KR102509228B1 - 알킬아렌 화합물 및 이의 제조방법 - Google Patents

알킬아렌 화합물 및 이의 제조방법 Download PDF

Info

Publication number
KR102509228B1
KR102509228B1 KR1020200103421A KR20200103421A KR102509228B1 KR 102509228 B1 KR102509228 B1 KR 102509228B1 KR 1020200103421 A KR1020200103421 A KR 1020200103421A KR 20200103421 A KR20200103421 A KR 20200103421A KR 102509228 B1 KR102509228 B1 KR 102509228B1
Authority
KR
South Korea
Prior art keywords
formula
mol
compound
alkyl
ppm
Prior art date
Application number
KR1020200103421A
Other languages
English (en)
Other versions
KR20220022349A (ko
Inventor
정일남
조아라
강승환
김영민
Original Assignee
제이에스아이실리콘주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제이에스아이실리콘주식회사 filed Critical 제이에스아이실리콘주식회사
Priority to KR1020200103421A priority Critical patent/KR102509228B1/ko
Priority to US17/113,695 priority patent/US11685702B2/en
Publication of KR20220022349A publication Critical patent/KR20220022349A/ko
Application granted granted Critical
Publication of KR102509228B1 publication Critical patent/KR102509228B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/27Polycyclic condensed hydrocarbons containing three rings
    • C07C15/28Anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/28Sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0801General processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0896Compounds with a Si-H linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/52Ortho- or ortho- and peri-condensed systems containing five condensed rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 프리델-크래프트 알킬화 반응으로 합성되는 알킬아렌 화합물 및 이의 제조방법에 관한 것이다. 알킬아렌 화합물은 화학식 3으로 표시되는 알킬아렌 화합물로
화학식 3:
Figure 112022109801625-pat00015

상기에서 R1= 탄소수가 1~10인 알킬기 또는 (CH2)qSi(R3)p(OR4)3-p(q=1~10, R3= Cl 또는 CH3, p=0, 1, 2, 3, R4= CH3 또는 C2H5); n= 0, 1, 2 또는 3; Ar= 벤젠, 나프탈렌, 안트라센, 바이페닐, 터페닐렌, 안트론, 안트라퀴논, 피렌, 페난트란센, 퍼릴렌, 바이페닐에테르, 바이페닐 설파이드, 아니솔, 플루오렌, 아니솔, 사이오아니솔, 테트라센, 펜타센 및 고리가 1~8개인 아로마틱 화합물; R2= 탄소수 1~8개의 알킬기나 페닐기를 포함하는 알킬기; l= 0, 1, 2, 3 또는 4; 그리고 m= 1, 2 또는 3이 된다.

Description

알킬아렌 화합물 및 이의 제조방법{(ALKYL)ARENES AND A Method for Producing the Same}
본 발명은 프리델-크래프트 알킬화 반응으로 합성되는 알킬아렌 화합물 및 이의 제조방법에 관한 것이고, 구체적으로 유기포스핀 화합물을 촉매로 알킬할라이드 화합물과 아로마틱 화합물의 프리델-크래프트 알킬화 반응으로 합성되는 알킬아렌 화합물 및 이의 제조방법에 관한 것이다.
아로마틱 화합물에 유기 치환기를 도입시키는 프리델-크래프트 알킬화반응은 유기합성에서 매우 중요한 반응으로 1세기 넘게 널리 사용되고 있다(Roberts, Royston M; Khalaf, Ali, Friedel-Crafts Alkylation Chemistry, Marcel Dekker, Inc., New York, New York, USA, 1984).이러한 프리델-크래프트 반응은 반드시 루이스산 촉매가 필요한 것으로 알려져 있으며 알루미늄, 보론, 철 등의 무기 염화물이 사용된다. 프리델-크래프트 알킬화 반응은 촉매인 보론 트리클로라이드나 알루미늄 트리클로라이드와 같은 루이스산이 알킬할라이드 화합물의 할라이드를 끌어들이는 단계 및 보론이나 알루미늄 테트라클로라드 음이온이 생기면서 알킬 양이온을 형성시켜 전자밀도가 높은 아렌에 친전자성 치환반응으로 알킬화시키는 단계로 이루어진다. 그러나 루이스산은 페닐기가 많은 시작 물질이 사용되거나 생성물에 페닐기가 많은 경우에는 이들과 쉽게 배위결합을 하므로 반응 후에 반응물로부터 제거가 쉽지 않다. 그러므로 벤젠을 벤질클로라이드와 프리델-크래프트 알킬화반응으로 디페닐메탄을 합성할 때 무기물 고체인 산성 실리카를 루이스산 촉매의 담체로 사용하여 반응 후에 촉매의 제거가 용이하다고 알려져 있다(Selvaraj, M.; Lee, T. G. Journal of Molecular Catalysis A: Chemical 2006, 243(2), 176-182). 루이스산 촉매는 유기기를 도입하려는 아로마틱 화합물의 벤젠고리가 3개인 안트라센이나 그보다 더 벤젠고리가 많은 아로마틱 화합물과 쉽게 배위결합을 형성하여 촉매의 활성이 크게 저하되므로 실용성이 낮고, 반응 후에 제거가 상당히 어렵다. 그러므로 안트라센이나 그보다 더 벤젠고리가 많은 아로마틱 화합물을 알릴할라이드, 벤질할라이드 또는 알킬할라이드와 반응하여 유기 치환기를 도입시키기 위해서는 산 촉매를 사용하는 대신에 중성이나 염기성 화합물을 촉매로 사용하여야 한다. 이 프리델-크래프트 알킬화반응에 적합한 중성 촉매는 별로 알려져 있지 않고 있다. 한편 유기포스포늄 클로라이드를 촉매로 사용하여 알킬할라이드와 트리클로로실란을 반응하여 알킬할라이드에서 할로겐을 떼어내고 트리클로로실란에서 수소를 취해 할로겐화수소를 발생시키며 탈할로겐화수소 Si-C결합반응으로 알킬기를 실란에 치환시키는 알킬클로로실란의 합성이 공지되어 있다(Yeon Seok Cho, Y. S.; Kang, S.-H.; Han, J. S.; Yoo, B. R.; Jung, I. N., J. Am. Chem. Soc. 2001, 123, 5584). 위의 선행기술에서 게시된 것처럼, 알킬할라이드와 트리클로로실란을 반응하여 탈할로겐화수소 Si-C결합반응으로 알킬기를 실란에 치환시키는 알킬클로로실란의 합성반응에서 촉매로 사용되는 유기포스포늄 클로라이드는 중성 유기염이 된다. 또한 3차 트리알킬포스핀은 루이스산이 아니라 루이스염기에 해당한다. 이러한 유기포스포늄 클로라이드가 아로마틱 화합물과 알킬할라이드 화합물의 반응에 사용되면 알킬할라이드 화합물에서 할로겐을 취하고 아로마틱 고리에서 수소를 빼서 HX를 발생시키는 탈할로겐화수소 C-C결합반응인 프리델-크래프트알킬화 반응이 유도될 수 있다. 또한 유기포스포늄 클로라이드 촉매는 반응물질 또는 생성물과 물리적인 성질이 서로 다르므로 회수하기가 쉽고 재사용이 가능하다. 예를 들어 트리알킬포스핀이나 유기포스포늄 할라이드를 촉매로 사용하여 알릴클로라이드나 벤질클로라이드를 아렌 화합물에 프리델-크래프트알킬화반응을 유도하면 매우 경제적이고 고수율로 각각 알릴아렌 화합물과 벤질아렌 화합물의 제조가 가능할 것이다. 프리델-크래프트 알킬화반응에 사용되는 알릴할라이드나 벤질할라이드 화합물은 할로겐이 치환된 메틸렌기에 비닐기나 페닐기와 같은 관능기가 치환되어 있어서 할로겐이 떨어지고 생기는 양이온을 안정화시키므로 큰 활성을 가진다. 그러므로 할로겐이 치환된 메틸렌기에 직접 결합된 관능기가 없어도 프리델-크래프트 알킬화반응으로 알킬아렌 화합물의 합성이 가능하고 이에 기초한 화합물 및 이에 제조 방법이 본 발명의 목적이 된다.
선행기술 1: Roberts, Royston M; Khalaf, Ali, Friedel-Crafts Alkylation Chemistry, Marcel Dekker, Inc., New York, New York, USA, 1984 선행기술 2: Selvaraj, M.; Lee, T. G. Journal of Molecular Catalysis A: Chemical 2006, 243(2), 176-182 선행기술 3: Yeon Seok Cho, Y. S.; Kang, S.-H.; Han, J. S.; Yoo, B. R.; Jung, I. N., J. Am. Chem. Soc. 2001, 123, 5584
본 발명의 목적은 유기포스핀 화합물을 촉매로 사용하여 알킬할라이드 화합물을 아로마틱 화합물과 반응하여 합성되는 알킬아렌 화합물 및 이의 제조방법을 제공하는 것이다.
본 발명의 적절한 실시 형태에 따르면, 알킬아렌 화합물은 화학식 3으로 표시되고,
화학식 3:
Figure 112020086569628-pat00001
상기에서 R1= 탄소수가 1~10인 알킬기 또는 (CH2)qSi(R3)p(OR4)3-p(q=1~10, R3= Cl 또는 CH3, p=0, 1, 2, 3, R4= CH3 또는 C2H5); n= 0, 1, 2 또는 3; Ar= 벤젠, 나프탈렌, 안트라센, 바이페닐, 터페닐렌, 안트론, 안트라퀴논, 피렌, 페난트란센, 퍼릴렌, 바이페닐에테르, 바이페닐 설파이드, 아니솔, 플루오렌, 아니솔, 사이오아니솔, 테트라센, 펜타센 및 고리가 1~8개인 아로마틱 화합물; R2= 탄소수 1~8개의 알킬기나 페닐기를 포함하는 알킬기; l= 0, 1, 2, 3 또는 4; 그리고 m= 1, 2 또는 3이 된다.
본 발명의 다른 적절한 실시 형태에 따르면, 화학식 3에서 Ar = 안트라센, 바이페닐, 터페닐렌, 안트론, 안트라퀴논, 피렌, 페난트란센, 퍼릴렌, 바이페닐에테르, 바이페닐 설파이드, 아니솔, 플루오렌, 아니솔, 사이오아니솔, 테트라센 또는 펜타센;
Figure 112020086569628-pat00002
= 메틸, 에틸, 프로필, 아이소프로필, 부틸, 펜틸, 헥실, 헵틸, 옥틸, 노닐, 데실, sec-부틸, 트리메틸실릴메틸, 트리클로로실릴메틸, 트리메톡시실릴메틸, 트리에톡시실릴메틸, 메틸다이클로로실릴메틸, 메틸다이메톡시실릴메틸, 다이메틸클로로실릴메틸, 다이메틸메톡시실릴메틸, 다이메틸에톡시실릴메틸, 트리클로로실릴에틸, 트리메톡시실릴에틸, 트리에토시실릴에틸, 트리크로로실릴프로필, 트리메톡시실릴프로필, 트리에톡시실릴프로필, 트리클로로실릴헥실, 트리메톡시실릴헥실, 트리에톡시실릴헥실; R2= CH3 또는 C2H5; m=1,2 또는 3; 그리고 l= 0, 1 또는 2가 된다.
본 발명의 다른 적절한 실시 형태에 따르면, 알킬아렌 화합물의 제조 방법은 화학식 1 및 화학식 2로 표시되는 화합물을 유기포스핀 화합물을 촉매로 하여 반응시켜 생성되는 화학식 3으로 표시되는 화합물이 제조되고,
화학식 1:
Figure 112020086569628-pat00003
화학식 2:
Figure 112020086569628-pat00004
화학식 3:
Figure 112020086569628-pat00005
상기에서 화학식 1, 2 및 3의 R1= 탄소수가 1~10인 알킬기 또는 (CH2)qSi(R3)p(OR4)3-p(q=1~10, R3= Cl 또는 CH3, p=0, 1, 2, 3, R4= CH3또는 C2H5); n=0, 1, 2 또는 3; X= Cl, Br 또는 I; Ar= 벤젠, 나프탈렌, 안트라센, 바이페닐, 터페닐렌, 안트론, 안트라퀴논, 피렌, 페난트란센, 퍼릴렌, 바이페닐에테르, 바이페닐 설파이드, 아니솔, 플루오렌, 아니솔, 사이오아니솔, 테트라센, 펜타센 및 고리가 1~8개인 아로마틱 화합물; R2= H 탄소수 1~8개의 알킬기나 페닐기를 포함하는 알킬기; l=0, 1, 2, 3 또는 4; 그리고 m= 1, 2 또는 3이 된다.
본 발명의 다른 적절한 실시 형태에 따르면, 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물의 반응 몰비는 6:1 내지 1:3이 된다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 화학식 4로 표시되는 화합물이 촉매로 사용되고,
화학식 4:
P(R")3,
상기에서 R“는 탄소 수가 1~12인 알킬기 또는 알케닐이 되는 페닐기를 포함하고, 서로 다른 R”는 공유 결합으로 연결된 환형 구조가 된다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 화학식 5로 표시되는 화합물이 촉매로 사용되고,
화학식 5:
P(R")4X'
상기에서 R“는 탄소 수가 1~12인 알킬기 또는 알케닐이 되는 페닐기를 포함하고, 서로 다른 R”는 공유 결합으로 연결된 환형 구조가 되며, X'= Cl, Br 또는 I 중에서 선택되는 하나가 된다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 화학식 6으로 표시되는 화합물이 촉매로 사용되고,
화학식 6:
X'(R")3 P-Y-P(R")3X'
상기에서 R”는 탄소 수가 1~12인 알킬기 또는 알케닐이 되는 페닐기를 포함하고, 서로 다른 R”는 공유 결합으로 연결된 환형 구조이며, X'= Cl, Br 또는 I이고, Y= 탄소 수가 1~12인 알킬기, 방향족기를 포함한 알킬기 또는 방향족기가 된다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 알킬아렌 화합물의 제조 방법에서 사용되는 촉매의 농도는 화학식 1의 화합물에 대하여 5 내지 20몰%가 된다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 알킬아렌 화합물의 제조 방법에서 반응 온도는 100~250℃가 된다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 알킬아렌 화합물의 제조 방법에서 반응 용매는 탄화수소, 에테르(ether), 다이메톡시에탄(DME) 및 THF로 이루어진 그룹으로부터 선택된 적어도 하나가 된다.
본 발명의 또 다른 적절한 실시 형태에 따르면, 화학식1의 화합물과 화학식2로 표시되는 화합물이 액상인 경우 알킬아렌 화합물은 용매 없이 반응되어 생성된다.
본 발명에 따른 알킬아렌 화합물의 제조 방법은 알킬할라이드 화합물과 아로마틱 화합물의 반응으로 알킬아렌을 합성하기 위하여 금속화합물이 아닌 중성이나 염기성의 유기포스핀 촉매를 사용하여 루이스산이 촉매로 사용되는 경우에 따른 제한이 없이 프리델-크래프트 알킬화 반응이 용이하게 진행되도록 한다. 일반적으로 프리델-크래프트 알킬화반응의 경우 촉매는 루이스산 촉매로 알루미늄, 보론, 철, 구리 등의 금속 클로라이드가 되고, 이와 같은 촉매는 반응 후에 반응물로부터 분리 및 재사용이 어렵다는 단점을 가진다. 또한 안트라센이나 그보다 더 벤젠고리가 많은 아로마틱 화합물을 사용하면 촉매가 이들과 쉽게 복합물을 형성하여 활성이 저하하므로 알킬화반응을 원활하게 수행하기가 어렵다는 문제점이 발생한다. 본 발명에 따른 유기포스핀 촉매에 의한 알킬아렌의 제조 방법은 이와 같은 문제점의 해결이 가능하도록 한다. 본 발명에 따른 제조 방법에 사용되는 촉매 화합물 군은 유기물 중에서 5족인 3차 유기인 화합물이나 4차 유기포스포늄 염이 될 수 있다. 4차 유기포스포늄 염을 촉매로 사용하여 알킬 클로라이드와 Si-H 결합을 가진 클로로실란을 반응하면 탈할로겐화수소 Si-C 결합반응으로 다양한 알킬실란이 합성될 수 있다. 이와 따라 이러한 촉매는 탈할로겐화수소 C-C결합 반응에 의한 알킬아렌의 합성 과정에서 매우 효과적으로 작용할 수 있고, 촉매가 쉽게 회수되어 재활용할 수 있는 장점을 가진다. 아렌 화합물들은 그동안 낮은 반응성과 유기용매에 대한 낮은 용해도로 인하여 극히 제한적으로 전자재료로 사용되었다. 그러나 본 발명에 따른 알킬아렌 화합물은 형광성을 갖는 안트라센이나 그보다 더 많은 벤젠고리를 갖는 아로마틱 화합물에 유기 기나 유기-무기 결합제인 유기실리콘을 직접 반응시킴으로써 유기용매에 대한 용해도를 높이면서 형광성을 가질 수 있다. 또한 알킬아렌 화합물은 부착성이 향상되어 새로운 기능성 실리콘 제품으로 전자재료에 유용하게 적용될 수 있다.
아래에서 본 발명은 실시 예를 참조하여 상세하게 설명이 되지만 실시 예는 본 발명의 명확한 이해를 위한 것으로 본 발명은 이에 제한되지 않는다.
본 발명에 따른 알킬아렌 화합물의 제조 방법은 화학식 1 및 화학식 2로 표시되는 화합물을 유기포스핀 화합물을 촉매로 하여 반응시켜 생성되는 화학식 3으로 표시되는 화합물이 생성되도록 한다.
화학식 1:
Figure 112020086569628-pat00006
화학식 2:
Figure 112020086569628-pat00007
화학식 3:
Figure 112020086569628-pat00008
상기에서 R1= 탄소수가 1~10인 알킬기 또는 (CH2)qSi(R3)p(OR4)3-p(q=1~10, R3= Cl 또는 CH3, p=0, 1, 2, 3, R4= CH3 또는 C2H5); n=0, 1, 2 또는 3; X= Cl, Br 또는 I; Ar= 벤젠, 나프탈렌, 안트라센, 바이페닐, 터페닐렌, 안트론, 안트라퀴논, 피렌, 페난트란센, 퍼릴렌, 바이페닐에테르, 바이페닐 설파이드, 아니솔, 플루오렌, 아니솔, 사이오아니솔, 테트라센, 펜타센 또는 고리가 1~8개인 아로마틱 화합물; R2= H, 탄소수 1~8개의 알킬기나 페닐기를 포함하는 알킬기; l=0, 1, 2, 3 또는 4; 그리고 m= 1, 2 또는 3이 된다.
반응식 1
Figure 112020086569628-pat00009
반응식 1에서 촉매는 3차 유기포스핀 또는 4차 유기포스포늄 염이 될 수 있고, 화학식 1의알킬할라이드 화합물에서 할로겐을 취하고, 화학식 2의 아로마틱 고리에서 수소를 빼서 HX를 발생시키는 탈할로겐화수소 C-C결합 반응을 통해 화학식 3으로 표시되는 알킬아렌 화합물이 생성될 수 있다.
반응식 1에서 촉매로 사용되는 3차 유기포스핀은 아래의 화학식 4로 표시될 수 있고, 4차 유기포스포늄 염은 화학식 5 또는 화학식 6으로 표시될 수 있다.
화학식 4:
P(R")3,
상기에서 R"는 탄소 수가 1~12개의 알킬기 또는 알케닐기가 되는 페닐기를 포함할 수 있다. 2개의 R"는 서로 공유 결합으로 연결되어 환형구조를 가질 수 있고, 각각의 R"는 서로 동일하거나 또는 상이한 구조를 가질 수 있다.
화학식 5:
P(R")4X',
상기에서 X'= Cl, Br, 또는 I이고, R"는 화학식 4의 화합물과 동일하고, R"는 서로 공유결합으로 연결되어 환형 구조를 가질 수 있고, 각각의 R"는 서로 동일하거나 또는 상이한 구조를 가질 수 있다.
화학식 6:
X'(R")3 P-Y-P(R")3X',
상기에서 X'와 R"는 각각 화학식 5의 화합물과 동일하고 Y= 탄소가 1~12인 알킬기나 방향족기를 포함한 알킬기 또는 방향족기가 될 수 있고, 2개의 R"는 서로 공유결합으로 연결되어 환형 구조를 가질 수 있고, 각각의 R"는 서로 동일하거나 또는 상이한 구조를 가질 수 있다.
촉매가 되는 3차 유기포스포핀은 트리메틸포스핀, 트리에틸포스핀, 트리부틸포스핀, 메틸디페닐포스핀, 트리사이클로헥실포스핀, 트리아이소프로필포스핀, 트리프로필포스핀, 디메틸페닐포스핀, 에틸디페닐포스핀, t-부틸디페닐포스핀, t-부틸디아이소프로필, 아이소프로필디페닐포스핀, 디사이클로헥실페닐포스핀, 벤질디페닐포스핀, 사이클로헥실디페닐포스핀, 트리사이클로펜틸포스핀, 디-t-부틸네오펜틸포스핀, 디-t-부틸페닐포스핀, 디-t-부틸메틸포스핀 및 t-부틸디사이클로헥실포스핀으로 이루어진 그룹으로부터 선택된 적어도 하나의 화합물을 포함할 수 있다.
4차 유기포스포늄 염은 벤질트리부틸포스포늄 클로라이드, 테트라부틸포스포늄 클로라이드, 테트라부틸포스포늄 브로마이드, 테트라부틸포스포늄 요오드, 테트라메틸포스포늄 브로마이드, 테트라에틸포스포늄 클로라이드, (4-에틸벤질)트리페닐포스포늄 클로라이드, 헥실트리페닐포스포늄 클로라이드, 벤질트리페닐포스늄 클로라이드, 테트라페닐포스포늄 클로라이드, 비스(벤질디메틸포스포늄 클로라이드)에탄, 비스(벤질디메틸포스포늄 클로라이드)부탄 또는 실리카나 실리콘수지, 실리콘 실세스퀴옥센 및 유기 폴리머에 고정화된 4차 알킬포스포늄 클로라이드으로 이루어진 그룹으로부터 선택된 적어도 하나의 화합물을 포함할 수 있다.
알킬아렌 화합물의 제조 과정에서 화학식 1의 알킬할라이드 화합물이나 화학식 2의 아로마틱 화합물 그리고 사용되는 용매의 끓는점이 반응온도인 250℃보다 더 낮으므로 일정 수준의 높은 압력에 견디는 반응조에서 고압 조건으로 반응이 될 필요가 있다. 화학식 1의 알킬할라이드 화합물과 화학식 2의 아로마틱 화합물을 준비한 후, 촉매로 사용되는 3차 유기포스핀 또는 4차 유기포스포늄 염을 화학식 1에 대하여 5 내지 20몰% 범위로 투입하고 혼합한다. 이후 반응 혼합물을 100 ∼ 250 ℃, 바람직하게는 150 ∼ 220 ℃로 가열시키면 상기 반응식 1에 따른 화학식 3과 같은 알킬아렌 화합물을 합성할 수 있다. 이와 같은 과정에서 촉매로 사용하는 3차 유기포스핀은 반응 중에 알킬할라이드 화합물과 반응하여 4차 유기포스핀 할라이드 염이 된다. 또한 촉매로 사용된 4차 유기포스포늄 염은 반응 혼합물로부터의 회수가 용이하고, 예를 들어 반응 완료 후 반응생성물을 감압 증류하면 촉매는 증류되지 않고 잔류하여 간단하게 회수될 수 있다. 촉매는 처음 사용된 양에 대하여 80%의 수준까지 회수될 수 있고, 회수된 촉매는 적당한 용매로 재결정 처리되어 재사용될 수 있다.
본 발명의 하나의 실시 예에 따르면, 알킬아렌의 합성공정은 질소 대기 하에서 화학식 1의 알킬할라이드 화합물과 화학식 2의 아로마틱 화합물을 넣고 3차 유기포스핀이나 4차 유기포스포늄 염 촉매를 압력에 견디는 스텐레스 관으로 된 반응조에 투입한 후 마개를 닫고 반응 온도까지 가열하여 반응시키는 것으로 진행될 수 있다. 이와 같은 과정에서 화학식 1의 알킬할라이드 화합물과 화학식 2의 아로마틱 화합물은 몰 비로 6:1 내지 1:3의 비로 혼합될 수 있고, 아로마틱 화합물에 여러 몰의 알킬기가 도입될 필요가 있다면, 화학식 1의 알킬할라이드 화합물의 비율이 높아져 반응이 진행될 수 있다. 화학식 4로 표시되는 3차 유기포스핀이나 화학식 5 및 6의 4차 유기포스포늄 염 촉매는 화학식 1에 대하여 5 내지 20몰%이 될 수 있다. 이와 같은 과정에서 반응 용매는 반응물에 따라서 예컨대 지방족 탄화수소와 같은 반응용매를 사용하거나 에테르(ether), 다이메톡시에탄(DME) 또는 THF와 같은 용매를 사용할 수 있다. 이와 같은 반응 용매를 사용하면 반응물을 균일하게 분포시킬 수 있고, 특히 THF를 사용할 경우 부산물인 HX에 의해 고리가 열리고 할로부틸알콜이 생성된 후 이러한 알코올의 축합반응을 통해 할로부틸에테르가 생성되므로 부산물인 HX 가스를 제거할 수 있다. 그러나 알콕시실란이나 클로로실란이 포함된 화학식 1의 물질을 사용할 경우에는 THF에 의한 부산물에 의해 가수 분해되거나 Si-Cl가 할로부톡시로 치환될 수 있기 때문에 THF를 용매로 사용하는 것은 적합하지 않다. 끓는점이 낮은 에테르를 용매로 사용하면 200℃의 반응온도에서 전부 기화하므로 반응조의 압력을 높이게 되어 폭발의 위험이 증가될 수 있다. 다른 한편으로 화학식 1 및 화학식 2의 화합물이 모두 액체이거나 서로 상용성이 있으면 용매를 사용하지 않고 반응할 수 있다. 반응온도는 100 ∼ 250℃이 될 수 있고, 바람직하게 150 ∼ 220℃가 될 수 있다. 이와 같은 조건에서 1 ∼ 48시간 정도 반응시킨 후 반응이 끝나면 마개를 열어서 발생된 할로겐화수소를 배출시키고 상압 또는 감압 하에서 증류하거나 재결정하여 생성물을 분리하면 목적물을 얻을 수가 있다. 위에서 설명된 것처럼 생성물을 제조 후 촉매를 분리하여 재활용을 하는 것이 가능하다. 촉매로 4차 포스포늄 염을 쓰지 않고 3차 유기포스핀을 사용하는 경우 반응 중에 알킬할라이드 화합물과 반응하여 4차 포스포늄 염이 되므로 생성물로부터 별다른 어려움이 없이 촉매를 분리하여 다시 사용할 수 있다. 촉매인 4차 유기포스포늄 염은 80%까지 회수하여 재사용할 수 있어서 경제적으로 매우 유리하다. 유기포스포늄 염을 실리콘수지나 실리카 혹은 제올라이트에 고정화시켜서 사용하면 반응 후에 회수하여 재사용하기가 매우 편리하다.
반응을 위한 화학식 1의 알킬할라이드 화합물은 메틸클로라이드, 메틸브로마이드, 메틸아이오다이드, 에틸클로라이드, 에틸브로마이드, 에틸아이오다이드,1-클로로프로판, 1-브로모프로판, 1-아이오도프로판, 2-클로로프로판, 2-브로모프로판, 2-아이오도프로판, 1-클로로부탈,1-브로모부탄, 1-아이오도부탄, 2-클로로부탄, 2-브로모부탄, 2-아이오도부탄, t-부틸클로라이드,t-부틸브로마이드, t-부틸아이오다이이드, 1-클로로펜탄, 1-브로모펜탄, 1-아이오도펜탄, 2-크로로펜탄, 2-브로모펜탄, 2-아이오도펜탄, 1-클로로헥산, 1-브로모헥산, 1-아이오도헥산, 2-클로로헥산, 2-브로모헥산, 2-아이오도헥산, 3-클로로헥산, 3-브로모헥산, 3-아이오도헥산, 1-클로로헵탄, 1-브로모헵탄, 1-아이오도헵탄, 2-클로로헵탄, 2-브로모헵탄, 2-아이오도헵탄, 1-클로로옥탄, 1-브로모옥탄, 1-아이오도옥탄, 1-클로로노난, 1-브로모노난, 1-아이오도노난, 1-클로로데칸, 1-브로모데칸, 1-아이오도데칸, (클로로메틸)트리클로로실란, (클로로메틸)메틸다이클로로실란, (클로로메틸)다이메틸클로로실란, (클로로메틸)트리메틸실란, (클로로메틸)트리메톡시실란, (클로로메틸)트리에톡시실란, (클로로메틸)메틸다이메톡시실란, (클로로메틸)메틸다이에톡시실란, (클로로메틸)다이메틸메톡시실란, (클로로메틸)다이메틸에톡시실란, 2-클로로에틸트리클로로실란, 2-클로로에틸트리메톡시실란, 2-클로로에틸트리에톡시실란, 3-클로로프로필트리클로로실란, 3-클로로프로필트리메톡시실란, 3-클로로프로필트리에톡시실란, 6-클로로헥실트리클로로실란, 6-클로로헥실트리메톡시실란 및 6-클로로헥실트리에톡시실란로 이루어진 그룹으로부터 선택된 적어도 하나의 화합물이 될 수 있다. 이와 같은 화합물은 모두 상업적으로 생산되는 물질이거나 문헌에 합성방법이 알려진 화합물에 해당한다.
화학식 2로 표시되는 화합물은 상업적으로 획득되거나, 합성이 될 수 있는 화합물에 해당하고, 벤젠, 톨루엔, o-자일렌, m-자일렌, p-자일렌, 메시틸렌, 에틸벤젠, 프로필벤젠, n-부틸벤젠, 이소부틸벤젠, t-부틸벤젠, 1,2,4,5-테트라메틸벤젠, 플루오로벤젠, 브로모벤젠, 아이오도벤젠, 아니솔, 사이오아니솔, 바이페닐, 플루오렌, o-터페닐렌, m-터페닐렌, p-터페닐렌, 나프탈렌, 1-메틸나프탈렌, 2-메틸나프탈렌, 1-메틸-2-메틸나프탈렌, 바이페닐에테르, 바이페닐 설파이드, 안트라센, 9-브로모안트라센, 9-메틸안트라센, 9,10-디메틸안트라센, 안트론, 피렌, 1,6-디메틸피렌, 2,7-디메틸피렌, 1,6-디페닐피렌, 2,7-디벤질피렌, 2,7-비스(디페닐메틸)피렌, 퍼릴렌, 디메틸퍼릴렌, 테트라센, 및 펜타센로 이루어진 그룹으로부터 선택된 적어도 하나의 화합물이 될 수 있다.
화학식 1의 알킬할라이드 화합물은 화학식 2의 아로마틱 화합물의 벤젠고리에 결합된 수소의 수만큼 치환될 수 있으므로 반응 몰 비율에 따라 다양한 형태의 생성물이 획득될 수 있다. 화학식 1의 알킬할라이드 화합물이 과량으로 사용되는 경우 즉, 화학식 1과 화학식 2의 화합물을 6:1의 몰비로 반응시키면, 화학식 2의 아로마틱 화합물에서 다수의 알킬이 치환될 수 있고, 화학식 2의 아로마틱 화합물을 알킬할라이드 화합물에 대하여 과량으로 사용하는 경우 즉, 화학식 1과 화학식 2의 화합물을 1:3의 몰비로 반응시키면 알킬이 하나가 치환된 화합물이 주된 생성물로 얻어질 수 있다. 아래에서는 본 발명에 따른 화학식 3의 생산을 위한 구체적인 방법과 조건이 기재된 실시 예를 설명하기로 한다.
아래의 실시 예는 예시적인 것으로 본 발명은 이에 의하여 제한되지 않는다.
실시 예
실시예 1: 1-아이소프로필-2-메틸나프탈렌의 합성
290ml들이 스테인리스 관으로 된 고온, 고압 반응조에 1-메틸나프탈렌 50g (0.35mol)과 2-클로로프로판 13.8g (0.18mol), 2-클로로프로판 몰수의 10%에 해당하는 디메틸페닐포스핀 2.5g (0.018mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응시켰다. 이 용액을 둥근바닥 플라스크에 꺼내고 감압 증류를 통하여 생성물 18.2g (0.10mol, 수율 55%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명의 분석결과, 1.31ppm (d, 6H)에서 C-CH 3 , 2.62ppm (s, 3H)에서 C-CH 3 , 2.88ppm (s, 1H)에서 C-CH, 6.9-7.9ppm (m, 6H)에서 Naph-H를 확인하였다.
실시예 2: 1-부틸나프탈렌의 합성
실시예 1과 같은 방법으로 나프탈렌 50g (0.39mol)과 1-브로모부탄 26.7g (0.20mol), 트리부틸포스핀 3.9g (0.02mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 17.3g (0.09mol, 수율 47%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.89ppm (t, 3H)에서 C-CH 3 , 1.30ppm (m, 2H)에서 C-CH 2 -C, 1.55ppm (m, 2H)에서 Naph-C-CH 2 , 3.07ppm (t, 2H)에서 Naph-CH 2 , 6.98-8.08ppm (m, 7H)에서 Naph-CH 2 를 확인하였다.
실시예 3: 9-(t-부틸)-10-메틸안트라센의 합성
실시예 1과 같은 방법으로 9-메틸안트라센 50g (0.26mol)과 t-부틸클로라이드 12g (0.13mol), 트리사이클로헥실포스핀 3.6g (0.013mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 18.1g (0.07mol, 수율 56%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.48ppm (s, 9H)에서 Anth-C-CH 3 , 2.72ppm (s, 3H)에서 Anth-CH 3 , 7.40-8.20ppm (m, 8H)에서 Anth-H를 확인하였다.
실시예 4: 1,5-비스(아이소부틸)나프탈렌의 합성
실시예 1과 같은 방법으로 나프탈렌 30g (0.23mol), 아이소부틸클로라이드 55.2g (0.7mol), 테트라부틸포스포늄 클로라이드 8.9g (0.03mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 28.3g (0.13mol, 수율 58%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.3ppm (d, 12H)에서 C-CH 3 , 2.9ppm (m, 2H)에서 Naph-CH, 7.0-7.9ppm (m, 6H)에서 Naph-H를 확인하였다.
실시예 5: ((4-헥실페닐)페닐)설파이드의 합성
실시예 1과 같은 방법으로 바이페닐 설파이드 50g (0.268mol)과 1-클로로헥산 16.1g (0.134mol), 테트라부틸포스포늄 클로라이드 4g (0.0134mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 4.2g (0.163mol, 수율 61%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.88ppm (t, 3H)에서 C-CH 3 , 1.31ppm (m, 6H)에서 C-CH 2 -C, 1.58ppm (m, 2H)에서 Ph-C-CH 2 , 2.64ppm (t, 2H)에서 Ph-C-CH 2 , 7.00-7.52ppm (m, 9H)에서 Ph-H를 확인하였다.
실시예 6: 4-(2-헥실)-1,1‘-바이페닐의 합성
실시예 1과 같은 방법으로 바이페닐 50g (0.324mol)과 2-클로로헥산 19.55g (0.162mol), 트리부틸포스핀 3.3g (0.0162mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 35.5g (0.149mol, 수율 46%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.88ppm (t, 3H)에서 C-CH 3 , 1.16ppm (d, 3H)에서 Ph-C-CH 3 , 1.31ppm (m, 4H)에서 C-CH 2 -C, 1.54ppm (m, 2H)에서 Ph-C-CH 2 , 2.55ppm (s, 1H)에서 Ph-CH, 7.38-7.75ppm (m, 9H)에서 Ph-H를 확인하였다.
실시예 7: 6-옥틸펜타센의 합성
실시예 1과 같은 방법으로 펜타센 50g (0.18mol)과 1-브로모옥탄 13.4g (0.09mol), 트리에틸포스핀 1g (0.009mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물20.2g (0.06mol, 수율 62%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.88ppm (t, 3H)에서 C-CH 3 , 1.31ppm (m, 10H)에서 C-CH 2 -C, 1.61ppm (m, 2H)에서 Pentacene-C-CH 2 , 3.07ppm (t, 2H)에서 Pentacene-CH 2 , 7.54-8.25ppm (m, 13H)에서 PentaceneH를 확인하였다.
실시예 8: 1-아이소프로필나프탈렌의 합성
실시예 1과 같은 방법으로 나프탈렌 50g (0.39mol)과 2-클로로프로판 15.3g (0.195mol), 트리사이클로헥실포스핀 5.5g (0.0195mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 16.6g (0.10mol, 수율 50%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.31ppm (d, 6H)에서 C-CH 3 , 2.28ppm (m, 1H)에서 Naph-CH, 6.98-8.08ppm (m, 7H)에서 Naph-H를 확인하였다.
실시예 9: 2-(t-부틸)피렌의 합성
실시예 1과 같은 방법으로 피렌 50g (0.247mol)과 t-부틸클로라이드 11.4g (0.12 mol), 테트라부틸포스포늄 클로라이드 3.6g (0.012mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 17.4g (0.07mol, 수율 56%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.4ppm (s, 9H)에서 C-CH 3 , 8.0-8.2ppm (m, 9H)에서 Pyrene-H를 확인하였다.
실시예 10: 2-sec-부틸피렌의 합성
실시예 1과 같은 방법으로 피렌 50g (0.247mol)과 2-아이오도부탄 22.7g (0.124mol), 테트라부틸포스포늄 클로라이드 3.6g (0.0124mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 16.3g (0.06mol, 수율 51%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.8ppm (t,3H)에서 C-CH3, 1.2ppm (d, 3H)에서 C-Ch3, 1.5ppm (m, 2H)에서 C-Ch2-C, 2.6ppm (m, 1H)에서 Pyrene-Ch-C, 8.0-8.2ppm (m, 9H)에서 Pyrene-H를 확인하였다.
실시예 11: 4-헥실바이페닐의 합성
실시예 1과 같은 방법으로 바이페닐 50g (0.324mol)과 1-클로로헥산 19.6g (0.162mol), 테트라부틸포스포늄 클로라이드 4.8g (0.0162mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 23.2g (0.10mol, 수율 60%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.88ppm (t, 3H)에서 C-Ch2, 1.30ppm (m, 6H)에서 C-Ch2-C, 1.58ppm (m, 2H)에서 Ph-C-Ch2 , 2.63ppm (t, 2H)에서 Ph-Ch2 , 7.28-7.75ppm (m, 9H)에서 Ph-h를 확인하였다.
실시예 12: 9-(2-헥실)안트라센의 합성
실시예 1과 같은 방법으로 안트라센 50g (0.28mol)과 2-클로로헥산 16.9g (0.14mol), 테트라부틸포스포늄 클로라이드 4.1g (0.014mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 18.4g (0.07mol, 수율 49%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.9ppm (t, 3H)에서 C-CH 3 , 1.3ppm (m, 7H)에서 C-CH 2 -C 및 C-CH 3, 1.56ppm (m, 2H)에서 Anth-C-CH 2 , 2.55ppm (m, 1H)에서 Anth-CH, 7.47-8.24ppm (m, 9H)에서 Anth-H를 확인하였다.
실시예 13: 2-아이소프로필피렌의 합성
실시예 1과 같은 방법으로 피렌 30g (0.15mol), 아이소프로필클로라이드 6.3g (0.08mol), 테트라부틸포스포늄 클로라이드 3g (0.01mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 12.2g (0.05mol, 59%)를 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.3ppm (d, 6H)에서 C-CH 3 , 2.9ppm (m, 1H)에서 Pyrene-CH, 7.9-8.2ppm (m, 9H)에서 Pyrene-H를 확인하였다.
실시예 14: 1-메틸-4-(2-펜틸)벤젠의 합성
290ml들이 스테인레스관으로 된 고온, 고압 반응조에 톨루엔 50g (0.54mol)과 2-브로모펜탄 40.9g (0.27mol) 및 2-브로모펜탄의 10% 몰수에 해당하는 디메틸페닐포스핀 3.7g (0.027mol)를 넣고 230℃에서 6시간 동안 반응시켰다. 이 용액을 둥근 바닥 플라스크에 꺼내고 감압증류를 통하여 생성물 20.6g (0.13mol, 수율 47%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.89ppm (t, 3H)에서 C-CH 3 , 1.16ppm (d, 3H)에서 Ph-C-CH 3 , 1.31ppm (m, 2H)에서 C-CH 2 -C, 1.54ppm (m, 2H)에서 Ph-C-CH 2 , 2.19ppm (s, 3H)에서 Ph-CH 3 , 2.55ppm (m, 1H)에서 Ph-CH, 7.06-7.11ppm (m, 4H)에서 Ph-H를 확인하였다.
실시예 15: 1-sec-부틸-4-메틸벤젠의 합성
실시예 14과 같은 방법으로 톨루엔 50g (0.54mol)과 2-아이오도부탄 49.9g (0.27mol), 트리에틸포스핀 3.2g (0.027mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 21.6g (0.15mol, 수율 54%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.73ppm (t, 3H)에서 C-CH 3 , 1.16ppm (d, 3H)에서 Ph-C-CH 3 , 1.52ppm (m, 2H)에서 Ph-C-CH 2 , 2.19ppm (s, 3H)에서 Ph-CH 2 , 2.55ppm (m, 1H)에서 Ph-CH, 7.00ppm (m, 4H)에서 Ph-H를 확인하였다.
실시예 16: 9,10-(비스(t-부틸))안트라센의 합성
290ml들이 스테인레스관으로 된 고온, 고압 반응조에 안트라센 30g (0.17mol), t-부틸브로마이드 70g (0.51mol), 테트라부틸포스포늄 클로라이드 8.9g (0.03mol) 및 THF 50ml를 넣고 230℃에서 6시간 동안 반응시켰다. 이 용액을 둥근 바닥 플라스크에 꺼내고 감압증류를 통하여 생성물 29.6g ( 0.1mol, 62%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.5ppm (s, 18H)에서 C-CH 3 , 7.5-8.2ppm (m, 8H)에서 Anth-H를 확인하였다.
실시예 17: (9-(트리클로로실릴)메틸)안트라센의 합성
290ml들이 스테인레스관으로 된 고온, 고압 반응조에 질소 대기하에서 안트라센 50g (0.28mol)과 (클로로메틸)트리클로로실란 25.7g (0.14mol) 및 디메틸페닐포스핀 1.9g (0.014mol), 데칸 50ml를 넣고 230℃에서 6시간 동안 반응시켰다. 이 용액을 둥근 바닥 플라스크에 꺼내고 건조된 데칸으로 5회 씻어 여과하였다. 이 여과액을 감압증류를 통하여 생성물 20.5g (0.06mol, 수율 45%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.05ppm (s, 2H)에서 Anth-CH 2 , 7.47-8.20ppm (m, 9H)에서 Anth-H를 확인하였다.
실시예 18 : 5-(2-(트리클로로실릴)에틸)테트라센의 합성
실시예 17과 같은 방법으로 테트라센 50g (0.219mol)과 2-클로로에틸트리클로로실란 21.7g (0.11mol), 테트라부틸포스포늄 클로라이드 3.2g (0.011mol) 및 데칸 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 21.9g (0.06mol, 수율 51%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.7ppm (t, 2H)에서 Si-CH 2 -C 3.3ppm (t, 2H)에서 Tetracene-CH 2 -C , 7.5-8.5ppm (m, 11H)에서 Tetracene-H를 확인하였다.
실시예 19: 3-(2-(트리메톡시실릴)에틸)퍼릴렌의 합성
실시예 17과 같은 방법으로 퍼릴렌 50g (0.198mol)과 2-클로로에틸트리메톡시실란 18.3g (0.099mol), 테트라부틸포스포늄 클로라이드 2.9g (0.0099mol) 및 데칸 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 19.6g (0.049mol, 수율 49%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.93ppm (t, 2H)에서 Si-CH 2 -C, 3.0ppm (t, 2H)에서 C-CH 2 -C, 3.6ppm (s, 9H)에서 Si-OCH 3 , 7.2-8.2ppm (m, 11H)에서 Perylene-H를 확인하였다.
실시예 20: 5-(트리클로로메틸)테트라센의 합성
실시예 17과 같은 방법으로 테트라센 50g (0.219mol)과 (클로로메틸)트리클로로실란 20.1g (0.11mol), 트리에틸포스핀 1.3g (0.011mol) 및 데칸 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 20.7g (0.06mol, 수율 62%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.05ppm (s, 2H)에서 Tetracene-CH 2 , 3.05ppm (m, 11H)에서 Tetracene-H를 확인하였다.
실시예 21 : (4-페녹시벤질)트리메톡시실란의 합성
290ml들이 스테인레스관으로 된 고온, 고압 반응조에 질소 대기하에서 바이페닐에테르 50g (0.294mol)과 (클로로메틸)트리메톡시실란 25.1g (0.147mol), 트리사이클로헥실포스핀 4.1g (0.0147mol) 및 헥산 50ml를 넣고 230℃에서 6시간 동안 반응시켰다. 이 용액을 둥근 바닥 플라스크에 꺼내고 건조된 헥산으로 5회 씻어 여과하였다. 이 여과액을 감압증류를 통하여 생성물 20.1g (0.07mol, 수율 45%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.84ppm (s, 2H)에서 Si-CH 2 , 3.55ppm (s, 9H)에서 O-CH 3 , 7.06-7.42ppm (m, 9H)에서 Ph-H를 확인하였다.
실시예 22: 6-(트리메톡시실릴메틸)펜타센의 합성
실시예 21과 같은 방법으로 펜타센 50g (0.18mol)과 (클로로메틸)트리메톡시실란 15.3g (0.09mol), 트리부틸포스핀 1.8g (0.009mol) 및 헥산 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 19.7g (0.05mol, 수율 53%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 2.3ppm (s, 2H)에서 Pentacen-CH 2 , 3.6ppm (s, 9H)에서 Si-OCH 3 , 7.5-8.3ppm (m, 13H)에서 Pentacen-H를 확인하였다.
실시예 23: 9-(2-(트리클로로실릴)에틸)-10-메틸안트라센의 합성
실시예 21과 같은 방법으로 9-메틸안트라센 50g (0.26mol)과 2-클로로에틸트리클로로실란 25.7g (0.13mol), 트리부틸포스핀 2.6g (0.013mol) 및 헥산 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 25.8g (0.07mol, 수율 56%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.7ppm (t, 2H)에서 Si-CH 2 , 2.7ppm (t, 3H)에서 Anth-CH 3 , 3.3ppm (t, 2H)에서 Si-C-CH 2 , 7.5-8.2ppm (m, 8H)에서 Anth-H를 확인하였다.
실시예 24 : 1-(2-(트리메톡시실릴)에틸)나프탈렌의 합성
실시예 21과 같은 방법으로 나프탈렌 50g (0.39mol)과 2-클로로에틸트리메톡시실란 36g (0.195mol), 테트라부틸포스포늄 클로라이드 5.8g (0.0195mol) 및 헥산 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 24.3g (0.09mol, 수율 45%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.9ppm (t, 2H)에서 Si-CH 2 , 2.9ppm (t, 2H)에서 Si-C-CH 2 , 3.6ppm (s, 9H)에서 Si-OCH 3 , 6.9-8.1ppm (m, 7H)에서 Naph-H를 확인하였다.
실시예 25: 9-((트리메톡시실릴)메틸)안트라센의 합성
실시예 21과 같은 방법으로 안트라센 50g (0.28mol)과 (클로로메틸)트리메톡시실란 23.9g (0.14mol), 테트라부틸포스포늄 클로라이드 4.1g (0.014mol) 및 데칸 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 21g (0.07mol, 수율 48%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 2.28ppm (s, 2H)에서 Si-CH 2 , 3.55ppm (s, 9H)에서 Si-OCH 3 , 7.47-8.28ppm (m, 9H)에서 Anth-H를 확인하였다.
실시예 26: 6-(2-(트리클로로실릴)에틸)펜타센의 합성
실시예 21과 같은 방법으로 펜타센 50g (0.18mol)과 2-클로로에틸트리클로로실란 17.8g (0.09mol), 테트라부틸포스포늄 클로라이드 2.7g (0.009mol) 및 데칸 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 20.6g (0.05mol, 수율 52%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 1.70ppm (t, 2H)에서 Si-CH 2 , 3.30ppm (t, 2H)에서 Si-C-CH 2 , 7.54-8.25ppm (m, 13H)에서 Pentacen-H를 확인하였다.
실시예 27: 4-((트리클로로실릴)메틸)톨루엔의 합성
290ml들이 스테인레스관으로 된 고온, 고압 반응조에 질소 대기하에서 톨루엔 50g (0.543mol)과 (클로로메틸)트리클로로실란 49.9g (0.27mol) 및 테트라부틸포스포늄 클로라이드 8g (0.027mol)를 넣고 230℃에서 6시간 동안 반응시켰다. 이 용액을 둥근 바닥 플라스크에 꺼내고 건조된 헥산으로 5회 씻어 여과하였다. 이 여과액을 감압증류를 통하여 생성물 38.8g (0.16mol, 수율 60%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 2.19ppm (s, 3H)에서 Ph-CH 3 , 2.61ppm (s, 2H)에서 Si-CH 2 , 7.01-7.11ppm (m, 4H)에서 Ph-H를 확인하였다.
실시예 28: 1,5-비스((트리클로로실릴)메틸)나프탈렌의 합성
290ml들이 스테인레스관으로 된 고온, 고압 반응조에 질소 대기 하에서 나프탈렌 30g (0.23mol)과 클로로메틸트리클로로실란 126.9g (0.69mol), 클로로메틸트리클로로실란의 5% 몰수에 해당하는 테트라부틸포스포늄 클로라이드 11.8g (0.04mol) 및 헥산 40ml를 넣고 230℃에서 6시간 동안 반응시켰다. 이 용액을 둥근 바닥 플라스크에 꺼내고 건조된 헥산으로 5회 씻어 여과하였다. 이 여과액을 감압증류를 통하여 생성물 59.2g (0.14mol, 수율 63%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 3.1ppm (s, 4H)에서 Si-CH 2 , 6.9-7.8ppm (m, 6H)에서 Naph-H를 확인하였다.
실시예 29: 9,10-비스((트리메톡시실릴)메틸)안트라센의 합성
실시예 28과 같은 방법으로 안트라센 20g (0.11mol)과 클로로메틸트리메톡시실란 58g (0.34mol), 테트라부틸포스포늄 클로라이드 5.9g (0.02mol) 및 헥산 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 26.8g (0.06mol, 수율 57%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 2.3ppm (s, 4H)에서 Si-CH 2 , 3.6ppm (s, 9H)에서 Si-OCH 3 , 7.5-8.2ppm (m, 8H)에서 Anth-H를 확인하였다.
실시예 30: 9,10-비스((2-다이클로로메틸실릴)에틸)안트라센의 합성
실시예 28과 같은 방법으로 안트라센 20g (0.11mol)과 2-클로로에틸메틸다이클로로실란 58.6g (0.33mol), 테트라부틸포스포늄 클로라이드 5.9g (0.02mol) 및 헥산 50ml를 넣고 230℃에서 6시간 동안 반응하여 생성물 29.9g (0.06mol, 수율 59%)을 얻었다. 얻어진 생성물은 300MHz 수소핵자기공명 분석결과, 0.7ppm (s, 6H)에서 Si-CH 3 , 0.9ppm (t, 4H)에서 Si-CH 2 , 2.9ppm (t, 4H)에서 Anth-CH 2 , 7.5-8.2ppm (m, 8H)에서 Anth-H를 확인하였다.

Claims (11)

  1. 삭제
  2. 화학식 3으로 표시되는 알킬아렌 화합물로
    화학식 3:
    Figure 112022109801625-pat00016

    상기에서 R1= 탄소수가 1~10인 알킬기 또는 (CH2)qSi(R3)p(OR4)3-p(q=1~10, R3= Cl 또는 CH3, p=0, 1, 2, 3, R4= CH3 또는 C2H5); n= 0, 1, 2 또는 3; Ar = 안트라센 또는 바이페닐인 경우,
    Figure 112022109801625-pat00017
    = 트리메톡시실릴메틸, 트리에톡시실릴메틸, 메틸다이메톡시실릴메틸, 다이메틸메톡시실릴메틸, 다이메틸에톡시실릴메틸, 트리메톡시실릴에틸, 트리에톡시실릴에틸, 트리클로로실릴프로필, 트리메톡시실릴프로필, 트리에톡시실릴프로필, 트리클로로실릴헥실, 트리메톡시실릴헥실 또는 트리에톡시실릴헥실이고; Ar = 안트론 또는 테트라센인 경우,
    Figure 112022109801625-pat00018
    = 메틸, 에틸, 프로필, 아이소프로필, 부틸, 펜틸, 헥실, 헵틸, 옥틸, 노닐, 데실, sec-부틸, 트리메틸실릴메틸, 트리클로로실릴메틸, 트리메톡시실릴메틸, 트리에톡시실릴메틸, 메틸다이클로로실릴메틸, 메틸다이메톡시실릴메틸, 다이메틸클로로실릴메틸, 다이메틸메톡시실릴메틸, 다이메틸에톡시실릴메틸, 트리클로로실릴에틸, 트리메톡시실릴에틸, 트리에톡시실릴에틸, 트리클로로실릴프로필, 트리메톡시실릴프로필, 트리에톡시실릴프로필, 트리클로로실릴헥실, 트리메톡시실릴헥실 또는 트리에톡시실릴헥실이고; Ar = 터페닐렌, 안트라퀴논, 피렌, 페난트렌센, 페릴렌, 바이페닐에테르, 바이페닐 설파이드, 플루오렌 또는 펜타센인 경우,
    Figure 112022109801625-pat00019
    = 트리메틸실릴메틸, 트리클로로실릴메틸, 트리메톡시실릴메틸, 트리에톡시실릴메틸, 메틸다이클로로실릴메틸, 메틸다이메톡시실릴메틸, 다이메틸클로로실릴메틸, 다이메틸메톡시실릴메틸, 다이메틸에톡시실릴메틸, 트리클로로실릴에틸, 트리메톡시실릴에틸, 트리에톡시실릴에틸, 트리클로로실릴프로필, 트리메톡시실릴프로필, 트리에톡시실릴프로필, 트리클로로실릴헥실, 트리메톡시실릴헥실 또는 트리에톡시실릴헥실이고; Ar = 아니솔 또는 사이오아니솔인 경우,
    Figure 112022109801625-pat00020
    = 트리클로로실릴메틸, 트리메톡시실릴메틸, 트리에톡시실릴메틸, 메틸다이클로로실릴메틸, 메틸다이메톡시실릴메틸, 다이메틸클로로실릴메틸, 다이메틸메톡시실릴메틸, 다이메틸에톡시실릴메틸, 트리클로로실릴에틸, 트리메톡시실릴에틸, 트리클로로실릴프로필, 트리메톡시실릴프로필, 트리클로로실릴헥실, 트리메톡시실릴헥실 또는 트리에톡시실릴헥실이고; R2= CH3 또는 C2H5; m=1, 2 또는 3; 그리고 l= 0, 1 또는 2가 되는 것을 특징으로 하는 알킬아렌 화합물.
  3. 화학식 1 및 화학식 2로 표시되는 화합물을 유기포스핀 화합물을 촉매로 하여 반응시켜 생성되는 화학식 3으로 표시되는 알킬아렌 화합물의 제조 방법으로
    화학식 1:
    Figure 112022109801625-pat00012

    화학식 2:
    Figure 112022109801625-pat00013

    화학식 3:
    Figure 112022109801625-pat00014

    상기에서 화학식 1, 2 및 3의 R1= 탄소수가 1~10인 알킬기 또는 (CH2)qSi(R3)p(OR4)3-p(q=1~10, R3= Cl 또는 CH3, p=0, 1, 2, 3, R4= CH3또는 C2H5); n=0, 1, 2 또는 3; X= Cl, Br 또는 I; Ar = 안트라센 또는 바이페닐인 경우,
    Figure 112022109801625-pat00021
    = 트리메톡시실릴메틸, 트리에톡시실릴메틸, 메틸다이메톡시실릴메틸, 다이메틸메톡시실릴메틸, 다이메틸에톡시실릴메틸, 트리메톡시실릴에틸, 트리에톡시실릴에틸, 트리클로로실릴프로필, 트리메톡시실릴프로필, 트리에톡시실릴프로필, 트리클로로실릴헥실, 트리메톡시실릴헥실 또는 트리에톡시실릴헥실이고; Ar = 안트론 또는 테트라센인 경우,
    Figure 112022109801625-pat00022
    = 메틸, 에틸, 프로필, 아이소프로필, 부틸, 펜틸, 헥실, 헵틸, 옥틸, 노닐, 데실, sec-부틸, 트리메틸실릴메틸, 트리클로로실릴메틸, 트리메톡시실릴메틸, 트리에톡시실릴메틸, 메틸다이클로로실릴메틸, 메틸다이메톡시실릴메틸, 다이메틸클로로실릴메틸, 다이메틸메톡시실릴메틸, 다이메틸에톡시실릴메틸, 트리클로로실릴에틸, 트리메톡시실릴에틸, 트리에톡시실릴에틸, 트리클로로실릴프로필, 트리메톡시실릴프로필, 트리에톡시실릴프로필, 트리클로로실릴헥실, 트리메톡시실릴헥실 또는 트리에톡시실릴헥실이고; Ar = 터페닐렌, 안트라퀴논, 피렌, 페난트렌센, 페릴렌, 바이페닐에테르, 바이페닐 설파이드, 플루오렌 또는 펜타센인 경우,
    Figure 112022109801625-pat00023
    = 트리메틸실릴메틸, 트리클로로실릴메틸, 트리메톡시실릴메틸, 트리에톡시실릴메틸, 메틸다이클로로실릴메틸, 메틸다이메톡시실릴메틸, 다이메틸클로로실릴메틸, 다이메틸메톡시실릴메틸, 다이메틸에톡시실릴메틸, 트리클로로실릴에틸, 트리메톡시실릴에틸, 트리에톡시실릴에틸, 트리클로로실릴프로필, 트리메톡시실릴프로필, 트리에톡시실릴프로필, 트리클로로실릴헥실, 트리메톡시실릴헥실 또는 트리에톡시실릴헥실이고; Ar = 아니솔 또는 사이오아니솔인 경우,
    Figure 112022109801625-pat00024
    = 트리클로로실릴메틸, 트리메톡시실릴메틸, 트리에톡시실릴메틸, 메틸다이클로로실릴메틸, 메틸다이메톡시실릴메틸, 다이메틸클로로실릴메틸, 다이메틸메톡시실릴메틸, 다이메틸에톡시실릴메틸, 트리클로로실릴에틸, 트리메톡시실릴에틸, 트리클로로실릴프로필, 트리메톡시실릴프로필, 트리클로로실릴헥실, 트리메톡시실릴헥실 또는 트리에톡시실릴헥실이고; R2= CH3 또는 C2H5; m=1, 2 또는 3; 그리고 l= 0, 1 또는 2가 되는 것을 특징으로 하는 알킬아렌 화합물의 제조 방법.
  4. 청구항 3에 있어서, 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물의 반응 몰비는 6:1 내지 1:3인 것을 특징으로 하는 알킬아렌의 제조 방법.
  5. 청구항 3에 있어서, 화학식 4로 표시되는 화합물이 촉매로 사용되고,
    화학식 4:
    P(R")3,
    상기에서 R“는 탄소 수가 1~12인 알킬기 또는 알케닐이 되는 페닐기를 포함하고, 서로 다른 R”는 공유 결합으로 연결된 환형 구조가 되는 것을 특징으로 하는 알킬아렌 화합물의 제조 방법.
  6. 청구항 3에 있어서, 화학식 5로 표시되는 화합물이 촉매로 사용되고,
    화학식 5:
    P(R")4X'
    상기에서 R“는 탄소 수가 1~12인 알킬기 또는 알케닐이 되는 페닐기를 포함하고, 서로 다른 R”는 공유 결합으로 연결된 환형 구조가 되며, X'= Cl, Br 또는 I 중에서 선택되는 하나인 것을 특징으로 하는 알킬아렌의 제조 방법.
  7. 청구항 3에 있어서, 화학식 6으로 표시되는 화합물이 촉매로 사용되고,
    화학식 6:
    X'(R")3 P-Y-P(R")3X'
    상기에서 R”는 탄소 수가 1~12인 알킬기 또는 알케닐이 되는 페닐기를 포함하고, 서로 다른 R”는 공유 결합으로 연결된 환형 구조이며, X'= Cl, Br 또는 I이고, Y= 탄소 수가 1~12인 알킬기, 방향족기를 포함한 알킬기 또는 방향족기인 것을 특징으로 하는 알킬아렌의 제조 방법.
  8. 청구항 3 내지 청구항 6 중 어느 하나에 있어서,
    촉매의 농도는 화학식 1의 화합물에 대하여 5 내지 20몰%인 것을 특징으로 하는 알킬아렌의 제조 방법.
  9. 청구항 3에 있어서, 반응 온도는 100~250℃인 것을 특징으로 하는 알킬아렌 화합물의 제조방법
  10. 청구항 3에 있어서, 반응 용매는 탄화수소, 에테르(ether), 다이메톡시에탄(DME) 및 THF로 이루어진 그룹으로부터 선택된 적어도 하나가 되는 것을 특징으로 하는 알킬아렌 화합물의 제조방법.
  11. 청구항 3에 있어서, 화학식1의 화합물과 화학식2로 표시되는 화합물이 액상인 경우 용매 없이 반응되는 것을 특징으로 하는 알킬아렌 화합물의 제조방법.


KR1020200103421A 2019-12-20 2020-08-18 알킬아렌 화합물 및 이의 제조방법 KR102509228B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020200103421A KR102509228B1 (ko) 2020-08-18 2020-08-18 알킬아렌 화합물 및 이의 제조방법
US17/113,695 US11685702B2 (en) 2019-12-20 2020-12-07 Method for producing arene compounds and arene compounds produced by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200103421A KR102509228B1 (ko) 2020-08-18 2020-08-18 알킬아렌 화합물 및 이의 제조방법

Publications (2)

Publication Number Publication Date
KR20220022349A KR20220022349A (ko) 2022-02-25
KR102509228B1 true KR102509228B1 (ko) 2023-03-13

Family

ID=80490044

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200103421A KR102509228B1 (ko) 2019-12-20 2020-08-18 알킬아렌 화합물 및 이의 제조방법

Country Status (1)

Country Link
KR (1) KR102509228B1 (ko)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453211B1 (ko) * 2000-11-01 2004-10-15 한국과학기술연구원 유기 실란의 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. Gong et al., Journal of Molecular Structure 963 (2010) 76-81.*

Also Published As

Publication number Publication date
KR20220022349A (ko) 2022-02-25

Similar Documents

Publication Publication Date Title
KR101263789B1 (ko) 유기 클로로하이드로실란과 이의 제조방법
KR20060112237A (ko) 유기수소실란의 제조 방법
KR950002860B1 (ko) 클로로알켄닐실란들과그제조방법
Tomaschautzky et al. Tridentate Lewis-acids based on triphenylsilane
Tomaschautzky et al. Poly-Lewis-acids based on bowl-shaped tribenzotriquinacene
US5596120A (en) Process for preparation of organosilanes
KR102509228B1 (ko) 알킬아렌 화합물 및 이의 제조방법
US2618646A (en) Production of organosilanes
US20020082438A1 (en) Process for preparing organochlorosilanes by dehydrohalogenative coupling reaction of alkyl halides with chlorosilanes
US8450515B2 (en) Production method for linear and cyclic trisilaalkane
KR100453211B1 (ko) 유기 실란의 제조방법
US11685702B2 (en) Method for producing arene compounds and arene compounds produced by the same
JP4435572B2 (ja) フェニルオルガノシリコン中間体を製造する方法
KR102331357B1 (ko) (아릴메틸)아렌 화합물 및 그의 제조방법
US2902504A (en) Process for preparing arylchlorosilanes
Steward et al. Rearrangements of organosilicon compounds I. The migratory aptitudes of various organic groups in the aluminum chloride-catalyzed rearrangement of (chloromethyl) triorganosilanes
Yoo et al. Synthesis of organosilicon compounds by new direct reactions
US3334122A (en) Method of preparing arylsilanes
KR102346347B1 (ko) 알릴아로마틱 화합물 및 그의 제조 방법
Ando et al. Synthesis and Reduction of the 9, 10-Disilaanthracene Dimer
US5399740A (en) Tris(silyl)methanes and their preparation methods
US2557931A (en) Phenylene linked organopolysilanes
JPS6039077B2 (ja) 有機ケイ素化合物の製造方法
US4925963A (en) Process for reduction of organosilicon halides
US2556462A (en) Preparation of halosilanes

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant