반부에 대한 접지의 분리로 인해, 마이크로볼로미터 어레이의 하반부에서의 전류 변화는 일반적으로 마이크로볼로미터 어레이의 상반부에서의 전류 변화와 독립적이다.
도 3a - 3f 및 도 4에 도시된 바와 같은, 일 실시 예에서, 한 번에 하나보다는 2 개의 마이크로볼로미터를 샘플링할 때, 두 마이크로볼로미터는 마이크로볼로미터 줄의 단부들(예를 들어, 마이크로볼로미터 줄의 최상부 마이크로볼로미터와 최하부 마이크로볼로미터)에서 시작하여 판독될 수 있다. 동시에 샘플링된 마이크로볼로미터의 후속 쌍은 마이크로볼로미터 줄의 중심에 점차적으로 더 가깝고, 샘플링된 마지막 마이크로볼로미터 쌍은 마이크로볼로미터 줄의 중심에 있다. 마이크로볼로미터 줄(305)에서, 마지막 마이크로볼로미터 쌍은 마이크로볼로미터(305A 및 305F)이다. 마이크로볼로미터 줄의 마이크로볼로미터의 개수가 홀수인 경우에는, 처음 판독된 것(예를 들어, 중심 마이크로볼로미터들에서 가장 먼 마이크로볼로미터) 또는 최종 판독된 것은 단일 마이크로볼로미터일 수 있다.
일부 양태에서, 마이크로볼로미터 어레이의 각각의 절반으로부터의 마이크로볼로미터가 각 마이크로볼로미터의 에지(예컨대, 단부)로부터 마이크로볼로미터 줄의 중심을 향해 샘플링될 때, 마이크로볼로미터 줄이 접지 상태로부터 바이어스 레벨 상태로 변하며, 전환점은 현재 샘플링되고 있는 마이크로볼로미터에 있다. 방금 샘플링된 마이크로볼로미터들은 격리를 제공하기 위해(예를 들어, 열간 단락) BS 스위치로 단락되지 않지만, 마이크로볼로미터 줄 내의 다른 마이크로볼로미터들은 전체 마이크로볼로미터 줄의 시간 상수(예컨대, RC 시간 상수)를 최소화시키기 위해 단락된다. 열간 시프트 결함은 높은 노이즈와 누화를 초래할 수 있다. 일부의 경우, 줄의 에지로부터 줄의 중심을 향한 판독은 중심에서 에지로의 판독의 경우에 비해 누화를 줄이는데 도움이 될 수 있다. 이러한 경우, 중심 마이크로볼로미터는, 마이크로볼로미터 줄의 다른 마이크로볼로미터들에 비해서, 판독 전에 가장 긴 시간 동안 접지로 유지된다. 일부 경우에, 중심으로부터 에지로의 판독은 각각의 바이어스가 라인(350 및 355) 상에 구동되게 할 수 있고, 이는 중심 마이크로볼로미터뿐만 아니라 상기 중심 마이크로볼로미터 위(예를 들어, 마이크로볼로미터 줄의 상반부에서) 및 아래의(예를 들어, 마이크로볼로미터 줄의 하반부에서) 마이크로볼로미터들을 각각의 바이어스에 유지할 것이다.
일 실시 예에서, 마이크로볼로미터 줄의 중심에서, 중심 2 개의 마이크로볼로미터(305A 및 305F)는 접점(예를 들어, 310A)을 공유하고 그들 사이에 격리 마이크로볼로미터를 갖지 않아서, 접지(330 및 335)가 공유된다(예를 들어 중심점에서 연결된다). 도 3a 내지 도 3f에 도시된 바와 같이, 공유된 접지 접점은 접지(330)에 대한 스위치(320A)와 접지(335)에 대한 스위치(320G)를 갖기 때문에, 전류는 접지(330 및 335) 사이에서 대략 절반으로 분할될 수 있다. 일부 경우에, 중심 마이크로볼로미터(305A, 305F)는 접지(330 및 335)의 감소 또는 격리와 관련되지만(예를 들어, 다른 마이크로볼로미터에 비해서), 중심 마이크로볼로미터(305A 및 305F)에서의 누화는, 이웃하는 픽셀 누화가 인접하지 않은 픽셀 누화보다 덜 엄격한 요구 사항과 관련되기 때문에 일반적으로 걱정이 적다.
일반적으로, 이웃 픽셀 누화는, 이웃하는 픽셀 누화의 다른 기여 요인들이 이미 존재하는 경우(예를 들어, 광학적 블러(blur)로 인해), 장면 품질에 더 작은 영향을 미칠 수 있다. 또한, 장면은 여러 픽셀에 걸쳐 점진적으로 전환되는 경향이 있다. 이와 관련하여, 2 개의 인접한 중심 마이크로볼로미터(305A 및 305F) 사이의 이미지 데이터는 장면의 가까운 부분을 캡처할 수 있다. 예를 들어, 2 개의 인접한 중심 마이크로볼로미터(305A 및 305F) 사이의 이러한 누화는, 장면의 상이한 부분을 일반적으로 이미징하고 따라서 완화되지 않은 경우 이미지 품질 및 사용자 경험에 부정적인 영향을 미칠 수 있는, 예를 들어 최상부 마이크로볼로미터와 최하부 마이크로볼로미터 사이의 누화와 같은 더 먼 거리의 마이크로볼로미터들 사이의 누화와 대조적이다. 예를 들어, 마이크로볼로미터 줄의 양쪽 절반에 대해 에지에서 센터까지 마이크로볼로미터를 판독함으로써, 샘플링 동안의 누화는, 마이크로볼로미터 어레이의 상단(또는 하단)의 밝은 장면이 마이크로볼로미터 어레이의 하단(또는 상단)의 이미지에 영향을 미치지 않도록 완화될 필요가 있을 것이다.
도 3a 내지 도 3f에 도시된 바와 같이, 접지(330 및 335)는 마이크로볼로미터 줄(305)의 단락된 반쪽들을 통해 연결되기 때문에 완전히 분리되지 않으며, 이는 마이크로볼로미터 줄(305)의 상반부 및 하반부 사이에 낮은 임피던스 연결을 제공할 수 있다. 여러 스위치들에 걸친 저항은 접지들(330 및 335) 사이에 약간의 격리를 제공하며, 이러한 저항은 관련된 누화를 가질 수 있다. 일부 실시 예에서, 현재 샘플링된 마이크로볼로미터와 도 3a 내지도 3f에 도시된 바와 같이 이전에 샘플링된 인접한 마이크로볼로미터에 대해 BS 스위치를 개방하는 것 외에, 별도의 접지(예를 들어, 접지(330 및 335))와 상반부 및 하반부 사이에 더 나은 격리를 제공하기 위해, 다음의 인접한 마이크로볼로미터(예를 들어, 현재 샘플링된 마이크로볼로미터 이후에 샘플링될 이웃하는 마이크로볼로미터)에 대한 BS 스위치가 개방될 수 있다. 마이크로볼로미터 저항은 분리된 접지들 사이에 격리로서 역할을 한다. 이러한 방식으로, 마이크로볼로미터 저항(예를 들어, 수천 내지 수백만 옴)은 하반부 어레이의 낮은 임피던스 접지 및 마이크로볼로미터 어레이의 중심으로부터의 격리로서 역할을 할 수 있는 반면, 유사한 고 저항 마이크로볼로미터는 상반부 어레이의 낮은 임피던스 접지 및 마이크로볼로미터 어레이의 중심으로부터의 격리로서 역할을 할 수 있다. 일부 경우에, 이 격리는 어레이의 상반부에 의해 인출되는 전류를 하반부 어레이의 접지(예를 들어, 335)를 통해 그리고 어레이의 상반부에 의해 인출되는 전류를 상반부 어레이의 접지(예를 들어, 330)를 통해 조향하고 누화를 줄인다. 이와 같이, 3 개의 인접한 마이크로볼로미터의 BS 스위치의 개방 상태는 추가적인 누화 격리를 제공할 수 있다. 일 양태에서, 샘플링되는 마이크로볼로미터에 인접한 3 개 이상의 마이크로볼로미터는 추가적인 누화 격리를 제공하기 위해 개방 상태에 있을 수 있다. 일부 경우에, 인접한 마이크로볼로미터들의 BS 스위치의 개방 상태는 저항성 누화를 감소시킬 수 있지만 RC 관련 누화(예를 들어, 저온에서)를 증가시킬 수 있다.
도 5a 내지 5f는 본 개시의 하나 이상의 실시 예에 따라 다수의 마이크로볼로미터 선택을 용이하게 하기 위한 회로(300)의 동작 시퀀스를 도시한다. 회로(300)의 동작 시퀀스는 도 6을 참조하여 설명되며, 도 6은 본 개시의 하나 이상의 실시 예에 따라 마이크로볼로미터 줄(305)(예를 들어, 마이크로볼로미터 줄(305)을 포함하는 마이크로볼로미터 어레이)로부터 판독을 용이하게 하기 위한 도 5a 내지 도 5f의 선택 회로에 대한 예시적인 타이밍도를 도시한다.
도 3a 내지 도 3f 및 도 4의 설명은 일반적으로 도 5a 내지 5f 및 도 6에 각각 적용되며, 도 3a 내지 도 3f 및 도 4와 도 5a 내지 5f 및 도 6 사이의 차이의 예들과 다른 설명이 명확성 및 단순성을 위해 본 명세서에 제공된다. 일 실시 예에서, 도 3a 내지 도 3f에 비해서, 도 5a 내지 5f에 대해 사용된 스위치들의 타이밍 기술 및 상태는 도 5a-5f는 추가적인 누화 격리를 제공할 수 있다. 일 양태에서,도 5a와 관련된 동작(예를 들어, 다양한 스위치들의 상태)은 도 3a에서 이전에 도시된 것과 일치한다.
도 5b에 도시된 바와 같이, 마이크로볼로미터 줄(305)의 상반부 및 하반부의 마이크로볼로미터(305E 및 305J)에 의해 각각 캡처된 픽셀 값에 대해 동시 또는 실질적으로 동시 판독이 수월해진다. 마이크로볼로미터(305E)의 판독을 용이하게 하기 위해, 도 3b에서와 같이 스위치(320E 및 325E)가 닫히고 BS 스위치(315E)가 개방되는 것에 더하여, BS 스위치(315D)가 개방된다(예를 들어, 추가의 누화 격리를 제공하기 위해). 유사하게, 마이크로볼로미터(305J)의 판독을 용이하게 하기 위해, 스위치(320K) 및 스위치(325J)가 폐쇄되고 BS 스위치(315J)가 개방되는 것 외에 BS 스위치(315I)가 개방된다.
일 양태에서, 타이밍도(600)의 일부(605) 도 5b에 도시된 바와 같이 마이크로볼로미터 줄(305)의 동작과 관련된다. 부분(605)은 시간 t1에서 시간 t2까지 지속된다. 시간 t1+에서(예를 들어, 도 6에 도시된 시간 t1 직후), RSE 및 ENE 제어 신호가 하이(예를 들어, 로직 하이)가 되고 SHE 제어 신호가 로우(예를 들어, 로직 로우)가 되는 반면, SHD, RSD 및 END 제어 신호가 로우가 된다. 다른 제어 신호와 관련하여, SHC, SHB 및 SHA 제어 신호가 하이가 되는 반면 RSC, ENC, RSB, ENB, RSA 및 ENA 제어 신호가 로우가 된다. 도 6에 도시된 바와 같이, SHD 제어 신호는 RSE 제어 신호가 하이가 되기 전에 로우가 된다.
도 5c에서는, 도 3c에 도시된 바와 같이 스위치(320E)가 개방되고, BS 스위치(315D)가 개방되고(예를 들어, 열린 상태로 유지됨), 및 스위치(320D)가 개방되는 것에 더하여, BS 스위치(315C)가 개방된다. 유사하게, 도 3c에 도시된 바와 같이 스위치(320K)가 개방되고 BS 스위치(315I)가 개방되고 스위치(320J)가 폐쇄되는 것에 추가하여, BS 스위치(315H)가 개방된다. 일 양태에서, 타이밍도(600)의 부분(610)은 도 5c에 도시된 바와 같이 마이크로볼로미터 줄(305)의 동작과 관련된다. 부분(610)은 시간 t2에서 시간 t3까지 지속된다. 시각 t2+에서, RSE, END, SHB 및 SHA 제어 신호가 하이가 되고 SHE, ENE, RSD, SHD, RSC, SHC, ENC, RSB, ENB, RSA 및 ENA가 로우가 된다.
도 5d에서, 마이크로볼로미터 줄(305)의 상반부 및 하반부의 마이크로볼로미터(305D 및 305I)에 의해 각각 캡처된 픽셀 값은 동시에 또는 실질적으로 동시에 판독된다. 마이크로볼로미터(305D)의 판독을 허용하기 위해, 스위치(325D)는 폐쇄되고 스위치(325E)는 개방된다. 마이크로볼로미터(305I)의 판독을 허용하기 위해, 스위치(325I)는 닫히고 스위치(325J)는 열린다. 일 양태에서, 타이밍도(600)의 부분(615)은 도 5d에 도시된 바와 같이 마이크로볼로미터 줄(305)의 동작과 관련된다. 부분(615)은 시간 t3에서 시간 t4까지 지속된다. 시각 t3+에서, RSD, END, SHB 및 SHA 제어 신호가 하이가 되고 RSE, SHE, ENE, SHD, RSC, SHC, ENC, RSB, ENB, RSA 및 ENA가 로우가 된다. 도 3c 및 도 3d에 비해서, 마이크로볼로미터(305D 및 305I)의 판독 동안 추가 BS 스위치(315C 및 315H)를 각각 개방하면 추가의 누화 격리를 제공할 것이다.
도 5e에서는, 도 3e에 도시된 바와 같이 스위치(320D)가 개방되고 BS 스위치(315C)가 개방되고 스위치(320C)가 폐쇄되는 것에 추가하여, BS 스위치(315B)가 개방된다. 유사하게, 도 3e에 도시된 바와 같이 스위치(320J)가 개방되고 BS 스위치(315H)가 개방되고 스위치(320I)가 폐쇄되는 것에 추가하여, BS 스위치(315G)가 개방된다. BS 스위치(315E 및 315J)는 닫혀 있다. 일 양태에서, 타이밍도(600)의 부분(620)은 도 5e에 도시된 바와 같이 마이크로볼로미터 줄(305)의 동작과 관련된다. 부분(620)은 시간 t4에서 시간 t5까지 지속된다. 시간 t4+에서, SHE, RSD, ENC 및 SHA 제어 신호가 하이가 되고 RSE, ENE, SHD, END, RSC, SHC, RSB, SHB, ENB, RSA 및 ENA가 로우가 된다.
도 5f에서, 마이크로볼로미터 줄(305)의 상반부 및 하반부의 마이크로볼로미터(305C 및 305H)에 의해 각각 캡처된 픽셀 값은 동시에 또는 실질적으로 동시에 판독된다. 마이크로볼로미터(305C)의 판독을 허용하기 위해, 스위치(325C)는 폐쇄되고 스위치(325D)는 개방된다. 마이크로볼로미터(305H)의 판독을 허용하기 위해, 스위치(325H)는 폐쇄되고 스위치(325I)는 개방된다. 일 양태에서, 타이밍도(600)의 부분(625)은 도 5f에 도시된 바와 같이 마이크로볼로미터 줄(305)의 동작과 관련된다. 시간 t5+에서, SHE, RSC, ENC 및 SHA 제어 신호가 하이가 되고 RSE, ENE, RSD, SHD, END, SHC, RSB, SHB, ENB, RSA 및 ENA가 로우가 된다. 도 3e 내지 도 3f에 비해서, 도 5e 내지 도 5f의 마이크로볼로미터(305C 및 305H)의 판독 동안 추가 BS 스위치(315B 및 315G)가 각각 개방하면 추가적인 누화 격리를 제공할 수 있다.
일부 실시 예에서, 마이크로볼로미터 줄(예를 들어, 305)으로부터 판독되는 상이한 부분은 상이한 마이크로볼로미터 스위칭 방식과 관련될 수 있다. 일 양태에서, 판독의 초기 부분 동안 제 1 마이크로볼로미터 스위칭 방식이 사용될 수 있우며, 여기서는 현재 샘플링되고 있는 마이크로볼로미터에 대응하는 BS 스위치 및 이전에 샘플링된 인접한 마이크로볼로미터에 대응하는 BS 스위치를 개방함으로써 마이크로볼로미터 스위칭이 구현될 수 있다(예를 들어, 도 3a 내지 3f 참조). 이러한 판독의 초기 부분 이후에 제 2 마이크로볼로미터 스위칭 방식이 사용될 수 있으며, 여기서는 현재 샘플링되고 있는 마이크로볼로미터에 대응하는 BS 스위치 및 현재 심플링되고 있는 마이크로볼로미터에 인접한 2 개의 마이크로볼로미터의 BS 스위치를 개방함으로써 마이크로볼로미터 스위칭이 구현될 수 있다(예를 들어,도 5a 내지 5f 참조). 일부 경우에, 판독 동작의 이러한 초기 부분은 높은 저항성 마이크로볼로미터(예를 들어, 설계 및/또는 저온으로 인한 높은 저항)와 결합된 제 1 라인(또는 처음 몇 라인) 동안 바이어스 레벨의 큰 변화로 인해 발생할 수 있는 RC 지연을 극복하는 데 도움이 될 수 있다.
일 예에서, 도 3a 내지 3f 및 도 5a 내지 5f를 참조하면, 회로(300)의 동작 시퀀스는, 도 3a 및 3b(예를 들어, 각각의 샘플링된 마이크로볼로미터에 대해 개방된 단일의 인접한 마이크로볼로미터)에 의해, 이어서 도 5c, 5d, 5e 및 5f(예를 들어, 각각의 샘플링된 마이크로볼로미터에 대해 개방된 2 개의 인접한 마이크로볼로미터)에 의해 순서대로 제공될 수 있다. 도 7은 그러한 경우의 타이밍도(700)를 도시하며, 여기서 타이밍도(700)는 도 4에 대응하는 부분(405)과 도 6에 대응하는 부분들(610, 615, 620 및 625)을 가진다. 전술한 설명과 도 7은, 제 1 판독을 용이하게 하기 위해 제 1 마이크로볼로미터 스위칭 방식이 이용되고 후속 판독은 제 2 마이크로볼로미터 스위칭 방식을 이용하는 경우를 제공하지만, 다른 경우에서 하나의 마이크로볼로미터 스위칭 방식은 다른 마이크로볼로미터 스위칭 방식으로 전환하기 전에 다수의 판독을 위해 사용될 수 있다. 또한, 응용에 따라 3 가지 이상의 상이한 유형의 마이크로볼로미터 스위칭 방식이 이용될 수 있다.
일 실시 예에서, 판독 회로(예를 들어, 115) 및/또는 처리 회로(예를 들어, 120)는 마이크로볼로미터 어레이가 선택된 마이크로볼로미터 스위칭 방식 또는 일련의 선택된 마이크로볼로미터 스위칭 방식들을 사용하여 동작하도록 설정하기 위해 적절한 제어 신호를 제공할 수 있다. 일부 경우에, 상기 판독 회로 및/또는 처리 회로는 응용에 따라 마이크로볼로미터 어레이의 상이한 스위치들의 적절한 개방 또는 폐쇄를 초래하도록 상이한 마이크로볼로미터 스위칭 방식을 구현(예를 들어, 실행)하기 위해 제어 신호를 제공하거나 제어 신호가 생성/제공되게 할 수 있다.
따라서, 다양한 실시 예를 사용하여, 동일한 줄(예를 들어, 동일한 행 또는 동일한 열)에 함께 연결된 다수의 마이크로볼로미터를 샘플링하는 것과 관련된 누화를 감소(예를 들어, 최소화)시키면서, 동일한 마이크로볼로미터 줄(예를 들어, 행 또는 열) 내의 다수의 마이크로볼로미터가 주어진 어레이 크기에 대한 프레임 속도를 증가시키기 위해 동시에 판독(예를 들어, 샘플링)될 수 있다. 이러한 실시 예와 관련된 더 높은 샘플링 속도는 더 큰 마이크로볼로미터 어레이 및/또는 더 높은 프레임 속도와 관련된 응용에서 사용될 수 있다. 일부 경우에, 마이크로볼로미터는 마이크로볼로미터 줄 내의 인접한 마이크로볼로미터들 사이에 및 인접한 마이크로볼로미터 줄들 사이에 접점을 공유하는 직렬 연결된 마이크로볼로미터를 포함할 수 있다.
적용 가능한 경우, 본 개시에 의해 제공되는 다양한 실시 예는 하드웨어, 소프트웨어, 또는 하드웨어 및 소프트웨어의 조합을 사용하여 구현될 수 있다. 또한, 적용 가능한 경우, 본 명세서에 제시된 다양한 하드웨어 컴포넌트 및/또는 소프트웨어 컴포넌트는 본 개시의 사상을 벗어나지 않으면서 소프트웨어, 하드웨어 및/또는 둘 다를 포함하는 복합 컴포넌트로 결합될 수 있다. 적용 가능한 경우, 본 명세서에 제시된 다양한 하드웨어 컴포넌트 및/또는 소프트웨어 컴포넌트는 본 개시의 사상을 벗어나지 않으면서 소프트웨어, 하드웨어 또는 둘 다를 포함하는 하위 컴포넌트로 분리될 수 있다. 또한, 적용 가능한 경우, 소프트웨어 컴포넌트는 하드웨어 컴포넌트로서 구현될 수 있고, 그 반대도 고려될 수 있다.
비 일시적 명령어, 프로그램 코드 및/또는 데이터와 같은 본 개시에 따른 소프트웨어는 하나 이상의 비 일시적 기계 판독 가능 매체에 저장될 수 있다. 본 명세서에서 식별된 소프트웨어는 하나 이상의 범용 또는 특정 목적 컴퓨터 및/또는 컴퓨터 시스템을 사용하여 네트워크 및/또는 다른 방식으로 구현될 수 있는 것으로 고려된다. 적용 가능한 경우, 본 명세서에 설명된 특징들을 제공하기 위해 본 명세서에 설명된 다양한 단계들의 순서가 변경되고, 복합 단계들로 결합되고 및/또는 하위 단계들로 분리될 수 있다.
전술한 설명은 본 발명을 개시된 정확한 형태 또는 특정 사용 분야로 제한하려는 것이 아니다. 전술한 실시 예는 본 발명을 예시하지만 제한하지 않는다. 본 명세서에 명시적으로 설명되거나 암시된 것에 상관 없이, 본 발명에 대한 다양한 대안의 실시 예 및/또는 수정이 본 개시에 비추어 가능하다는 것이 고려된다. 따라서, 본 발명의 범위는 다음의 청구 범위에 의해서만 정해진다.

Claims (20)

  1. 제 1 세트의 직렬 연결된 마이크로볼로미터들 및 제 2 세트의 직렬 연결된 마이크로볼로미터들을 포함하는 복수의 마이크로볼로미터;
    제 1 복수의 스위치 - 여기서, 제 1 복수의 스위치 각각은 각각의 제 1 제어 신호에 기초하여 상기 복수의 마이크로볼로미터 중 각 하나를 선택적으로 단락시키도록 설정됨 -;
    제 2 복수의 스위치 - 여기서, 제 2 복수의 스위치 각각은 각각의 제 2 제어 신호에 기초하여 상기 복수의 마이크로볼로미터 중 각 하나를 접지에 선택적으로 연결하도록 설정됨 -;
    제 3 복수의 스위치 - 여기서, 제 3 복수의 스위치 각각은 각각의 제 3 제어 신호에 기초하여 상기 복수의 마이크로볼로미터 중 각 하나에 바이어스 신호를 선택적으로 제공하도록 설정됨 -;
    상기 제 1 세트의 하나의 마이크로볼로미터와 상기 제 2 세트의 하나의 마이크로볼로미터를 동시에 판독하도록 상기 제 1 복수의 스위치를 설정하는 상기 제 1 제어 신호와, 상기 제 2 복수의 스위치를 설정하는 상기 제 2 제어 신호와, 및 상기 제 3 복수의 스위치를 설정하는 상기 제 3 제어 신호를 생성하는 처리 회로; 및
    상기 제 1 세트의 상기 하나의 마이크로볼로미터와 상기 제 2 세트의 상기 하나의 마이크로볼로미터를 동시에 판독하는 판독 회로
    를 포함하는, 장치.
  2. 제 1 항에 있어서,
    상기 제 1 세트의 제 1 마이크로볼로미터는 상기 제 2 세트의 제 1 마이크로볼로미터와 접점을 공유하고,
    상기 처리 회로는,
    제 1 판독에서, 상기 제 1 세트의 제 2 마이크로볼로미터 및 상기 제 2 세트의 제 2 마이크로볼로미터가 판독되도록 제어하고,
    상기 판독 회로는,
    상기 제 1 판독에서, 상기 제 1 세트의 상기 제 2 마이크로볼로미터 및 상기 제 2 세트의 상기 제 2 마이크로볼로미터를 동시에 판독하는, 장치.
  3. 제 1 항에 있어서,
    상기 제 1 세트의 제 1 마이크로볼로미터는 상기 제 2 세트의 제 1 마이크로볼로미터와 접점을 공유하고,
    상기 복수의 마이크로볼로미터의 중심 마이크로볼로미터들은 상기 제 1 세트의 제 1 마이크로볼로미터 및 상기 제 2 세트의 제 1 마이크로볼로미터를 포함하고;
    상기 처리 회로는,
    제 1 판독에서, 상기 제 1 세트의 제 2 마이크로볼로미터 및 상기 제 2 세트의 제 2 마이크로볼로미터가 동시 판독되도록 제어하고, 또한
    상기 제 1 판독 이후의 제 2 판독에서, 상기 제 1 세트의 제 3 마이크로볼로미터 및 상기 제 2 세트의 제 3 마이크로볼로미터가 동시 판독되도록 제어하며,
    상기 제 1 세트의 제 3 마이크로볼로미터는 상기 제 1 세트의 상기 제 2 마이크로볼로미터와 직렬 연결되고 상기 제1 세트의 제 2 마이크로볼로미터보다 상기 중심 마이크로볼로미터들에 더 가깝고, 상기 제 2 세트의 제 3 마이크로볼로미터는 상기 제 2 세트의 상기 제 2 마이크로볼로미터와 직렬 연결되고 상기 제 2 세트의 제 2 마이크로볼로미터보다 상기 중심 마이크로볼로미터들에 더 가까우며,
    상기 판독 회로는,
    상기 제 1 판독에서, 상기 제 1 세트의 상기 제 2 마이크로볼로미터 및 상기 제 2 세트의 상기 제 2 마이크로볼로미터를 동시에 판독하고,
    상기 제 2 판독에서, 상기 제 1 세트의 상기 제 3 마이크로볼로미터 및 상기 제 2 세트의 상기 제 3 마이크로볼로미터를 동시에 판독하는, 장치.
  4. 제 3 항에 있어서,
    상기 제 1 세트의 제 1 및 제 3 마이크로볼로미터 사이의 직렬 연결된 마이크로볼로미터의 개수는 상기 제 2 세트의 제 1 및 제 3 마이크로볼로미터 사이의 직렬 연결된 마이크로볼로미터의 개수와 동일한, 장치.
  5. 제 1 항에 있어서,
    상기 제 2 복수의 스위치는 제 1 세트의 스위치들 및 제 2 세트의 스위치들을 포함하고,
    상기 제 1 세트의 스위치들 각각은 상기 제 1 세트의 마이크로볼로미터들의 각 하나를 각각의 제 2 제어 신호에 기초하여 제 1 접지에 선택적으로 연결하도록 설정되고,
    상기 제 2 세트의 스위치들 각각은 상기 제 2 세트의 마이크로볼로미터들의 각 하나를 각각의 제 2 제어 신호에 기초하여 제 2 접지에 선택적으로 연결하도록 설정되는, 장치.
  6. 제 1 항에 있어서,
    상기 제 3 복수의 스위치는 제 1 세트의 스위치들 및 제 2 세트의 스위치들을 포함하고,
    상기 제 1 세트의 스위치들 각각은, 각각의 제 3 제어 신호가 제 1 값을 가질 때, 제 1 바이어스 라인을 통해 상기 제 1 세트의 마이크로볼로미터들의 각 하나에 제 1 바이어스 전압을 제공하도록 설정되고, 각각의 제 3 제어 신호가 제 2 값을 가질 때, 제 1 바이어스 라인을 통해 상기 제 1 세트의 마이크로볼로미터들의 각 하나에 제 1 바이어스 전압을 제공하지 않도록 설정되며,
    상기 제 2 세트의 스위치들 각각은, 각각의 제 3 제어 신호가 제 1 값을 가질 때, 제 2 바이어스 라인을 통해 상기 제 2 세트의 마이크로볼로미터들의 각 하나에 제 2 바이어스 전압을 제공하도록 설정되고, 각각의 제 3 제어 신호가 제 2 값을 가질 때, 제 2 바이어스 라인을 통해 상기 제 2 세트의 마이크로볼로미터들의 각 하나에 제 2 바이어스 전압을 제공하지 않도록 설정되는, 장치.
  7. 제 1 항에 있어서,
    상기 복수의 마이크로볼로미터의 각각의 마이크로볼로미터는 하나 이상의 인접한 마이크로볼로미터와 접점을 공유하는, 장치.
  8. 제 1 항에 있어서,
    상기 제 1 복수의 스위치는 제 1 세트의 스위치들 및 제 2 세트의 스위치들을 포함하고,
    상기 제 1 세트의 스위치들 각각은, 각각의 제 1 제어 신호에 기초하여 상기 제 1 세트의 마이크로볼로미터들의 각 하나를 선택적으로 단락시키도록 구성되고,
    상기 제 2 세트의 스위치들 각각은, 각각의 제 1 제어 신호에 기초하여 상기 제 2 세트의 마이크로볼로미터들의 각 하나를 선택적으로 단락시키도록 구성된, 장치.
  9. 제 8 항에 있어서,
    상기 판독 회로는, 상기 제 1 세트의 마이크로볼로미터들 중 제 1 마이크로볼로미터와 상기 제 2 세트의 마이크로볼로미터들 중 제 1 마이크로볼로미터를 동시에 판독하고,
    상기 판독 회로에 의해 상기 제 1 세트의 마이크로볼로미터들 중 제 1 마이크로볼로미터와 상기 제 2 세트의 마이크로볼로미터들 중 제 1 마이크로볼로미터가 동시에 판독되는 동안, 상기 처리 회로는,
    각각의 제 1 제어 신호를 사용하여, 상기 제 1 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터에 병렬인 상기 제 1 세트의 스위치들의 제 1 스위치를 개방 상태로 설정하고, 또한
    각각의 제 1 제어 신호를 사용하여, 상기 제 2 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터에 병렬인 상기 제 2 세트의 스위치들의 제 1 스위치를 개방 상태로 설정하도록 구성된, 장치.
  10. 제 9 항에 있어서,
    상기 판독 회로가 상기 제 1 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터와 상기 제 2 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터를 동시에 판독하는 동안, 상기 처리 회로는 추가로,
    상기 제 1 제어 신호를 사용하여, 상기 제 1 세트의 마이크로볼로미터들 중 제 2 마이크로볼로미터에 병렬인 상기 제 1 세트의 스위치들의 제 2 스위치를 개방 상태로 설정하고, 또한
    상기 각각의 제 1 제어 신호를 사용하여, 상기 제 2 세트의 마이크로볼로미터들 중 제 2 마이크로볼로미터에 병렬인 상기 제 2 세트의 스위치들의 제 2 스위치를 개방 상태로 설정하도록 구성되며,
    상기 제 1 세트의 마이크로볼로미터들의 제 1 및 제 2 마이크로볼로미터가 서로 인접하고, 상기 제 2 세트의 마이크로볼로미터들의 제 1 및 제 2 마이크로볼로미터가 서로 인접하는, 장치.
  11. 제 10 항에 있어서,
    상기 제 1 세트의 마이크로볼로미터들 중 제 1 마이크로볼로미터와 상기 제 2 세트의 마이크로볼로미터들 중 제 1 마이크로볼로미터를 동시에 판독하는 동안, 상기 처리 회로는 추가로,
    각각의 제 1 제어 신호를 사용하여, 상기 제 1 세트의 마이크로볼로미터들의 제 3 마이크로볼로미터에 병렬인 상기 제 1 세트의 스위치들의 제 3 스위치를 개방 상태로 설정하고, 또한
    각각의 제 1 제어 신호를 사용하여, 상기 제 2 세트의 마이크로볼로미터들의 제 3 마이크로볼로미터에 병렬인 상기 제 2 세트의 스위치들의 제 4 스위치를 개방 상태로 설정하도록 구성되며,
    상기 제 1 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터가 상기 제 1 세트의 마이크로볼로미터들의 제 2 및 제 3 마이크로볼로미터에 인접하고,
    상기 제 2 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터가 상기 제 2 세트의 마이크로볼로미터들의 제 2 및 제 3 마이크로볼로미터에 인접하는, 장치.
  12. 제 8 항에 있어서,
    상기 판독 회로는 상기 제 1 세트의 마이크로볼로미터들 중 제 1 마이크로볼로미터와 상기 제 2 세트의 마이크로볼로미터들 중 제 1 마이크로볼로미터를 동시에 판독하고,
    상기 판독 회로가, 상기 제 1 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터와 상기 제 2 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터를 동시에 판독하는 동안,
    제 1 바이어스 라인 및 상기 제 1 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터를 통해 제 1 접지로 전류가 조향되고, 제 2 바이어스 라인 및 상기 제 2 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터를 통해 제 2 접지로 전류가 조향되는, 장치.
  13. 제 12 항에 있어서,
    상기 판독 회로가, 상기 제 1 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터와 상기 제 2 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터를 동시에 판독하는 동안,
    상기 제 1 바이어스 라인과 상기 제 1 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터 및 제 2 마이크로볼로미터를 통해 상기 제 1 접지로 전류가 조향되고,
    상기 제 2 바이어스 라인과 상기 제 2 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터 및 제 2 마이크로볼로미터를 통해 상기 제 2 접지로 전류가 조향되며,
    상기 제 1 세트의 마이크로볼로미터들의 제 1 및 제2 마이크로볼로미터가 서로 인접하고, 상기 제 2 세트의 마이크로볼로미터들의 제 1 및 제2 마이크로볼로미터가 서로 인접한, 장치.
  14. 제 1 세트의 직렬 연결된 마이크로볼로미터들 및 제 2 세트의 직렬 연결된 마이크로볼로미터들을 포함하는 복수의 마이크로볼로미터를 제공하는 단계;
    상기 제 1 세트의 제 1 마이크로볼로미터 및 상기 제 2 세트의 제 1 마이크로볼로미터를 선택하는 단계;
    상기 제 1 세트의 선택된 제 1 마이크로볼로미터 및 상기 제 2 세트의 선택된 제 1 마이크로볼로미터에 기초하여:
    처리 회로가, 제 1 복수의 제 1 제어 신호들, 제 1 복수의 제 2 제어 신호들 및 제 1 복수의 제 3 제어 신호들을 생성하고,
    제 1 복수의 제 1 제어 신호들에 기초하여, 상기 복수의 마이크로볼로미터 중 하나 이상을 선택적으로 단락시키도록 제 1 복수의 스위치를 설정하고,
    제 1 복수의 제 2 제어 신호들에 기초하여, 상기 복수의 마이크로볼로미터 중 하나 이상을 접지 세트에 선택적으로 연결하도록 제 2 복수의 스위치를 설정하고, 및
    제 1 복수의 제 3 제어 신호들에 기초하여, 상기 복수의 마이크로볼로미터 중 하나 이상에 선택적으로 각각의 바이어스 신호를 제공하도록 제 3 복수의 스위치를 설정하는 단계; 및
    판독 회로가, 상기 제 1 세트의 선택된 제 1 마이크로볼로미터와 상기 제 2 세트의 선택된 제 1 마이크로볼로미터를 동시에 판독하는 단계;
    를 포함하는, 방법.
  15. 제 14 항에 있어서
    상기 제 1 세트의 제 2 마이크로볼로미터는 상기 제 2 세트의 제 2 마이크로볼로미터와 접점을 공유하고, 상기 복수의 마이크로볼로미터의 중심 마이크로볼로미터들이 상기 제 1 세트의 제 2 마이크로볼로미터 상기 제 2 세트의 제 2 마이크로볼로미터를 포함하며,
    상기 방법은 추가로:
    상기 제 1 세트의 제 3 마이크로볼로미터 및 상기 제 2 세트의 제 3 마이크로볼로미터를 선택하는 단계; 및
    상기 제 1 세트의 선택된 제 1 마이크로볼로미터 및 상기 제 2 세트의 선택된 제 1 마이크로볼로미터를 동시에 판독하는 단계에 이어서:
    상기 처리 회로가, 제 2 복수의 제 1 제어 신호들, 제 2 복수의 제 2 제어 신호들 및 제 2 복수의 제 3 제어 신호들을 생성하고,
    제 2 복수의 제 1 제어 신호들, 제 2 복수의 제 2 제어 신호들 및 제 2 복수의 제 3 제어신호들에 기초하여 상기 제 1, 제 2 및 제 3 복수의 스위치를 설정하고, 및
    상기 판독 회로가, 상기 제 1 세트의 선택된 제 3 마이크로볼로미터 및 상기 제 2 세트의 선택된 제 3 마이크로볼로미터를 동시에 판독하는 단계;
    를 포함하는, 방법.
  16. 제 15 항에 있어서,
    상기 제 1 세트의 제 1 및 제 2 마이크로볼로미터 사이의 직렬 연결된 마이크로볼로미터의 개수는 상기 제 2 세트의 제 1 및 제 2 마이크로볼로미터 사이의 직렬 연결된 마이크로볼로미터의 개수와 동일하고,
    상기 제 1 세트의 제 2 및 제 3 마이크로볼로미터 사이의 직렬 연결된 마이크로볼로미터의 개수는 상기 제 2 세트의 제 2 및 제 3 마이크로볼로미터 사이의 직렬 연결된 마이크로볼로미터의 개수와 동일한, 방법.
  17. 제 14 항에 있어서,
    상기 제 1 복수의 스위치는 제 1 세트의 스위치들 및 제 2 세트의 스위치들을 포함하고,
    상기 제 1 복수의 제 1 제어 신호들에서의 각각의 제 1 제어 신호에 기초하여, 상기 제 1 세트의 스위치들 각각은 상기 제 1 세트의 마이크로볼로미터들의 각 하나를 선택적으로 단락시키고,
    상기 제 1 복수의 제 1 제어 신호들에서의 각각의 제 1 제어 신호에 기초하여, 상기 제 2 세트의 스위치들 각각은 상기 제 2 세트의 마이크로볼로미터들의 각 하나를 선택적으로 단락시키는, 방법.
  18. 제 17 항에 있어서,
    상기 제 1 복수의 스위치를 설정하는 것은:
    상기 각각의 제 1 제어 신호에 기초하여, 상기 제 1 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터에 병렬인 상기 제 1 세트의 스위치들의 제 1 스위치를 개방 상태로 설정하는 것; 및
    상기 각각의 제 1 제어 신호에 기초하여, 상기 제 2 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터에 병렬인 상기 제 2 세트의 스위치들의 제 1 스위치를 개방 상태로 설정하는 것;
    을 포함하는, 방법.
  19. 제 18 항에 있어서,
    상기 제 1 복수의 스위치를 설정하는 것은 추가로:
    상기 각각의 제 1 제어 신호에 기초하여, 상기 제 1 세트의 마이크로볼로미터들의 제 2 마이크로볼로미터에 병렬인 상기 제 1 세트의 스위치들의 제 2 스위치를 개방 상태로 설정하는 것과,
    상기 각각의 제 1 제어 신호에 기초하여, 상기 제 2 세트의 마이크로볼로미터들의 제 2 마이크로볼로미터에 병렬인 상기 제 2 세트의 스위치들의 제 2 스위치를 개방 상태로 설정하는 것을 포함하며,
    상기 제 1 세트의 마이크로볼로미터들의 제 1 및 제 2 마이크로볼로미터가 서로 인접하고, 상기 제 2 세트의 마이크로볼로미터들의 제 1 및 제 2 마이크로볼로미터가 서로 인접하는, 방법.
  20. 제 19 항에 있어서,
    상기 제 1 복수의 스위치를 설정하는 것은 추가로:
    상기 각각의 제 1 제어 신호에 기초하여, 상기 제 1 세트의 마이크로볼로미터들의 제 3 마이크로볼로미터에 병렬인 상기 제 1 세트의 스위치들의 제 3 스위치를 개방 상태로 설정하는 것과,
    상기 각각의 제 1 제어 신호에 기초하여, 상기 제 2 세트의 마이크로볼로미터들의 제 3 마이크로볼로미터에 병렬인 상기 제 2 세트의 스위치들의 제 4 스위치를 개방 상태로 설정하는 것을 포함하며,
    상기 제 1 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터가 상기 제 1 세트의 마이크로볼로미터들의 제 2 및 제 3 마이크로볼로미터에 인접하고,
    상기 제 2 세트의 마이크로볼로미터들의 제 1 마이크로볼로미터가 상기 제 2 세트의 마이크로볼로미터들의 제 2 및 제 3 마이크로볼로미터에 인접하는, 방법.
KR1020207021987A 2017-12-29 2018-12-21 동시 판독을 위해 다수 마이크로볼로미터를 선택하는 방법 및 장치 KR102531212B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762611711P 2017-12-29 2017-12-29
US62/611,711 2017-12-29
PCT/US2018/067331 WO2019133532A1 (en) 2017-12-29 2018-12-21 Multiple microbolometer selection for simultaneous readout

Publications (2)

Publication Number Publication Date
KR20200101976A KR20200101976A (ko) 2020-08-28
KR102531212B1 true KR102531212B1 (ko) 2023-05-11

Family

ID=65024155

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207021987A KR102531212B1 (ko) 2017-12-29 2018-12-21 동시 판독을 위해 다수 마이크로볼로미터를 선택하는 방법 및 장치

Country Status (4)

Country Link
US (1) US11212466B2 (ko)
KR (1) KR102531212B1 (ko)
CN (1) CN111713098B (ko)
WO (1) WO2019133532A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149919B2 (ja) 1997-12-03 2001-03-26 日本電気株式会社 固体撮像素子及びこれを用いた読み出し回路
JP2009210523A (ja) 2008-03-06 2009-09-17 Mitsubishi Electric Corp 赤外線固体撮像装置
KR101158259B1 (ko) 2011-11-07 2012-06-19 국방과학연구소 적외선 센서의 신호 검출 회로 및 그 보정방법
US20170211984A1 (en) 2014-10-16 2017-07-27 Flir Systems, Inc. Bolometer circuitry and methods for difference imaging
JP6213668B2 (ja) 2014-04-22 2017-10-18 日本電気株式会社 半導体装置と該半導体装置を備えた赤外線撮像装置、及び半導体装置の制御方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7911456B2 (en) * 1992-06-08 2011-03-22 Synaptics Incorporated Object position detector with edge motion feature and gesture recognition
JP2743842B2 (ja) * 1994-08-29 1998-04-22 日本電気株式会社 赤外線検出器
US6953932B2 (en) * 1999-10-07 2005-10-11 Infrared Solutions, Inc. Microbolometer focal plane array with temperature compensated bias
FR2802338B1 (fr) * 1999-12-10 2002-01-18 Commissariat Energie Atomique Dispositif de detection de rayonnement electromagnetique
JP3578037B2 (ja) * 2000-03-01 2004-10-20 日本電気株式会社 半導体装置及びその制御方法
US7034301B2 (en) 2002-02-27 2006-04-25 Indigo Systems Corporation Microbolometer focal plane array systems and methods
US7253412B2 (en) * 2004-10-01 2007-08-07 Northrop Grumman Corporation Focal plane antenna to sensor interface for an ultra-sensitive silicon sensor
US7679048B1 (en) 2008-04-18 2010-03-16 Flir Systems, Inc. Systems and methods for selecting microbolometers within microbolometer focal plane arrays
CN106768388A (zh) * 2017-03-31 2017-05-31 苏州芯通微电子有限公司 非制冷红外焦平面阵列低噪声选通电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3149919B2 (ja) 1997-12-03 2001-03-26 日本電気株式会社 固体撮像素子及びこれを用いた読み出し回路
JP2009210523A (ja) 2008-03-06 2009-09-17 Mitsubishi Electric Corp 赤外線固体撮像装置
KR101158259B1 (ko) 2011-11-07 2012-06-19 국방과학연구소 적외선 센서의 신호 검출 회로 및 그 보정방법
JP6213668B2 (ja) 2014-04-22 2017-10-18 日本電気株式会社 半導体装置と該半導体装置を備えた赤外線撮像装置、及び半導体装置の制御方法
US20170211984A1 (en) 2014-10-16 2017-07-27 Flir Systems, Inc. Bolometer circuitry and methods for difference imaging

Also Published As

Publication number Publication date
CN111713098B (zh) 2023-04-14
US20200322548A1 (en) 2020-10-08
KR20200101976A (ko) 2020-08-28
US11212466B2 (en) 2021-12-28
WO2019133532A1 (en) 2019-07-04
CN111713098A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
US9410850B2 (en) Infrared imager readout electronics
US10197448B2 (en) Low cost and high performance bolometer circuitry and methods
US10051210B2 (en) Infrared detector array with selectable pixel binning systems and methods
US11108967B2 (en) Infrared imaging in multiple imaging modes systems and methods
EP1582054B1 (en) Cmos active pixel with hard and soft reset
EP2652942B1 (en) Improved image sensor arrangement
US20170054922A1 (en) Infrared imager readout electronics
US11015979B2 (en) Low cost and high performance bolometer circuitry and methods
US11012647B2 (en) Low cost and high performance bolometer circuity and methods
TWI586172B (zh) 用於影像感測器之讀出電路及影像系統
WO2014082097A1 (en) Hybrid infrared sensor array having heterogeneous infrared sensors
JPH10122957A (ja) 熱型赤外線イメージセンサ
EP2481210B1 (en) Ir detector system and method
CN107872633A (zh) 具有暗像素的图像传感器
US8946640B2 (en) Unit cells with avalanche photodiode detectors
JP4778567B2 (ja) 信号読み出し方法、信号読み出し回路及びイメージセンサ
KR102531212B1 (ko) 동시 판독을 위해 다수 마이크로볼로미터를 선택하는 방법 및 장치
TWI603618B (zh) 像素控制信號驅動器
JP3578037B2 (ja) 半導体装置及びその制御方法
WO2014085699A1 (en) Infrared imager with integrated metal layers
KR101563475B1 (ko) 적외선 검출기
Eminoglu et al. MT3250BA: a 320× 256-50µm Snapshot Microbolometer ROIC for high-resistance Detector Arrays
WO2014105897A1 (en) Infrared detector array with selectable pixel binning systems and methods
JP5939923B2 (ja) 固体撮像装置
Simolon et al. High performance two-color one megapixel CMOS ROIC for QWIP detectors

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant