이하, 본 발명의 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다.
또한, 본 발명의 실시 예를 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 실시 예의 구성요소를 설명함에 있어서, 제1, 제2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다.
지금부터는 첨부된 도면을 참조하여, 본 발명의 제1 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터(100)에 대해 상세히 설명한다.
도 1은 본 발명의 제1 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터를 도시한 것이다.
도 1에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터(100)는 지지기판(110)과, 제1 반도체층(120)과, 제2 반도체층(130)과, 소스전극(140)과, 드레인전극(150)과, 제1 게이트전극(161)과, 제2 게이트전극(162)과, 제1 패시베이션층(170)과, 제2 패시베이션층(180)과, 접착층(190)을 포함한다.
지지기판(110)은 제1 반도체층(120) 및 제2 반도체층(130)을 지탱(Support)하는 것으로, 일면에 제1 반도체층(120)이 배치된다. 이러한 지지기판(110)은 투명기판일 수 있으며, 예를 들면, 용도에 따라 0.1mm 내지 3mm의 두께를 갖는 투명기판일 수 있다. 또한, 지지기판(110)은 실리콘(Si), 탄화실리콘(SiC), 질화실리콘(SiNx), 질화알루미늄(AlN), DLC(Diamon Like Carbon), 금속(Metal) 또는 합금(Alloy), 유리(Glass), 폴리이미드(Polyimide), 플라스틱(Plastic)을 포함하는 물질 중에서 선택된 적어도 하나의 물질을 포함할 수 있다. 또한, 실리콘(Si), 탄화실리콘(SiC), 질화실리콘(SiNx), 질화알루미늄(AlN) 지지기판(110)들은 단결정(Single Crystal) 미세조직체가 바람직하지만, 소결(Sintering) 공정을 거친 다결정(Poly Crystal) 미세조직체이어도 무방하다. 또한, 지지기판(110)은 경우에 따라, 다층으로 구성된 고방열의 라미네이트 복합체(Laminate Composite)의 적층 구조일 수 있으며, 대표적인 라미네이트 복합체는 수직방향으로 전기전도성(Electrically Conductivity)을 갖는 CMC(Cu/Mo/Cu), CIC(Cu/Invar/Cu) 등의 구조가 있고, 수직방향으로 비전기전도성(Electrically Non-conductivity)을 갖는 CCC(Cu/Ceramic/Cu) 구조가 있는데 여기서 Ceramic 물질은 질화알루미늄(AlN), 산화알루미늄(Al2O3), 질화실리콘(SiNx) 등일 수 있다.
제1 반도체층(120)은 제1 도전성을 가지는 것으로, 지지기판(110)의 일면에 배치된다.
제1 반도체층(120)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제1 반도체층(120)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, n형 도펀트(n-type dopant)가 첨가되거나 비의도적으로 도핑(Unintentionally Doped, UID)되어 n형 특성을 가질 수 있다. 또한, 제1 반도체층(120)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
제1 반도체층(120)은 보다 상세하게, 컨덕션층(121)(Conduction Layer)과, 드리프트층(122)(Drift Layer)을 포함하는데, 이때 컨덕션층(121)의 지지기판(110)을 향하는 면인 제1 면(S1)과, 컨덕션층(121)의 지지기판(110)과 대향하는 면인 제2 면(S2)과, 드리프트층(122)의 지지기판(110)과 대향하는 면인 제3 면(S3)을 포함한다.
이때, 제1 면(S1)으로부터 제3 면(S3)까지의 길이는, 제1 면(S1)으로부터 제2 면(S2)까지의 길이보다 길게 형성될 수 있으며, 이는 후술하는 드레인전극(150)이 드리프트층(122)의 제3 면(S3)에 배치되어 소스전극(140)보다 상대적으로 높은 위치에 배치될 수 있음을 의미한다.
즉, 드레인전극(150)이 소스전극(140)보다 상대적으로 높은 위치에 배치됨으로써 온(On) 저항 증가로 인해 소자의 항복전압 특성이 높아지며, 드레인전압이 높아짐에 따라 게이트전압과의 전압차로 인해 발생하는 핀치 오프(Pinch-off) 현상으로 인해 전류가 포화되는 현상을 개선하는 장점이 있다.
컨덕션층(121)은 제2 반도체층(130)과 수평하게 연장 형성되어 제1 면(S1)이 제2 반도체층(130)과 접하는 것으로, 이러한 컨덕션층(121)의 두께는 본 발명의 트랜지스터를 노멀리 오프(Normally OFF; Enhancement-mode, E-mode) 모드 또는 노멀리 온(Normally ON; Depletion-mode, D-mode) 모드의 트랜지스터 소자로 구동할지에 따라 조절될 수 있다.
이러한 컨덕션층(121)의 두께는 50nm 내지 1000nm로 형성되는 것이 바람직하며, 노멀리 오프 모드의 트랜지스터 소자로 구성하기 위해서는 일반적으로 500nm 이하의 두께로 형성된다. 또한, 컨덕션층(121)의 도핑농도는 n형 도펀트가 도핑된 1×1017 atoms/㎤ 내지 1×1019 atoms/㎤ 인 것이 바람직하다.
한편, 소스전극(140)의 컨택저항을 낮추기 위해서는 컨덕션층(121)의 도핑농도를 늘려주는 방향이 유리하지만, 반대로 컨덕션층(121)의 공핍영역의 두께를 강화시키기 위해서는 하기의 식과 같이 도핑농도를 낮추는 방향이 유리하기 때문에, 본 발명에서는 n형 도펀트가 부분적으로 도핑되지 않은 변조된 구조로도 설계될 수 있다.
NA > ND ⇒ Wn > Wp
여기서 NA는 제2 반도체층(130)의 도핑농도, ND는 제1 반도체층(120)의 도핑농도, Wn은 제1 반도체층(120)에 형성되는 공핍층의 두께, Wp는 제2 반도체층(130)에 형성되는 반도체의 두께를 각각 의미한다.
드리프트층(122)은 컨덕션층(121)의 일측에 제2 반도체층(130)과 대향하는 방향으로 수직하게 연장 형성되는 것으로, 이러한 드리프트층(122)의 두께는 0보다 클 수 있으며, 고전압의 고출력 소자 구현을 위해서는 드리프트층(122)의 두께를 늘려주는 것이 필요하다.
통상적으로 갈륨나이트라이드(GaN)계 소자의 경우, 드리프트층(122)의 두께 1㎛ 당 100V 전압을 상승시키는 효과가 있는 것으로 검증된 바 있다. 이에 따라, 1200V 이상의 고출력 소자의 구현을 위해서는 드리프트층(122)의 두께가 10㎛ 이상이 되도록 하는 것이 바람직하다.
제2 반도체층(130)은 제1 도전성과 다른 제2 도전성을 가지고 제1 반도체층(120)의 제1 면(S1)에 접하도록 배치되어 일면이 제1 반도체층(120)에 공핍 영역(Depletion Region)을 형성하는 것으로, 지지기판(110)과 제1 반도체층(120)의 사이에 배치된다.
제2 반도체층(130)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제2 반도체층(130)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, 제2 반도체층(130)은 p형 도펀트가 첨가되어 p형 특성을 가질 수 있다. 즉, 제2 반도체층(130)은 p-AlxGa1-xN(0≤x≤1) 반도체층(p형 도펀트가 첨가된 GaN 반도체층 또는 p형 도펀트가 첨가된 AlGaN 반도체층)을 포함할 수 있다. 또한, 제2 반도체층(130)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
또한, 제2 반도체층(130)은 제1 반도체층(120)에 형성된 공핍 영역(폭, 두께)의 확대가 용이하도록, 두께는 50nm 내지 1000nm로 형성되는 것이 바람직하고, 도핑농도는 1×1018 atoms/㎤ 내지 1×1020 atoms/㎤ 인 것이 바람직하다.
제2 반도체층(130)의 두께와 도핑농도는 컨덕션층(121)에 생기는 공핍 영역의 폭(두께)을 결정짓는 요소로, MOCVD, MBE 등 사용하는 성장 장비의 특성에 따라 다르게 설계할 수 있다. 한편, 공핍 영역의 폭(두께)가 얇을수록 미세 공정이 필요하게 되므로, 공핍 영역이 최대한 두껍게 형성될 수 있도록 제2 반도체층(130)을 설계하는 것이 바람직하다.
소스전극(140)은 제1 반도체층(120)의 컨덕션층(121)에 전기적으로 연결되는 것으로, 제1 반도체층(120)의 컨덕션층(121)의 제2 면(S2)에 접하도록 배치된다. 이러한 소스전극(140)은 제1 반도체층(120)의 컨덕션층(121)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(120)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 소스전극(140)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
드레인전극(150)은 제1 반도체층(120)의 드리프트층(122)에 전기적으로 연결되는 것으로, 제1 반도체층(120)의 드리프트층(122)의 제3 면(S3)에 접하도록 배치된다. 이러한 드레인전극(150)은 제1 반도체층(120)의 컨덕션층(121)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(120)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 드레인전극(150)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
제1 게이트전극(161)은 제2 반도체층(130)에 전기적으로 연결된 것으로, 지지기판(110)과 제2 반도체층(130)의 사이에 배치되어 제2 반도체층(130)의 타면에 접하도록 배치된다. 이러한 제1 게이트전극(161)은 우선적으로 제2 반도체층(130)에 오믹접촉하는 물질로 구현하는 것이 바람직하다. 예를 들면, 제2 반도체층(130)이 p형 도펀트가 첨가되어 p형 특성을 가질 경우, 제1 게이트전극(161)은 일함수(Work Function, eV) 값이 상대적으로 크고 공정중(증착 또는/및 열처리)에 그룹3족 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 산화물(Oxide)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 팔라듐(Pd), 니켈(Ni), 백금(Pt), 이리듐(Ir), 루테늄(Ru), 로듐(Rh) 등이 있다.
또한, 필요에 따라 제1 게이트전극(161)은 제2 반도체층(130)에 쇼트키접촉(Schottky Contact)하는 물질로 구현될 수도 있다. 예를 들면, 제1 게이트전극(161)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
한편, 기존의 트랜지스터의 구조에서는, 하나의 면에 제1 게이트전극(161)과 소스전극(140)이 함께 존재할 경우, 전기적 단락을 위해 기 설정된 거리를 가지고 분리되어 있어야 했으나, 본 발명은 컨덕션층(121)의 제1 면(S1)과, 제1 면(S1)에 대향되는 제2 면(S2)에 각각 제1 게이트전극(161)과 소스전극(140)이 분리되어 형성되므로, 제1 게이트전극(161)과 제2 반도체층(130)의 위치는 제1 면(S1)에 특별한 위치제한 없이 설계될 수 있는 장점이 있다.
제2 게이트전극(162)은 컨덕션층(121)을 사이에 두고 제2 반도체층(130)과 대향되는 위치에 배치되는 것으로, 제1 패시베이션층(170)의 상면에 접하도록 배치된다.
이러한 제2 게이트전극(162)은 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층으로 구성되는 제1 패시베이션층(170) 위에 놓이며, 이러한 제1 패시베이션층(170)과 접착력이 우수한 금속 또는 이들로 이루어진 합금들 중에서 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
제1 패시베이션층(170)은 제1 반도체층(120)의 제2 면(S2) 및 제3 면(S3)을 덮는 것으로, 제1 반도체층(120)의 제2 면(S2) 및 제3 면(S3) 상에 배치된다. 제1 패시베이션층(170)은 절연성 물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
이러한 제1 패시베이션층(170)에는 소스전극(140)이 삽입되어 배치되도록 컨덕션층(121)의 제2 면(S2)이 개구되는 제1 개구(H1)와, 드레인전극(150)이 삽입되어 배치되도록 드리프트층(122)의 제3 면(S3)이 개구되는 제2 개구(H2)가 형성되는데, 이러한 제1 개구(H1)와 제2 개구(H2)를 통해 소스전극(140)과 드레인전극(150)이 각각 삽입되어 배치된 후 제1 반도체층(120)에 전기적으로 연결될 수 있다.
제2 패시베이션층(180)은 제2 반도체층(130)과 제1 게이트전극(161)을 감싸도록 제1 반도체층(120)의 제1 면(S1)을 덮는 것으로, 제2 반도체층(130)과 제1 게이트전극(161)을 감싸도록 제1 반도체층(120)과 접착층(190)의 사이에 배치된다. 제2 패시베이션층(180)은 절연물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
이러한 제2 패시베이션층(180)에는 제1 게이트전극(161)의 일면이 노출되도록 개구되는 제3 개구(H3)가 형성될 수 있다. 이러한 개구에는 접착층(190)이 침투하여 제1 게이트전극(161)에 접촉될 수 있다.
접착층(190)은 지지기판(110)과 제2 패시베이션층(180)을 서로 접착시키는 것으로, 지지기판(110)과 제2 패시베이션층(180) 사이에 배치된다. 이러한 접착층(190)은 유기 절연물질을 포함할 수 있으며, 투명물질로 구현될 수 있다.
보다 상세하게, SOG(Spin On Glass), HSQ(Hydrogen Silsesquioxane) 등의 유동성을 갖는 산화물(Flowable Oxide; FOx), BCB(Benzocyclobuene), 아크릴, SU-8 폴리머 등을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함할 수 있다. 또한, 트랜지스터 소자가 고방열과 열적 안정성이 요구되는 경우, 산화실리콘(SiO2), 질화실리콘(SiNx), 산화알루미늄(Al2O3), 질화알루미늄(AlN) 등의 세라믹 물질, 알루미늄(Al), 금(Au), 은(Ag), 구리(Cu) 등을 적어도 어느 하나의 물질을 포함할 수 있다.
한편, 접착층(190)은 지지기판(110) 측의 접착층(190)과 제2 패시베이션층(180) 측의 접착층(190)이 서로 접합됨으로써 형성되는데, 지지기판(110)과 제2 패시베이션층(180)이 서로 강한 밀착성을 가지며 접합될 수 있도록 지지기판(110) 측의 접착층(190)과 제2 패시베이션층(180) 측의 접착층(190)의 표면을 각각 화학적 기계적 연마(Chemical Mechanical Polishing, CMP) 공정을 통해 표면처리하는 것이 바람직하다.
상술한 바와 같은 지지기판(110)과, 제1 반도체층(120)과, 제2 반도체층(130)과, 소스전극(140)과, 드레인전극(150)과, 제1 게이트전극(161)과, 제2 게이트전극(162)과, 제1 패시베이션층(170)과, 제2 패시베이션층(180)과, 접착층(190)을 포함하는 본 발명의 제1 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터(100)에 따르면, 유기금속화학증착(Metal Organic Chemical Vapor Deposition, MOCVD) 기법을 이용한 재성장 공정 없이, 후막 에피택시(Epitaxy) 성장 기법 및 레이저 리프트 오프(Laser Lift Off, LLO) 기법을 통해 전류 채널 게이트를 형성하고, 동시에 성능이 대폭적으로 개선될 수 있는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터를 제공할 수 있다.
또한, 본 발명에 따르면, MOSFET, JFET, HEMT의 동작 특성을 동일 에피택시 구조 또는 간단한 에피택시 설계 변경을 통해 구현이 가능하다.
또한, 본 발명에 따르면, 컨덕션층(121)의 식각을 통해 노멀리 오프(Normally OFF) 소자의 구현이 용이하다.
또한, 본 발명에 따르면, 에피택시(Epitaxy) 성장층에서 상대적으로 낮은 결정결함밀도를 갖는 고품질의 상부층을 이용하여 소자를 구현할 수 있으므로, 고출력 소자의 구현이 가능한 이점이 있다.
또한, 본 발명에 따르면, 레이저 리프트 오프 기법을 통해 제거된 성장기판(G)은 재사용이 가능하고, p형 반도체(p-GaN, p-AlGaN, p-AlInN, p-AlGaInN)층의 재성장 공정이 추가로 필요하지 않기 때문에 공정의 단순화를 통한 원가절감이 가능한 이점이 있다.
또한, 본 발명에 따르면, 열전도도 특성이 좋지 않은 기존의 성장기판(G)을 제거하고 고방열 지지기판(110)으로 대체할 수 있으므로, 방열특성 개선에 따른 소자의 신뢰성이 향상되는 이점이 있다.
또한, 본 발명에 따르면, Double Gate Channel 구조로 형성되므로, MOSFET과 JFET의 동작 특성을 동시에 구현할 수 있다. 예를 들면, MOSFET의 경우 High Noise 분야, JFET의 경우 Low Noise 분야에 주로 이용되는데, 본 발명의 구조의 경우 상술한 두 가지 응용분야를 동시에 구현할 수 있다.
또한, 본 발명에 따르면, 제1 게이트전극(161)과 제2 게이트전극(162)을 회로 설계 상 하나의 전압으로 병렬 설계할 경우 게이트전극의 문턱전압(turn-on Voltage)을 필요할 경우 높일 수 있다.
지금부터는 첨부된 도면을 참조하여, 본 발명의 제1 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터의 제조 방법(S100)에 대해 상세히 설명한다.
도 2는 본 발명의 제1 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법의 순서도이고, 도 3 내지 도 5는 본 발명의 제1 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법에 따라 접합형 전계 효과 트랜지스터가 제조되는 과정을 도시한 것이다.
도 2 내지 도 5에 도시된 바와 같이, 본 발명의 제1 실시예에 따른 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법(S100)은 제1 단계(S101)와, 제2 단계(S102)와, 제3 단계(S103)와, 제4 단계(S104)와, 제5 단계(S105)와, 제6 단계(S106)와, 제7 단계(S107)와, 제8 단계(S108)와, 제9 단계(S109)와, 제10 단계(S110)와, 제11 단계(S111)를 포함한다.
제1 단계(S101)는 성장기판(G) 상에 러프층(R1), 리커버리층(R2), 제1 도전성을 가지는 제1 반도체층(120) 및 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(130)의 순서대로 에피택시(Epitaxy) 성장시켜 모재(母材)를 준비하는 단계이다.
한편, 도 17에 도시된 바와 같이, 제1 단계(S101)의 모재는 보다 상세하게, 성장기판(G)과, 시딩층(L)과, 러프층(R1)과, 리커버리층(R2)과, 제1 반도체층(120, 220, 320)과, 제2 반도체층(130, 230, 330)과, 드레인전극 접촉층(T1)과, 게이트전극 접촉층(T2)을 포함한다.
성장기판(G)은 시딩층(L), 러프층(R1), 리커버리층(R2), 제1 반도체층(120), 제2 반도체층(130), 드레인전극 접촉층(T1) 및 게이트전극 접촉층(T2)이 성장될 수 있는 기판으로, 예를 들면 성장기판(G)은 사파이어(Sapphire), SiC, GaAs, GaN, ZnO, Si, GaP, InP, Ge 중 적어도 하나의 물질을 포함하는 단결정(Single Crystal) 기판으로 형성될 수 있으나 이에 제한되지는 않으며, 비교적 저렴한 사파이어를 통해 형성되는 것이 바람직하다.
시딩층(L)은 스퍼터(Sputter) 또는 이온빔증착기(Ion-beam Assisted Deposition, IAD) 등의 물리증기증착법(PVD)으로 성막된 AIN 또는 AINO 등으로 형성될 수 있으나 이에 제한되지는 않으며, 시딩층(L)은 성장기판(G)과의 격자상수 및 열팽창계수를 완충시킬 수 있도록, 두께가 10nm 내지 100nm로 형성되는 것이 바람직하다.
러프층(R1)과 리커버리층(R2)은 관통전위를 저감시킴과 동시에 후속 단계의 성장기판(G) 분리시에 희생되는 층으로, 두께는 2000nm 내지 5000nm로 형성되는 것이 바람직하다.
제1 반도체층(120)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제1 반도체층(120)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, n형 도펀트(n-type dopant)가 첨가되거나 비의도적으로 도핑(Unintentionally Doped, UID)되어 n형 특성을 가질 수 있다. 또한, 제1 반도체층(120)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
제1 반도체층(120)은 보다 상세하게, 드레인전극(150) 접촉층(T1)과, 드리프트층(122)과, 컨덕션층(121)을 포함하는데, 이때 컨덕션층(121)의 지지기판(110)을 향하는 면인 제1 면(S1)과, 컨덕션층(121)의 지지기판(110)과 대향하는 면인 제2 면(S2)과, 드리프트층(122)의 지지기판(110)과 대향하는 면인 제3 면(S3)을 포함한다.
이때, 제1 면(S1)으로부터 제3 면(S3)까지의 길이는, 제1 면(S1)으로부터 제2 면(S2)까지의 길이보다 길게 형성될 수 있으며, 이는 후술하는 드레인전극(150)이 드리프트층(122)의 제3 면(S3)에 배치되어 소스전극(140)보다 상대적으로 높은 위치에 배치될 수 있음을 의미한다.
드레인전극 접촉층(T1)은 드레인전극(150)과 오믹접촉하는 것으로, 드레인전극(150)과 오믹접촉이 개선될 수 있도록 두께는 50nm 내지 100nm로 형성되는 것이 바람직하고, 도핑농도는 1×1017 atoms/㎤ 내지 1×1019 atoms/㎤ 인 것이 바람직하다.
드리프트층(122)은 컨덕션층(121)의 일측에 제2 반도체층(130)과 대향하는 방향으로 수직하게 연장 형성되는 것으로, 이러한 드리프트층(122)의 두께는 0보다 클 수 있으며, 고전압의 고출력 소자 구현을 위해서는 드리프트층(122)의 두께를 늘려주는 것이 필요하다.
통상적으로 갈륨나이트라이드(GaN)계 소자의 경우, 드리프트층(122)의 두께 1㎛ 당 100V 전압을 상승시키는 효과가 있는 것으로 검증된 바 있다. 이에 따라, 1200V 이상의 고출력 소자의 구현을 위해서는 드리프트층(122)의 두께가 10㎛ 이상이 되도록 하는 것이 바람직하다.
컨덕션층(121)은 제2 반도체층(130)과 수평하게 연장 형성되어 제1 면(S1)이 제2 반도체층(130)과 접하는 것으로, 이러한 컨덕션층(121)의 두께는 본 발명의 트랜지스터를 노멀리 오프(Normally OFF; Enhancement-mode, E-mode) 모드 또는 노멀리 온(Normally ON; Depletion-mode, D-mode) 모드의 트랜지스터 소자로 구동할지에 따라 조절될 수 있다.
이러한 컨덕션층(121)의 두께는 50nm 내지 1000nm로 형성되는 것이 바람직하며, 노멀리 오프 모드의 트랜지스터 소자로 구성하기 위해서는 일반적으로 500nm 이하의 두께로 형성된다. 또한, 컨덕션층(121)의 도핑농도는 n형 도펀트가 도핑된 1×1017 atoms/㎤ 내지 1×1019 atoms/㎤ 인 것이 바람직하다.
한편, 소스전극(140)의 컨택저항을 낮추기 위해서는 컨덕션층(121)의 도핑농도를 늘려주는 방향이 유리하지만, 반대로 컨덕션층(121)의 공핍영역의 두께를 강화시키기 위해서는 하기의 식과 같이 도핑농도를 낮추는 방향이 유리하기 때문에, 본 발명에서는 n형 도펀트가 부분적으로 도핑되지 않은 변조된 구조로도 설계될 수 있다.
NA > ND ⇒ Wn > Wp
여기서 NA는 제2 반도체층(130)의 도핑농도, ND는 제1 반도체층(120)의 도핑농도, Wn은 제1 반도체층(120)에 형성되는 공핍층의 두께, Wp는 제2 반도체층(130)에 형성되는 반도체의 두께를 각각 의미한다.
제2 반도체층(130)은 제1 도전성과 다른 제2 도전성을 가지고 제1 반도체층(120)의 제1 면(S1)에 접하도록 배치되어 일면이 제1 반도체층(120)에 공핍 영역(Depletion Region)을 형성하는 것으로, 지지기판(110)과 제1 반도체층(120)의 사이에 배치된다.
제2 반도체층(130)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제2 반도체층(130)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, 제2 반도체층(130)은 p형 도펀트가 첨가되어 p형 특성을 가질 수 있다. 즉, 제2 반도체층(130)은 p-AlxGa1-xN(0≤x≤1) 반도체층(p형 도펀트가 첨가된 GaN 반도체층 또는 p형 도펀트가 첨가된 AlGaN 반도체층)을 포함할 수 있다. 또한, 제2 반도체층(130)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
게이트전극 접촉층(T2)은 제2 반도체층(130) 사에 형성되어 제1 게이트전극(161)과 접촉하는 영역으로, 공핍 영역(층) 생성을 용이하게 할 수 있고 제1 게이트전극과의 오믹접촉이 개선될 수 있도록, p형 특성을 가지며 두께는 10nm 내지 50nm로 형성되는 것이 바람직하고, 도핑농도는 1×1019 atoms/㎤ 내지 5×1020 atoms/㎤ 인 것이 바람직하다.
한편, 게이트전극 접촉층(T2)의 상면에는 제1 게이트전극(161)과의 오믹접촉을 보다 개선할 수 있도록 n형 특성을 가진 층이 추가될 수 있는데, 이러한 층의 두께는 2nm 내지 10nm로 형성되는 것이 바람직하고, 도핑농도는 1×1017 atoms/㎤ 내지 1×1019 atoms/㎤ 인 것이 바람직하다.
제2 단계(S102)는 제2 반도체층(130) 상에 제1 게이트전극(161)을 배치시키는 단계이다. 여기서 제1 게이트전극(161)은 제2 반도체층(130)에 전기적으로 연결된 것으로, 지지기판(110)과 제2 반도체층(130)의 사이에 배치되어 제2 반도체층(130)의 타면에 접하도록 배치된다. 이러한 제1 게이트전극(161)은 우선적으로 제2 반도체층(130)에 오믹접촉하는 물질로 구현하는 것이 바람직하다. 예를 들면, 제2 반도체층(130)이 p형 도펀트가 첨가되어 p형 특성을 가질 경우, 제1 게이트전극(161)은 일함수(Work Function, eV) 값이 상대적으로 크고 공정중(증착 또는/및 열처리)에 그룹3족 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 산화물(Oxide)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 팔라듐(Pd), 니켈(Ni), 백금(Pt), 이리듐(Ir), 루테늄(Ru), 로듐(Rh) 등이 있다.
또한, 필요에 따라 제1 게이트전극(161)은 제2 반도체층(130)에 쇼트키접촉(Schottky Contact)하는 물질로 구현될 수도 있다. 예를 들면, 제1 게이트전극은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
제3 단계(S103)는 제1 게이트전극(161) 하부의 제2 반도체층(130) 및 제1 반도체층(120)의 일면을 부분적으로 식각하여 제1 면(S1)을 형성하는 단계이다. 예를 들면, 제3 단계(S103)는 포토 리소그래피 공정 및 식각공정을 통해 제2 반도체층(130) 및 제1 반도체층(120)의 일면을 부분적으로 식각할 수 있다.
제4 단계(S104)는 식각된 상기 제2 반도체층(130)과 제1 게이트전극(161)을 감싸도록, 제1 반도체층(120)의 제1 면(S1)을 덮는 제2 패시베이션층(180)을 형성시키는 단계이다. 즉, 제2 패시베이션층(180)은 제2 반도체층(130)과 제1 게이트전극(161)을 감싸도록 제1 반도체층(120)의 제1 면(S1)을 덮는 것으로, 제2 반도체층(130)과 제1 게이트전극(161)을 감싸도록 제1 반도체층(120)과 접착층(190)의 사이에 배치된다. 제2 패시베이션층(180)은 절연물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
제5 단계(S105)는 제2 패시베이션층(180)에 제1 게이트전극(161)이 노출되도록 개구되는 제3 개구(H3)를 형성시키는 단계이다. 이러한 개구에는 후술하는 접착층(190)이 침투하여 제1 게이트전극(161)에 접촉될 수 있다.
제6 단계(S106)는 지지기판(110)의 일면에 접착제를 도포하고, 제2 패시베이션층(180)의 일면에 접착제를 도포한 후 서로 접착시켜 지지기판(110)과 제2 패시베이션층(180) 사이에 접착층(190)을 형성시키는 단계이다. 즉, 접착층(190)은 지지기판(110)과 제2 패시베이션층(180) 사이에 배치된다. 이러한 접착층(190)은 유기 절연물질을 포함할 수 있으며, 투명물질로 구현될 수 있다. 보다 상세하게, SOG(Spin On Glass), HSQ(Hydrogen Silsesquioxane) 등의 유동성을 갖는 산화물(Flowable Oxide; FOx), BCB(Benzocyclobuene), 아크릴, SU-8 폴리머 등을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함할 수 있다. 또한, 트랜지스터 소자가 고방열과 열적 안정성이 요구되는 경우, 산화실리콘(SiO2), 질화실리콘(SiNx), 산화알루미늄(Al2O3), 질화알루미늄(AlN) 등의 세라믹 물질, 알루미늄(Al), 금(Au), 은(Ag), 구리(Cu) 등을 적어도 어느 하나의 물질을 포함할 수 있다. 한편, 접착층(190)은 지지기판(110) 측의 접착층(190)과 제2 패시베이션층(180) 측의 접착층(190)이 서로 접합됨으로써 형성되는데, 지지기판(110)과 제2 패시베이션층(180)이 서로 강한 밀착성을 가지며 접합될 수 있도록 지지기판(110) 측의 접착층(190)과 제2 패시베이션층(180) 측의 접착층(190)의 표면을 각각 화학적 기계적 연마(Chemical Mechanical Polishing, CMP) 공정을 통해 표면처리하는 것이 바람직하다.
제7 단계(S107)는 레이저 리프트 오프(Laser Lift Off, LLO) 기법을 이용하여 성장기판(G)을 제거한 후, 러프층(R1)과 리커버리층(R2)을 제거하여 제1 반도체층(120)의 타면을 노출시키는 단계이다. 레이저 리프트 오프 기법이란, 수직형 갈륨나이트라이드계 전력반도체 소자(트랜지스터, 다이오드) 제조를 위해 균일한 광출력 및 빔 프로파일을 갖는 UV 파장 레이저 빔을 투명한 성장기판(G) 후면에 조사하여 에피택시(Epitaxy) 성장된 층을 성장기판(G)으로부터 분리하는 기법이다.
제8 단계(S108)는 제1 반도체층(120)의 타면을 부분적으로 식각하여, 제2 반도체층(130)과 수평하게 연장 형성되어 제1 면(S1)이 제2 반도체층(130)과 접하는 컨덕션층(121)과, 컨덕션층(121)의 일측에 제2 반도체층(130)과 대향하는 방향으로 수직하게 연장 형성되는 드리프트층(122)을 형성시키는 단계이다. 예를 들면, 제8 단계(S108)는 포토 리소그래피 공정 및 식각공정을 통해 제1 반도체층(120)의 타면을 부분적으로 식각할 수 있다.
제9 단계(S109)는 컨덕션층(121)의 제2 면(S2)과 드리프트층(122)의 제3 면(S3)을 감싸도록 식각된 제1 반도체층(120)을 덮는 제1 패시베이션층(170)을 형성시키는 단계이다. 즉, 제1 패시베이션층(170)은 제1 반도체층(120)의 제2 면(S2) 및 제3 면(S3)을 덮는 것으로, 제1 반도체층(120)의 제2 면(S2) 및 제3 면(S3) 상에 배치된다. 제1 패시베이션층(170)은 절연물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
제10 단계(S110)는 제1 패시베이션층(170)에 소스전극(140)이 삽입되어 배치되도록 컨덕션층(121)의 제2 면(S2)이 개구되는 제1 개구(H1)와, 제2 패시베이션층(180)에 드레인전극(150)이 삽입되어 배치되도록 드리프트층(122)의 제3 면(S3)이 개구되는 제2 개구(H2)를 형성시키는 단계이다.
제11 단계(S111)는 제1 개구(H1)에 소스전극(140)을 삽입하여 배치시키고, 제2 개구(H2)에 드레인전극(150)을 삽입하여 배치시키며, 제1 패시베이션층(170)의 상면에 접하도록 제2 게이트전극(162)을 배치시키는 단계이다.
여기서 소스전극(140)은 제1 반도체층(120)의 컨덕션층(121)에 전기적으로 연결되는 것으로, 제1 반도체층(120)의 컨덕션층(121)의 제2 면(S2)에 접하도록 배치된다. 이러한 소스전극(140)은 제1 반도체층(120)의 컨덕션층(121)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(120)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 소스전극(140)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
또한, 드레인전극(150)은 제1 반도체층(120)의 드리프트층(122)에 전기적으로 연결되는 것으로, 제1 반도체층(120)의 드리프트층(122)의 제3 면(S3)에 접하도록 배치된다. 이러한 드레인전극(150)은 제1 반도체층(120)의 컨덕션층(121)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(120)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 드레인전극(150)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
또한, 제2 게이트전극(162)은 컨덕션층(121)을 사이에 두고 제2 반도체층(130)과 대향되는 위치에 배치되는 것으로, 제1 패시베이션층(170)의 상면에 접하도록 배치된다.
이러한 제2 게이트전극(162)은 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층으로 구성되는 제1 패시베이션층(170) 위에 놓이며, 이러한 제1 패시베이션층(170)과 접착력이 우수한 금속 또는 이들로 이루어진 합금들 중에서 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
상술한 바와 같은 제1 단계(S101)와, 제2 단계(S102)와, 제3 단계(S103)와, 제4 단계(S104)와, 제5 단계(S105)와, 제6 단계(S106)와, 제7 단계(S107)와, 제8 단계(S108)와, 제9 단계(S109)와, 제10 단계(S110)와, 제11 단계(S111)를 포함하는 본 발명의 제1 실시예에 따른 상이한 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법(S100)에 따르면, 유기금속화학증착(Metal Organic Chemical Vapor Deposition, MOCVD) 기법을 이용한 재성장 공정 없이, 후막 에피택시(Epitaxy) 성장 기법 및 레이저 리프트 오프(Laser Lift Off, LLO) 기법을 통해 전류 채널 게이트를 형성하고, 동시에 성능이 대폭적으로 개선될 수 있는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법을 제공할 수 있다.
또한, 본 발명에 따르면, Double Gate Channel 구조로 형성되므로, MOSFET과 JFET의 동작 특성을 동시에 구현할 수 있다. 예를 들면, MOSFET의 경우 High Noise 분야, JFET의 경우 Low Noise 분야에 주로 이용되는데, 본 발명의 구조의 경우 상술한 두 가지 응용분야를 동시에 구현할 수 있다.
또한, 본 발명에 따르면, 제1 게이트전극(161)과 제2 게이트전극(162)을 회로 설계 상 하나의 전압으로 병렬 설계할 경우 게이트전극의 문턱전압(turn-on Voltage)을 필요할 경우 높일 수 있다.
지금부터는 첨부된 도면을 참조하여, 본 발명의 제2 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터(200)에 대해 상세히 설명한다.
도 6은 본 발명의 제2 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터를 도시한 것이다.
도 6에 도시된 바와 같이, 본 발명의 제2 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터(200)는 지지기판(210)과, 제1 반도체층(220)과, 제2 반도체층(230)과, 소스전극(240)과, 드레인전극(250)과, 제1 게이트전극(261)과, 제2 게이트전극(262)과, 제1 패시베이션층(270)과, 제2 패시베이션층(280)과, 접착층(290)을 포함한다.
지지기판(210)은 제1 반도체층(220) 및 제2 반도체층(230)을 지탱(Support)하는 것으로, 일면에 제1 반도체층(220)이 배치된다. 이러한 지지기판(210)은 투명기판일 수 있으며, 예를 들면, 용도에 따라 0.1mm 내지 3mm의 두께를 갖는 투명기판일 수 있다. 또한, 지지기판(210)은 실리콘(Si), 탄화실리콘(SiC), 질화실리콘(SiNx), 질화알루미늄(AlN), DLC(Diamon Like Carbon), 금속(Metal) 또는 합금(Alloy), 유리(Glass), 폴리이미드(Polyimide), 플라스틱(Plastic)을 포함하는 물질 중에서 선택된 적어도 하나의 물질을 포함할 수 있다. 또한, 실리콘(Si), 탄화실리콘(SiC), 질화실리콘(SiNx), 질화알루미늄(AlN) 지지기판(210)들은 단결정(Single Crystal) 미세조직체가 바람직하지만, 소결(Sintering) 공정을 거친 다결정(Poly Crystal) 미세조직체이어도 무방하다. 또한, 지지기판(210)은 경우에 따라, 다층으로 구성된 고방열의 라미네이트 복합체(Laminate Composite)의 적층 구조일 수 있으며, 대표적인 라미네이트 복합체는 수직방향으로 전기전도성(Electrically Conductivity)을 갖는 CMC(Cu/Mo/Cu), CIC(Cu/Invar/Cu) 등의 구조가 있고, 수직방향으로 비전기전도성(Electrically Non-conductivity)을 갖는 CCC(Cu/Ceramic/Cu) 구조가 있는데 여기서 Ceramic 물질은 질화알루미늄(AlN), 산화알루미늄(Al2O3), 질화실리콘(SiNx) 등일 수 있다.
제1 반도체층(220)은 제1 도전성을 가지는 것으로, 지지기판(210)의 일면에 배치된다.
제1 반도체층(220)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제1 반도체층(220)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, n형 도펀트(n-type dopant)가 첨가되거나 비의도적으로 도핑(Unintentionally Doped, UID)되어 n형 특성을 가질 수 있다. 또한, 제1 반도체층(220)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
제1 반도체층(220)은 보다 상세하게, 컨덕션층(121)(Conduction Layer)과, 드리프트층(122)(Drift Layer)을 포함하는데, 이때 컨덕션층(121)의 지지기판(210)을 향하는 면인 제1 면(S1)과, 컨덕션층(121)의 지지기판(210)과 대향하는 면인 제2 면(S2)과, 드리프트층(122)의 지지기판(210)과 대향하는 면인 제3 면(S3)을 포함한다.
이때, 제1 면(S1)으로부터 제3 면(S3)까지의 길이는, 제1 면(S1)으로부터 제2 면(S2)까지의 길이보다 길게 형성될 수 있으며, 이는 후술하는 드레인전극(250)이 드리프트층(222)의 제3 면(S3)에 배치되어 소스전극(240)보다 상대적으로 높은 위치에 배치될 수 있음을 의미한다.
즉, 드레인전극(250)이 소스전극(240)보다 상대적으로 높은 위치에 배치됨으로써 온(On) 저항 증가로 인해 소자의 항복전압 특성이 높아지며, 드레인전압이 높아짐에 따라 게이트전압과의 전압차로 인해 발생하는 핀치 오프(Pinch-off) 현상으로 인해 전류가 포화되는 현상을 개선하는 장점이 있다.
컨덕션층(221)은 제2 반도체층(230)과 수평하게 연장 형성되어 제1 면(S1)이 제2 반도체층(230)과 접하는 것으로, 이러한 컨덕션층(221)의 두께는 본 발명의 트랜지스터를 노멀리 오프(Normally OFF; Enhancement-mode, E-mode) 모드 또는 노멀리 온(Normally ON; Depletion-mode, D-mode) 모드의 트랜지스터 소자로 구동할지에 따라 조절될 수 있다.
이러한 컨덕션층(221)의 두께는 50nm 내지 1000nm로 형성되는 것이 바람직하며, 노멀리 오프 모드의 트랜지스터 소자로 구성하기 위해서는 일반적으로 500nm 이하의 두께로 형성된다. 또한, 컨덕션층(221)의 도핑농도는 n형 도펀트가 도핑된 1×1017 atoms/㎤ 내지 1×1019 atoms/㎤ 인 것이 바람직하다.
한편, 소스전극(240)의 컨택저항을 낮추기 위해서는 컨덕션층(221)의 도핑농도를 늘려주는 방향이 유리하지만, 반대로 컨덕션층(221)의 공핍영역의 두께를 강화시키기 위해서는 하기의 식과 같이 도핑농도를 낮추는 방향이 유리하기 때문에, 본 발명에서는 n형 도펀트가 부분적으로 도핑되지 않은 변조된 구조로도 설계될 수 있다.
NA > ND ⇒ Wn > Wp
여기서 NA는 제2 반도체층(230)의 도핑농도, ND는 제1 반도체층(220)의 도핑농도, Wn은 제1 반도체층(220)에 형성되는 공핍층의 두께, Wp는 제2 반도체층(230)에 형성되는 반도체의 두께를 각각 의미한다.
드리프트층(222)은 컨덕션층(221)의 일측에 제2 반도체층(230)과 대향하는 방향으로 수직하게 연장 형성되는 것으로, 이러한 드리프트층(222)의 두께는 0보다 클 수 있으며, 고전압의 고출력 소자 구현을 위해서는 드리프트층(222)의 두께를 늘려주는 것이 필요하다.
통상적으로 갈륨나이트라이드(GaN)계 소자의 경우, 드리프트층(222)의 두께 1㎛ 당 100V 전압을 상승시키는 효과가 있는 것으로 검증된 바 있다. 이에 따라, 1200V 이상의 고출력 소자의 구현을 위해서는 드리프트층(222)의 두께가 10㎛ 이상이 되도록 하는 것이 바람직하다.
제2 반도체층(230)은 제1 도전성과 다른 제2 도전성을 가지고 제1 반도체층(220)의 제1 면(S1)에 접하도록 배치되어 일면이 제1 반도체층(220)에 공핍 영역(Depletion Region)을 형성하는 것으로, 지지기판(210)과 제1 반도체층(220)의 사이에 배치된다.
제2 반도체층(230)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제2 반도체층(230)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, 제2 반도체층(230)은 p형 도펀트가 첨가되어 p형 특성을 가질 수 있다. 즉, 제2 반도체층(230)은 p-AlxGa1-xN(0≤x≤1) 반도체층(p형 도펀트가 첨가된 GaN 반도체층 또는 p형 도펀트가 첨가된 AlGaN 반도체층)을 포함할 수 있다. 또한, 제2 반도체층(230)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
또한, 제2 반도체층(230)은 제1 반도체층(220)에 형성된 공핍 영역(폭, 두께)의 확대가 용이하도록, 두께는 50nm 내지 1000nm로 형성되는 것이 바람직하고, 도핑농도는 1×1018 atoms/㎤ 내지 1×1020 atoms/㎤ 인 것이 바람직하다.
제2 반도체층(230)의 두께와 도핑농도는 컨덕션층(221)에 생기는 공핍 영역의 폭(두께)을 결정짓는 요소로, MOCVD, MBE 등 사용하는 성장 장비의 특성에 따라 다르게 설계할 수 있다. 한편, 공핍 영역의 폭(두께)가 얇을수록 미세 공정이 필요하게 되므로, 공핍 영역이 최대한 두껍게 형성될 수 있도록 제2 반도체층(230)을 설계하는 것이 바람직하다.
소스전극(240)은 제1 반도체층(220)의 컨덕션층(221)에 전기적으로 연결되는 것으로, 제1 반도체층(220)의 컨덕션층(221)의 제2 면(S2)에 접하도록 배치된다. 이러한 소스전극(240)은 제1 반도체층(220)의 컨덕션층(221)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(220)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 소스전극(240)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
드레인전극(250)은 제1 반도체층(220)의 드리프트층(222)에 전기적으로 연결되는 것으로, 제1 반도체층(220)의 드리프트층(222)의 제3 면(S3)에 접하도록 배치된다. 이러한 드레인전극(250)은 제1 반도체층(220)의 컨덕션층(221)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(220)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 드레인전극(250)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
제1 게이트전극(261)은 제2 반도체층(230)에 전기적으로 연결된 것으로, 지지기판(210)과 제2 반도체층(230)의 사이에 배치되어 제2 반도체층(230)의 타면에 접하도록 배치된다. 이러한 제1 게이트전극(261)은 우선적으로 제2 반도체층(230)에 오믹접촉하는 물질로 구현하는 것이 바람직하다. 예를 들면, 제2 반도체층(230)이 p형 도펀트가 첨가되어 p형 특성을 가질 경우, 제1 게이트전극(261)은 일함수(Work Function, eV) 값이 상대적으로 크고 공정중(증착 또는/및 열처리)에 그룹3족 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 산화물(Oxide)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 팔라듐(Pd), 니켈(Ni), 백금(Pt), 이리듐(Ir), 루테늄(Ru), 로듐(Rh) 등이 있다.
또한, 필요에 따라 제1 게이트전극(261)은 제2 반도체층(230)에 쇼트키접촉(Schottky Contact)하는 물질로 구현될 수도 있다. 예를 들면, 제1 게이트전극(261)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
한편, 기존의 트랜지스터의 구조에서는, 하나의 면에 제1 게이트전극(261)과 소스전극(240)이 함께 존재할 경우, 전기적 단락을 위해 기 설정된 거리를 가지고 분리되어 있어야 했으나, 본 발명은 컨덕션층(221)의 제1 면(S1)과, 제1 면(S1)에 대향되는 제2 면(S2)에 각각 제1 게이트전극(261)과 소스전극(240)이 분리되어 형성되므로, 제1 게이트전극(261)과 제2 반도체층(230)의 위치는 제1 면(S1)에 특별한 위치제한 없이 설계될 수 있는 장점이 있다.
제2 게이트전극(262)은 컨덕션층(221)을 사이에 두고 제2 반도체층(230)과 대향되는 위치에 배치되어 제1 반도체층(220)의 컨덕션층(221)에 전기적으로 연결되는 것으로, 제1 반도체층(220)의 컨덕션층(221)의 제2 면(S2)에 접하도록 배치된다.
이러한 제2 게이트전극(262)은 제1 반도체층(230)에 쇼트키접촉(Schottky Contact)하는 물질로 구현될 수 있다. 예를 들면, 제2 게이트전극(262)은 일함수(Work Function, eV) 값이 상대적으로 크고 공정중(증착 또는/및 열처리)에 그룹3족 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 산화물(Oxide)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 팔라듐(Pd), 니켈(Ni), 백금(Pt), 이리듐(Ir), 루테늄(Ru), 로듐(Rh) 등이 있다.
제1 패시베이션층(270)은 제1 반도체층(220)의 제2 면(S2) 및 제3 면(S3)을 덮는 것으로, 제1 반도체층(220)의 제2 면(S2) 및 제3 면(S3) 상에 배치된다. 제1 패시베이션층(270)은 절연성 물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
이러한 제1 패시베이션층(270)에는 소스전극(240)이 삽입되어 배치되도록 컨덕션층(221)의 제2 면(S2)이 개구되는 제1 개구(H1)와, 드레인전극(250)이 삽입되어 배치되도록 드리프트층(222)의 제3 면(S3)이 개구되는 제2 개구(H2)와, 제2 게이트전극(262)이 삽입되어 배치되도록 컨덕션층(221)의 제2 면(S2)이 개구되는 삽입개구(PH)가 형성되는데, 이러한 제1 개구(H1), 제2 개구(H2) 및 삽입개구(PH)를 통해 소스전극(240), 드레인전극(250) 및 제2 게이트전극(262)이 각각 삽입되어 배치된 후 제1 반도체층(220)에 전기적으로 연결될 수 있다.
제2 패시베이션층(280)은 제2 반도체층(230)과 제1 게이트전극(261)을 감싸도록 제1 반도체층(220)의 제1 면(S1)을 덮는 것으로, 제2 반도체층(230)과 제1 게이트전극(261)을 감싸도록 제1 반도체층(220)과 접착층(290)의 사이에 배치된다. 제2 패시베이션층(280)은 절연물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
이러한 제2 패시베이션층(280)에는 제1 게이트전극(261)의 일면이 노출되도록 개구되는 제3 개구(H3)가 형성될 수 있다. 이러한 제3 개구(H3)에는 접착층(290)이 침투하여 제1 게이트전극(261)에 접촉될 수 있다.
접착층(290)은 지지기판(210)과 제2 패시베이션층(280)을 서로 접착시키는 것으로, 지지기판(210)과 제2 패시베이션층(280) 사이에 배치된다. 이러한 접착층(290)은 유기 절연물질을 포함할 수 있으며, 투명물질로 구현될 수 있다.
보다 상세하게, SOG(Spin On Glass), HSQ(Hydrogen Silsesquioxane) 등의 유동성을 갖는 산화물(Flowable Oxide; FOx), BCB(Benzocyclobuene), 아크릴, SU-8 폴리머 등을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함할 수 있다. 또한, 트랜지스터 소자가 고방열과 열적 안정성이 요구되는 경우, 산화실리콘(SiO2), 질화실리콘(SiNx), 산화알루미늄(Al2O3), 질화알루미늄(AlN) 등의 세라믹 물질, 알루미늄(Al), 금(Au), 은(Ag), 구리(Cu) 등을 적어도 어느 하나의 물질을 포함할 수 있다.
한편, 접착층(290)은 지지기판(210) 측의 접착층(290)과 제2 패시베이션층(280) 측의 접착층(290)이 서로 접합됨으로써 형성되는데, 지지기판(210)과 제2 패시베이션층(280)이 서로 강한 밀착성을 가지며 접합될 수 있도록 지지기판(210) 측의 접착층(290)과 제2 패시베이션층(280) 측의 접착층(290)의 표면을 각각 화학적 기계적 연마(Chemical Mechanical Polishing, CMP) 공정을 통해 표면처리하는 것이 바람직하다.
상술한 바와 같은 지지기판(210)과, 제1 반도체층(220)과, 제2 반도체층(230)과, 소스전극(240)과, 드레인전극(250)과, 제1 게이트전극(261)과, 제2 게이트전극(262)과, 제1 패시베이션층(270)과, 제2 패시베이션층(280)과, 접착층(290)을 포함하는 본 발명의 제2 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터(200)에 따르면, 유기금속화학증착(Metal Organic Chemical Vapor Deposition, MOCVD) 기법을 이용한 재성장 공정 없이, 후막 에피택시(Epitaxy) 성장 기법 및 레이저 리프트 오프(Laser Lift Off, LLO) 기법을 통해 전류 채널 게이트를 형성하고, 동시에 성능이 대폭적으로 개선될 수 있는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터를 제공할 수 있다.
또한, 본 발명에 따르면, 쇼트키 접촉을 하는 제2 게이트전극(262)에 의해 공핍영역의 두께가 강화되는 효과가 있다. 이에 따라, Normally-OFF 구동을 위한 컨덕션층(221)의 두께를 늘려줄 수 있으므로, Remain GaN Etching 공정의 마진 확보가 유리한 장점이 있다.
지금부터는 첨부된 도면을 참조하여, 본 발명의 제2 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터의 제조 방법(S200)에 대해 상세히 설명한다.
도 7은 본 발명의 제2 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법의 순서도이고, 도 8 내지 도 10는 본 발명의 제2 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법에 따라 접합형 전계 효과 트랜지스터가 제조되는 과정을 도시한 것이다.
도 7 내지 도 10에 도시된 바와 같이, 본 발명의 제2 실시예에 따른 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법(S200)은 제1 단계(S201)와, 제2 단계(S202)와, 제3 단계(S203)와, 제4 단계(S204)와, 제5 단계(S205)와, 제6 단계(S206)와, 제7 단계(S207)와, 제8 단계(S208)와, 제9 단계(S209)와, 제10 단계(S210)와, 제11 단계(S211)를 포함한다.
제1 단계(S201)는 성장기판(G) 상에 러프층(R1), 리커버리층(R2), 제1 도전성을 가지는 제1 반도체층(220) 및 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(230)의 순서대로 에피택시(Epitaxy) 성장시켜 모재(母材)를 준비하는 단계이다.
한편, 도 15에 도시된 바와 같이, 제1 단계(S201)의 모재는 보다 상세하게, 성장기판(G)과, 시딩층(L)과, 러프층(R1)과, 리커버리층(R2)과, 제1 반도체층(220)과, 제2 반도체층(230)과, 드레인전극 접촉층(T1)과, 게이트전극 접촉층(T2)을 포함한다.
이때, 성장기판(G)과, 시딩층(L)과, 러프층(R1)과, 리커버리층(R2)과, 제1 반도체층(220)과, 제2 반도체층(230)과, 드레인전극 접촉층(T1)과, 게이트전극 접촉층(T2)은 상술한 본 발명의 제1 실시예에 따른 상이한 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법(S100)에서의 것과 동일하므로, 중복 설명은 생략한다.
제2 단계(S202)는 제2 반도체층(230) 상에 제1 게이트전극(261)을 배치시키는 단계이다. 여기서 제1 게이트전극(261)은 제2 반도체층(230)에 전기적으로 연결된 것으로, 지지기판(210)과 제2 반도체층(230)의 사이에 배치되어 제2 반도체층(230)의 타면에 접하도록 배치된다. 이러한 제1 게이트전극(261)은 우선적으로 제2 반도체층(230)에 오믹접촉하는 물질로 구현하는 것이 바람직하다. 예를 들면, 제2 반도체층(230)이 p형 도펀트가 첨가되어 p형 특성을 가질 경우, 제1 게이트전극(261)은 일함수(Work Function, eV) 값이 상대적으로 크고 공정중(증착 또는/및 열처리)에 그룹3족 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 산화물(Oxide)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 팔라듐(Pd), 니켈(Ni), 백금(Pt), 이리듐(Ir), 루테늄(Ru), 로듐(Rh) 등이 있다.
또한, 필요에 따라 제1 게이트전극(261)은 제2 반도체층(230)에 쇼트키접촉(Schottky Contact)하는 물질로 구현될 수도 있다. 예를 들면, 게이트전극은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
제3 단계(S203)는 제1 게이트전극(261) 하부의 제2 반도체층(230) 및 제1 반도체층(220)의 일면을 부분적으로 식각하여 제1 면(S1)을 형성하는 단계이다. 예를 들면, 제3 단계(S203)는 포토 리소그래피 공정 및 식각공정을 통해 제2 반도체층(230) 및 제1 반도체층(220)의 일면을 부분적으로 식각할 수 있다.
제4 단계(S204)는 식각된 상기 제2 반도체층(230)과 제1 게이트전극(261)을 감싸도록, 제1 반도체층(220)의 제1 면(S1)을 덮는 제2 패시베이션층(280)을 형성시키는 단계이다. 즉, 제2 패시베이션층(280)은 제2 반도체층(230)과 제1 게이트전극(261)을 감싸도록 제1 반도체층(220)의 제1 면(S1)을 덮는 것으로, 제2 반도체층(230)과 제1 게이트전극(261)을 감싸도록 제1 반도체층(220)과 접착층(290)의 사이에 배치된다. 제2 패시베이션층(280)은 절연물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
제5 단계(S205)는 제2 패시베이션층(280)에 제1 게이트전극(261)이 노출되도록 개구되는 제3 개구(H3)를 형성시키는 단계이다. 이러한 개구에는 후술하는 접착층(290)이 침투하여 제1 게이트전극(261)에 접촉될 수 있다.
제6 단계(S206)는 지지기판(210)의 일면에 접착제를 도포하고, 제2 패시베이션층(280)의 일면에 접착제를 도포한 후 서로 접착시켜 지지기판(210)과 제2 패시베이션층(280) 사이에 접착층(290)을 형성시키는 단계이다. 즉, 접착층(290)은 지지기판(210)과 제2 패시베이션층(280) 사이에 배치된다. 이러한 접착층(290)은 유기 절연물질을 포함할 수 있으며, 투명물질로 구현될 수 있다. 보다 상세하게, SOG(Spin On Glass), HSQ(Hydrogen Silsesquioxane) 등의 유동성을 갖는 산화물(Flowable Oxide; FOx), BCB(Benzocyclobuene), 아크릴, SU-8 폴리머 등을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함할 수 있다. 또한, 트랜지스터 소자가 고방열과 열적 안정성이 요구되는 경우, 산화실리콘(SiO2), 질화실리콘(SiNx), 산화알루미늄(Al2O3), 질화알루미늄(AlN) 등의 세라믹 물질, 알루미늄(Al), 금(Au), 은(Ag), 구리(Cu) 등을 적어도 어느 하나의 물질을 포함할 수 있다. 한편, 접착층(290)은 지지기판(210) 측의 접착층(290)과 제2 패시베이션층(280) 측의 접착층(290)이 서로 접합됨으로써 형성되는데, 지지기판(210)과 제2 패시베이션층(280)이 서로 강한 밀착성을 가지며 접합될 수 있도록 지지기판(210) 측의 접착층(290)과 제2 패시베이션층(280) 측의 접착층(290)의 표면을 각각 화학적 기계적 연마(Chemical Mechanical Polishing, CMP) 공정을 통해 표면처리하는 것이 바람직하다.
제7 단계(S207)는 레이저 리프트 오프(Laser Lift Off, LLO) 기법을 이용하여 성장기판(G)을 제거한 후, 러프층(R1)과 리커버리층(R2)을 제거하여 제1 반도체층(220)의 타면을 노출시키는 단계이다. 레이저 리프트 오프 기법이란, 수직형 갈륨나이트라이드계 전력반도체 소자(트랜지스터, 다이오드) 제조를 위해 균일한 광출력 및 빔 프로파일을 갖는 UV 파장 레이저 빔을 투명한 성장기판(G) 후면에 조사하여 에피택시(Epitaxy) 성장된 층을 성장기판(G)으로부터 분리하는 기법이다.
제8 단계(S208)는 제1 반도체층(220)의 타면을 부분적으로 식각하여, 제2 반도체층(230)과 수평하게 연장 형성되어 제1 면(S1)이 제2 반도체층(230)과 접하는 컨덕션층(221)과, 컨덕션층(221)의 일측에 제2 반도체층(230)과 대향하는 방향으로 수직하게 연장 형성되는 드리프트층(222)을 형성시키는 단계이다. 예를 들면, 제8 단계(S208)는 포토 리소그래피 공정 및 식각공정을 통해 제1 반도체층(220)의 타면을 부분적으로 식각할 수 있다.
한편, 제1 반도체층(220)의 타면 식각 시, 제2 면(S2)에는 후술하는 제4 실시예에서의 제3 반도체층이 삽입될 수 있는 공간이 추가로 형성될 수 있다. 이러한 제3 반도체층은 공핍영역의 두께를 강화시키기 위해 컨덕션층의 내부에 삽입되어 배치되는 것으로, 컨덕션층의 제2 면(S2) 측에 제2 게이트전극과 접하도록 삽입되어 배치된다. 이러한 제3 반도체층은 마그네슘이 분산된 질화갈륨(Mg diffused GaN)을 포함하는 단일층 또는 다중층을 포함할 수 있다.
제9 단계(S209)는 컨덕션층(221)의 제2 면(S2)과 드리프트층(222)의 제3 면(S3)을 감싸도록 식각된 제1 반도체층(220)을 덮는 제1 패시베이션층(270)을 형성시키는 단계이다. 즉, 제1 패시베이션층(270)은 제1 반도체층(220)의 제2 면(S2) 및 제3 면(S3)을 덮는 것으로, 제1 반도체층(220)의 제2 면(S2) 및 제3 면(S3) 상에 배치된다. 제1 패시베이션층(270)은 절연물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
제10 단계(S210)는 제1 패시베이션층(270)에 소스전극(240)이 삽입되어 배치되도록 컨덕션층(221)의 제2 면(S2)이 개구되는 제1 개구(H1)와, 제2 패시베이션층(280)에 드레인전극(250)이 삽입되어 배치되도록 드리프트층(222)의 제3 면(S3)이 개구되는 제2 개구(H2)와, 제1 패시베이션층(270)에 제2 게이트전극(262)이 삽입되어 배치되도록 컨덕션층(221)의 제2 면(S2)이 개구되는 삽입개구(PH)를 형성시키는 단계이다.
제11 단계(S211)는 제1 개구(H1)에 소스전극(240)을 삽입하여 배치시키고, 제2 개구(H2)에 드레인전극(250)을 삽입하여 배치시키며, 삽입개구(PH)에 제2 게이트전극(262)을 삽입하여 배치시키는 단계이다.
여기서 소스전극(240)은 제1 반도체층(220)의 컨덕션층(221)에 전기적으로 연결되는 것으로, 제1 반도체층(220)의 컨덕션층(221)의 제2 면(S2)에 접하도록 배치된다. 이러한 소스전극(240)은 제1 반도체층(220)의 컨덕션층(221)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(220)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 소스전극(240)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
또한, 드레인전극(250)은 제1 반도체층(220)의 드리프트층(222)에 전기적으로 연결되는 것으로, 제1 반도체층(220)의 드리프트층(222)의 제3 면(S3)에 접하도록 배치된다. 이러한 드레인전극(250)은 제1 반도체층(220)의 컨덕션층(221)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(220)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 드레인전극(250)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
또한, 제2 게이트전극(262)은 컨덕션층(221)을 사이에 두고 제2 반도체층(230)과 대향되는 위치에 배치되어 제1 반도체층(220)의 컨덕션층(221)에 전기적으로 연결되는 것으로, 제1 반도체층(220)의 컨덕션층(221)의 제2 면(S2)에 접하도록 배치된다. 이러한 제2 게이트전극(262)은 제1 반도체층(230)에 쇼트키접촉(Schottky Contact)하는 물질로 구현될 수 있다. 예를 들면, 제2 게이트전극(262)은 일함수(Work Function, eV) 값이 상대적으로 크고 공정중(증착 또는/및 열처리)에 그룹3족 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 산화물(Oxide)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 팔라듐(Pd), 니켈(Ni), 백금(Pt), 이리듐(Ir), 루테늄(Ru), 로듐(Rh) 등이 있다.
상술한 바와 같은 제1 단계(S201)와, 제2 단계(S202)와, 제3 단계(S203)와, 제4 단계(S204)와, 제5 단계(S205)와, 제6 단계(S206)와, 제7 단계(S207)와, 제8 단계(S208)와, 제9 단계(S209)와, 제10 단계(S210)와, 제11 단계(S211)를 포함하는 본 발명의 제2 실시예에 따른 상이한 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법(S200)에 따르면, 유기금속화학증착(Metal Organic Chemical Vapor Deposition, MOCVD) 기법을 이용한 재성장 공정 없이, 후막 에피택시(Epitaxy) 성장 기법 및 레이저 리프트 오프(Laser Lift Off, LLO) 기법을 통해 전류 채널 게이트를 형성하고, 동시에 성능이 대폭적으로 개선될 수 있는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법을 제공할 수 있다.
또한, 본 발명에 따르면, 쇼트키 접촉을 하는 제2 게이트전극(262)에 의해 공핍영역의 두께가 강화되는 효과가 있다. 이에 따라, Normally-OFF 구동을 위한 컨덕션층(221)의 두께를 늘려줄 수 있으므로, Remain GaN Etching 공정의 마진 확보가 유리한 장점이 있다.
지금부터는 첨부된 도면을 참조하여, 본 발명의 제3 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터(300)에 대해 상세히 설명한다.
도 11은 본 발명의 제3 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터를 도시한 것이다.
도 11에 도시된 바와 같이, 본 발명의 제3 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터(300)는 지지기판(310)과, 제1 반도체층(320)과, 제2 반도체층(330)과, 소스전극(340)과, 드레인전극(350)과, 게이트전극(360)과, 제1 패시베이션층(370)과, 제2 패시베이션층(380)과, 접착층(390)을 포함한다.
지지기판(310)은 제1 반도체층(320) 및 제2 반도체층(330)을 지탱(Support)하는 것으로, 일면에 제1 반도체층(320)이 배치된다. 이러한 지지기판(310)은 투명기판일 수 있으며, 예를 들면, 용도에 따라 0.1mm 내지 3mm의 두께를 갖는 투명기판일 수 있다. 또한, 지지기판(310)은 실리콘(Si), 탄화실리콘(SiC), 질화실리콘(SiNx), 질화알루미늄(AlN), DLC(Diamon Like Carbon), 금속(Metal) 또는 합금(Alloy), 유리(Glass), 폴리이미드(Polyimide), 플라스틱(Plastic)을 포함하는 물질 중에서 선택된 적어도 하나의 물질을 포함할 수 있다. 또한, 실리콘(Si), 탄화실리콘(SiC), 질화실리콘(SiNx), 질화알루미늄(AlN) 지지기판(310)들은 단결정(Single Crystal) 미세조직체가 바람직하지만, 소결(Sintering) 공정을 거친 다결정(Poly Crystal) 미세조직체이어도 무방하다. 또한, 지지기판(310)은 경우에 따라, 다층으로 구성된 고방열의 라미네이트 복합체(Laminate Composite)의 적층 구조일 수 있으며, 대표적인 라미네이트 복합체는 수직방향으로 전기전도성(Electrically Conductivity)을 갖는 CMC(Cu/Mo/Cu), CIC(Cu/Invar/Cu) 등의 구조가 있고, 수직방향으로 비전기전도성(Electrically Non-conductivity)을 갖는 CCC(Cu/Ceramic/Cu) 구조가 있는데 여기서 Ceramic 물질은 질화알루미늄(AlN), 산화알루미늄(Al2O3), 질화실리콘(SiNx) 등일 수 있다.
제1 반도체층(320)은 제1 도전성을 가지는 것으로, 지지기판(310)의 일면에 배치된다.
제1 반도체층(320)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제1 반도체층(320)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, n형 도펀트(n-type dopant)가 첨가되거나 비의도적으로 도핑(Unintentionally Doped, UID)되어 n형 특성을 가질 수 있다. 또한, 제1 반도체층(320)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
제1 반도체층(320)은 보다 상세하게, 컨덕션층(321)(Conduction Layer)과, 드리프트층(322)(Drift Layer)을 포함하는데, 이때 컨덕션층(321)의 지지기판(310)을 향하는 면인 제1 면(S1)과, 컨덕션층(321)의 지지기판(310)과 대향하는 면인 제2 면(S2)과, 드리프트층(322)의 지지기판(310)과 대향하는 면인 제3 면(S3)을 포함한다.
이때, 제1 면(S1)으로부터 제3 면(S3)까지의 길이는, 제1 면(S1)으로부터 제2 면(S2)까지의 길이보다 길게 형성될 수 있으며, 이는 후술하는 드레인전극(350)이 드리프트층(322)의 제3 면(S3)에 배치되어 소스전극(340)보다 상대적으로 높은 위치에 배치될 수 있음을 의미한다.
즉, 드레인전극(350)이 소스전극(340)보다 상대적으로 높은 위치에 배치됨으로써 온(On) 저항 증가로 인해 소자의 항복전압 특성이 높아지며, 드레인전압이 높아짐에 따라 게이트전압과의 전압차로 인해 발생하는 핀치 오프(Pinch-off) 현상으로 인해 전류가 포화되는 현상을 개선하는 장점이 있다.
컨덕션층(321)은 제2 반도체층(330)과 수평하게 연장 형성되어 제1 면(S1)이 제2 반도체층(330)과 접하는 것으로, 이러한 컨덕션층(321)의 두께는 본 발명의 트랜지스터를 노멀리 오프(Normally OFF; Enhancement-mode, E-mode) 모드 또는 노멀리 온(Normally ON; Depletion-mode, D-mode) 모드의 트랜지스터 소자로 구동할지에 따라 조절될 수 있다.
이러한 컨덕션층(321)의 두께는 50nm 내지 1000nm로 형성되는 것이 바람직하며, 노멀리 오프 모드의 트랜지스터 소자로 구성하기 위해서는 일반적으로 500nm 이하의 두께로 형성된다. 또한, 컨덕션층(321)의 도핑농도는 n형 도펀트가 도핑된 1×1017 atoms/㎤ 내지 1×1019 atoms/㎤ 인 것이 바람직하다.
한편, 소스전극(340)의 컨택저항을 낮추기 위해서는 컨덕션층(321)의 도핑농도를 늘려주는 방향이 유리하지만, 반대로 컨덕션층(321)의 공핍영역의 두께를 강화시키기 위해서는 하기의 식과 같이 도핑농도를 낮추는 방향이 유리하기 때문에, 본 발명에서는 n형 도펀트가 부분적으로 도핑되지 않은 변조된 구조로도 설계될 수 있다.
NA > ND ⇒ Wn > Wp
여기서 NA는 제2 반도체층(330)의 도핑농도, ND는 제1 반도체층(320)의 도핑농도, Wn은 제1 반도체층(320)에 형성되는 공핍층의 두께, Wp는 제2 반도체층(330)에 형성되는 반도체의 두께를 각각 의미한다.
드리프트층(322)은 컨덕션층(321)의 일측에 제2 반도체층(330)과 대향하는 방향으로 수직하게 연장 형성되는 것으로, 이러한 드리프트층(322)의 두께는 0보다 클 수 있으며, 고전압의 고출력 소자 구현을 위해서는 드리프트층(322)의 두께를 늘려주는 것이 필요하다.
통상적으로 갈륨나이트라이드(GaN)계 소자의 경우, 드리프트층(322)의 두께 1㎛ 당 100V 전압을 상승시키는 효과가 있는 것으로 검증된 바 있다. 이에 따라, 1200V 이상의 고출력 소자의 구현을 위해서는 드리프트층(322)의 두께가 10㎛ 이상이 되도록 하는 것이 바람직하다.
제2 반도체층(330)은 제1 도전성과 다른 제2 도전성을 가지고 제1 반도체층(320)의 제1 면(S1)에 접하도록 배치되어 일면이 제1 반도체층(320)에 공핍 영역(Depletion Region)을 형성하는 것으로, 지지기판(310)과 제1 반도체층(320)의 사이에 배치된다.
제2 반도체층(330)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제2 반도체층(330)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, 제2 반도체층(330)은 p형 도펀트가 첨가되어 p형 특성을 가질 수 있다. 즉, 제2 반도체층(330)은 p-AlxGa1-xN(0≤x≤1) 반도체층(p형 도펀트가 첨가된 GaN 반도체층 또는 p형 도펀트가 첨가된 AlGaN 반도체층)을 포함할 수 있다. 또한, 제2 반도체층(330)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
또한, 제2 반도체층(330)은 제1 반도체층(320)에 형성된 공핍 영역(폭, 두께)의 확대가 용이하도록, 두께는 50nm 내지 1000nm로 형성되는 것이 바람직하고, 도핑농도는 1×1018 atoms/㎤ 내지 1×1020 atoms/㎤ 인 것이 바람직하다.
제2 반도체층(330)의 두께와 도핑농도는 컨덕션층(321)에 생기는 공핍 영역의 폭(두께)을 결정짓는 요소로, MOCVD, MBE 등 사용하는 성장 장비의 특성에 따라 다르게 설계할 수 있다. 한편, 공핍 영역의 폭(두께)가 얇을수록 미세 공정이 필요하게 되므로, 공핍 영역이 최대한 두껍게 형성될 수 있도록 제2 반도체층(330)을 설계하는 것이 바람직하다.
소스전극(340)은 제1 반도체층(320)의 컨덕션층(321)에 전기적으로 연결되는 것으로, 제1 반도체층(320)의 컨덕션층(321)의 제2 면(S2)에 접하도록 배치된다. 이러한 소스전극(340)은 제1 반도체층(320)의 컨덕션층(321)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(320)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 소스전극(340)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
드레인전극(350)은 제1 반도체층(320)의 드리프트층(322)에 전기적으로 연결되는 것으로, 제1 반도체층(320)의 드리프트층(322)의 제3 면(S3)에 접하도록 배치된다. 이러한 드레인전극(350)은 제1 반도체층(320)의 컨덕션층(321)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(320)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 드레인전극(350)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
게이트전극(360)은 컨덕션층(321)을 사이에 두고 제2 반도체층(330)과 대향되는 위치에 배치되는 것으로, 후술하는 제1 패시베이션층(370)의 상면에 접하도록 배치된다.
이러한 게이트전극(360)은 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층으로 구성되는 제1 패시베이션층(370) 위에 놓이며, 이러한 제1 패시베이션층(370)과 접착력이 우수한 금속 또는 이들로 이루어진 합금들 중에서 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
제1 패시베이션층(370)은 제1 반도체층(320)의 제2 면(S2) 및 제3 면(S3)을 덮는 것으로, 제1 반도체층(320)의 제2 면(S2) 및 제3 면(S3) 상에 배치된다. 제1 패시베이션층(370)은 절연성 물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
이러한 제1 패시베이션층(370)에는 소스전극(340)이 삽입되어 배치되도록 컨덕션층(321)의 제2 면(S2)이 개구되는 제1 개구(H1)와, 드레인전극(350)이 삽입되어 배치되도록 드리프트층(322)의 제3 면(S3)이 개구되는 제2 개구(H2)가 형성되는데, 이러한 제1 개구(H1)와 제2 개구(H2)를 통해 소스전극(340)과 드레인전극(350)이 각각 삽입되어 배치된 후 제1 반도체층(320)에 전기적으로 연결될 수 있다.
제2 패시베이션층(380)은 제2 반도체층(330)을 감싸도록 제1 반도체층(320)의 제1 면(S1)을 덮는 것으로, 제2 반도체층(330)을 감싸도록 제1 반도체층(320)과 접착층(390)의 사이에 배치된다. 제2 패시베이션층(380)은 절연물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
접착층(390)은 지지기판(310)과 제2 패시베이션층(380)을 서로 접착시키는 것으로, 지지기판(310)과 제2 패시베이션층(380) 사이에 배치된다. 이러한 접착층(390)은 유기 절연물질을 포함할 수 있으며, 투명물질로 구현될 수 있다.
보다 상세하게, SOG(Spin On Glass), HSQ(Hydrogen Silsesquioxane) 등의 유동성을 갖는 산화물(Flowable Oxide; FOx), BCB(Benzocyclobuene), 아크릴, SU-8 폴리머 등을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함할 수 있다. 또한, 트랜지스터 소자가 고방열과 열적 안정성이 요구되는 경우, 산화실리콘(SiO2), 질화실리콘(SiNx), 산화알루미늄(Al2O3), 질화알루미늄(AlN) 등의 세라믹 물질, 알루미늄(Al), 금(Au), 은(Ag), 구리(Cu) 등을 적어도 어느 하나의 물질을 포함할 수 있다.
한편, 접착층(390)은 지지기판(310) 측의 접착층(390)과 제2 패시베이션층(380) 측의 접착층(390)이 서로 접합됨으로써 형성되는데, 지지기판(310)과 제2 패시베이션층(380)이 서로 강한 밀착성을 가지며 접합될 수 있도록 지지기판(310) 측의 접착층(390)과 제2 패시베이션층(380) 측의 접착층(390)의 표면을 각각 화학적 기계적 연마(Chemical Mechanical Polishing, CMP) 공정을 통해 표면처리하는 것이 바람직하다.
상술한 바와 같은 지지기판(310)과, 제1 반도체층(320)과, 제2 반도체층(330)과, 소스전극(340)과, 드레인전극(350)과, 게이트전극(360)과, 제1 패시베이션층(370)과, 제2 패시베이션층(380)과, 접착층(390)을 포함하는 본 발명의 제3 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터(300)에 따르면, 유기금속화학증착(Metal Organic Chemical Vapor Deposition, MOCVD) 기법을 이용한 재성장 공정 없이, 후막 에피택시(Epitaxy) 성장 기법 및 레이저 리프트 오프(Laser Lift Off, LLO) 기법을 통해 전류 채널 게이트를 형성하고, 동시에 성능이 대폭적으로 개선될 수 있는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터를 제공할 수 있다.
또한, 본 발명에 따르면, 간단한 설계 변경을 통해 MOSFET을 구현할 수 있는 효과가 있다.
지금부터는 첨부된 도면을 참조하여, 본 발명의 제3 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터의 제조 방법(S300)에 대해 상세히 설명한다.
도 12는 본 발명의 제3 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법의 순서도이고, 도 13 내지 도 14는 본 발명의 제3 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법에 따라 접합형 전계 효과 트랜지스터가 제조되는 과정을 도시한 것이다.
도 12 내지 도 14에 도시된 바와 같이, 본 발명의 제3 실시예에 따른 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법(S300)은 제1 단계(S301)와, 제2 단계(S302)와, 제3 단계(S303)와, 제4 단계(S304)와, 제5 단계(S305)와, 제6 단계(S306)와, 제7 단계(S307)와, 제8 단계(S308)와, 제9 단계(S309)를 포함한다.
제1 단계(S301)는 성장기판(G) 상에 러프층(R1), 리커버리층(R2), 제1 도전성을 가지는 제1 반도체층(320) 및 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(330)의 순서대로 에피택시(Epitaxy) 성장시켜 모재(母材)를 준비하는 단계이다.
한편, 도 15에 도시된 바와 같이, 제1 단계(S301)의 모재는 보다 상세하게, 성장기판(G)과, 시딩층(L)과, 러프층(R1)과, 리커버리층(R2)과, 제1 반도체층(320)과, 제2 반도체층(330)과, 드레인전극 접촉층(T1)과, 게이트전극 접촉층(T2)을 포함한다.
이때, 성장기판(G)과, 시딩층(L)과, 러프층(R1)과, 리커버리층(R2)과, 제1 반도체층(320)과, 제2 반도체층(330)과, 드레인전극 접촉층(T1)과, 게이트전극 접촉층(T2)은 상술한 본 발명의 제1 실시예에 따른 상이한 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법(S100)에서의 것과 동일하므로, 중복 설명은 생략한다.
제2 단계(S302)는 제2 반도체층(330) 및 제1 반도체층(320)의 일면을 부분적으로 식각하여 제1 면(S1)을 형성하는 단계이다. 예를 들면, 제2 단계(S302)는 포토 리소그래피 공정 및 식각공정을 통해 제2 반도체층(330) 및 제1 반도체층(320)의 일면을 부분적으로 식각할 수 있다.
제3 단계(S303)는 식각된 상기 제2 반도체층(330)을 감싸도록, 제1 반도체층(320)의 제1 면(S1)을 덮는 제2 패시베이션층(380)을 형성시키는 단계이다. 즉, 제2 패시베이션층(380)은 제2 반도체층(330)을 감싸도록 제1 반도체층(320)의 제1 면(S1)을 덮는 것으로, 제2 반도체층(330)을 감싸도록 제1 반도체층(320)과 접착층(390)의 사이에 배치된다. 제2 패시베이션층(380)은 절연물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
제4 단계(S304)는 지지기판(310)의 일면에 접착제를 도포하고, 제2 패시베이션층(380)의 일면에 접착제를 도포한 후 서로 접착시켜 지지기판(310)과 제2 패시베이션층(380) 사이에 접착층(390)을 형성시키는 단계이다. 즉, 접착층(390)은 지지기판(310)과 제2 패시베이션층(380) 사이에 배치된다. 이러한 접착층(390)은 유기 절연물질을 포함할 수 있으며, 투명물질로 구현될 수 있다. 보다 상세하게, SOG(Spin On Glass), HSQ(Hydrogen Silsesquioxane) 등의 유동성을 갖는 산화물(Flowable Oxide; FOx), BCB(Benzocyclobuene), 아크릴, SU-8 폴리머 등을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함할 수 있다. 또한, 트랜지스터 소자가 고방열과 열적 안정성이 요구되는 경우, 산화실리콘(SiO2), 질화실리콘(SiNx), 산화알루미늄(Al2O3), 질화알루미늄(AlN) 등의 세라믹 물질, 알루미늄(Al), 금(Au), 은(Ag), 구리(Cu) 등을 적어도 어느 하나의 물질을 포함할 수 있다. 한편, 접착층(390)은 지지기판(310) 측의 접착층(390)과 제2 패시베이션층(380) 측의 접착층(390)이 서로 접합됨으로써 형성되는데, 지지기판(310)과 제2 패시베이션층(380)이 서로 강한 밀착성을 가지며 접합될 수 있도록 지지기판(310) 측의 접착층(390)과 제2 패시베이션층(380) 측의 접착층(390)의 표면을 각각 화학적 기계적 연마(Chemical Mechanical Polishing, CMP) 공정을 통해 표면처리하는 것이 바람직하다.
제5 단계(S305)는 레이저 리프트 오프(Laser Lift Off, LLO) 기법을 이용하여 성장기판(G)을 제거한 후, 러프층(R1)과 리커버리층(R2)을 제거하여 제1 반도체층(320)의 타면을 노출시키는 단계이다. 레이저 리프트 오프 기법이란, 수직형 갈륨나이트라이드계 전력반도체 소자(트랜지스터, 다이오드) 제조를 위해 균일한 광출력 및 빔 프로파일을 갖는 UV 파장 레이저 빔을 투명한 성장기판(G) 후면에 조사하여 에피택시(Epitaxy) 성장된 층을 성장기판(G)으로부터 분리하는 기법이다.
제6 단계(S306)는 제1 반도체층(320)의 타면을 부분적으로 식각하여, 제2 반도체층(330)과 수평하게 연장 형성되어 제1 면(S1)이 제2 반도체층(330)과 접하는 컨덕션층(321)과, 컨덕션층(321)의 일측에 제2 반도체층(330)과 대향하는 방향으로 수직하게 연장 형성되는 드리프트층(322)을 형성시키는 단계이다. 예를 들면, 제6 단계(S306)는 포토 리소그래피 공정 및 식각공정을 통해 제1 반도체층(320)의 타면을 부분적으로 식각할 수 있다.
제7 단계(S307)는 컨덕션층(321)의 제2 면(S2)과 드리프트층(322)의 제3 면(S3)을 감싸도록 식각된 제1 반도체층(320)을 덮는 제1 패시베이션층(370)을 형성시키는 단계이다. 즉, 제1 패시베이션층(370)은 제1 반도체층(320)의 제2 면(S2) 및 제3 면(S3)을 덮는 것으로, 제1 반도체층(320)의 제2 면(S2) 및 제3 면(S3) 상에 배치된다. 제1 패시베이션층(370)은 절연물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
제8 단계(S308)는 제1 패시베이션층(370)에 소스전극(340)이 삽입되어 배치되도록 컨덕션층(321)의 제2 면(S2)이 개구되는 제1 개구(H1)와, 제2 패시베이션층(380)에 드레인전극(350)이 삽입되어 배치되도록 드리프트층(322)의 제3 면(S3)이 개구되는 제2 개구(H2)를 형성시키는 단계이다.
제9 단계(S309)는 제1 개구(H1)에 소스전극(340)을 삽입하여 배치시키고, 제2 개구(H2)에 드레인전극(350)을 삽입하여 배치시키며, 제1 패시베이션층(370)의 상면에 접하도록 게이트전극을 배치시키는 단계이다.
여기서 소스전극(340)은 제1 반도체층(320)의 컨덕션층(321)에 전기적으로 연결되는 것으로, 제1 반도체층(320)의 컨덕션층(321)의 제2 면(S2)에 접하도록 배치된다. 이러한 소스전극(340)은 제1 반도체층(320)의 컨덕션층(321)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(320)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 소스전극(340)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
또한, 드레인전극(350)은 제1 반도체층(320)의 드리프트층(322)에 전기적으로 연결되는 것으로, 제1 반도체층(320)의 드리프트층(322)의 제3 면(S3)에 접하도록 배치된다. 이러한 드레인전극(350)은 제1 반도체층(320)의 컨덕션층(321)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(320)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 드레인전극(350)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
또한, 게이트전극(360)은 컨덕션층(321)을 사이에 두고 제2 반도체층(330)과 대향되는 위치에 배치되는 것으로, 후술하는 제1 패시베이션층(370)의 상면에 접하도록 배치된다.
이러한 게이트전극(360)은 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층으로 구성되는 제1 패시베이션층(370) 위에 놓이며, 이러한 제1 패시베이션층(370)과 접착력이 우수한 금속 또는 이들로 이루어진 합금들 중에서 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
상술한 바와 같은 제1 단계(S301)와, 제2 단계(S302)와, 제3 단계(S303)와, 제4 단계(S304)와, 제5 단계(S305)와, 제6 단계(S306)와, 제7 단계(S307)와, 제8 단계(S308)와, 제9 단계(S309)를 포함하는 본 발명의 제3 실시예에 따른 상이한 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법(S300)에 따르면, 유기금속화학증착(Metal Organic Chemical Vapor Deposition, MOCVD) 기법을 이용한 재성장 공정 없이, 후막 에피택시(Epitaxy) 성장 기법 및 레이저 리프트 오프(Laser Lift Off, LLO) 기법을 통해 전류 채널 게이트를 형성하고, 동시에 성능이 대폭적으로 개선될 수 있는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터의 제조 방법을 제공할 수 있다.
또한, 본 발명에 따르면, 간단한 설계 변경을 통해 MOSFET을 구현할 수 있는 효과가 있다.
지금부터는 첨부된 도면을 참조하여, 본 발명의 제4 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터(400)에 대해 상세히 설명한다.
도 15는 본 발명의 제4 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터를 도시한 것이다.
도 15에 도시된 바와 같이, 본 발명의 제4 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터(400)는 지지기판(410)과, 제1 반도체층(420)과, 제2 반도체층(431)과, 제3 반도체층(432)과, 소스전극(440)과, 드레인전극(450)과, 제1 게이트전극(461)과, 제2 게이트전극(462)과, 제1 패시베이션층(470)과, 제2 패시베이션층(480)과, 접착층(490)을 포함한다.
지지기판(410)은 제1 반도체층(420) 및 제2 반도체층(431)을 지탱(Support)하는 것으로, 일면에 제1 반도체층(420)이 배치된다. 이러한 지지기판(410)은 투명기판일 수 있으며, 예를 들면, 용도에 따라 0.1mm 내지 3mm의 두께를 갖는 투명기판일 수 있다. 또한, 지지기판(410)은 실리콘(Si), 탄화실리콘(SiC), 질화실리콘(SiNx), 질화알루미늄(AlN), DLC(Diamon Like Carbon), 금속(Metal) 또는 합금(Alloy), 유리(Glass), 폴리이미드(Polyimide), 플라스틱(Plastic)을 포함하는 물질 중에서 선택된 적어도 하나의 물질을 포함할 수 있다. 또한, 실리콘(Si), 탄화실리콘(SiC), 질화실리콘(SiNx), 질화알루미늄(AlN) 지지기판(410)들은 단결정(Single Crystal) 미세조직체가 바람직하지만, 소결(Sintering) 공정을 거친 다결정(Poly Crystal) 미세조직체이어도 무방하다. 또한, 지지기판(410)은 경우에 따라, 다층으로 구성된 고방열의 라미네이트 복합체(Laminate Composite)의 적층 구조일 수 있으며, 대표적인 라미네이트 복합체는 수직방향으로 전기전도성(Electrically Conductivity)을 갖는 CMC(Cu/Mo/Cu), CIC(Cu/Invar/Cu) 등의 구조가 있고, 수직방향으로 비전기전도성(Electrically Non-conductivity)을 갖는 CCC(Cu/Ceramic/Cu) 구조가 있는데 여기서 Ceramic 물질은 질화알루미늄(AlN), 산화알루미늄(Al2O3), 질화실리콘(SiNx) 등일 수 있다.
제1 반도체층(420)은 제1 도전성을 가지는 것으로, 지지기판(410)의 일면에 배치된다.
제1 반도체층(420)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제1 반도체층(420)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, n형 도펀트(n-type dopant)가 첨가되거나 비의도적으로 도핑(Unintentionally Doped, UID)되어 n형 특성을 가질 수 있다. 또한, 제1 반도체층(420)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
제1 반도체층(420)은 보다 상세하게, 컨덕션층(421)(Conduction Layer)과, 드리프트층(422)(Drift Layer)을 포함하는데, 이때 컨덕션층(421)의 지지기판(410)을 향하는 면인 제1 면(S1)과, 컨덕션층(121)의 지지기판(410)과 대향하는 면인 제2 면(S2)과, 드리프트층(422)의 지지기판(410)과 대향하는 면인 제3 면(S3)을 포함한다.
이때, 제1 면(S1)으로부터 제3 면(S3)까지의 길이는, 제1 면(S1)으로부터 제2 면(S2)까지의 길이보다 길게 형성될 수 있으며, 이는 후술하는 드레인전극(450)이 드리프트층(422)의 제3 면(S3)에 배치되어 소스전극(440)보다 상대적으로 높은 위치에 배치될 수 있음을 의미한다.
즉, 드레인전극(450)이 소스전극(440)보다 상대적으로 높은 위치에 배치됨으로써 온(On) 저항 증가로 인해 소자의 항복전압 특성이 높아지며, 드레인전압이 높아짐에 따라 게이트전압과의 전압차로 인해 발생하는 핀치 오프(Pinch-off) 현상으로 인해 전류가 포화되는 현상을 개선하는 장점이 있다.
컨덕션층(421)은 제2 반도체층(431)과 수평하게 연장 형성되어 제1 면(S1)이 제2 반도체층(431)과 접하는 것으로, 이러한 컨덕션층(421)의 두께는 본 발명의 트랜지스터를 노멀리 오프(Normally OFF; Enhancement-mode, E-mode) 모드 또는 노멀리 온(Normally ON; Depletion-mode, D-mode) 모드의 트랜지스터 소자로 구동할지에 따라 조절될 수 있다.
이러한 컨덕션층(421)의 두께는 50nm 내지 1000nm로 형성되는 것이 바람직하며, 노멀리 오프 모드의 트랜지스터 소자로 구성하기 위해서는 일반적으로 500nm 이하의 두께로 형성된다. 또한, 컨덕션층(421)의 도핑농도는 n형 도펀트가 도핑된 1×1017 atoms/㎤ 내지 1×1019 atoms/㎤ 인 것이 바람직하다.
한편, 소스전극(440)의 컨택저항을 낮추기 위해서는 컨덕션층(421)의 도핑농도를 늘려주는 방향이 유리하지만, 반대로 컨덕션층(421)의 공핍영역의 두께를 강화시키기 위해서는 하기의 식과 같이 도핑농도를 낮추는 방향이 유리하기 때문에, 본 발명에서는 n형 도펀트가 부분적으로 도핑되지 않은 변조된 구조로도 설계될 수 있다.
NA > ND ⇒ Wn > Wp
여기서 NA는 제2 반도체층(430)의 도핑농도, ND는 제1 반도체층(420)의 도핑농도, Wn은 제1 반도체층(420)에 형성되는 공핍층의 두께, Wp는 제2 반도체층(430)에 형성되는 반도체의 두께를 각각 의미한다.
드리프트층(422)은 컨덕션층(421)의 일측에 제2 반도체층(431)과 대향하는 방향으로 수직하게 연장 형성되는 것으로, 이러한 드리프트층(422)의 두께는 0보다 클 수 있으며, 고전압의 고출력 소자 구현을 위해서는 드리프트층(422)의 두께를 늘려주는 것이 필요하다.
통상적으로 갈륨나이트라이드(GaN)계 소자의 경우, 드리프트층(422)의 두께 1㎛ 당 100V 전압을 상승시키는 효과가 있는 것으로 검증된 바 있다. 이에 따라, 1200V 이상의 고출력 소자의 구현을 위해서는 드리프트층(422)의 두께가 10㎛ 이상이 되도록 하는 것이 바람직하다.
제2 반도체층(431)은 제1 도전성과 다른 제2 도전성을 가지고 제1 반도체층(420)의 제1 면(S1)에 접하도록 배치되어 일면이 제1 반도체층(420)에 공핍 영역(Depletion Region)을 형성하는 것으로, 지지기판(410)과 제1 반도체층(420)의 사이에 배치된다.
제2 반도체층(431)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제2 반도체층(431)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, 제2 반도체층(431)은 p형 도펀트가 첨가되어 p형 특성을 가질 수 있다. 즉, 제2 반도체층(431)은 p-AlxGa1-xN(0≤x≤1) 반도체층(p형 도펀트가 첨가된 GaN 반도체층 또는 p형 도펀트가 첨가된 AlGaN 반도체층)을 포함할 수 있다. 또한, 제2 반도체층(431)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
또한, 제2 반도체층(431)은 제1 반도체층(420)에 형성된 공핍 영역(폭, 두께)의 확대가 용이하도록, 두께는 50nm 내지 1000nm로 형성되는 것이 바람직하고, 도핑농도는 1×1018 atoms/㎤ 내지 1×1020 atoms/㎤ 인 것이 바람직하다.
제2 반도체층(431)의 두께와 도핑농도는 컨덕션층(421)에 생기는 공핍 영역의 폭(두께)을 결정짓는 요소로, MOCVD, MBE 등 사용하는 성장 장비의 특성에 따라 다르게 설계할 수 있다. 한편, 공핍 영역의 폭(두께)가 얇을수록 미세 공정이 필요하게 되므로, 공핍 영역이 최대한 두껍게 형성될 수 있도록 제2 반도체층(431)을 설계하는 것이 바람직하다.
소스전극(440)은 제1 반도체층(420)의 컨덕션층(421)에 전기적으로 연결되는 것으로, 제1 반도체층(420)의 컨덕션층(421)의 제2 면(S2)에 접하도록 배치된다. 이러한 소스전극(440)은 제1 반도체층(420)의 컨덕션층(421)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(420)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 소스전극(440)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
드레인전극(450)은 제1 반도체층(420)의 드리프트층(422)에 전기적으로 연결되는 것으로, 제1 반도체층(420)의 드리프트층(422)의 제3 면(S3)에 접하도록 배치된다. 이러한 드레인전극(450)은 제1 반도체층(420)의 컨덕션층(421)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(420)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 드레인전극(450)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
제1 게이트전극(461)은 제2 반도체층(431)에 전기적으로 연결된 것으로, 지지기판(410)과 제2 반도체층(431)의 사이에 배치되어 제2 반도체층(431)의 타면에 접하도록 배치된다. 이러한 제1 게이트전극(461)은 우선적으로 제2 반도체층(431)에 오믹접촉하는 물질로 구현하는 것이 바람직하다. 예를 들면, 제2 반도체층(431)이 p형 도펀트가 첨가되어 p형 특성을 가질 경우, 제1 게이트전극(461)은 일함수(Work Function, eV) 값이 상대적으로 크고 공정중(증착 또는/및 열처리)에 그룹3족 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 산화물(Oxide)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 팔라듐(Pd), 니켈(Ni), 백금(Pt), 이리듐(Ir), 루테늄(Ru), 로듐(Rh) 등이 있다.
또한, 필요에 따라 제1 게이트전극(461)은 제2 반도체층(431)에 쇼트키접촉(Schottky Contact)하는 물질로 구현될 수도 있다. 예를 들면, 제1 게이트전극(461)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
한편, 기존의 트랜지스터의 구조에서는, 하나의 면에 제1 게이트전극(461)과 소스전극(440)이 함께 존재할 경우, 전기적 단락을 위해 기 설정된 거리를 가지고 분리되어 있어야 했으나, 본 발명은 컨덕션층(421)의 제1 면(S1)과, 제1 면(S1)에 대향되는 제2 면(S2)에 각각 제1 게이트전극(461)과 소스전극(440)이 분리되어 형성되므로, 제1 게이트전극(461)과 제2 반도체층(431)의 위치는 제1 면(S1)에 특별한 위치제한 없이 설계될 수 있는 장점이 있다.
제2 게이트전극(462)은 컨덕션층(421)을 사이에 두고 제2 반도체층(431)과 대향되는 위치에 배치되어 제1 반도체층(420)의 컨덕션층(421)에 전기적으로 연결되는 것으로, 제1 반도체층(420)의 컨덕션층(421)의 제2 면(S2)에 접하도록 배치된다.
이러한 제2 게이트전극(462)은 제1 반도체층(230)에 쇼트키접촉(Schottky Contact)하는 물질로 구현될 수 있다. 예를 들면, 제2 게이트전극(462)은 일함수(Work Function, eV) 값이 상대적으로 크고 공정중(증착 또는/및 열처리)에 그룹3족 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 산화물(Oxide)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 팔라듐(Pd), 니켈(Ni), 백금(Pt), 이리듐(Ir), 루테늄(Ru), 로듐(Rh) 등이 있다.
제1 패시베이션층(470)은 제1 반도체층(420)의 제2 면(S2) 및 제3 면(S3)을 덮는 것으로, 제1 반도체층(420)의 제2 면(S2) 및 제3 면(S3) 상에 배치된다. 제1 패시베이션층(470)은 절연성 물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
이러한 제1 패시베이션층(470)에는 소스전극(440)이 삽입되어 배치되도록 컨덕션층(421)의 제2 면(S2)이 개구되는 제1 개구(H1)와, 드레인전극(450)이 삽입되어 배치되도록 드리프트층(422)의 제3 면(S3)이 개구되는 제2 개구(H2)와, 제2 게이트전극(462)이 삽입되어 배치되도록 컨덕션층(421)의 제2 면(S2)이 개구되는 삽입개구(PH)가 형성되는데, 이러한 제1 개구(H1), 제2 개구(H2) 및 삽입개구(PH)를 통해 소스전극(440), 드레인전극(450) 및 제2 게이트전극(462)이 각각 삽입되어 배치된 후 제1 반도체층(420)에 전기적으로 연결될 수 있다.
제3 반도체층(432)은 공핍영역의 두께를 강화시키기 위해 컨덕션층(421)의 내부에 삽입되어 배치되는 것으로, 컨덕션층(421)의 제2 면(S2) 측에 제2 게이트전극(462)과 접하도록 삽입되어 배치된다.
이러한 제3 반도체층(432)은 마그네슘이 분산된 질화갈륨(Mg diffused GaN)을 포함하는 단일층 또는 다중층을 포함할 수 있으며, 에피택시로 재성장한 층이 아닌 제2 반도체층(431) 내에 부분적으로 삽입된 구조로 형성될 수 있다.
이러한 제3 반도체층(432)에 따르면, 공핍영역의 두께가 강화되는 효과가 있으며, Normally-OFF 구동을 위한 컨덕션층의 두께를 늘려줄 수 있으므로, Remain GaN Etching 공정 마진의 확보가 유리한 장점이 있다.
제2 패시베이션층(480)은 제2 반도체층(431)과 제1 게이트전극(461)을 감싸도록 제1 반도체층(420)의 제1 면(S1)을 덮는 것으로, 제2 반도체층(431)과 제1 게이트전극(461)을 감싸도록 제1 반도체층(420)과 접착층(490)의 사이에 배치된다. 제2 패시베이션층(480)은 절연물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
이러한 제2 패시베이션층(480)에는 제1 게이트전극(461)의 일면이 노출되도록 개구되는 제3 개구(H3)가 형성될 수 있다. 이러한 제3 개구(H3)에는 접착층(490)이 침투하여 제1 게이트전극(461)에 접촉될 수 있다.
접착층(490)은 지지기판(410)과 제2 패시베이션층(480)을 서로 접착시키는 것으로, 지지기판(410)과 제2 패시베이션층(480) 사이에 배치된다. 이러한 접착층(490)은 유기 절연물질을 포함할 수 있으며, 투명물질로 구현될 수 있다.
보다 상세하게, SOG(Spin On Glass), HSQ(Hydrogen Silsesquioxane) 등의 유동성을 갖는 산화물(Flowable Oxide; FOx), BCB(Benzocyclobuene), 아크릴, SU-8 폴리머 등을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함할 수 있다. 또한, 트랜지스터 소자가 고방열과 열적 안정성이 요구되는 경우, 산화실리콘(SiO2), 질화실리콘(SiNx), 산화알루미늄(Al2O3), 질화알루미늄(AlN) 등의 세라믹 물질, 알루미늄(Al), 금(Au), 은(Ag), 구리(Cu) 등을 적어도 어느 하나의 물질을 포함할 수 있다.
한편, 접착층(490)은 지지기판(410) 측의 접착층(490)과 제2 패시베이션층(480) 측의 접착층(490)이 서로 접합됨으로써 형성되는데, 지지기판(410)과 제2 패시베이션층(480)이 서로 강한 밀착성을 가지며 접합될 수 있도록 지지기판(410) 측의 접착층(490)과 제2 패시베이션층(480) 측의 접착층(490)의 표면을 각각 화학적 기계적 연마(Chemical Mechanical Polishing, CMP) 공정을 통해 표면처리하는 것이 바람직하다.
상술한 바와 같은 지지기판(410)과, 제1 반도체층(420)과, 제2 반도체층(431)과, 소스전극(440)과, 드레인전극(450)과, 제1 게이트전극(461)과, 제2 게이트전극(462)과, 제1 패시베이션층(470)과, 제2 패시베이션층(480)과, 접착층(490)을 포함하는 본 발명의 제4 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터(400)에 따르면, 유기금속화학증착(Metal Organic Chemical Vapor Deposition, MOCVD) 기법을 이용한 재성장 공정 없이, 후막 에피택시(Epitaxy) 성장 기법 및 레이저 리프트 오프(Laser Lift Off, LLO) 기법을 통해 전류 채널 게이트를 형성하고, 동시에 성능이 대폭적으로 개선될 수 있는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터를 제공할 수 있다.
또한, 본 발명에 따르면, 제3 반도체층(432)에 의해 공핍영역의 두께가 강화되는 효과가 있다. 이에 따라, Normally-OFF 구동을 위한 컨덕션층(221)의 두께를 늘려줄 수 있으므로, Remain GaN Etching 공정의 마진 확보가 유리한 장점이 있다.
지금부터는 첨부된 도면을 참조하여, 본 발명의 제5 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터(500)에 대해 상세히 설명한다.
도 16은 본 발명의 제5 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터를 도시한 것이다.
도 16에 도시된 바와 같이, 본 발명의 제5 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드(GaN)계 접합형 전계 효과 트랜지스터(500)는 지지기판(510)과, 제1 반도체층(520)과, 제2 반도체층(530)과, 소스전극(540)과, 드레인전극(550)과, 제1 게이트전극(561)과, 제2 게이트전극(562)과, 제1 패시베이션층(570)과, 제2 패시베이션층(580)과, 접착층(590)을 포함한다.
지지기판(510)은 제1 반도체층(520) 및 제2 반도체층(530)을 지탱(Support)하는 것으로, 일면에 제1 반도체층(520)이 배치된다. 이러한 지지기판(510)은 투명기판일 수 있으며, 예를 들면, 용도에 따라 0.1mm 내지 3mm의 두께를 갖는 투명기판일 수 있다. 또한, 지지기판(510)은 실리콘(Si), 탄화실리콘(SiC), 질화실리콘(SiNx), 질화알루미늄(AlN), DLC(Diamon Like Carbon), 금속(Metal) 또는 합금(Alloy), 유리(Glass), 폴리이미드(Polyimide), 플라스틱(Plastic)을 포함하는 물질 중에서 선택된 적어도 하나의 물질을 포함할 수 있다. 또한, 실리콘(Si), 탄화실리콘(SiC), 질화실리콘(SiNx), 질화알루미늄(AlN) 지지기판(510)들은 단결정(Single Crystal) 미세조직체가 바람직하지만, 소결(Sintering) 공정을 거친 다결정(Poly Crystal) 미세조직체이어도 무방하다. 또한, 지지기판(510)은 경우에 따라, 다층으로 구성된 고방열의 라미네이트 복합체(Laminate Composite)의 적층 구조일 수 있으며, 대표적인 라미네이트 복합체는 수직방향으로 전기전도성(Electrically Conductivity)을 갖는 CMC(Cu/Mo/Cu), CIC(Cu/Invar/Cu) 등의 구조가 있고, 수직방향으로 비전기전도성(Electrically Non-conductivity)을 갖는 CCC(Cu/Ceramic/Cu) 구조가 있는데 여기서 Ceramic 물질은 질화알루미늄(AlN), 산화알루미늄(Al2O3), 질화실리콘(SiNx) 등일 수 있다.
제1 반도체층(520)은 제1 도전성을 가지는 것으로, 지지기판(510)의 일면에 배치된다.
제1 반도체층(520)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제1 반도체층(520)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, n형 도펀트(n-type dopant)가 첨가되거나 비의도적으로 도핑(Unintentionally Doped, UID)되어 n형 특성을 가질 수 있다. 또한, 제1 반도체층(520)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
제1 반도체층(520)은 보다 상세하게, 컨덕션층(521)(Conduction Layer)과, 드리프트층(522)(Drift Layer)을 포함하는데, 이때 컨덕션층(521)의 지지기판(510)을 향하는 면인 제1 면(S1)과, 컨덕션층(521)의 지지기판(510)과 대향하는 면인 제2 면(S2)과, 드리프트층(522)의 지지기판(510)과 대향하는 면인 제3 면(S3)을 포함한다.
이때, 제1 면(S1)으로부터 제3 면(S3)까지의 길이는, 제1 면(S1)으로부터 제2 면(S2)까지의 길이보다 길게 형성될 수 있으며, 이는 후술하는 드레인전극(550)이 드리프트층(522)의 제3 면(S3)에 배치되어 소스전극(540)보다 상대적으로 높은 위치에 배치될 수 있음을 의미한다.
즉, 드레인전극(550)이 소스전극(540)보다 상대적으로 높은 위치에 배치됨으로써 온(On) 저항 증가로 인해 소자의 항복전압 특성이 높아지며, 드레인전압이 높아짐에 따라 게이트전압과의 전압차로 인해 발생하는 핀치 오프(Pinch-off) 현상으로 인해 전류가 포화되는 현상을 개선하는 장점이 있다.
컨덕션층(521)은 제2 반도체층(530)과 수평하게 연장 형성되어 제1 면(S1)이 제2 반도체층(530)과 접하는 것으로, 이러한 컨덕션층(521)의 두께는 본 발명의 트랜지스터를 노멀리 오프(Normally OFF; Enhancement-mode, E-mode) 모드 또는 노멀리 온(Normally ON; Depletion-mode, D-mode) 모드의 트랜지스터 소자로 구동할지에 따라 조절될 수 있다.
이러한 컨덕션층(521)의 두께는 50nm 내지 1000nm로 형성되는 것이 바람직하며, 노멀리 오프 모드의 트랜지스터 소자로 구성하기 위해서는 일반적으로 500nm 이하의 두께로 형성된다. 또한, 컨덕션층(521)의 도핑농도는 n형 도펀트가 도핑된 1×1017 atoms/㎤ 내지 1×1019 atoms/㎤ 인 것이 바람직하다.
한편, 소스전극(540)의 컨택저항을 낮추기 위해서는 컨덕션층(521)의 도핑농도를 늘려주는 방향이 유리하지만, 반대로 컨덕션층(521)의 공핍영역의 두께를 강화시키기 위해서는 하기의 식과 같이 도핑농도를 낮추는 방향이 유리하기 때문에, 본 발명에서는 n형 도펀트가 부분적으로 도핑되지 않은 변조된 구조로도 설계될 수 있다.
NA > ND ⇒ Wn > Wp
여기서 NA는 제2 반도체층(530)의 도핑농도, ND는 제1 반도체층(520)의 도핑농도, Wn은 제1 반도체층(520)에 형성되는 공핍층의 두께, Wp는 제2 반도체층(530)에 형성되는 반도체의 두께를 각각 의미한다.
드리프트층(522)은 컨덕션층(521)의 일측에 제2 반도체층(530)과 대향하는 방향으로 수직하게 연장 형성되는 것으로, 이러한 드리프트층(522)의 두께는 0보다 클 수 있으며, 고전압의 고출력 소자 구현을 위해서는 드리프트층(522)의 두께를 늘려주는 것이 필요하다.
통상적으로 갈륨나이트라이드(GaN)계 소자의 경우, 드리프트층(522)의 두께 1㎛ 당 100V 전압을 상승시키는 효과가 있는 것으로 검증된 바 있다. 이에 따라, 1200V 이상의 고출력 소자의 구현을 위해서는 드리프트층(522)의 두께가 10㎛ 이상이 되도록 하는 것이 바람직하다.
제2 반도체층(530)은 제1 도전성과 다른 제2 도전성을 가지고 제1 반도체층(520)의 제1 면(S1)에 접하도록 배치되되, 복수로 마련되어 기 설정된 간격으로 이격되어 배치됨으로써 일면이 제1 반도체층(520)에 공핍 영역(Depletion Region)을 형성하는 것으로, 지지기판(510)과 제1 반도체층(520)의 사이에 배치된다.
제2 반도체층(530)은 III족-V족 화합물 반도체로 구현될 수 있다. 즉, 제2 반도체층(530)은 AlxGa1-xN(0≤x≤1)을 포함한 단일층 또는 다중층을 포함할 수 있으며, 제2 반도체층(530)은 p형 도펀트가 첨가되어 p형 특성을 가질 수 있다. 즉, 제2 반도체층(530)은 p-AlxGa1-xN(0≤x≤1) 반도체층(p형 도펀트가 첨가된 GaN 반도체층 또는 p형 도펀트가 첨가된 AlGaN 반도체층)을 포함할 수 있다. 또한, 제2 반도체층(530)은 필요에 따라, 인듐(In), 스칸디늄(Sc) 등의 그룹3족 원소를 합금(Alloy) 또는 도펀트(Dopant) 조성으로 포함할 수 있다.
또한, 제2 반도체층(530)은 제1 반도체층(520)에 형성된 공핍 영역(폭, 두께)의 확대가 용이하도록, 두께는 50nm 내지 1000nm로 형성되는 것이 바람직하고, 도핑농도는 1×1018 atoms/㎤ 내지 1×1020 atoms/㎤ 인 것이 바람직하다.
제2 반도체층(530)의 두께와 도핑농도는 컨덕션층(521)에 생기는 공핍 영역의 폭(두께)을 결정짓는 요소로, MOCVD, MBE 등 사용하는 성장 장비의 특성에 따라 다르게 설계할 수 있다. 한편, 공핍 영역의 폭(두께)가 얇을수록 미세 공정이 필요하게 되므로, 공핍 영역이 최대한 두껍게 형성될 수 있도록 제2 반도체층(530)을 설계하는 것이 바람직하다.
한편, 상술한 복수의 제2 반도체층(530)은 예를 들면, 제1 부(531)와, 제2 부(532)를 포함할 수 있다.
제1 부(531)는 제1 반도체층(520)의 제1 면(S1)에 접하도록 배치되어 일면이 제1 반도체층(520)에 공핍 영역(Depletion Region)을 형성하는 것으로, 지지기판(510)과 제1 반도체층(520)의 사이에 배치되되, 타면에 후술하는 제1 게이트전극(561)이 접하도록 배치된다.
제2 부(532)는 제1 부(531)로부터 기 설정된 간격으로 이격되어 배치되되, 제1 반도체층(520)의 제1 면(S1)에 접하도록 배치되어 일면이 제1 반도체층(520)에 공핍 영역(Depletion Region)을 형성하는 것으로, 지지기판(510)과 제1 반도체층(520)의 사이에 배치되되, 타면에 후술하는 제2 게이트전극(562)이 접하도록 배치된다.
소스전극(540)은 제1 반도체층(520)의 컨덕션층(521)에 전기적으로 연결되는 것으로, 제1 반도체층(520)의 컨덕션층(521)의 제2 면(S2)에 접하도록 배치된다. 이러한 소스전극(540)은 제1 반도체층(520)의 컨덕션층(521)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(520)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 소스전극(540)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
드레인전극(550)은 제1 반도체층(520)의 드리프트층(522)에 전기적으로 연결되는 것으로, 제1 반도체층(520)의 드리프트층(522)의 제3 면(S3)에 접하도록 배치된다. 이러한 드레인전극(550)은 제1 반도체층(520)의 컨덕션층(521)에 오믹접촉하는 물질로 구현될 수 있다. 예를 들면, 제1 반도체층(520)이 n형 도펀트가 첨가되어 n형 특성을 가질 경우, 드레인전극(550)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
게이트전극은 복수로 마련되어, 복수의 제2 반도체층의 타면에 각각 접하도록 배치되는 것으로, 지지기판과 제2 반도체층의 사이에 배치된다.
한편, 상술한 복수의 게이트전극(560)은 예를 들면, 제1 게이트전극(561)과, 제2 게이트전극(562)를 포함할 수 있다.
제1 게이트전극(561)은 제2 반도체층(530)의 제1 부(531)에 전기적으로 연결된 것으로, 지지기판(510)과 제1 부(531)의 사이에 배치되어 제1 부(531)의 타면에 접하도록 배치된다.
제2 게이트전극(562)은 제2 반도체층(530)의 제2 부(532)에 전기적으로 연결된 것으로, 지지기판(510)과 제2 부(532)의 사이에 배치되어 제2 부(532)의 타면에 접하도록 배치된다.
한편, 본 실시예에서는 제1 부(531) 및 제2 부(532)와, 이에 각각 접하는 제1 게이트전극(561) 및 제2 게이트전극(562)을 예로 설명하였으나, 제2 반도체층은 필요에 따라 3개 이상의 복수의 부(제3 부, 제4 부, 제5 부 ... 제n 부)를 포함할 수 있으며, 이에 각각 접하는 게이트전극은 3개 이상의 복수로 마련(제3 게이트전극, 제4 게이트전극, 제5 게이트전극 ... 제n 게이트전극)될 수도 있다.
한편, 게이트전극(560)은 우선적으로 제2 반도체층(530)에 오믹접촉하는 물질로 구현하는 것이 바람직하다. 예를 들면, 제2 반도체층(530)이 p형 도펀트가 첨가되어 p형 특성을 가질 경우, 게이트전극(560)은 일함수(Work Function, eV) 값이 상대적으로 크고 공정중(증착 또는/및 열처리)에 그룹3족 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 산화물(Oxide)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 팔라듐(Pd), 니켈(Ni), 백금(Pt), 이리듐(Ir), 루테늄(Ru), 로듐(Rh) 등이 있다.
또한, 필요에 따라 게이트전극(560)은 제2 반도체층(530)에 쇼트키접촉(Schottky Contact)하는 물질로 구현될 수도 있다. 예를 들면, 게이트전극(560)은 일함수(Work Function, eV) 값이 상대적으로 작고 공정중(증착 또는/및 열처리)에 그룹5족 질소(Nitrogen) 원소와 화합물을 형성하기에 유리한 금속(Metal), 이들의 합금(Alloy) 또는 질화물(Nitride)을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다. 이러한 특성을 갖는 대표적인 금속은 알루미늄(Al), 티타늄(Ti), 탄탈륨(Ta), 크롬(Cr), 바나듐(V), 텅스텐(W), 몰리브데늄(Mo), 레늄(Re) 등이 있다.
한편, 기존의 트랜지스터의 구조에서는, 하나의 면에 게이트전극(560)과 소스전극(540)이 함께 존재할 경우, 전기적 단락을 위해 기 설정된 거리를 가지고 분리되어 있어야 했으나, 본 발명은 컨덕션층(521)의 제1 면(S1)과, 제1 면(S1)에 대향되는 제2 면(S2)에 각각 게이트전극(560)과 소스전극(540)이 분리되어 형성되므로, 게이트전극과 제2 반도체층(530)의 위치는 제1 면(S1)에 특별한 위치제한 없이 설계될 수 있는 장점이 있다.
제1 패시베이션층(570)은 제1 반도체층(520)의 제2 면(S2) 및 제3 면(S3)을 덮는 것으로, 제1 반도체층(520)의 제2 면(S2) 및 제3 면(S3) 상에 배치된다. 제1 패시베이션층(570)은 절연성 물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
이러한 제1 패시베이션층(570)에는 소스전극(540)이 삽입되어 배치되도록 컨덕션층(521)의 제2 면(S2)이 개구되는 제1 개구(H1)와, 드레인전극(550)이 삽입되어 배치되도록 드리프트층(522)의 제3 면(S3)이 개구되는 제2 개구(H2)가 형성되는데, 이러한 제1 개구(H1)와 제2 개구(H2)를 통해 소스전극(540)과 드레인전극(550)이 각각 삽입되어 배치된 후 제1 반도체층(520)에 전기적으로 연결될 수 있다.
제2 패시베이션층(580)은 복수의 제2 반도체층(530)과, 복수의 게이트전극(560)을 감싸도록 제1 반도체층(520)의 제1 면(S1)을 덮는 것으로, 복수의 제2 반도체층(530)과, 복수의 게이트전극(560)을 감싸도록 제1 반도체층(520)과 접착층(590)의 사이에 배치된다. 제2 패시베이션층(580)은 절연물질로 구현될 수 있는데, 예를 들면 실리콘 계열의 산화물, 실리콘 계열의 질화물, Al2O3를 포함하는 금속 산화물, 유기 절연물 중에서 적어도 하나의 물질을 포함하는 단일층 또는 다중층을 포함할 수 있다.
이러한 제2 패시베이션층(580)에는 복수의 게이트전극(560)의 일면이 노출되도록 개구되는 복수의 제3 개구(H3)가 형성될 수 있다. 이러한 개구에는 접착층(590)이 침투하여 복수의 게이트전극(560)에 접촉될 수 있다.
접착층(590)은 지지기판(510)과 제2 패시베이션층(580)을 서로 접착시키는 것으로, 지지기판(510)과 제2 패시베이션층(580) 사이에 배치된다. 이러한 접착층(590)은 유기 절연물질을 포함할 수 있으며, 투명물질로 구현될 수 있다.
보다 상세하게, SOG(Spin On Glass), HSQ(Hydrogen Silsesquioxane) 등의 유동성을 갖는 산화물(Flowable Oxide; FOx), BCB(Benzocyclobuene), 아크릴, SU-8 폴리머 등을 포함하는 군에서 선택된 적어도 어느 하나의 물질을 포함할 수 있다. 또한, 트랜지스터 소자가 고방열과 열적 안정성이 요구되는 경우, 산화실리콘(SiO2), 질화실리콘(SiNx), 산화알루미늄(Al2O3), 질화알루미늄(AlN) 등의 세라믹 물질, 알루미늄(Al), 금(Au), 은(Ag), 구리(Cu) 등을 적어도 어느 하나의 물질을 포함할 수 있다.
한편, 접착층(590)은 지지기판(510) 측의 접착층(590)과 제2 패시베이션층(580) 측의 접착층(590)이 서로 접합됨으로써 형성되는데, 지지기판(510)과 제2 패시베이션층(580)이 서로 강한 밀착성을 가지며 접합될 수 있도록 지지기판(510) 측의 접착층(590)과 제2 패시베이션층(580) 측의 접착층(590)의 표면을 각각 화학적 기계적 연마(Chemical Mechanical Polishing, CMP) 공정을 통해 표면처리하는 것이 바람직하다.
상술한 바와 같은 지지기판(510)과, 제1 반도체층(520)과, 제2 반도체층(530)과, 소스전극(540)과, 드레인전극(550)과, 제1 게이트전극(561)과, 제2 게이트전극(562)과, 제1 패시베이션층(570)과, 제2 패시베이션층(580)과, 접착층(590)을 포함하는 본 발명의 제5 실시예에 따른 상이한 게이트 구조를 갖는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터(500)에 따르면, 유기금속화학증착(Metal Organic Chemical Vapor Deposition, MOCVD) 기법을 이용한 재성장 공정 없이, 후막 에피택시(Epitaxy) 성장 기법 및 레이저 리프트 오프(Laser Lift Off, LLO) 기법을 통해 전류 채널 게이트를 형성하고, 동시에 성능이 대폭적으로 개선될 수 있는 갈륨나이트라이드계 접합형 전계 효과 트랜지스터를 제공할 수 있다.
또한, 본 발명에 따르면, 2개 이상의 게이트전극을 병렬로 배치하여 게이트와 소스 간의 정격 전압을 증가시킬 수 있으므로, 소자의 신뢰성을 개선시킬 수 있는 효과가 있다.
이상에서, 본 발명의 실시 예를 구성하는 모든 구성 요소들이 하나로 결합하거나 결합하여 동작하는 것으로 설명되었다고 해서, 본 발명이 반드시 이러한 실시 예에 한정되는 것은 아니다. 즉, 본 발명의 목적 범위 안에서라면, 그 모든 구성요소들이 하나 이상으로 선택적으로 결합하여 동작할 수도 있다.
또한, 이상에서 기재된 "포함하다", "구성하다" 또는 "가지다" 등의 용어는, 특별히 반대되는 기재가 없는 한, 해당 구성 요소가 내재할 수 있음을 의미하는 것이므로, 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것으로 해석되어야 한다. 기술적이거나 과학적인 용어를 포함한 모든 용어들은, 다르게 정의되지 않는 한, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미가 있다. 사전에 정의된 용어와 같이 일반적으로 사용되는 용어들은 관련 기술의 문맥상의 의미와 일치하는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
그리고 이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.