KR102506754B1 - High strength aluminum alloy plate parts and manufacturing method thereof - Google Patents

High strength aluminum alloy plate parts and manufacturing method thereof Download PDF

Info

Publication number
KR102506754B1
KR102506754B1 KR1020160171423A KR20160171423A KR102506754B1 KR 102506754 B1 KR102506754 B1 KR 102506754B1 KR 1020160171423 A KR1020160171423 A KR 1020160171423A KR 20160171423 A KR20160171423 A KR 20160171423A KR 102506754 B1 KR102506754 B1 KR 102506754B1
Authority
KR
South Korea
Prior art keywords
aluminum alloy
current
manufacturing
strength
strength aluminum
Prior art date
Application number
KR1020160171423A
Other languages
Korean (ko)
Other versions
KR20180069330A (en
Inventor
박찬훈
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020160171423A priority Critical patent/KR102506754B1/en
Publication of KR20180069330A publication Critical patent/KR20180069330A/en
Application granted granted Critical
Publication of KR102506754B1 publication Critical patent/KR102506754B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

본 발명은, 고강도 알루미늄 합금 판재 부품 및 그 제조방법에 관한 것으로, 보다 상세하게는 7XXX계열 알루미늄 판재에 펄스 전류를 인가하여 신율을 향상시킴으로써 성형성을 향상시키고, 성형 후 과시효 처리하여 잔류 응력을 제거함으로써 응력부식균열에 대한 저항성을 향상시킨 고강도 알루미늄 합금 판재 부품 및 그 제조방법에 관한 것이다. The present invention relates to a high-strength aluminum alloy plate component and a method for manufacturing the same, and more particularly, to improve formability by applying a pulse current to a 7XXX series aluminum plate to improve elongation, and to reduce residual stress by overaging treatment after forming It relates to a high-strength aluminum alloy sheet component having improved resistance to stress corrosion cracking by removing the same and a method for manufacturing the same.

Description

고강도 알루미늄 합금 판재 부품 및 그 제조방법{HIGH STRENGTH ALUMINUM ALLOY PLATE PARTS AND MANUFACTURING METHOD THEREOF}High-strength aluminum alloy plate parts and manufacturing method thereof

본 발명은, 고강도 알루미늄 합금 판재 부품 및 그 제조방법에 관한 것으로, 보다 상세하게는 7XXX계열 알루미늄 판재에 펄스 전류를 인가하여 신율을 향상시킴으로써 성형성을 향상시키고, 성형 후 과시효 처리하여 잔류 응력을 제거함으로써 응력부식균열에 대한 저항성을 향상시킨 고강도 알루미늄 합금 판재 부품 및 그 제조방법에 관한 것이다. The present invention relates to a high-strength aluminum alloy plate component and a method for manufacturing the same, and more particularly, to improve formability by applying a pulse current to a 7XXX series aluminum plate to improve elongation, and to reduce residual stress by overaging treatment after forming It relates to a high-strength aluminum alloy sheet component having improved resistance to stress corrosion cracking by removing the same and a method for manufacturing the same.

Aluminum 합금은 그 합금 원소의 성분에 따라 1000 시리즈부터 7000 시리즈까지 4 행의 숫자로 표시 되어진다. Aluminum alloys are indicated by 4 rows of numbers from 1000 series to 7000 series according to the composition of the alloy element.

알루미늄 합금의 강도는 합금 원소에 의해서 결정된다. 구리(Cu), 망간The strength of an aluminum alloy is determined by the alloying elements. Copper (Cu), manganese

(Mn), 아연(Zn), 규소(Si) 등의 원소는 알루미늄 합금의 온도가 올라갈수록 고용도가 높아진다. 따라서 열처리에 의해서 이들 합금 원소의 석출과 고용화에 의한 경화를 이룰 수 있다. 이러한 의미에서 이들 합금 원소가 첨가된 알루미늄 합금을 열처리 알루미늄 합금이라고 구분하다.The solubility of elements such as (Mn), zinc (Zn), and silicon (Si) increases as the temperature of the aluminum alloy increases. Therefore, it is possible to achieve hardening by precipitation and solid solution of these alloy elements by heat treatment. In this sense, aluminum alloys to which these alloying elements are added are classified as heat treated aluminum alloys.

7XXX계 알루미늄 합금은 Al-Zn-(Mg, Cu)계 합금으로, Zn 을 주첨가 성분으로 하지만, 여기에 Mg 을 첨가한 고강도 열처리 합금이다. 특히 Al7075는 2024 보다 매우 높은 강도를 가지며, 현재 Al 합금중 최고의 강도를 갖고, 고강도 항공기용 재료, 내식용 재료로 사용된다. The 7XXX-based aluminum alloy is an Al-Zn-(Mg, Cu)-based alloy, and is a high-strength heat-treated alloy with Zn as a main additive component and Mg added thereto. In particular, Al7075 has a much higher strength than 2024, has the highest strength among current Al alloys, and is used as a high-strength aircraft material and a corrosion-resistant material.

고강도의 7XXX계 알루미늄 합금 판재는 스템핑 등의 냉간성형으로 제조되고 강도향상을 위해, 고용화 열처리후 시효처리를 하게 된다. (T6 열처리)High-strength 7XXX series aluminum alloy sheet is manufactured by cold forming such as stamping, and is subjected to aging treatment after solid solution heat treatment to improve strength. (T6 heat treatment)

그러나 이러한 고강도로 인해 냉간성형시 성형성이 부족한 문제점이 있고, 잔류응력으로 인해 응력부식균열에 대한 저항성이 매우 낮은 문제점이 있다.However, due to such high strength, there is a problem in that formability is insufficient during cold forming, and resistance to stress corrosion cracking is very low due to residual stress.

대한민국 등록특허 제10-0933385 호 (2009.12.14)Republic of Korea Patent No. 10-0933385 (2009.12.14)

본 발명은 상기 문제점을 해결하기 위해 안출된 것으로, 7XXX계열 알루미늄 판재에 펄스 전류를 인가하여 신율을 향상시킴으로써 성형성을 향상시키고, 성형 후 과시효 처리하여 잔류 응력을 제거함으로써 응력부식균열에 대한 저항성을 향상시킨 고강도 알루미늄 합금 판재 부품 및 그 제조방법을 제공하는데 그 목적이 있다. The present invention has been made to solve the above problems, and improves formability by applying pulse current to 7XXX series aluminum sheet to improve elongation, and resistance to stress corrosion cracking by removing residual stress by overaging treatment after forming Its purpose is to provide an improved high-strength aluminum alloy plate part and its manufacturing method.

본 발명의 실시예에 따른 고강도 알루미늄 판재 부품 제조방법은 알루미늄 합금 판재에 전류를 인가하는 단계; 상기 알루미늄 합금 판재를 성형하는 단계;A method for manufacturing a high-strength aluminum plate component according to an embodiment of the present invention includes applying a current to an aluminum alloy plate; Forming the aluminum alloy plate;

상기 성형된 알루미늄 합금 판재를 과시효 처리 하는 단계;를 포함할 수 있다.It may include; overaging treatment of the formed aluminum alloy plate.

또한, 상기 알루미늄 합금 판재는 7XXX계 알루미늄 합금을 포함 할 수 있다.In addition, the aluminum alloy plate may include a 7XXX-based aluminum alloy.

또한, 상기 전류는 직류 전류인 것을 특징으로 할 수 있다.Also, the current may be a direct current.

또한, 상기 전류는 지속시간이 0.5 초인 펄스 전류인 것을 특징으로 할 수있다.In addition, the current may be a pulse current having a duration of 0.5 seconds.

또한, 상기 펄스 전류는 전류밀도가 180 내지 200A/mm2 로 인가하는 것을 특징으로 할 수 있다.In addition, the pulse current may be applied at a current density of 180 to 200 A/mm 2 .

또한, 상기 펄스 전류는 300초 이상 인가하는 것을 특징으로 할 수 있다.In addition, the pulse current may be characterized in that it is applied for 300 seconds or more.

또한, 상기 알루미늄 합금 판재가 상기 전류의 인가를 통해 500 ℃ 이하의 온도로 가열되는 것을 특징으로 할 수 있다.In addition, it may be characterized in that the aluminum alloy sheet material is heated to a temperature of 500 ℃ or less through the application of the current.

또한, 상기 가열된 알루미늄 합금 판재를 서냉하는 것을 특징으로 할 수 있다.In addition, it may be characterized in that the heated aluminum alloy sheet material is slowly cooled.

또한, 상기 성형 단계는 가열된 알루미늄 합금 판재가 상온까지 냉각되기 전에 이루어지는 것을 특징으로 할 수 있다.In addition, the forming step may be characterized in that it is performed before the heated aluminum alloy sheet material is cooled to room temperature.

또한, 상기 과시효 처리는 121℃ 의 온도에서 4시간 유지한 후, 163 ℃ 온도에서 16시간 동안 이루어 지는 것을 특징으로 할 수 있다.In addition, the overaging treatment may be performed at a temperature of 121 ° C for 4 hours and then at a temperature of 163 ° C for 16 hours.

본 발명의 실시예에 따른 고강도 알루미늄 판재 부품은 제 1항 내지 10항 중 어느 한 항에 따른 제조방법에 의해 제조될 수 있다.A high-strength aluminum plate component according to an embodiment of the present invention may be manufactured by the manufacturing method according to any one of claims 1 to 10.

본 발명은, 7XXX계열 알루미늄 판재에 펄스 전류를 인가하여 가열함으로써 신율을 향상시키는 효과가 있다. The present invention has an effect of improving the elongation by applying a pulse current to the 7XXX series aluminum plate and heating it.

또한, 신율의 향상으로 인한 성형성을 향상의 효과가 있다.In addition, there is an effect of improving moldability due to improvement in elongation.

또한, 성형 후 과시효 처리하여 잔류 응력을 제거함으로써 응력부식균열에 대한 저항성을 향상시키는 효과가 있다.In addition, there is an effect of improving resistance to stress corrosion cracking by removing residual stress by overaging treatment after molding.

도 1은 본 발명에 따른 펄스 전류의 인가 단계를 개략적으로 도시한 도면.
도 2는 본 발명에 따른 과시효 처리 단계를 개략적으로 도시한 도면.
도 3은 본 발명에 따라 인가된 전류밀도 대한 신율의 변화를 나타낸 그래프.
도 4는 본 발명에 따른 펄스 전류의 인가에 따른 결정립의 크기를 보여주는 사진.
도 5는 본 발명에 따른 펄스 전류의 인가에 따른 성형성 개선효과를 보여주는 그래프.
도 6은 본 발명에 따른 펄스 전류 인가에 따른 성형성 개선효과를 보여주는 사진.
도 7은 본 발명에 따른 과시효 처리에 의한 강도 하락의 정도를 나타낸 그래프.
도 8은 본 발명에 따른 과시효 처리에 의한 응력부식균열에 대한 저항성이 개선된 것을 보여주는 사진.
도 9는 본 발명에 따른 고강도 알루미늄 판재 부품 제조방법에 대한 흐름도.
1 schematically illustrates a step of applying a pulsed current according to the present invention;
2 schematically illustrates an overaging treatment step according to the present invention;
Figure 3 is a graph showing the change in elongation with respect to the applied current density according to the present invention.
Figure 4 is a photograph showing the size of crystal grains according to the application of pulse current according to the present invention.
5 is a graph showing the effect of improving moldability according to the application of a pulse current according to the present invention.
Figure 6 is a photograph showing the formability improvement effect according to the pulse current application according to the present invention.
7 is a graph showing the degree of strength loss due to overaging treatment according to the present invention.
8 is a photograph showing that resistance to stress corrosion cracking by overaging treatment according to the present invention is improved.
9 is a flow chart of a method for manufacturing high-strength aluminum plate parts according to the present invention.

본 명세서 및 청구범위에서 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시 예와 도면에 도시된 구성은 본 발명의 가장 바람직한 실시 예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다. 또한, 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략한다. 이하 본 발명의 바람직한 실시 예를 첨부된 도면을 참조하여 상세히 설명하기로 한다.Terms or words used in this specification and claims should not be limited to their usual or dictionary meanings, and the principle that the inventor can appropriately define the concept of terms in order to best describe his/her invention. Based on this, it should be interpreted as a meaning and concept consistent with the technical spirit of the present invention. Therefore, since the embodiments described in this specification and the configurations shown in the drawings are only the most preferred embodiments of the present invention and do not represent all of the technical spirit of the present invention, various equivalents that can replace them at the time of the present application It should be understood that there may be water and variations. In addition, detailed descriptions of well-known functions and configurations that may unnecessarily obscure the subject matter of the present invention will be omitted. Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

본 발명은 7XXX계열의 알루미늄 합금 판재를 이용하여 차량용 부품의 성형에 적합하도록 고강도를 유지하면서도 신율과 응력부식균열에 대한 저항성을 향상 시킨 알루미늄 합금 판재에 관한 것으로, 본 발명의 일 실시예에서는 Al7075를 사용하였고, T6열처리 즉 고용화 열처리 후 시효처리된 알루미늄 합금 판재를 사용하였으나, 7XXX계열 알루미늄 합금 판재에 대해서도 적용이 가능하다. The present invention relates to an aluminum alloy plate material having improved resistance to elongation and stress corrosion cracking while maintaining high strength suitable for forming vehicle parts by using 7XXX series aluminum alloy plate material. In one embodiment of the present invention, Al7075 T6 heat treatment, that is, an aluminum alloy plate subjected to aging treatment after solid solution heat treatment was used, but it can also be applied to 7XXX series aluminum alloy plates.

본 발명의 실시예에 따른 고강도 알루미늄 판재 부품 제조방법은 알루미늄 합금 판재에 전류를 인가하는 단계(S100); 상기 알루미늄 합금 판재를 성형하는 단계(S200); 상기 성형된 알루미늄 합금 판재를 과시효 처리 하는 단계(S300);를 포함하여 이루어 질 수 있다. A method for manufacturing a high-strength aluminum plate component according to an embodiment of the present invention includes applying a current to an aluminum alloy plate (S100); Forming the aluminum alloy plate (S200); It may be made including; step (S300) of overaging the formed aluminum alloy plate.

도 1에 도시된 바와 같이, T6 열처리된 알루미늄 합금 판재에 대해 펄스 전류를 인가하여 약 500℃ 이하의 온도까지 가열하였다. 이는 T6열처리를 통해 다수의 전위등 격자 결함이 도입되어 강도가 증가한 대신 연성이 떨어진 상태이므로, 저항발열 방식으로 가열하여 전위의 재배열을 일으켜 회복과정을 통해 다시 전연성을 부여하기 위함이다. As shown in Figure 1, by applying a pulse current to the T6 heat-treated aluminum alloy sheet was heated to a temperature of about 500 ℃ or less. This is to impart malleability again through a recovery process by heating in a resistance heating method to rearrange dislocations because a number of dislocation lattice defects are introduced through the T6 heat treatment and the strength is increased instead of ductility.

[표 1]은 인가한 전류밀도에 다른 신율의 변화를 비교하였다. 인장시험은 Al7075 시험편 JIS5호, 단축(1축) 인장시험으로 진행하였다.[Table 1] compares the change in elongation at different applied current densities. Tensile test was performed by Al7075 test piece JIS5, uniaxial (uniaxial) tensile test.

이때, 인가하는 전류는 직류 전류이며, 지속시간이 0.5초인 펄스 전류를 인가하였으며, 전류밀도가 증가함에 따라 판재의 신율이 향상됨을 확인 할 수 있다. At this time, the applied current is a direct current, and a pulse current having a duration of 0.5 seconds was applied, and it can be confirmed that the elongation of the sheet material improves as the current density increases.

또한, 상기 펄스 전류의 인가 시간은 300초 미만으로 인가한 경우는 충분한 가열이 이루어 지지 않으므로, 300초 이상의 시간 동안 인가하는 것이 바람직하다. In addition, since sufficient heating is not achieved when the pulse current is applied for less than 300 seconds, it is preferable to apply the pulse current for a time of 300 seconds or more.

도 3의 (a)그래프는 170A/mm2의 전류를 300초 동안 인가한 경우의 신율이 15.6%로 향상된 것을 확인할 수 있고, (b)그래프는 200A/mm2 의 전류를 300초 동안 인가한 경우의 신율이 18.2%로 향상됨을 확인하였다. 다만 (c)그래프에서 나타난 바와 같이, 200A/mm2 을 초과하는 경우 오히려 신율이 하락하기 때문에, 본 발명에서는 최대 신율을 얻기 위해 180초과 200A/mm2 의 전류를 300초 이상 인가하는 것이 바람직하다. In (a) graph of FIG. 3, it can be seen that the elongation is improved to 15.6% when a current of 170 A/mm 2 is applied for 300 seconds, and (b) the graph shows a current of 200 A/mm 2 applied for 300 seconds. It was confirmed that the elongation of the case was improved to 18.2%. However, as shown in the graph (c), since the elongation decreases when the elongation exceeds 200 A/mm 2 , in the present invention, it is preferable to apply a current of more than 180 and 200 A/mm 2 for 300 seconds or more to obtain the maximum elongation. .

인가 전류 밀도 (A/mm2)Applied current density (A/mm 2 ) 신율(%)Elongation (%) 원소재 (전류인가 X)Raw materials (applied current X) 13.213.2 140~160140 to 160 15.615.6 160~180160 to 180 16.916.9 180~200180 to 200 18.218.2 200~220200-220 16.216.2 220~240220~240 15.415.4

상기와 같이 펄스 전류를 인가함으로써 T6열처리된 7075 알루미늄 합금 판재를 약 500 이하의 온도까지 가열함으로써 회복과정에서 전위밀도가 감소하는 효과가 있고, 전위밀도가 낮을수록 연신율은 향상되는 것이다. By applying the pulse current as described above, by heating the 7075 aluminum alloy sheet subjected to T6 heat treatment to a temperature of about 500 or less, there is an effect of reducing the dislocation density in the recovery process, and the lower the dislocation density, the higher the elongation.

즉, 도 5에 도시된 바와 같이, 펄스 전류를 인가하여 500로 온도가 상승하면서 하중 감소가 발생하나, 신율은 13.2%에서 18.2%로 향상되었고, 그에 따라 도 6에 도시된 바와 같이, 전류 인가하지 않은 경우에 비해 성형 깊이가 약 1.5배 향상되는 효과가 있음을 확인할 수 있다. That is, as shown in FIG. 5, the load decreases as the temperature rises to 500 by applying the pulse current, but the elongation improves from 13.2% to 18.2%. Accordingly, as shown in FIG. 6, the current application It can be seen that there is an effect of improving the molding depth by about 1.5 times compared to the case where it is not performed.

다만, 가열된 7075알루미늄 합금 판재는 상온까지 서냉을 실시하는 과정에서 표 2에서처럼 소재의 강도는 일정부분 다시 증가하고, 신율은 감소하는 것을 확인할 수 있다. However, as shown in Table 2, in the process of slowly cooling the heated 7075 aluminum alloy plate to room temperature, it can be seen that the strength of the material increases again to some extent and the elongation decreases.

[표 2]는 기본 Al7075(T6) 판재에 펄스 전류를 인가한 후 의 물성과 성형완료후 냉각된 후의 물성을 비교한 것이다. [Table 2] compares the physical properties after applying a pulse current to the basic Al7075 (T6) plate and the physical properties after cooling after completion of molding.

항복강도(MPa)Yield strength (MPa) 인장강도(MPa)Tensile strength (MPa) 신율(%)Elongation (%) A7075(T6) 기본물성A7075 (T6) basic physical properties 483483 593593 13.213.2 펄스전류 인가 후 물성Physical properties after application of pulse current 381381 426426 18.218.2 펄스전류 인가 성형 후 물성Physical properties after molding by applying pulse current 468468 512512 14.314.3

즉, 상온까지 냉각이 진행된 후에는 신율이 감소하기 때문에, 상온까지 냉각되기 전 과정에서 성형이 이루어짐이 바람직하고, 더욱 바람직하게는 펄스 전류를 인가하는 상태에서 성형이 이루어지는 것이 더욱 바람직하다. That is, since the elongation decreases after cooling to room temperature, it is preferable that molding is performed during the entire process of cooling to room temperature, and more preferably, molding is performed while applying a pulse current.

상기와 같이, 펄스 전류의 인가를 통한 회복과정에서 일부 잔류 응력이 제거되었으나, T6열처리된 7075알루미늄 합금 판재는 잔류응력으로 인해 응력부식균열(Stress Corrosion Cracking:SCC)에 대한 저항성이 매우 낮은 문제점을 갖고 있다. 따라서, 성형 이후 잔류 응력의 제거를 위해, 본 발명에서는 과시효(T76)처리를 할 수 있다. As described above, some residual stress is removed in the recovery process through the application of pulse current, but the T6 heat treated 7075 aluminum alloy sheet has a problem of very low resistance to stress corrosion cracking (SCC) due to residual stress. I have it. Therefore, in order to remove residual stress after molding, overaging (T76) treatment may be performed in the present invention.

이때, 최대강도를 갖는 조건을 지나 인공시효처리를 하게되고, 최대강도를 갖기까지 110~130℃ 의 온도에서 약 1~24시간동안 유지하며, 바람직하게는 121℃ 의 온도에서 약 4시간 유지한 후, 과시효 처리를 위해 승온하여 150~170℃ 온도에서 약 10~16시간 유지하며, 바람직하게는 163 ℃ 온도에서 약16시간 동안 유지하여 과시효 처리하는 것이 바람직하다. At this time, the artificial aging treatment is performed after the condition having the maximum strength, and maintained for about 1 to 24 hours at a temperature of 110 ~ 130 ℃ until it has the maximum strength, preferably maintained at a temperature of 121 ℃ for about 4 hours After that, the temperature is raised for overaging treatment and maintained at a temperature of 150 to 170 ° C for about 10 to 16 hours, preferably maintained at a temperature of 163 ° C for about 16 hours to perform overaging treatment.

도 7 및 표 3을 참고하면, T76의 과시효 처리를 통해 기존의 T6의 시효처리에 비해 강도가 약 4% 하락하게 되나, 잔류 응력을 제거함으로써 응력부식균열에 대한 저항성이 향상됨을 확인할 수 있다. Referring to FIG. 7 and Table 3, although the strength is reduced by about 4% compared to the conventional T6 aging treatment through the overaging treatment of T76, it can be confirmed that the resistance to stress corrosion cracking is improved by removing the residual stress. .

응력부식균열에 대한 저항성 평가를 위해 SSRT 실험(Slow Strain rating Test, 1.7 X 10-6/sec, 부식 환경 : 3.5% NaCl 용액)을 진행하였고, 부식 환경인 3.5% NaCl 용액에서 실험 결과, T6 열처리한 Al7075의 경우 대기환경(121.2J/cm3 )에 비해 77.44J/cm3 으로 파괴에너지(Fracture Energy)가 약 36% 감소하였고, 본 발명에 따라 통상적인 T76의 방법으로 과시효 처리한 경우 106J/cm3 에서 85.22J/cm3 로 약 21.5%의 감소율을 보였고, 또한, 도 8에 도시된 바와 같이 기존의 시효처리된 Al7075 판재에서는 표면 산화피막 아래로 응력부식균열 현상이 관찰됨에 반해, 본 발명에 따른 과시효 처리된 Al7075알루미늄 합금 판재의 경우 응력부식균열 현상이 개선됨을 확인 할 수 있었다. SSRT test (Slow Strain rating Test, 1.7 X 10 -6 /sec, corrosive environment: 3.5% NaCl solution) was conducted to evaluate resistance to stress corrosion cracking. In the case of Al7075, the fracture energy was reduced by about 36% to 77.44J/cm 3 compared to the atmospheric environment (121.2J/cm 3 ), and when overaged by the conventional T76 method according to the present invention, 106J / cm 3 to 85.22 J / cm 3 showed a decrease of about 21.5%, and, as shown in FIG. 8, in the existing aged Al7075 plate, stress corrosion cracking was observed under the surface oxide film, whereas in this case, In the case of the Al7075 aluminum alloy sheet treated with overaging according to the invention, it was confirmed that the stress corrosion cracking phenomenon was improved.

항복강도(MPa)Yield strength (MPa) 인장강도(MPa)Tensile strength (MPa) 신율(%)Elongation (%) SCC 저항성SCC resistance A7075(T6)
기본물성
A7075 (T6)
basic physical properties
483483 593593 13.213.2 FailedFailed
T76 열처리 후
최종 물성
After T76 heat treatment
final properties
472472 566566 13.813.8 PassedPassed

앞서 살펴본 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 (이하 '당업자'라 한다)가 본 발명을 용이하게 실시할 수 있도록 하는 바람직한 실시 예 일 뿐, 전술한 실시 예 및 첨부한 도면에 한정되는 것은 아니므로 이로 인해 본 발명의 권리범위가 한정되는 것은 아니다. 따라서, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 당업자에게 있어 명백할 것이며, 당업자에 의해 용이하게 변경 가능한 부분도 본 발명의 권리범위에 포함됨은 자명하다.The foregoing embodiments are only preferred embodiments that allow those skilled in the art (hereinafter referred to as 'those skilled in the art') to easily practice the present invention, and the above-described embodiments and accompanying drawings Since it is not limited to, this does not limit the scope of the present invention. Therefore, it will be clear to those skilled in the art that various substitutions, modifications and changes are possible within the scope of the technical spirit of the present invention, and it is obvious that parts easily changeable by those skilled in the art are also included in the scope of the present invention. .

Claims (11)

열처리된 알루미늄 합금 판재에 전류를 인가하는 단계;
상기 알루미늄 합금 판재를 성형하는 단계;
상기 성형된 알루미늄 합금 판재를 과시효 처리 하는 단계;를 포함하며
상기 알루미늄 합금 판재는 7XXX계 알루미늄 합금을 포함하고
상기 전류는 직류 전류이며
상기 전류는 지속시간이 0.5 초인 펄스 전류이고
상기 과시효 처리는 121℃ 의 온도에서 4시간 동안 유지한 후, 163℃ 온도에서 16시간 동안 이루어 지는 것을 특징으로 하는 고강도 알루미늄 판재 부품 제조방법.
Applying current to the heat-treated aluminum alloy sheet;
Forming the aluminum alloy plate;
Including; overaging treatment of the formed aluminum alloy sheet
The aluminum alloy plate includes a 7XXX-based aluminum alloy,
The current is a direct current
The current is a pulsed current with a duration of 0.5 seconds
The overaging treatment is a method for manufacturing high-strength aluminum sheet parts, characterized in that maintained at a temperature of 121 ° C. for 4 hours, and then at a temperature of 163 ° C. for 16 hours.
삭제delete 삭제delete 삭제delete 제 1항에 있어서,
상기 펄스 전류는 전류밀도가 180 내지 200A/mm2 로 인가하는 것을 특징으로 하는 고강도 알루미늄 판재 부품 제조방법.
According to claim 1,
The pulse current has a current density of 180 to 200 A / mm 2 High-strength aluminum plate parts manufacturing method, characterized in that applied.
제 1항에 있어서,
상기 펄스 전류는 300초 이상 인가하는 것을 특징으로 하는 고강도 알루미늄 판재 부품 제조방법.
According to claim 1,
The pulse current is a high-strength aluminum plate part manufacturing method, characterized in that applied for 300 seconds or more.
제 1항에 있어서,
상기 알루미늄 합금 판재가 상기 전류의 인가를 통해 500℃ 이하의 온도로 가열되는 것을 특징으로 하는 고강도 알루미늄 판재 부품 제조방법.
According to claim 1,
High-strength aluminum plate parts manufacturing method, characterized in that the aluminum alloy plate is heated to a temperature of 500 ℃ or less through the application of the current.
제 7항에 있어서,
상기 가열된 알루미늄 합금 판재를 서냉하는 것을 특징으로 하는 고강도 알루미늄 판재 부품 제조방법.
According to claim 7,
High-strength aluminum plate parts manufacturing method, characterized in that for slowly cooling the heated aluminum alloy plate.
제 8항에 있어서,
상기 성형 단계는 가열된 알루미늄 합금 판재가 상온까지 냉각되기 전에 이루어지는 것을 특징으로 하는 고강도 알루미늄 판재 부품 제조방법.
According to claim 8,
The forming step is a high-strength aluminum plate part manufacturing method, characterized in that performed before the heated aluminum alloy plate is cooled to room temperature.
삭제delete 제 1항 및 제 5항 내지 제 9항 중 어느 한 항에 따른 제조방법에 의해 제조된 고강도 알루미늄 판재 부품.
A high-strength aluminum plate component manufactured by the manufacturing method according to any one of claims 1 and 5 to 9.
KR1020160171423A 2016-12-15 2016-12-15 High strength aluminum alloy plate parts and manufacturing method thereof KR102506754B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160171423A KR102506754B1 (en) 2016-12-15 2016-12-15 High strength aluminum alloy plate parts and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160171423A KR102506754B1 (en) 2016-12-15 2016-12-15 High strength aluminum alloy plate parts and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20180069330A KR20180069330A (en) 2018-06-25
KR102506754B1 true KR102506754B1 (en) 2023-03-07

Family

ID=62806177

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160171423A KR102506754B1 (en) 2016-12-15 2016-12-15 High strength aluminum alloy plate parts and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102506754B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101957477B1 (en) * 2017-08-21 2019-03-12 서울대학교산학협력단 Method for increasing formability of magnesium alloy
CN110560618B (en) * 2019-09-03 2020-10-30 武汉理工大学 Electromagnetic auxiliary forming process for high-strength light alloy complex special-shaped component
CN113564501B (en) * 2021-07-20 2022-07-19 苏州大学 Heat treatment method of die-casting aluminum alloy plate
CN116145054A (en) * 2022-09-09 2023-05-23 湖北超卓航空科技股份有限公司 Aluminum alloy additive material heat treatment process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101577333B1 (en) * 2014-12-03 2015-12-14 부산대학교 산학협력단 High speed forming method using Electroplascity effect
CN105568187A (en) * 2016-01-21 2016-05-11 东北大学 Technological method for carrying out solid solution and aging thermal treatment on 6061 aluminum alloy

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842935B1 (en) 2005-01-19 2014-10-29 Kabushiki Kaisha Kobe Seiko Sho Aluminum alloy plate and process for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101577333B1 (en) * 2014-12-03 2015-12-14 부산대학교 산학협력단 High speed forming method using Electroplascity effect
CN105568187A (en) * 2016-01-21 2016-05-11 东北大学 Technological method for carrying out solid solution and aging thermal treatment on 6061 aluminum alloy

Also Published As

Publication number Publication date
KR20180069330A (en) 2018-06-25

Similar Documents

Publication Publication Date Title
US10487383B2 (en) Method for producing 7000-series aluminum alloy member excellent in stress corrosion cracking resistance
JP7321828B2 (en) High-strength 6xxx aluminum alloy and method for making same
KR102506754B1 (en) High strength aluminum alloy plate parts and manufacturing method thereof
KR102249605B1 (en) Aluminum alloy material suitable for manufacturing of automobile sheet, and preparation method therefor
US9217622B2 (en) 5XXX aluminum alloys and wrought aluminum alloy products made therefrom
EP1831415B1 (en) Method for producing a high strength, high toughness al-zn alloy product
EP1945825B1 (en) Al-cu-mg alloy suitable for aerospace application
KR102032686B1 (en) Vacuum chamber elements made of aluminum alloy
RU2659529C2 (en) 2xxx series aluminum lithium alloys
US10428411B2 (en) Air quenched heat treatment for aluminum alloys
JP2016516899A (en) Method for artificially aging aluminum-zinc-magnesium alloy and products based thereon
JP6193808B2 (en) Aluminum alloy extruded material and method for producing the same
US6274015B1 (en) Diffusion bonded sputtering target assembly with precipitation hardened backing plate and method of making same
JP6064874B2 (en) Method for producing aluminum alloy material
WO2019167469A1 (en) Al-mg-si system aluminum alloy material
JP2019143232A (en) Manufacturing method of flexure molded article using aluminum alloy
JP2017222888A (en) High strength 6000 series alloy thick sheet having uniform strength in sheet thickness direction and manufacturing method therefor
US6451185B2 (en) Diffusion bonded sputtering target assembly with precipitation hardened backing plate and method of making same
KR20190028489A (en) Aluminum alloy blank with local flash annealing
JP2020139228A (en) Method for producing aluminum alloy extrusion material
EP0904423A1 (en) Diffusion bonded sputtering target assembly with precipitation hardened backing plate and method of making same
WO1998022634A1 (en) Method of making an aa7000 series aluminum wrought product having a modified solution heat treatment
JP6611287B2 (en) Method for producing 7000 series aluminum alloy member excellent in stress corrosion cracking resistance
KR20180070935A (en) Roll-forming method of high strength aluminum alloy and roll-forming molding using the same
JP5279119B2 (en) Partially modified aluminum alloy member and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant