KR102503296B1 - 신규 에텐 화합물 및 이를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물 - Google Patents

신규 에텐 화합물 및 이를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물 Download PDF

Info

Publication number
KR102503296B1
KR102503296B1 KR1020220060100A KR20220060100A KR102503296B1 KR 102503296 B1 KR102503296 B1 KR 102503296B1 KR 1020220060100 A KR1020220060100 A KR 1020220060100A KR 20220060100 A KR20220060100 A KR 20220060100A KR 102503296 B1 KR102503296 B1 KR 102503296B1
Authority
KR
South Korea
Prior art keywords
compound
cancer
phenyl
cells
ethene
Prior art date
Application number
KR1020220060100A
Other languages
English (en)
Other versions
KR20220156459A (ko
Inventor
김진아
조성진
전용현
진정욱
황하형
이재언
정민선
이수정
안홍찬
황지선
최효정
권수경
Original Assignee
재단법인 대구경북첨단의료산업진흥재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인 대구경북첨단의료산업진흥재단 filed Critical 재단법인 대구경북첨단의료산업진흥재단
Priority to PCT/KR2022/007099 priority Critical patent/WO2022245124A1/ko
Priority to KR1020220124847A priority patent/KR102503295B1/ko
Publication of KR20220156459A publication Critical patent/KR20220156459A/ko
Application granted granted Critical
Publication of KR102503296B1 publication Critical patent/KR102503296B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/027Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements containing only one hetero ring
    • C07D295/03Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements containing only one hetero ring with the ring nitrogen atoms directly attached to acyclic carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/451Non condensed piperidines, e.g. piperocaine having a carbocyclic group directly attached to the heterocyclic ring, e.g. glutethimide, meperidine, loperamide, phencyclidine, piminodine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/08Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms
    • C07D211/10Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms
    • C07D211/14Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hydrocarbon or substituted hydrocarbon radicals directly attached to ring carbon atoms with radicals containing only carbon and hydrogen atoms attached to ring carbon atoms with hydrocarbon or substituted hydrocarbon radicals attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/22Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with hetero atoms directly attached to ring nitrogen atoms
    • C07D295/24Oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 ERRβ/γ역작용제(Estrogen-related receptor β/γinverse agonist)로 작용하는 신규 구조의 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드, 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약제학적 조성물에 관한 것이다.

Description

신규 에텐 화합물 및 이를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물{NOVEL ETHENE COMPOUNDS AND PHARMACEUTICAL COMPOSITION FOR PREVENTING OR TREATING CANCER COMPRISING THE SAME AS AN ACTIVE INGREDIENT}
본 발명은 ERRβ/γ역작용제(Estrogen-related receptor β/γinverse agonist)로 작용하는 신규 구조의 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드, 및 이를 유효성분으로 함유하는 암의 예방 또는 치료용 약제학적 조성물에 관한 것이다.
ERRα, ERRβ, ERRγ와 같은 에스트로겐 관련 수용체(ERR)는 고아 핵 수용체로, 표적 유전자 프로모터에서 ERR 반응 요소를 식별하여 전사 수준을 조절할 수 있다. 많은 보고서에서 산화 대사, 에너지 소비 및 미토콘드리아 베타 산화 조절에서 생물학적 역할을 설명했다. 종래에는 ERRγ의 활성을 저해함으로써 고혈당과 인슐린 저항성을 완화하는 등의 항당뇨 효과 및 망막병증의 치료 효과를 보이는 것으로 보고된 바 있다.
최근 여러 연구 그룹이 유방암, 위암, 전립선 암과 같은 암 발생에서 ERRβ/γ의 중요한 역할을 보고했다. ERRβ의 발현은 인접한 정상 유방 조직과 비교하여 유방 암종에서 저하되어 있고, 유방암에서 ERRγ발현의 상향조절은 유방암 치료와 관련이 있는 것으로 나타났다. 대조적으로, 전립선 암의 ERRγ의 발현은 양성 암보다 더 높았다. 이러한 보고서에 따르면 ERRβ/γ는 다양한 유형의 암에 대한 매력적인 치료 표적으로 간주될 수 있다. 축적된 연구결과가 ERRβ/γ와 암 발생 사이에 중요한 상호 작용을 보여주었지만, 여전히 체 내 정상세포에는 영향을 미치지 않으면서도, 암 세포만을 선택적으로 제거할 수 있는 항암제에 대한 연구의 필요성이 요구되고 있다.
WO 2014-151899 A1 (2014.09.25) WO 2020-106933 A1 (2020.05.28)
Oncogene 32(30):3483-3490. The Journal of steroid biochemistry and molecular biology 157:13-19.
이에, 본 발명자들은 암에서 ERRβ/γ의 치료 잠재력을 평가하는 연구를 수행하던 중, 생체 적합성이 높고 선택성이 높고 경구로 생체 이용 가능한 ERRβ/γ역작용제로서 작용할 수 있는 신규 구조의 에텐 화합물을 합성하였으며, 이들이 시험관 내 및 생체 내에서 암, 특히 난치성 암 모델에서 항암 효과를 나타내 새로운 항암제로서의 사용가능함을 확인하고, 본 발명을 완성하였다.
본 발명의 목적은 ERRβ/γ역작용제로서 작용할 수 있는 신규 구조의 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 제공하는 것이다.
본 발명의 다른 목적은 상기 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
본 발명의 다른 목적은 상기 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드; 및 항암제를 포함하는 암의 예방 또는 치료용 병용 제제를 제공하는 것이다.
본 발명의 다른 목적은 상기 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 이를 필요로 하는 개체나 대상에 투여하는 단계를 포함하는, 암의 치료방법을 제공하는 것이다.
본 발명의 다른 목적은 암의 치료에 사용하기 위한 상기 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 제공하는 것이다.
본 발명의 다른 목적은 암 치료용 약제의 제조에 사용하기 위한 상기 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드의 용도를 제공하는 것이다.
상기 목적을 달성하기 위하여,
본 발명의 일 측면은 ERRβ/γ역작용제로서 작용할 수 있는 신규 화합물로서, 하기 화학식 1로 표시되는 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 제공한다:
[화학식 1]
Figure 112022052039669-pat00001
상기 화학식 1에서,
R1은 C1-C20알킬 또는 C3-C20사이클로알킬이고;
R2는 C1-C20알킬, 할로겐, C3-C20사이클로알킬, -La1-Ra1, -NRa2Ra3, 니트로 또는 시아노이고;
La1은 O 또는 S이고;
Ra1은 수소, C1-C20알킬, 할로C1-C20알킬, C3-C20사이클로알킬, C1-C20알콕시C1-C20알킬, C1-C20알킬티오C1-C20알킬 또는 C1-C20알킬카보닐이고;
Ra2 및 Ra3은 각각 독립적으로 수소, C1-C20알킬, C3-C20사이클로알킬 또는 C6-C20아릴이고;
A1 내지 A4는 각각 독립적으로 CRa4 또는 N이고;
Ra4는 수소 또는 하이드록시이고;
R3는 수소, C1-C20알킬 또는 C3-C20사이클로알킬이고;
L은 CRa5 또는 N이고;
Ra5는 수소 또는 C1-C20알킬이고;
m은 1 내지 5의 정수이고, m이 2 이상의 정수인 경우 R2는 동일하거나 상이할 수 있으며;
n은 0 또는 1의 정수이고;
상기 R2의 및 R3의 알킬은 할로겐, C1-C20알킬, C1-C20알콕시, 하이드록시, 아미노, 모노 또는 디C1-C20알킬아미노로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있다.
본 발명의 다른 측면은 상기 화학식 1로 표시되는 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 다른 측면은 상기 화학식 1로 표시되는 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드; 및 항암제를 포함하는 암의 예방 또는 치료용 병용 제제를 제공한다.
본 발명의 다른 측면은 상기 화학식 1로 표시되는 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 이를 필요로 하는 개체나 대상에 투여하는 단계를 포함하는, 암의 치료방법을 제공한다.
본 발명의 다른 측면은 암의 치료에 사용하기 위한 상기 화학식 1로 표시되는 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 제공한다.
본 발명의 다른 측면은 암 치료용 약제의 제조에 사용하기 위한 상기 화학식 1로 표시되는 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드의 용도를 제공한다.
본 발명의 에텐 화합물은 생체 적합성이 높고 선택성이 높고 경구로 생체 이용 가능한 ERRβ/γ역작용제로서 작용할 수 있다. 또한, 본 발명의 에텐 화합물은 정상 세포에는 독성을 나타내지 않으면서 ERRβ/γ역작용제로서 작용하여 암 세포주에 대해 특이적으로 사멸을 유도할 수 있으므로, 비정상적인 세포 성장으로 유발되는 다양한 암 질환에 대한 효율적인 개선, 예방 및 치료제로 부작용없이 유용하게 사용할 수 있다.
본 발명의 에텐 화합물을 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물은 낮은 세포독성을 보이면서 암세포에 대하여 선택적으로 높은 억제 활성 및 항증식 효과를 나타내므로, 암의 예방 또는 치료에 유용하게 사용될 수 있다.
본 발명의 에텐 화합물을 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물은 난소암, 전립선암, 유방암, 신경모세포종, 교모세포종, 미분화 갑상선암, 탈분화 갑상선암 및 대장암으로 이루어진 군으로부터 선택되는 난치성 암의 예방 또는 치료에 유용하게 사용될 수 있다. 또한, 본 발명의 에텐 화합물은 암의 예방 또는 치료를 위하여 단독 또는 병용 제제로 융용하게 사용될 수 있다.
도 1은 정상 대장 조직과 대장암 조직에서 ERRβ와 ERRγ의 발현 수준을 나타낸 것이다[(A 및 B) 대장암 조직에서 상향 조절된 ERRβ/γ 발현(정상 및 종양 조직에서 ERRβ/γ 발현 수준을 결정하기 위해 웨스턴 블롯 분석을 수행함); (C) 대장암 환자에서 유래한 상용 종양 마이크로어레이(12개의 정상 조직 및 108개의 종양 조직을 포함하는 BC051110c)를 사용하여 인간 대장암 및 정상 대장 조직에서 ERRβ/γ 발현 수준 평가를 위한 TMA 분석, 정상 조직과 비교하여 P=0.000].
도 2 내지 도 6은 화합물 1(DN203368)-처리된 대장암 세포의 증식 억제를 나타내는 것이다[(도 2) 대장암 세포, 즉 HCT116, RKO, SW480 및 CT26 세포에서 ERRβ/γ의 내인성 발현; (도 3) BJ 및 CHO 세포를 포함한 정상 세포의 증식에 대한 화합물 1(DN203368)의 효과; (도 4) 대장암 세포의 증식에 대한 화합물 1(DN203368)의 효과; (도 5) 화합물 1(DN203368) 처리 후 정상 세포주 및 대장암 세포의 정규화된 세포 생존율(%); (도 6) 화합물 1(DN203368)에 대한 대장암 세포의 50% 세포 성장 억제(GI50)를 유발하는 농도].
도 7 및 도 8은 대장암 세포에서 기존 항암제(옥살리플라틴 및 5-FU)와 화합물 1(DN203368)의 증식 억제 효과 비교를 나타내는 것이다[(도 7) 대장암 세포에서 옥살리플라틴 및 화합물 1(DN203368)의 증식 억제 효과; (도 8) 대장암 세포에서 5-FU 및 화합물 1(DN203368)의 증식 억제 효과].
도 9 및 도 10은 대장암 세포에서 화합물 1(DN203368)-매개 세포주기 정지 및 세포사멸 유도를 보여주는 것이다[(도 9) 화합물 1(DN203368)-처리된 HCT116, SW480 및 RKO 세포에서 세포주기 분석을 보여주는 그래프; (도 10) 세포사멸 세포의 백분율을 보여주는 FACS 분석].
도 11은 p53 아세틸화의 상향 조절을 통한 화합물 1(DN203368)-매개 카스파제-3 의존적 세포사멸 유도를 나타내는 것이다[(A) 화합물 1(DN203368) 처리 후 대장암 세포에서 ERRβ/γ의 발현 수준; (B) 화합물 1(DN203368)-처리된 대장암 세포에서 세포주기 관련 단백질 발현의 변화; (C) 화합물 1(DN203368)-처리된 인간 대장암 세포에서 세포사멸 조절 단백질 발현의 변화; (D) 화합물 1(DN203368)-처리된 마우스 대장암 세포에서 ERRβ/γ, 세포주기 억제 조절 단백질 및 세포사멸 조절 단백질의 발현 수준; (E) 12 μM 화합물 1(DN203368)-처리된 HCT-116 세포에서 세포사멸 관련 단백질 발현의 시간-의존적 변화].
도 12는 화합물 1(DN203368)-매개 caspase 3-의존성 세포사멸 유도의 정량화를 나타내는 것이다[(A) 화합물 1(DN203368)-처리된 대장암 세포에서 시간-의존성 카스파제-3 활성화의 체외 생물 발광 신호 정량; (B) 화합물 1(DN203368)-처리된 대장암 세포에서 시간-의존적 세포 생존력; (C) 화합물 1(DN203368)-처리된 대장암 세포에서 정규화된 카스파제-3 활성화; (D) 화합물 1(DN203368)-처리된 HCT-116 세포에서 Z-VAD 처리에 의한 카스파제-3 활성화의 억제(Z-VAD: pan-caspase inhibitor), 카스파제-3 활성은 생존력을 보여주는 CCK8 분석의 결과와 관련하여 표준화됨].
도 13은 대장암 진행에 대한 화합물 1(DN203368)의 항 종양 효과를 나타내는 것이다[(A) HCT-116 이종 이식 마우스의 생체 내 치료를 위한 도식. HCT-116 종양 보유 마우스를 무작위로 그룹 1 : 비히클, 그룹 2 : 5 mg/kg 화합물 1(DN203368) 및 그룹 3 : 10 mg/kg 화합물 1(DN203368)의 세 그룹으로 나누었고, 화합물 1(DN203368)은 10일 동안 1일 1회 복강 내 주사를 통해 마우스에 투여되었음; (B 및 C) HCT-116 종양 보유 마우스의 상대적 종양 부피. 화합물 1(DN203368)은 복강 내 주사를 통해 마우스에 용량-의존적으로 투여되었다. RTV=(측정 당일의 종양 부피)/(0일의 종양 부피); (D) HCT-116 종양 보유 마우스의 체중 측정; (E) 비히클-처리 및 화합물 1(DN203368)-처리 마우스의 혈청 생화학 분석].
도 14는 대장암의 SW480 및 RKO 이종 이식 모델에 대한 화합물 1(DN203368)의 항 종양 효과를 나타내는 것이다[(A) RKO 및 SW480 대장암 모델에서 생체 내 치료를 위한 도식. 종양 보유 마우스를 무작위로 그룹 1 : 비히클 및 그룹 2 : 10 mg/kg 화합물 1(DN203368)의 두 그룹으로 나누고, 화합물 1(DN203368)은 10일 동안 1일 1회 복강 내 주사를 통해 마우스에 투여함; (B 및 C) 복강 내 주사를 통해 화합물 1(DN203368)를 처리한 후 SW480 및 RKO 이종 이식 마우스의 상대적 종양 부피. RTV=(측정 당일의 종양 부피)/(0일의 종양 부피); (D 및 E) SW480 또는 RKO 종양 보유 마우스의 체중 측정; (F) 화합물 1(DN203368)-처리된 SW480 종양 조직에서 안티-절단된 카스파제-3 및 Ki-67 항체를 사용한 면역조직화학 염색; (G) 화합물 1(DN203368)-처리된 RKO 종양 조직에서 안티-절단된 카스파제-3을 사용한 면역조직화학 염색].
도 15은 대장암 모델에서 화합물 1(DN203368)의 경구 투여 후 강력한 항종양 효과 유도를 나타낸 것이다[(A) HCT-116 및 CT26 이종 이식 모델에서 생체 내 치료를 위한 도식. 종양 보유 마우스를 무작위로 그룹 1 : 비히클 및 그룹 2 : 10 mg/kg 화합물 1(DN203368)의 두 그룹으로 나누고, 화합물 1(DN203368)은 10일 동안 1일 1회 경구 투여를 통해 마우스에 투여함; (B) 화합물 1(DN203368)의 경구 투여 후 HCT-116 이종 이식 모델에서의 상대적 종양 부피. RTV=(측정 당일의 종양 부피)/(0일의 종양 부피); (C) HCT-116 종양 보유 마우스의 체중 측정; (D) 화합물 1(DN203368)의 경구 투여 후 CT26 이종 이식 모델에서 종양 부피의 평가; (E) CT26 종양 보유 마우스의 체중 측정].
도 16는 화합물 1(DN203368)의 경구 투여 후 CT26 종양 보유 마우스에서 혈청 생화학적 분석을 나타낸 것이다.
도 17는 화합물 1(DN203368)-처리된 전립선암, 난소암, 유방암, 신경모세포종, 미분화 및 탈분화갑상선암 세포의 증식 억제를 나타내는 것이다[(A) 화합물 1(DN203368) 처리 후 정상세포, 전립선암, 난소암, 유방암, 및 신경모세포종의 정규화된 세포 생존율(%); (B) 화합물 1(DN203368) 처리 후 미분화 갑상선암 및 탈분화갑상선암세포의 정규화된 세포 생존율(%)].
도 18은 신경모세포종, 난소암 모델에 대한 화합물 1(DN203368)의 항종양 효과를 나타내는 것이다 [(A) 복강 내 주사를 통해 화합물 1(DN203368)를 처리한 후 BE2C 이종 이식 마우스의 상대적 종양 부피; (B) 복강 내 주사를 통해 화합물 1(DN203368)를 처리한 후 A2780 이종 이식 마우스의 상대적 종양 부피].
도 19은 유방암 모델에 대한 화합물 1(DN203368)의 항종양 효과를 나타내는 것이다 [(A) 복강 내 주사를 통해 화합물 1(DN203368)를 처리한 후 MDA-MB231 이종이식 마우스의 종양 부피; (B) 복강 내 주사를 통해 화합물 1(DN203368)를 처리한 후 MDA-MB231 동소이식 마우스의 종양 부피].
도 20은 탈분화갑상선암 BHP103scp 모델에 대한 화합물 1(DN203368)의 항종양 효과를 나타내는 것이다 [(A) 복강 내 주사를 통해 화합물 1(DN203368)를 처리한 후 BHP103scp 이종 이식 마우스의 상대적 종양 부피; (B) BHP103scp 종양 보유 마우스의 체중 측정; (C) 화합물 1(DN203368)-처리된 BHP103scp 종양 조직에서 안티-절단된 카스파제-3 및 Ki-67 항체를 사용한 면역조직화학 염색].
도 21는 화합물 12(DN3317)-처리된 전립선암, 난소암, 교모세포종 및 탈분화갑상선암 세포의 증식 억제를 나타내는 것이다[화합물 12(DN3317) 처리 후 정상 세포주 및 전립선암, 난소암, 교모세포종 및 탈분화갑상선암 세포의 정규화된 세포 생존율(%)].
도 22 내지 도 24는 화합물 1(DN203368)과 기존 항암제의 병용투여에 따른 대장암 세포의 정규화된 세포 생존율(%)이다.
이하, 본 발명에 대하여 보다 구체적으로 설명한다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.
본 명세서에서 사용된 하기 용어들은 다음과 같이 정의되나, 이는 단지 예시적인 것에 불과하며, 본 발명, 출원 또는 용도를 한정하려는 것은 아니다.
본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.
본 명세서의 용어, "포함한다"는 "구비한다", "함유한다", "가진다" 또는 "특징으로 한다" 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소 등을 배제하지 않는다.
본 명세서의 용어, "치환기 또는 치환체(substituent)", "라디칼(radical)", "기(group)", "모이어티(moiety)", 및 "절편(fragment)"은 서로 바꾸어 사용할 수 있다.
본 명세서의 용어, "CA-CB"는 "탄소수가 A 이상이고 B 이하"인 것을 의미하고, 용어 "A 내지 B"는 "A 이상이고 B 이하"인 것을 의미한다.
본 명세서의 용어, "알킬"은 탄소 및 수소 원자만으로 구성된 1가의 직쇄 또는 분쇄 포화 탄화수소 라디칼을 의미한다. 상기 알킬은 1 내지 20개의 탄소원자, 1 내지 10개의 탄소원자 또는 1 내지 7개의 탄소원자를 가질 수 있다. 일예로 상기 알킬은 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 펜틸, 헥실, 에틸헥실 등을 포함하지만 이에 한정되지는 않는다.
본 명세서의 용어, "사이클로알킬"은 하나 이상의 고리로 구성된 1가의 포화 카보사이클릭 라디칼을 의미한다. 사이클로알킬 라디칼의 예는 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실, 사이클로헵틸 등을 포함하지만, 이에 한정되지는 않는다.
본 명세서의 용어, "알콕시"는 -O-알킬 라디칼로, 여기서 '알킬'은 상기 정의한 바와 같다. 구체적인 예로는 메톡시, 에톡시, 이소프로폭시, 부톡시, 이소부톡시, t-부톡시 등을 포함되지만 이에 한정되지는 않는다.
본 명세서의 용어, "알킬티오"는 -S-알킬 라디칼로, 여기서 '알킬'은 상기 정의한 바와 같다. 구체적인 예로는 메틸티오, 에틸티오, 이소프로필티오, 부틸티오, 이소부틸티오, t-부틸티오 등을 포함되지만 이에 한정되지는 않는다.
본 명세서의 용어, "할로" 또는 "할로겐"은 할로겐족 원소를 나타내며, 예컨대, 플루오로, 클로로, 브로모 및 아이오도를 포함한다.
본 명세서의 용어, "할로알킬", "할로알콕시" 또는 "할로알킬티오"는 각각 하나 이상의 수소 원자가 할로겐 원자로 치환된 알킬, 알콕시 또는 알킬티오 그룹을 의미하는 것으로, 여기서 알킬, 알콕시, 알킬티오 및 할로겐은 위에서 정의된 것과 같다. 예를 들어, 할로알킬은 플루오로메틸, 디플루오로메틸, 트리플루오로메틸, 플루오로에틸, 디플루오로에틸, 퍼플루오로에틸 등을 들 수 있고, 할로알콕시는 플루오로메톡시, 디플루오로메톡시, 트리플루오로메톡시, 플루오로에톡시, 디플루오로에톡시, 퍼플루오로에톡시 등을 들 수 있고, 할로알킬티오는 플루오로메틸티오, 디플루오로메틸티오, 트리플루오로메틸티오, 플루오로에틸티오, 디플루오로에틸티오, 퍼플루오로에틸티오 등을 들 수 있다.
본 명세서의 용어, "아릴"은 하나의 수소 제거에 의해서 방향족 탄화수소로부터 유도된 유기 라디칼로, 각 고리에 적절하게는 4 내지 7개, 바람직하게는 5 또는 6개의 고리원자를 포함하는 단일 또는 융합고리계를 포함하며, 다수개의 아릴이 단일결합으로 연결되어 있는 형태까지 포함한다. 일 예로, 페닐, 나프틸, 비페닐, 터페닐, 안트릴, 플루오레닐 등을 포함하지만, 이에 한정되지 않는다.
본 명세서의 용어, "알킬카보닐"은 -C(=O)알킬 라디칼을 의미하는 것으로, 여기서 '알킬'은 상기 정의한 바와 같다. 이러한 알킬카보닐 라디칼의 예는 메틸카보닐, 에틸카보닐, 이소프로필카보닐, 프로필카보닐, 부틸카보닐, 이소부틸카보닐, t-부틸카보닐 등을 포함하지만 이에 한정되지는 않는다.
본 명세서의 용어, "알킬카보닐옥시"는 -OC(=O)알킬 라디칼을 의미하는 것으로, 여기서 '알킬'은 상기 정의한 바와 같다. 이러한 알킬카보닐옥시 라디칼의 예는 메틸카보닐옥시, 에틸카보닐옥시, 이소프로필카보닐옥시, 프로필카보닐옥시, 부틸카보닐옥시, 이소부틸카보닐옥시, t-부틸카보닐옥시 등을 포함하지만 이에 한정되지는 않는다.
본 명세서의 용어, "아미노"는 -NH2를 의미하고, "하이드록시"는 -OH를 의미하고, "니트로"는 -NO2를 의미하고, "시아노"는 -CN을 의미한다.
본 명세서의 용어, "알킬아미노"는 하나 또는 둘의 알킬이 치환된 아미노 라디칼을 의미하는 것으로, 구체적인 예로는 메틸아미노(-NHMe), 디메틸아미노(-NMe2), 에틸아미노(-NHEt), 디에틸아미노(-NEt2) 등을 포함하지만, 이에 한정되지는 않는다.
본 명세서의 용어, "약학적으로 허용가능한"은 상기 조성물에 노출되는 세포나 인간 등의 개체에게 독성이 없는 특성을 나타내는 것으로, 약학적 제제로 사용하기에 적합한 것을 의미하며, 일반적으로 이러한 사용을 위하여 안전한 것으로 간주되며, 이러한 사용을 위하여 국가의 관리 기관에 의하여 공식적으로 승인되거나 한국 약전 또는 미국 약전의 명단에 있는 것을 의미한다.
본 명세서의 용어, "약학적으로 허용가능한 염"이란 환자에게 비교적 비독성이고 무해한 유효작용을 갖는 농도로서 이 염에 기인한 부작용이 본 발명의 화합물 자체가 가지는 이로운 효능을 저하시키지 않는 본 발명의 화합물의 임의의 모든 유기 또는 무기 부가염을 의미한다.
본 명세서의 용어, "약학적으로 허용가능한 부형제" 및 "약학적으로 허용가능한 담체"는 활성제의 투여 및 대상체에 의한 흡수를 돕는 물질을 의미한다.
본 명세서의 용어, "예방"이란 암의 발생, 확산 및 재발을 억제시키거나 지연시키는 모든 행위를 의미한다.
본 명세서의 용어, "개선"이란 치료되는 상태와 관련된 파라미터, 예를 들면 증상의 정도를 적어도 감소시키는 모든 행위를 의미한다.
본 명세서의 용어, "치료"란 암의 증세가 호전되거나 이롭게 변경되는 모든 행위를 의미한다.
본 명세서의 용어, "개체"란 암이 발병되었거나 발병할 가능성이 있는 인간을 포함한 모든 동물을 의미한다. 상기 동물은 인간뿐만 아니라 이와 유사한 증상의 치료를 필요로 하는 소, 말, 양, 돼지, 염소, 낙타, 영양, 개, 고양이 등의 포유동물일 수 있으나, 이에 제한되지는 않는다.
본 명세서의 용어, "투여"는 어떠한 적절한 방법으로 개체에게 본 발명의 약학적 조성물을 도입하는 것을 의미하며, 본 발명의 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 경구 또는 비경구의 다양한 경로를 통하여 투여될 수 있다.
본 명세서의 용어 "병용 투여"는 치료요법의 개별성분들을 동시, 순차적으로, 또는 개별적으로 투여하는 방식으로 이룰 수 있다. 2이상의 약물을 동시에 또는 순차적으로 투여하거나, 또는 일정한 또는 정해지지 않은 간격으로 교대로 투여하는 등의 방법으로 병용 치료 효과를 얻는 것으로, 병용치료법은 이에 한정되지 아니하지만, 예를 들어 반응정도, 반응 속도, 질병 진행까지의 기간 또는 생존 기간을 통해 측정된 효능이 병용치료법의 성분 중 하나 또는 나머지를 통상적인 용량으로 투약하여 얻을 수 있는 효능 보다 치료학적으로 우수하면서 상승 효과를 제공할 수 있는 것으로 정의될 수 있다.
본 명세서의 용어, "약학적으로 유효한 양"은 의학적 치료에 적용 가능한 합리적인 수혜/위험 비율로 질환을 치료하기에 충분하며 부작용을 일으키지 않을 정도의 양을 의미하며, 유효 용량 수준은 환자의 성별, 연령, 체중, 건강상태, 질병의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로, 및 배출 비율, 치료 기간, 배합 또는 동시에 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 당업자에 의해 용이하게 결정될 수 있다.
본 명세서의 용어, "식품"이란, 육류, 소시지, 빵, 초콜릿, 캔디류, 스낵류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알코올음료, 비타민 복합제, 건강 기능 식품 및 건강식품 등이 있으며, 통상적인 의미에서의 식품을 모두 포함한다.
본 명세서의 용어, "건강기능식품"은 건강기능식품에 관한 법률 제6727호에 따른 인체에 유용한 기능성을 가진 원료나 성분을 사용하여 제조 및 가공한 식품을 의미하며, "기능성"이라 함은 인체의 구조 및 기능에 대하여 영양소를 조절하거나 생리학적 작용 등과 같은 보건 용도에 유용한 효과를 얻을 목적으로 섭취하는 것을 의미한다.
본 명세서의 용어, "식품학적으로 허용가능한 염"은, 화합물이 투여되는 유기체에 심각한 자극을 유발하지 않고 화합물의 생물학적 활성과 물성들을 손상시키지 않는, 화합물의 제형을 의미한다.
본 발명은 하기 화학식 1로 표시되는 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 제공한다:
[화학식 1]
Figure 112022052039669-pat00002
상기 화학식 1에서,
R1은 C1-C20알킬 또는 C3-C20사이클로알킬이고;
R2는 C1-C20알킬, 할로겐, C3-C20사이클로알킬, -La1-Ra1, -NRa2Ra3, 니트로 또는 시아노이고;
La1은 O 또는 S이고;
Ra1은 수소, C1-C20알킬, 할로C1-C20알킬, C3-C20사이클로알킬, C1-C20알콕시C1-C20알킬, C1-C20알킬티오C1-C20알킬 또는 C1-C20알킬카보닐이고;
Ra2 및 Ra3은 각각 독립적으로 수소, C1-C20알킬, C3-C20사이클로알킬 또는 C6-C20아릴이고;
A1 내지 A4는 각각 독립적으로 CRa4 또는 N이고;
Ra4는 수소 또는 하이드록시이고;
R3는 수소, C1-C20알킬 또는 C3-C20사이클로알킬이고;
L은 CRa5 또는 N이고;
Ra5는 수소 또는 C1-C20알킬이고;
m은 1 내지 5의 정수이고, m이 2 이상의 정수인 경우 R2는 동일하거나 상이할 수 있으며;
n은 0 또는 1의 정수이고;
상기 R2의 및 R3의 알킬은 할로겐, C1-C20알킬, C1-C20알콕시, 하이드록시, 아미노, 모노 또는 디C1-C20알킬아미노로 이루어진 군으로부터 선택되는 하나 이상으로 더 치환될 수 있다.
본 발명에 따른 화학식 1의 에텐 화합물은 신규 구조의 화합물로서, 암 세포에서 과다하게 발현되는 ERRβ/γ의 발현량을 조절하여 암을 예방하거나 치료하는 유효성분으로 이용될 수 있다. 즉, 본 발명에 따른 에텐 화합물은 ERRβ/γ역작용제로 작용하여 암의 표적 항암제로서 유용할 수 있다.
또한, 본 발명의 에텐 화합물은 생체 적합성이 높고 선택성이 높고 경구로 생체 이용 가능하며, 정상 세포에는 독성을 나타내지 않으면서 ERRβ/γ역작용제로서 작용하여 암 세포주에 대해서만 특이적으로 사멸을 유도할 수 있으므로, 암에 대한 효율적인 예방 및 치료제로 부작용없이 유용하게 사용할 수 있다. 본 발명에 따른 에텐 화합물의 처치에 의해 예방, 치료 또는 개선될 수 있는 암 질환은 난치성 암으로, 구체적으로는 난소암, 전립선암, 유방암, 신경모세포종, 교모세포종, 미분화 갑상선암, 탈분화 갑상선암 또는 대장암 등이 포함될 수 있다.
본 발명에 따른 에텐 화합물의 항암 효과를 생체 외(in vitro) 및 생체 내(in vivo) 실험을 통해 측정한 결과, 본 발명에 따른 에텐 화합물은 암 세포의 생존능을 감소시키고, 증식을 억제하며, 암 세포의 세포 사멸을 증가시키므로, 항암 효과가 우수함을 확인하였다. 따라서, 본 발명에 따른 에텐 화합물은 암의 예방 또는 치료용 약학적 조성물의 유효성분으로 유용하게 사용될 수 있다.
일 실시예에 있어서, 상기 A1 내지 A4는 중 적어도 둘은 CRa4이고, 나머지는 CRa4 또는 N일 수 있으며, Ra4는 수소 또는 하이드록시일 수 있다.
일 실시예에 있어서, 상기 에텐 화합물은 하기 화학식 2로 표시될 수 있다.
[화학식 2]
Figure 112022052039669-pat00003
상기 화학식 2에서, R1, R2, R3, L, m 및 n은 상기 화학식 1에서의 정의와 동일하고;
A1은 CH 또는 N이고;
a는 0 또는 1의 정수이다.
일 실시예에 있어서, 상기 R2는 할로겐, 하이드록시, C1-C20알콕시, 할로C1-C20알콕시, C1-C20알콕시C1-C20알콕시, C1-C20알킬티오C1-C20알콕시, C1-C20알킬카보닐옥시, C1-C20알킬티오, 할로C1-C20알킬티오, C1-C20알킬카보닐티오, -NRa2Ra3, 니트로 또는 시아노이고; Ra2는 수소 또는 C1-C20알킬이고; Ra3은 C1-C20알킬이고; m은 1 내지 3의 정수일 수 있다.
본 발명의 바람직한 일 실시예에 있어서, 상기 R1은 C1-C10알킬 또는 C3-C10사이클로알킬이고; R2는 하이드록시, C1-C10알콕시, 할로C1-C10알콕시, C1-C10알콕시C1-C10알콕시, C1-C10알킬티오C1-C10알콕시, C1-C10알킬카보닐옥시, C1-C10알킬티오, 할로C1-C10알킬티오, C1-C10알킬카보닐티오 또는 -NRa2Ra3이고; Ra2는 수소 또는 C1-C10알킬이고; Ra3은 C1-C10알킬이고; R3는 수소 또는 C1-C10알킬이고; L은 CH 또는 N이고; m은 1 내지 3의 정수이고; n은 0 또는 1의 정수일 수 있다.
본 발명의 바람직한 일 실시예에 있어서, 상기 R3는 C1-C10알킬, 보다 바람직하게는 분쇄의 C3-C7알킬일 수 있고, 구체적으로는 이소프로필, 이소부틸, t-부틸, n-펜틸, 이소펜틸, 네오펜틸, t-펜틸, s-펜틸, 3-펜틸 또는 s-이소펜틸일 수 있다.
일 구체예에 따르면, 상기 R3는 이소프로필일 수 있다.
일 실시예에 따른 에텐 화합물은 구체적으로 하기 화학식 3, 화학식 4 또는 화학식 5로 표시될 수 있다.
[화학식 3]
Figure 112022052039669-pat00004
[화학식 4]
Figure 112022052039669-pat00005
[화학식 5]
Figure 112022052039669-pat00006
상기 화학식 3 내지 5에서,
R1은 C1-C10알킬 또는 C3-C10사이클로알킬이고;
R11, R12 및 R13 중 적어도 하나는 하이드록시, C1-C10알콕시, 할로C1-C10알콕시, C1-C10알콕시C1-C10알콕시, C1-C10알킬카보닐옥시, C1-C10알킬티오, 할로C1-C10알킬티오, C1-C10알킬카보닐티오 또는 디C1-C10알킬아미노이고, 나머지는 수소, 하이드록시, C1-C10알콕시, 할로C1-C10알콕시, C1-C10알콕시C1-C10알콕시, C1-C10알킬카보닐옥시, C1-C10알킬티오, 할로C1-C10알킬티오, C1-C10알킬카보닐티오 또는 디C1-C10알킬아미노이고;
a는 0 또는 1의 정수이고;
n은 0 또는 1의 정수이다.
일 구체예에 따르면, 상기 화학식 3 내지 5에서, R1은 C1-C7알킬 또는 C3-C8사이클로알킬이고; R11, R12 및 R13 중 적어도 하나는 하이드록시, C1-C7알콕시, C1-C7알킬카보닐옥시, C1-C7알킬티오 또는 디C1-C7알킬아미노이고, 나머지는 수소, 하이드록시, C1-C7알콕시, C1-C7알킬카보닐옥시, C1-C7알킬티오, 또는 디C1-C7알킬아미노이고; a는 0 또는 1의 정수이고; n은 0 또는 1의 정수일 수 있다.
구체적으로, 상기 R11은 수소이고; R12는 수소, 하이드록시, C1-C7알콕시, C1-C7알킬카보닐옥시, C1-C7알킬티오 또는 디C1-C7알킬아미노이고; R13는 하이드록시, C1-C7알콕시, C1-C7알킬카보닐옥시, C1-C7알킬티오 또는 디C1-C7알킬아미노일 수 있다.
구체적으로, 상기 R11은 하이드록시 또는 C1-C7알콕시이고; R12는 수소이고; R13은 하이드록시, C1-C7알콕시, C1-C7알킬카보닐옥시, C1-C7알킬티오 또는 디C1-C7알킬아미노일 수 있다.
구체적으로, 상기 R11 및 R13은 수소이고; R12는 하이드록시, C1-C7알콕시, C1-C7알킬카보닐옥시, C1-C7알킬티오 또는 디C1-C7알킬아미노 일 수 있다.
일 구체예에 따르면, 상기 화학식 3 내지 5에서, R1은 C2-C5알킬 또는 C3-C7사이클로알킬, 좋게는 C2-C4알킬 또는 C3-C6사이클로알킬일 수 있다.
구체적으로 R1은 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, t-부틸, n-펜틸, 이소펜틸, 네오펜틸, t-펜틸, s-펜틸, 3-펜틸, s-이소펜틸, 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실 또는 사이클로헵틸일 수 있으며, 보다 구체적으로 상기 R1은 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, t-부틸, 사이클로프로필, 사이클로부틸, 사이클로펜틸 또는 사이클로헥실일 수 있다.
일 실시예에 따른 에텐 화합물은 하기 화합물 군으로부터 선택되는 어느 하나 이상일 수 있으며, 이에 한정되는 것은 아니다.
Figure 112022052039669-pat00007
Figure 112022052039669-pat00008
Figure 112022052039669-pat00009
Figure 112022052039669-pat00010
Figure 112022052039669-pat00011
Figure 112022052039669-pat00012
Figure 112022052039669-pat00013
일 실시예에 따른 에텐 화합물의 제조방법은 당업계에 공지된 방법을 이용하거나 적절히 변경하여 수행될 수 있음은 당업자에게 자명할 것이다. 또한 본 발명의 일 실시예에 따른 화학식 1의 제조방법에서의 반응시간은 반응물질, 용매의 종류 및 용매의 양에 따라 달라질 수 있으며, 일례로 TLC 등을 통하여 출발물질이 완전히 소모됨을 확인한 후 반응을 완결시킨다. 반응이 완결되면 감압 하에서 용매를 증류시킨 후, 칼럼 크로마토그래피 등의 통상의 방법을 통하여 목적물을 분리 정제할 수 있다. 더 자세한 내용은 하기 실시예에서 설명된다.
본 발명은 상기 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드 뿐만 아니라, 이로부터 제조될 수 있는 가능한 프로드럭, 수화물 및 용매화물을 모두 포함한다.
즉, 본 발명의 에텐 화합물은 생체내 흡수를 증진시키거나 용해도를 증가시키기 위하여 프로드럭, 수화물, 용매화물 및 약학적으로 허용가능한 염의 형태로 만들어 사용할 수 있으므로, 상기의 프로드럭, 수화물, 용매화물 및 약학적으로 허용가능한 염 역시 본 발명의 범위에 속한다. 또한, 상기 에텐 화합물은 키랄 탄소를 갖고 있어서, 그의 입체이성질체가 존재하며, 이러한 입체이성질체 역시 본 발명의 범주 내에 포함된다.
본 발명의 에텐 화합물은 약학적으로 허용가능한 염의 형태로 사용할 수 있으며, 약학적으로 허용가능한 염은 당해 기술분야에서 통상적인 방법에 따라 제조된 염으로, 이의 제조방법은 당업자에게 공지되어 있다. 구체적으로, 상기 약학적으로 허용가능한 염은 약리학적 또는 생리학적으로 허용되는 유리산(free acid) 및 염기로부터 유도된 염을 포함하지만, 이에 제한되지 않는다.
약학적으로 허용 가능한 유리산(free acid)에 의해 형성된 산부가염은 염산, 질산, 인산, 황산, 브롬화수소산, 요드화수소산, 아질산, 아인산 등의 무기산, 메탄술폰산, p-톨루엔술폰산, 아세트산, 트리플루오로아세트산, 말레인산, 숙신산, 옥살산, 벤조산, 주석산, 푸마르산, 만데르산, 프로피온산, 구연산, 젖산, 글리콜산, 글루콘산, 갈락투론산, 글루탐산, 글루타르산, 글루쿠론산, 아스파르트산, 아스코르브산, 카본산, 바닐릭산, 요오드화수소산 등의 유기산으로부터 얻는다. 이러한 약학적으로 무독한 염의 종류로는 술페이트, 피로술페이트, 바이술페이트, 술파이트, 바이술파이트, 니트레이트, 포스페이트, 모노하이드로겐 포스페이트, 다이하이드로겐 포스페이트, 메타포스페이트, 피로포스페이트 클로라이드, 브로마이드, 아이오다이드, 플루오라이드, 아세테이트, 프로피오네이트, 데카노에이트, 카프릴레이트, 아크릴레이트, 포메이트, 이소부티레이트, 카프레이트, 헵타노에이트, 프로피올레이트, 옥살레이트, 말로네이트, 석시네이트, 수베레이트, 세바케이트, 푸마레이트, 말리에이트, 부틴-1,4-디오에이트, 헥산-1,6-디오에이트, 벤조에이트, 클로로벤조에이트, 메틸벤조에이트, 디니트로 벤조에이트, 히드록시벤조에이트, 메톡시벤조에이트, 프탈레이트, 테레프탈레이트, 벤젠설포네이트, 톨루엔설포네이트, 클로로벤젠설포네이트, 크실렌설포네이트, 페닐아세테이트, 페닐프로피오네이트, 페닐부티레이트, 시트레이트, 락테이트, β-히드록시부티레이트, 글리콜레이트, 말레이트, 타트레이트, 메탄설포네이트, 프로판설포네이트, 나프탈렌-1-설포네이트, 나프탈렌-2-설포네이트, 만델레이트 등을 포함한다.
산 부가염은 통상의 방법으로 제조할 수 있으며, 예를 들면 본 발명의 에텐 화합물을 메탄올, 에탄올, 아세톤, 디클로로메탄, 아세토니트릴 등과 같은 수혼화성 유기용매에 녹이고 유기산 또는 무기산을 가하여 생성된 침전물을 여과, 건조시켜 제조하거나, 용매와 과량의 산을 감압 증류한 후 건조시켜 유기용매 하에서 결정화시켜서 제조할 수 있다.
또한, 염기를 사용하여 약학적으로 허용가능한 금속염을 만들 수 있다. 알칼리 금속염 또는 알칼리 토금속염은, 예를 들어 본 발명의 에텐 화합물을 과량의 알칼리 금속 수산화물 또는 알칼리 토금속 수산화물 용액 중에 용해시키고, 비용해 에텐 화합물 염을 여과한 후 여액을 증발, 건조시켜 얻는다. 이때, 금속염으로는 나트륨, 칼륨, 또는 칼슘염을 제조하는 것이 제약상 적합하나, 이들에 제한되는 것은 아니다. 또한 이에 대응하는 은염은 알칼리 금속 또는 알칼리 토금속 염을 적당한 은염(예, 질산은)과 반응시켜 얻을 수 있다.
본 발명의 에텐 화합물의 수화물은 비공유 분자간 힘(non-covalent intermolecular force)에 의해 결합된 화학양론적(stoichiometric) 또는 비화학양론적(non-stoichiometric) 양의 물을 포함하는 본 발명의 에텐 화합물 또는 그의 약학적으로 허용가능한 염을 의미한다.
본 발명의 에텐 화합물의 용매화물은 비공유 분자간 힘에 의해 결합된 화학양론적 또는 비화학양론적 양의 용매를 포함하고 있는 본 발명의 에텐 화합물 또는 이의 약학적으로 허용가능한염을 의미한다. 사용가능한 용매로는 휘발성이고 비독성인 용매가 있다.
즉, 본 발명의 에텐 화합물을 메탄올, 에탄올, 아세톤, 1,4-디옥산과 같은 물과 섞일 수 있는 용매에 녹인 다음, 유리산 또는 유리염기를 가한 후에 결정화되거나 또는 재결정화되어 수화물을 포함한 용매화물이 형성될 수 있다. 따라서, 본 발명의 신규 화합물로서 동결건조와 같은 방법으로 제조 가능한 다양한 양의 물 함유 화합물 이외에 수화물을 비롯한 화학양론적 용매화물도 포함한다.
본 발명의 에텐 화합물은 키랄 중심을 가질 수 있고, 라세메이트, 라세미 혼합물 및 개개의 거울상 이성질체 또는 부분 입체이성질체로서 존재할 수 있다. 이러한 이성질체는 통상의 방법에 의해 분리되거나 분해될 수 있으며 임의의 소정 이성질체는 통상의 합성법에 의해 또는 입체특이적 또는 비대칭적 합성에 의해 수득할 수 있다. 이러한 모든 이성질체형 및 이들의 혼합물은 본 발명의 범위 내에 포함된다.
본 발명의 에텐 화합물은 인간 또는 동물의 체내에서 분해되어 본 발명의 에텐 화합물을 유효성분으로 제공하는 프로드럭의 형태로 투여될 수 있다. 프로드럭은 모 화합물의 물리적 및/또는 약동학적 프로파일을 변경 및/또는 개선하는데 사용될 수 있고 모 화합물이 프로드럭을 형성하도록 유도될 수 있는 적합한 기 또는 치환체를 함유할 경우 형성될 수 있다.
만약 어떠한 화합물(프로드럭(prodrug))이 체내에서 분리되어 본 발명의 에텐 화합물 또는 이의 염을 생성하게 된다면, 그러한 화합물 또한 본 발명의 범주에 포함된다. 본 명세서에서 사용되고 다르게 지적되지 않는다면, 용어 "프로드럭(prodrug)"은 활성 화합물, 특히 본 발명의 에텐 화합물을 공급하기 위해 가수분해되고, 산화되고, 생물학 조건(생체 외 또는 생체 내)하에 다른 반응을 할 수 있는 본 발명의 화합물을 의미한다. 프로드럭의 예들은, 생가수분해될 수 있는(biohydrolyzable) 아미드, 생가수분해될 수 있는 에스테르, 생가수분해될 수 있는 카르바메이트(carbamates), 생가수분해될 수 있는 탄산염, 생가수분해될 수 있는 우레이드(ureides), 그리고 생가수분해될 수 있는 인산염 유사체들 같은 생가수분해될 수 있는 부분을 포함하는, 생가수분해되어 본 발명의 에텐 화합물을 생성하는 화합물들을 포함하나, 이러한 구체적 태양에 한정되는 것은 아니다. 바람직하게는 카르복실 작용기를 가지고 있는 화합물의 프로드럭은 카르복실 산의 저급 알킬 에스테르이다. 카르복실 에스테르는 분자에 존재하는 카르복실 산 일부분을 에스테르화 함으로서 통상적으로 형성된다. 프로드럭은 공지된 방법을 사용하여 용이하게 제조될 수 있다.
또한, 본 발명은 상기 화학식 1의 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 약학적 조성물은 비정상적인 세포 성장으로 유발되는 암 질환의 치료, 예방 및 경감을 목적으로 사용될 수 있다. 본 발명의 약학조성물의 처치에 의해 예방, 치료 또는 경감될 수 있는 암 질환은 난치성 암일 수 있으며, 구체적으로 난소암, 전립선암, 유방암, 신경모세포종, 교모세포종, 미분화 갑상선암, 탈분화 갑상선암, 대장암 등일 수 있다.
일 구체예에 따르면, 인간 대장암과 정상 대장 조직에서 ERRβ/γ 단백질 발현의 차이를 확인한 결과, 대장암 조직에서 정상 조직에 비해 더 높은 수준의 ERRβ/γ 발현을 관찰하였으며, 상기 에텐 화합물의 처리로 인한 대장암 조직 내 ERRβ/γ의 억제에 의해 암세포의 증식이 저해되었다. 이에, 본 발명에 따른 에텐 화합물은 대장암과 같은 암 조직 내 ERRβ/γ의 발현 수준을 조절함으로써 암세포의 증식을 저해하여 다양한 암 질환을 치료하거나 예방하는데 유용할 수 있다.
일 실시예에 따른 약학적 조성물은 상기 유효성분 이외에 통상의 무독성 약제학적으로 허용가능한 담체 및/또는 부형제를 추가로 포함하여 약학적 분야에서 통상적인 제제, 즉 경구 투여용 제제 또는 비경구 투여용 제제로 제형화될 수 있다. 또한, 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제를 추가로 더 포함할 수 있다.
상기 약학적으로 허용가능한 담체, 부형제 또는 희석제로는, 락토즈, 덱스트로즈, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로스, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등을 들 수 있으나, 이에 한정되는 것은 아니다.
본 발명의 약학적 조성물은 사용 목적에 맞게 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁제, 에멀젼, 시럽, 에어로졸 등의 경구 투여용 제제, 멸균 주사 용액의 주사제 등 다양한 형태로 제형화하여 사용할 수 있으며, 경구 투여하거나 정맥내, 복강 내, 피하, 직장, 국소 투여 등을 포함한 다양한 경로를 통해 투여될 수 있다.
상기 경구 투여용 제제는 선택적으로 장용 코팅(enteric coating)될 수 있으며, 장용 코팅을 통하여 지연된(delayed) 또는 지속된(sustained) 방출을 나타낼 수 있다. 즉, 상기 경구 투여용 제제는 즉시 또는 변형된(modified) 방출 패턴을 가진 제형일 수 있다.
상기 비경구 투여용 제제는 즉시 또는 변형된 방출 패턴을 가진 제형일 수 있으며, 변형된 방출 패턴은 지연된(delayed) 또는 지속된(sustained) 방출 패턴일 수 있다.
또한, 본 발명의 약학적 조성물은 충전제, 항응집제, 윤활제, 습윤제, 향료, 유화제, 방부제 등을 추가로 포함할 수 있다.
경구 투여용 제형으로는 예를 들면 정제, 환제, 경/연질 캅셀제, 액제, 현탁제, 유화제, 시럽제, 과립제, 엘릭시르제(elixirs) 등이 있는데, 이들 제형은 상기 유효성분 이외에 통상적으로 사용되는 충진제, 증량제, 습윤제, 붕해제, 활택제, 결합제, 계면활성제 등의 희석제 또는 부형제를 1종 이상 사용할 수 있다. 붕해제로는 한천, 전분, 알긴산 또는 이의 나트륨염, 무수인산일수소 칼슘염 등이 사용될 수 있고, 활택제로는 실리카, 탈크, 스테아르산 또는 이의 마그네슘염 또는 칼슘염, 폴리에틸렌 글리콜 등이 사용될 수 있으며, 결합제로는 마그네슘 알루미늄 실리케이트, 전분 페이스트, 젤라틴, 트라가칸스, 메틸셀룰로오스, 나트륨 카복시메틸셀룰로오스, 폴리비닐피롤리딘, 저치환도 하이드록시프로필셀룰로오스 등이 사용될 수 있다. 이외에도 락토즈, 덱스트로오스, 수크로오스, 만니톨, 소르비톨, 셀룰로오스, 글리신 등을 희석제로 사용할 수 있으며, 경우에 따라서는 일반적으로 알려진 비등 혼합물, 흡수제, 착색제, 향미제, 감미제 등을 함께 사용할 수 있다.
비경구 투여를 위한 제제로는 멸균된 수용액제, 비수성용제, 현탁제, 유제, 동결건조 제제, 좌제 등이 예시될 수 있다. 비수성용제, 현탁제로는 프로필렌글리콜, 폴리에틸렌글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다. 좌제의 기제로는 위텝솔(witepsol), 마크로골, 트윈61, 카카오지, 라우린지, 글리세롤, 젤라틴 등이 사용될 수 있다. 한편, 주사제에는 용해제, 등장화제, 현탁화제, 유화제, 안정화제, 방부제 등과 같은 종래의 첨가제가 포함될 수 있다. 주사제로 제제화하기 위하여 유효성분을 안정제 또는 완충제와 함께 물에서 혼합하여 용액 또는 현탁액으로 제조하고, 이를 앰플 또는 바이알의 단위 투여형으로 제조할 수 있다.
본 발명의 약학적 조성물은 멸균되거나, 또는 방부제, 안정화제, 점증제, 수화제 또는 유화 촉진제, 삼투압 조절을 위한 염 및/또는 완충제 등의 보조제를 더 포함할 수도 있고, 기타 치료적으로 유용한 물질을 더 포함할 수도 있으며, 용해, 분산, 혼합, 과립화, 겔화 또는 코팅 등의 통상적인 방법에 따라 제제화될 수 있다.
본 발명의 약학적 조성물에서 유효성분인 상기 에텐 화합물의 약학적으로 유효한 양은 환자의 건강상태, 질환의 종류, 중증도, 약물의 활성, 약물에 대한 민감도, 투여 방법, 투여 시간, 투여 경로 및 배출 비율, 치료 기간, 배합 또는 동시 사용되는 약물을 포함한 요소 및 기타 의학 분야에 잘 알려진 요소에 따라 결정될 수 있다. 구체적으로, 본 발명의 약학적 조성물에서 상기 에텐 화합물의 유효량은 환자의 나이, 성별, 체중에 따라 달라질 수 있으며, 일반적으로는 약 0.001 내지 500 mg/kg/일이며, 바람직하게는 0.01 내지 100 mg/kg/일로, 매일 또는 격일 투여하거나 1일 1회 내지 수회로 나누어 투여할 수 있다. 그러나, 투여 경로, 질병의 중증도, 성별, 체중, 연령 등에 따라서 증감될 수 있으므로, 상기 투여량이 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다.
본 발명의 약학적 조성물은 경구 또는 비경구 투여할 수 있으며, 암을 치료하기 위하여 경구 투여용 항암제로서 경구 투여에 의하여 본 발명에 따른 에텐 화합물이 위장관(gastrointestinal tract)에 들어가거나, 예를 들어, 구강(buccal) 또는 설하(sublingual) 투여와 같이, 입으로부터 혈류로 직접적으로 흡수될 수 있다.
또한, 본 발명은 상기 화학식 1의 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드; 및 항암제를 포함하는 암의 예방 또는 치료용 병용 제제를 제공한다.
본 발명의 약학적 조성물은 개별 치료제로 투여하거나 다른 치료제와 병용하여 투여될 수 있고, 종래의 치료제와 순차적으로 또는 동시에 투여될 수 있으며, 단일 또는 다중 투여될 수 있다. 상기한 요소들을 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 투여하는 것이 중요하며, 이는 당업자에 의해 용이하게 결정될 수 있다.
이때 다른 치료제라 함은 공지의 항암제를 의미할 수 있다.
상기 "항암제"는 암세포의 각종 대사경로에 작용하여 암세포에 대하여 세포독성(cytotoxicity)이나 성장억제효과(cytostatic effects)를 나타내는 기존의 암 치료에 사용되는 공지의 약제를 총칭하는 것으로, 지금까지 개발된 세포독성(cytotoxic) 항암제와 표적(targeted) 항암제를 모두 포함할 수 있다.
세포독성 항암제(cytotoxic anticancer agents)는 암세포의 대사경로에 개입하여 DNA 또는 RNA의 합성과 분열을 억제하거나, 또는 DNA 자체에 손상을 주어 세포의 사멸을 유도하는 항암제를 의미하는 것으로, 대사길항제(antimetabolites), 식물유래 알칼로이드(plant-derived alkaloids), 토포이소머라제 저해제(topoisomerase inhibitor), 알킬화제, 항암성 항생물질(antineoplastic antibiotics), 호르몬제 및 기타 약제로부터 선택되는 1종 이상일 수 있다.
상기 토포이소머라제 저해제는, DNA의 이중나선구조를 조절하는 효소인 토포이소머라제의 작용을 방해하는 항암효과를 나타내는 물질로, 예를 들어, 에토포사이드(etoposide), 에피포도필로톡신(epipodophyllotoxin) 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.
상기 대사길항제는, 미생물이나 종양세포의 대사나 성장에 대하여 불가결의 필수대사물질과 길항하여 세포의 발육, 증식을 억제하는 물질을 의미한다. 상기 대사길항제는 예를 들어, 메토트렉세이트(metotrexate), 페메트렉시드(pemetrexed), 클라드리빈(cladribine), 플루다라빈(fludarabine), 머캅토퓨린(mercaptopurine), 6-티오구아닌(6-thioguanine), 클로파라빈(clofarabine), 5-아자시티딘(5-azacytidine), 시타라빈(cytarabine), 데시타빈(decitabine), 에노시타빈(enocitabine), 기메라실(gimeracil), 오테라실(oteracil), 카페시타빈(capecitabine), 카모푸르(carmofur), 독시플루리딘(doxifluridine), 젬시타빈(gemcitabine), 테가푸르(tegafur), 5-플루오로우라실(5-fluorouracil) 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.
상기 식물유래 알칼로이드는, 식물 추출물 가운데, 동물에 대해 특이하고 강한 생리작용을 가진 염기성 질소를 함유하는 유기화합물을 의미한다. 상기 식물유래 알칼로이드는 예를 들어, 에토포시드(etoposide), 도세탁셀(docetaxel), 파클리탁셀(paclitaxel), 카바지탁셀(cabazitaxel), 빈블라스틴(vinblastine), 빈크리스틴(vincristine), 비노렐빈(vinorelbine), 테니포시드(teniposide), 트라벡테딘(trabectedin) 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.
상기 알킬화제는, 어떤 화합물에 알킬기 R-CH2를 도입할 능력을 갖춘, 반응성이 대단히 높은 물질로 세포에 작용시키면 DNA구조를 변형시키고, 사슬절단을 일으켜 항암효과 및 세포독효과를 나타내는 것을 의미하며, DNA-손상제라고도 한다. 상기 알킬화제는 예를 들어, 옥살리플라틴(Oxaliplatin), 벤다무스틴(Bendamustine), 클로르암부실(chlorambucil), 멜팔란(melphalan), 부설판(busulfan), 시클로포스파미드(cychlophosphamide), 이포스파미드(ifosfamide), 카무스틴(carmustine), 로무스틴(lomustine), 니무스틴(nimustine), 라니무스틴(ranimustine), 다카바진(dacarbaxine), 테모졸로미드(temozolomide), 티오테파(thiotepa) 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.
상기 항암성 항생물질은, 동물종양세포의 증식저해 및 담암 동물에 연명효과를 보이는 항생물질을 의미한다. 상기 항종양성 항생물질은 예를 들어, 독소루비신(doxorubicin), 닥티노마이신(dactinomycin), 다우노루비신(daunorubicin), 에피루비신(epirubicin), 이다루비신(idarubicin), 미토잔트론(mitoxanthrone), 피라루비신(pirarubicin), 블레오마이신(bleomycin), 익사베필론(ixabepilone), 미토마이신C(mitomycin C) 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.
상기 호르몬 제제는, 암의 성장을 촉진할 수 있는 호르몬 효과를 조절, 감소, 차단 또는 억제하는 것을 의미한다. 상기 호르몬 제제는 디에틸스틸베스트롤(diethylstilbestrol), 메드록시프로게스테론(medroxyprogesterone), 메게스테롤(megesterol), 풀베스트란트(fulvestrant), 타목시펜(tamoxifen), 토레미펜(toremifene), 바이칼루타미드(bicalutamide), 풀루타미드(flutamide), 아나스트로졸(anastrozole), 엑세메스탄(exemestane), 레트로졸(letrozole), 부세렐린(buserelin), 고세렐린(gosereline), 류프로렐린(leuprorelin), 트립토렐린(triptorelin), 아미노글루테티미드(aminoglutethimide) 또는 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다.
표적 항암제(targeted anticancer agents)는 정상세포와 다른 암세포의 특정 부분의 단백질을 표적으로 하여 암세포만을 선택적으로 공격하는 약물을 의미하는 것으로, 신호전달경로 억제제, 신생혈관생성 억제제 등으로부터 선택되는 1종 이상일 수 있다.
일 구체예에 따른 항암제는, 아파티닙(Apatinib), 옥살리플라틴(Oxaliplatin), 독소루비신(doxorubicin), 파클리탁셀(paclitaxel), 빈크리스틴(vincristine), 다우노루비신(daunorubicin), 빈블라스틴(vinblastine), 액티노마이신-D(actinomycin-D), 도세탁셀(docetaxel), 에토포사이드(etoposide), 테니포사이드(teniposide), 비산트렌(bisantrene), 호모해링토닌(homoharringtonine), 글리벡(Gleevec; STI-571), 시스플라틴(cisplatin), 5-플루오로우라실(5-fluorouracil, 5-FU), 아드리아마이신(Adriamycin), 메토트렉세이트(metotrexate), 부설판(busulfan), 클로람부실(chlorambucil), 시클로포스파미드(cyclophosphamide), 멜팔란(melphalan), 니트로겐 무스타드(nitrogen mustard) 및 니트로소우레아(nitrosourea)로 이루어진 군으로부터 선택된 1종 이상일 수 있다.
일 구체예에 있어, 상기 항암제는 아파티닙(Apatinib), 옥살리플라틴(Oxaliplatin) 및 5-플루오로우라실(5-fluorouracil, 5-FU)로부터 선택되는 1종 이상일 수 있다.
본 발명에 따른 병용 제제는 암에 대한 치료 효과가 각 성분을 단독 처리하였을 때보다 두 성분을 병용함으로써 현저한 상승 효과를 나타낼 수 있고, 약효의 지속시간을 연장시키거나 약물의 투여 간격을 연장하거나 약물의 총 투여량 또는 투여 횟수를 감소시킬 수 있으며, 그 결과 암에 대한 환자의 생존율 및 생존기간을 연장시킬 수 있고 부작용을 현저히 감소시킬 수 있다. 특히 본 발명의 병용 제제는 종래 항암제 단독 투여 대비 암의 예방 또는 치료에 현저히 우수한 효과를 나타낼 수 있으며, 부작용 없이 종양의 성장을 보다 효과적으로 억제, 지연 또는 정지시킬 수 있다.
따라서, 본 발명에 따른 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드는 단독으로 사용하여도 우수한 항암 효과를 나타낼 뿐만 아니라, 기존 항암제와 병용으로 사용하여 보다 더 높은 시너지 효과를 나타낼 수 있다.
또한, 본 발명은 상기 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드, 또는 상기 약학적 조성물, 또는 상기 병용 제제를 암이 발병하였거나 발병할 위험이 있는 개체에 투여하는 단계를 포함하는 암의 예방 또는 치료 방법을 제공한다.
또한, 본 발명은 상기 화학식 1의 에텐 화합물, 이의 식품학적으로 허용가능한 염 또는 이의 N-옥사이드를 유효성분으로 포함하는 암의 예방 또는 개선용 건강기능식품 조성물을 제공한다.
상기 식품학적으로 허용가능한 염은, 본 발명의 에텐 화합물을 염산, 브롬산, 황산, 질산, 인산 등의 무기산, 메탄술폰산, 에탄술폰산, p-톨루엔술폰산 등의 술폰산, 타타르산, 포름산, 시트르산, 아세트산, 트리클로로아세트산, 트리플루오로아세트산, 카프릭산, 이소부탄산, 말론산, 숙신산, 프탈산, 글루콘산, 벤조산, 락트산, 푸마르산, 말레인산, 살리실산 등과 같은 유기 카본산과 반응시켜 얻어질 수 있다. 또한, 본 발명의 화합물을 염기와 반응시켜, 암모니움염, 나트륨 또는 칼륨염 등의 알칼리 금속염, 칼슘 또는 마그네슘염 등의 알칼리토금속염 등의 염, 디시클로헥실아민, N-메틸-D-글루카민, 트리스(히드록시메틸)메틸아민 등의 유기염기들의 염, 및 아르기닌, 리신 등의 아미노산 염을 형성함으로써 얻어질 수도 있으며, 이에 제한되지 않는다.
상기 건강기능식품 조성물은 분말, 과립, 정제, 캡슐, 시럽 또는 음료의 형태로 제공될 수 있으며, 상기 건강기능식품은 유효성분인 상기 에텐 화합물 이외에 다른 식품 또는 식품 첨가물과 함께 사용되고, 통상적인 방법에 따라 적절하게 사용될 수 있다. 유효성분의 혼합양은 그의 사용 목적 예를 들어 예방, 건강 또는 치료적 처치에 따라 적합하게 결정될 수 있다.
상기 건강기능식품 조성물은 여러 가지 영양제, 비타민, 광물(전해질), 합성 풍미제 및 천연 풍미제 등의 풍미제, 착색제 및 중진제(치즈, 초콜릿 등), 펙트산 및 그의 염, 알긴산 및 그의 염, 유기산, 보호성 콜로이드 증점제, pH 조절제, 안정화제, 방부제, 글리세린, 알코올, 탄산음료에 사용되는 탄산화제 등을 함유할 수 있다. 그 밖에 천연 과일쥬스 및 과일쥬스 음료 및 야채 음료의 제조를 위한 과육을 함유할 수 있다. 이러한 성분은 독립적으로 또는 조합하여 사용할 수 있다.
또한 상기 건강기능식품은 식품첨가물을 추가로 포함할 수 있으며, '식품첨가물'로서의 적합여부는 다른 규정이 없는 한 식품의약품안정청에 승인된 식품첨가물공전의 총칙 및 일반시험법 등에 따라 해당 품목에 관한 규격 및 기준에 의하여 판정한다.
상기 '식품첨가물공전'에 수재된 품목으로 예를 들어, 케톤류, 글리신, 구연산칼륨, 니코틴산, 계피산 등의 화학적 합성품, 감색소, 감초추출물, 결정셀룰로오스, 구아검 등의 천연첨가물, L-글루타민산나트륨제제, 면류첨가알칼리제, 보존료제제, 타르색소제제 등의 혼합 제제류들을 들 수 있다.
상기 건강기능식품 조성물에 함유된 상기 에텐 화합물은 상기 약학적 조성물의 유효용량에 준해서 사용할 수 있으나, 건강 및 위생을 목적으로 하거나 또는 건강 조절을 목적으로 하는 장기간의 섭취의 경우에는 상기 범위 이하일 수 있으며, 유효성분은 안전성 면에서 아무런 문제가 없기 때문에 상기 범위 이상의 양으로도 사용될 수 있음은 물론이다.
상기 건강기능식품 조성물은 육류, 소세지, 빵, 쵸코렛, 캔디류, 스넥류, 과자류, 피자, 라면, 기타 면류, 껌류, 아이스크림류를 포함한 낙농제품, 각종 스프, 음료수, 차, 드링크제, 알콜 음료 및 비타민 복합제 등과 같은 다양한 제형으로 제형화될 수 있다.
또한, 본 발명은 암의 치료에 사용하기 위한 상기 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 제공한다.
또한, 본 발명은 암 치료용 약제의 제조에 사용하기 위한 상기 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드의 용도를 제공한다.
이하, 바람직한 실시예 및 실험예를 통하여 본 발명을 보다 상세히 설명하기로 한다. 다만, 이는 본 발명의 예시로 제시되는 것으로 어떠한 의미로도 이에 의해 본 발명의 권리범위가 한정되는 것은 아니며, 본 발명의 권리범위는 후술하는 청구범위에 따라 정의될 뿐이다.
[실시예 1] (E)-3-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenol (1, DN203368)의 제조
Figure 112022052039669-pat00014
단계 1: (E)-3-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl pivalate (b-1)의 제조
1-isopropyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)piperazine (1.98 g, 6.0 mmol), 화합물 a-1 (1.22 g, 5.0 mmol), 아이오도벤젠 (0.67 mL, 6.0 mmol)을 DMF (80 mL)와 물 (40 mL)의 혼합용매에 용해시킨 뒤 0.025 M PdCl2(PhCN)2 (2 mL, 0.05 mmol)을 넣고 45℃에서 10분 가열하였다. Cs2CO3 (1.96 g, 6.0 mmol)를 넣고 12시간 45℃에서 가열하였다. 반응이 종결되면 반응액에 소금물과 에틸아세테이트를 추가로 부가하여 유기층을 추출하였다. 유기층을 무수 Na2SO4로 건조시켜 여과하였다. 용매를 감압 증류하여 얻은 잔사를 컬럼 크로마토그래피법을이용, 정제하여 목적화합물 b-1 1.18 g (45%)를 얻었다.
단계 2: (E)-3-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenol ( 1 )의 제조
MeOH:CH2Cl2 (6 mL:1 mL)에 화합물 b-1 (0.33 g, 0.62 mmol)을 넣고 K2CO3 (0.086 g, 0.62 mmol)을 첨가한 뒤 3시간 동안 상온에서 교반시켰다. 반응액에 물과 에틸아세테이트를 추가로 부가하여 유기층을 추출하였다. 유기층을 무수 Na2SO4로 건조시켜 여과하였다. 용매를 감압 증류하여 얻은 잔사를 컬럼 크로마토그래피법을 이용, 정제하여 목적화합물 1 0.083 g (30%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.22-7.15 (m, 4H), 7.14-7.08 (m, 4H), 6.87 (d, J = 8.7 Hz, 2H), 6.75 (d, J = 7.5 Hz, 1H), 6.73-6.69 (m, 2H), 6.65 (d, J = 8.8 Hz, 2H), 3.73 (d, J = 13.9 Hz, 3H), 3.60-3.46 (m, 4H), 3.20 (t, J = 11.0 Hz, 3H), 3.09-3.00 (m, 2H), 2.91 (t, J = 12.8 Hz, 3H), 1.39 (d, J = 6.6 Hz, 6H), 0.95 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, MeOD) δ 157.02, 147.04, 145.18, 144.44, 139.59, 138.52, 135.90, 130.63, 130.61, 128.83, 126.83, 125.58, 120.10, 115.74, 115.23, 113.01, 58.28, 46.61, 31.64, 20.66, 15.66; MS (ESI+) m/z calcd for C30H37N2O [M+H]+ 441.29; found 441.38.
[실시예 2] (E)-3-(2-cyclopropyl-1-(4-(4-isopropylpiperazin-1-yl)phenyl)-2-phenylvinyl)phenol (2)의 제조
Figure 112022052039669-pat00015
단계 1: (E)-3-(2-cyclopropyl-1-(4-(4-isopropylpiperazin-1-yl)phenyl)-2-phenylvinyl)phenyl pivalate (b-2)의 제조
화합물 a-1 대신에 화합물 a-2를 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 b-2 42 mg (31%)을 얻었다.
단계 2: (E)-3-(2-cyclopropyl-1-(4-(4-isopropylpiperazin-1-yl)phenyl)-2-phenylvinyl)phenol ( 2 )의 제조
화합물 b-1 대신에 화합물 b-2를 사용한 것을 제외하고는 실시예 1의 단계 2와 동일한 방법으로 목적화합물 2 8 mg (3%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.15 (dd, J = 12.5, 7.6 Hz, 3H), 7.08 (t, J = 7.3 Hz, 1H), 7.01 (d, J = 6.9 Hz, 2H), 6.84 (d, J = 7.6 Hz, 1H), 6.79 (s, 1H), 6.73 (d, J = 8.7 Hz, 2H), 6.68 (dd, J = 8.0, 1.8 Hz, 1H), 6.58 (d, J = 8.7 Hz, 2H), 3.03 (t, J = 4.7 Hz, 4H), 2.69-2.62 (m, 5H), 1.79 (m, 1H), 1.08 (d, J = 6.5 Hz, 6H), 0.59 (dt, J = 5.9, 4.2 Hz, 2H), 0.28 (q, J = 5.7 Hz, 2H); MS (ESI+) m/z calcd for C30H35N2O [M+H]+ 439.28; found 439.25.
[실시예 3] (E)-1-isopropyl-4-(4-(1-(3-methoxyphenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl)piperazine (3)의 제조
Figure 112022052039669-pat00016
DMF (1 mL)에 화합물 1 (23 mg, 0.052 mmol)을 넣고 iodomethane (7.8 μL, 0.125 mmol), K2CO3 (22 mg, 0.157 mmol)을 첨가한 뒤 1시간 동안 상온에서 교반시켰다. 반응액에 물과 에틸아세테이트를 추가로 부가하여 유기층을 추출하였다. 유기층을 무수 Na2SO4로 건조시켜 여과하였다. 용매를 감압 증류하여 얻은 잔사를 컬럼 크로마토그래피법을 이용, 정제하여 목적화합물 3 3 mg (13%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.28 (t, J = 7.9 Hz, 1H), 7.18-7.14 (m, 2H), 7.11-7.08 (m, 3H), 6.88-6.82 (m, 4H), 6.78 (q, J = 1.1 Hz, 1H), 6.67-6.64 (m, 2H), 3.79 (s, 3H), 3.71 (d, J = 13.0 Hz, 2H), 3.57-3.46 (m, 3H), 3.28-3.15 (m, 2H), 3.02-2.92 (m, 3H), 1.40 (dd, J = 17.0, 6.6 Hz, 6H), 0.93 (d, J = 6.9 Hz, 6H); MS (ESI+) m/z calcd for C31H39N2O [M+H]+ 455.31; found 455.30.
[실시예 4] (E)-3-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl acetate (4)의 제조
Figure 112022052039669-pat00017
THF:pyridine (2 mL:1 mL)에 화합물 1 (5 mg, 0.011 mmol)을 넣고 acetic anhydride (2.6 μL, 0.027 mmol)을 첨가한 뒤 12시간 동안 60℃로 가열하였다. 반응액에 물과 에틸아세테이트를 추가로 부가하여 유기층을 추출하였다. 유기층을 무수 Na2SO4로 건조시켜 여과하였다. 용매를 감압 증류하여 얻은 잔사를 컬럼 크로마토그래피법을 이용, 정제하여 목적화합물 4 1.8 mg (26%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.18-7.00 (m, 7H), 6.86 (d, J = 8.2 Hz, 2H), 6.74-6.64 (m, 4H), 3.71 (d, J = 13.3 Hz, 2H), 3.50 (d, J = 13.0 Hz, 3H), 3.19 (t, J = 11.6 Hz, 2H), 3.05-2.90 (m, 3H), 2.28 (s, 1H), 1.37 (d, J = 7.1 Hz, 6H), 1.29 (s, 3H), 0.93 (d, J = 6.9 Hz, 6H); MS (ESI+) m/z calcd for C32H39N2O2 [M+H]+ 483.30; found 483.04.
[실시예 5] (E)-4-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenol (12, DN3317)의 제조
Figure 112022052039669-pat00018
단계 1: (E)-4-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl pivalate (b-3)의 제조
화합물 a-1 대신에 화합물 a-3를 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 b-3 0.99 g (38%)을 얻었다.
단계 2: (E)-4-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenol ( 12 )의 제조
화합물 b-1 대신에 화합물 b-3를 사용한 것을 제외하고는 실시예 1의 단계 2와 동일한 방법으로 목적화합물 12 0.31 g (12%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.18-7.15 (m, 2H), 7.12-7.06 (m, 5H), 6.90 (d, J = 8.7 Hz, 2H), 6.79 (d, J = 8.5 Hz, 2H), 6.76 (d, J = 8.8 Hz, 2H), 3.73 (d, J = 13.2 Hz, 3H), 3.27 (d, J = 11.3 Hz, 2H), 3.15-3.05 (m, 3H), 1.40 (d, J = 6.6 Hz, 6H), 0.94 (d, J = 6.8 Hz, 6H); MS (ESI+) m/z calcd for C30H37N2O [M+H]+ 441.29; found 441.17.
[실시예 6] (E)-4-(2-cyclopropyl-1-(4-(4-isopropylpiperazin-1-yl)phenyl)-2-phenylvinyl)phenol (13)의 제조
Figure 112022052039669-pat00019
단계 1: (E)-4-(2-cyclopropyl-1-(4-(4-isopropylpiperazin-1-yl)phenyl)-2-phenylvinyl)phenyl pivalate (b-4)의 제조
화합물 a-1 대신에 화합물 a-4를 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 b-4 0.18 g (45%)을 얻었다.
단계 2: (E)-4-(2-cyclopropyl-1-(4-(4-isopropylpiperazin-1-yl)phenyl)-2-phenylvinyl)phenol ( 13 )의 제조
화합물 b-1 대신에 화합물 b-4를 사용한 것을 제외하고는 실시예 1의 단계 2와 동일한 방법으로 목적화합물 13 5.2 mg (31%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.32 (d, J = 8.7 Hz, 1H), 7.17-7.10 (m, 3H), 7.06 (m, 2H), 7.02-6.98 (m, 2H), 6.83-6.75 (m, 2H), 6.69-6.62 (m, 2H), 6.40-6.32 (m, 1H), 3.91 (d, J = 9.3 Hz, 1H), 3.73 (d, J = 13.4 Hz, 1H), 3.64-3.50 (m, 3H), 3.26-3.12 (m, 2H), 3.01 (t, J = 12.0 Hz, 1H), 1.85-1.72 (m, 1H), 1.43 (d, J = 6.6 Hz, 3H), 1.38 (d, J = 6.7 Hz, 3H), 0.61-0.56 (m, 2H), 0.32-0.25 (m, 2H); MS (ESI+) m/z calcd for C30H35N2O [M+H]+ 439.28; found 439.13.
[실시예 7] (E)-4-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3,3-dimethyl-2-phenylbut-1-en-1-yl)phenol (14)의 제조
Figure 112022052039669-pat00020
단계 1: (E)-4-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3,3-dimethyl-2-phenylbut-1-en-1-yl)phenyl pivalate (b-5)의 제조
화합물 a-1 대신에 화합물 a-5를 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 b-5 9 mg (7%)을 얻었다.
단계 2: (E)-4-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3,3-dimethyl-2-phenylbut-1-en-1-yl)phenol ( 14 )의 제조
화합물 b-1 대신에 화합물 b-5를 사용한 것을 제외하고는 실시예 1의 단계 2와 동일한 방법으로 목적화합물 14 1 mg (21%, E/Z=1:1)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.26 (d, J = 8.5 Hz, 1H), 7.15-7.10 (m, 1H), 7.08-7.01 (m, 4H), 7.00-6.91 (m, 2H), 6.91-6.84 (m, 1H), 6.79-6.69 (m, 2H), 6.59 (d, J = 8.8 Hz, 1H), 6.31 (d, J = 8.6 Hz, 1H), 3.87 (d, J = 13.9 Hz, 1H), 3.66-3.44 (m, 4H), 3.18-3.11 (m, 2H), 3.02 (t, J = 13.0 Hz, 1H), 2.86-2.79 (m, 1H), 1.36 (q, J = 6.4, 5.9 Hz, 6H), 1.01-0.88 (m, 9H). MS (ESI+) m/z calcd for C31H39N2O [M+H]+ 455.31; found 455.31.
[실시예 8] (E)-4-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl acetate (15)의 제조
Figure 112022052039669-pat00021
화합물 1 대신에 화합물 12를 사용한 것을 제외하고는 실시예 4와 동일한 방법으로 목적화합물 15 1.7 mg (31%)을 얻었다.
MS (ESI+) m/z calcd for C32H39N2O2 [M+H]+ 483.30; found 483.02.
[실시예 9] (E,Z)-1-isopropyl-4-(4-(1-(4-methoxyphenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl)piperazine (16)의 제조
Figure 112022052039669-pat00022
화합물 a-1 대신에 화합물 a-6를 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 16 3 mg (13%, E/Z=8:1)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.24-7.14 (m, 4H), 7.11-7.03 (m, 4H), 6.96-6.89 (m, 1H), 6.83-6.78 (m, 2H), 6.51 (d, 2H), 3.97-3.88 (m, 2H), 3.84-3.79 (m, 1H), 3.63 (s, 3H), 3.62-3.57 (m, 2H), 3.16-2.96 (m, 4H), 2.08-1.99 (m, 1H), 1.45 (d, J = 6.7 Hz, 6H), 0.95 (d, J = 6.9 Hz, 6H); MS (ESI+) m/z calcd for C31H39N2O [M+H]+ 455.31; found 455.12.
[실시예 10] (E,Z)-5-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)-2-methoxyphenol (5)의 제조
Figure 112022052039669-pat00023
화합물 a-1 대신에 화합물 a-7를 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 5 8 mg (8%, E/Z=6:1)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.16-7.02 (m, 2H), 7.02-6.92 (m, 3H), 6.85-6.75 (m, 3H), 6.69-6.21 (m, 4H), 3.76 (s, 3H), 3.66-3.58 (m, 2H), 3.48-3.38 (m, 3H), 3.20-3.10 (m, 2H), 3.08-2.93 (m, 3H), 1.36-1.25 (m, 6H), 0.86-0.80 (m, 6H); MS (ESI+) m/z calcd for C31H38N2O [M+H]+ 471.30; found 471.25.
[실시예 11] (E)-1-(4-(1-(3,5-dimethoxyphenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl)-4-isopropylpiperazine (6)의 제조
Figure 112022052039669-pat00024
화합물 a-1 대신에 화합물 a-8를 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 6 16 mg (6%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.07 (m, 2H), 7.03-6.95 (m, 3H), 6.80-6.74 (m, 2H), 6.57-6.50 (m, 2H), 6.31-6.29 (m, 3H), 3.67 (s, 6H), 3.66-3.57 (m, 2H), 3.46-3.35 (m, 3H), 3.08 (t, J = 11.2 Hz, 2H), 2.96-2.85 (m, 1H), 2.77 (t, J = 12.1 Hz, 2H), 1.26 (d, J = 6.7 Hz, 6H), 0.84 (d, J = 6. 9 Hz, 6H); MS (ESI+) m/z calcd for C32H41N2O2 [M+H]+ 485.32; found 485.38.
[실시예 12] (E)-3-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)-5-methoxyphenol (7)의 제조
Figure 112022052039669-pat00025
디클로로메탄 (1 mL)에 화합물 6 (12 mg, 0.025 mmol)을 넣고 0℃로 온도를 낮춘 뒤 1M BBr3 (74 μL, 0.074 mmol)을 천천히 첨가하였다. 상온으로 온도를 올려주고 1시간 동안 교반시켰다. 반응액을 감압 증류하여 얻은 잔사를 컬럼 크로마토그래피법을 이용, 정제하여 목적화합물 7 1 mg (8%, E/Z = 7:1)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.18-7.14 (m, 2H), 7.11-7.05 (m, 3H), 6.87 (d, J = 8.7 Hz, 2H), 6.63 (d, J = 8.7 Hz, 2H), 6.32-6.26 (m, 3H), 3.75 (s, 3H), 3.71 (d, J = 13.4 Hz, 2H), 3.50-3.47 (m, 3H), 3.21-3.15 (m, 2H), 3.08-3.01 (m, 1H), 2.87 (t, J = 12.6 Hz, 2H), 1.37 (d, J = 6.6 Hz, 6H), 0.94 (dd, J = 6.9, 2.4 Hz, 6H); MS (ESI+) m/z calcd for C31H39N2O2 [M+H]+ 471.30; found 471.34.
[실시예 13] (E)-5-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)benzene-1,3-diol (8)의 제조
Figure 112022052039669-pat00026
실시예 12와 동일한 방법으로 목적화합물 8 1 mg (4%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.19-7.16 (m, 2H), 7.13-7.07 (m, 3H), 6.88 (d, J = 8.8 Hz, 2H), 6.65 (d, J = 8.8 Hz, 2H), 6.23-6.20 (m, 3H), 3.73 (m, 2H), 3.56-3.49 (m, 3H), 3.23-3.09 (m, 3H), 2.89 (t, J = 11.8 Hz, 2H), 1.39 (d, J = 6.6 Hz, 6H), 0.96 (d, J = 6.9 Hz, 6H); MS (ESI+) m/z calcd for C30H37N2O2 [M+H]+ 457.29; found 457.33.
[실시예 14] (E)-4-(4-(1-(3-hydroxyphenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl)-1-isopropylpiperazine 1-oxide (27)의 제조
Figure 112022052039669-pat00027
DCM (2 mL)에 화합물 1 (13 mg, 0.030 mmol)을 넣고 mCPBA (3 mg, 0.015 mmol)을 첨가 뒤 10분동안 상온에서 교반하였다. 반응액에 NaHSO4 수용액을 첨가 후 에틸아세테이트로 추출하였다. 유기층을 무수 Na2SO4로 건조시켜 여과하였다. 용매를 감압 증류하여 얻은 잔사를 컬럼 크로마토그래피법을 이용, 정제하여 목적화합물 27 2 mg (16%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.55 (d, J = 8.9 Hz, 2H), 7.13-7.04 (m, 5H), 7.02-6.98 (m, 3H), 6.68 (d, J = 7.6 Hz, 1H), 6.63-6.59 (m, 12), 4.39 (t, J = 11.6 Hz, 2H), 4.06 (t, J = 11.6 Hz, 2H), 3.59-3.51 (m, 1H), 3.13 (t, J = 13.8 Hz, 4H), 3.01-2.92 (m, 1H), 1.32 (d, J = 6.5 Hz, 6H), 0.85 (d, J = 6.9 Hz, 6H); 13C NMR (100 MHz, MeOD) δ 157.31, 149.93, 147.30, 144.87, 143.26, 138.66, 137.59, 130.82, 130.46, 129.17, 127.00, 126.00, 119.95, 118.67, 115.64, 113.50, 70.58, 62.90, 61.72, 55.72, 31.68, 20.51, 14.95; MS (ESI+) m/z calculated for C30H37N2O2 [M+H]+ 456.29; found 456.32.
[실시예 15] (E)-3,3'-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methylbut-1-ene-1,2-diyl)diphenol (9)의 제조
Figure 112022052039669-pat00028
단계 1: (E)-3-(2-(3-hydroxyphenyl)-1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methylbut-1-en-1-yl)phenyl pivalate (d-1)의 제조
아이오도벤젠 대신에 화합물 c-1을 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 d-1 54 mg (40%)을 얻었다.
단계 2: (E)-3,3'-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methylbut-1-ene-1,2-diyl)diphenol ( 9 )의 제조
화합물 b-1 대신에 화합물 d-1를 사용한 것을 제외하고는 실시예 1의 단계 2와 동일한 방법으로 목적화합물 9 1 mg (11%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.18 (t, J = 7.8 Hz, 1H), 7.03-6.97 (m, 1H), 6.90 (d, J = 8.8 Hz, 2H), 6.70 (dt, J = 12.1, 8.3 Hz, 5H), 6.57 (t, J = 7.7 Hz, 3H), 3.75 (d, J = 13.1 Hz, 2H), 3.59-3.47 (m, 3H), 3.21 (t, J = 12.5 Hz, 2H), 3.02 (m, 1H), 2.90 (t, J = 12.4 Hz, 2H), 1.42 (dd, J = 21.9, 6.7 Hz, 6H), 0.96 (d, J = 6.9 Hz, 6H); MS (ESI+) m/z calcd for C30H37N2O2 [M+H]+ 457.29; found 457.32.
[실시예 16] (E)-3-(2-(4-hydroxyphenyl)-1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methylbut-1-en-1-yl)phenol (10)의 제조
Figure 112022052039669-pat00029
단계 1: (E)-3-(2-(4-hydroxyphenyl)-1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methylbut-1-en-1-yl)phenyl pivalate (d-2)의 제조
아이오도벤젠 대신에 화합물 c-2을 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 d-2 42 mg (31%)을 얻었다.
단계 2: (E)-3-(2-(4-hydroxyphenyl)-1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methylbut-1-en-1-yl)phenol ( 10 )의 제조
화합물 b-1 대신에 화합물 d-2를 사용한 것을 제외하고는 실시예 1의 단계 2와 동일한 방법으로 목적화합물 10 1.8 mg (10%)을 얻었다.
MS (ESI+) m/z calcd for C30H37N2O2 [M+H]+ 457.29; found 457.28.
[실시예 17] (Z)-4-(1-(6-(4-isopropylpiperazin-1-yl)pyridin-3-yl)-3-methyl-2-phenylbut-1-en-1-yl)phenol (26)의 제조
Figure 112022052039669-pat00030
단계 1: (Z)-4-(1-(6-(4-isopropylpiperazin-1-yl)pyridin-3-yl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl pivalate (f-1)의 제조
화합물 a-1 대신에 화합물 a-5를 사용하고, 1-isopropyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)piperazine 대신에 화합물 e-1을 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 f-1 19 mg (99%)을 얻었다.
단계 2: (Z)-4-(1-(6-(4-isopropylpiperazin-1-yl)pyridin-3-yl)-3-methyl-2-phenylbut-1-en-1-yl)phenol ( 26 )의 제조
화합물 b-1 대신에 화합물 f-1를 사용한 것을 제외하고는 실시예 1의 단계 2와 동일한 방법으로 목적화합물 26 17 mg (quant.)을 얻었다.
MS (ESI+) m/z calcd for C29H36N3O [M+H]+ 442.29; found 442.14.
[실시예 18] (E)-3-(3-methyl-2-phenyl-1-(4-(piperazin-1-yl)phenyl)but-1-en-1-yl)phenol (28)의 제조
Figure 112022052039669-pat00031
단계 1: (E)-tert-butyl 4-(4-(3-methyl-2-phenyl-1-(3-(pivaloyloxy)phenyl)but-1-en-1-yl)phenyl)piperazine-1-carboxylate (f-2)의 제조
1-isopropyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)piperazine 대신에 화합물 e-2을 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 f-2 0.11 g (15%)을 얻었다.
단계 2: (E)-3-(3-methyl-2-phenyl-1-(4-(piperazin-1-yl)phenyl)but-1-en-1-yl)phenyl pivalate (f-3)의 제조
DCM (3 mL)에 화합물 f-2 (0.11 g, 0.18 mmol)을 넣고 TFA (141 μL, 1.84 mmol)을 첨가한 뒤 12시간 동안 상온에서 교반하였다. 반응액에 감압 증류하여 얻은 잔사를 컬럼 크로마토그래피법을 이용, 정제하여 목적화합물 f-3 49 mg (56%)을 얻었다.
단계 3: (E)-3-(3-methyl-2-phenyl-1-(4-(piperazin-1-yl)phenyl)but-1-en-1-yl)phenol ( 28 )의 제조
화합물 b-1 대신에 화합물 f-3를 사용한 것을 제외하고는 실시예 1의 단계 2와 동일한 방법으로 목적화합물 28 3 mg (5%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.23-7.15 (m, 3H), 7.13-7.07 (m, 3H), 6.84-6.78 (m, 2H), 6.75 (d, J = 7.6 Hz, 1H), 6.73-6.66 (m, 2H), 6.59 (d, J = 8.8 Hz, 2H), 3.02-2.94 (m, 4H), 2.94-2.84 (m, 4H), 0.95 (d, J = 6.9 Hz, 6H); MS (ESI+) m/z calcd for C27H31N2O [M+H]+ 399.25; found 399.19.
[실시예 19] (E)-3-(1-(4-(1-isopropylpiperidin-4-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenol (24)의 제조
Figure 112022052039669-pat00032
단계 1: (E)-tert-butyl 4-(4-(3-methyl-2-phenyl-1-(3-(pivaloyloxy)phenyl)but-1-en-1-yl)phenyl)piperidine-1-carboxylate (g-1)의 제조
1-isopropyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)piperazine 대신에 화합물 e-3을 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 g-1 0.18 g (22%)을 얻었다.
단계 2: (E)-3-(3-methyl-2-phenyl-1-(4-(piperidin-4-yl)phenyl)but-1-en-1-yl)phenyl pivalate (g-2)의 제조
화합물 f-2 대신에 화합물 g-1을 사용한 것을 제외하고는 실시예 18의 단계 2와 동일한 방법으로 목적화합물 g-2 0.14 g (quant.)을 얻었다.
단계 3: (E)-3-(1-(4-(1-ethylpiperidin-4-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl pivalate (g-3)의 제조
DCE (3 mL)에 화합물 g-2 (56 mg, 0.12 mmol), acetone (25 μL, 0.35 mmol), NaBH(OAc)3 (74 mg, 0.35 mmol), acetic acid (13 μL, 0.23 mmol)을 넣고 상온에서 1시간 동안 교반시켰다. 반응액에 물과 에틸아세테이트를 추가로 부가하여 유기층을 추출하였다. 유기층을 무수 Na2SO4로 건조시켜 여과하였다. 용매를 감압 증류하여 얻은 잔사를 컬럼 크로마토그래피법을 이용, 정제하여 목적화합물 g-3 15 mg (24%)을 얻었다.
단계 4: (E)-3-(1-(4-(1-isopropylpiperidin-4-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenol ( 24 )의 제조
화합물 b-1 대신에 화합물 g-3를 사용한 것을 제외하고는 실시예 1의 단계 2와 동일한 방법으로 목적화합물 24 2.5 mg (9%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.20-7.12 (m, 3H), 7.11-7.05 (m, 3H), 6.92-6.86 (m, 4H), 6.77-6.72 (m, 1H), 6.69 (dd, J = 4.2, 2.1 Hz, 2H), 3.55-3.43 (m, 2H), 3.12-2.99 (m, 2H), 2.77-2.63 (m, 1H), 2.09-1.94 (m, 2H), 1.86-1.75 (m, 2H), 1.35 (d, J = 6.7 Hz, 7H), 0.94 (d, J = 6.9 Hz, 6H); MS (ESI+) m/z calcd for C31H38NO [M+H]+ 440.30; found 440.24.
[실시예 20] (E)-4-(1-(4-(1-isopropylpiperidin-4-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenol (25)의 제조
Figure 112022052039669-pat00033
단계 1: (E)-tert-butyl 4-(4-(3-methyl-2-phenyl-1-(4-(pivaloyloxy)phenyl)but-1-en-1-yl)phenyl)piperidine-1-carboxylate (h-1)의 제조
화합물 a-1 대신에 화합물 a-3을 사용하고, 1-isopropyl-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)piperazine 대신에 화합물 e-3을 사용한 것을 제외하고는 실시예 1의 단계 1과 동일한 방법으로 목적화합물 h-1 0.52 g (80%)을 얻었다.
단계 2: (E)-4-(3-methyl-2-phenyl-1-(4-(piperidin-4-yl)phenyl)but-1-en-1-yl)phenyl pivalate (h-2)의 제조
화합물 f-2 대신에 화합물 h-1을 사용한 것을 제외하고는 실시예 18의 단계 2와 동일한 방법으로 목적화합물 h-2 0.43 g (quant.)을 얻었다.
단계 3: (E)-4-(1-(4-(1-isopropylpiperidin-4-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl pivalate (h-3)의 제조
화합물 g-2 대신에 화합물 h-2을 사용한 것을 제외하고는 실시예 19의 단계 3과 동일한 방법으로 목적화합물 h-3 5 mg (33%)을 얻었다.
단계 4: (E)-4-(1-(4-(1-isopropylpiperidin-4-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenol ( 25 )의 제조
화합물 b-1 대신에 화합물 h-3를 사용한 것을 제외하고는 실시예 1의 단계 2와 동일한 방법으로 목적화합물 25 2 mg (41%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.26 (q, J = 8.3 Hz, 2H), 7.20-7.11 (m, 2H), 7.11-7.01 (m, 4H), 6.92-6.82 (m, 2H), 6.78 (d, J = 8.5 Hz, 1H), 6.69 (d, J = 8.7 Hz, 1H), 6.36 (d, J = 8.7 Hz, 1H), 3.58-3.45 (m, 3H), 3.26-3.18 (m, 2H), 3.08-3.03 (m, 1H), 2.21 (d, J = 12.8 Hz, 1H), 2.07-2.01 (m, 2H), 1.87-1.76 (m, 1H), 1.38 (dd, J = 23.1, 6.7 Hz, 6H), 0.93 (q, J = 3.5, 6H); MS (ESI+) m/z calcd for C31H38NO [M+H]+ 440.30; found 440.33.
[실시예 21] (E)-4-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-2-phenylbut-1-en-1-yl)phenol (11)의 제조
Figure 112022052039669-pat00034
단계 1: (4-hydroxyphenyl)(4-(4-isopropylpiperazin-1-yl)phenyl)methanone (j-1)의 제조
DMSO (8 mL)에 화합물 i-1 (0.73 g, 3.38 mmol), 1-isopropylpiperazine (0.709 mL, 4.06 mmol)을 넣고 DIPEA (0.709 mL, 4.06 mmol)을 첨가한 뒤 12시간 동안 120℃에서 가열하였다. 반응액에 감압 증류하여 얻은 잔사를 컬럼 크로마토그래피법을 이용, 정제하여 목적화합물 J-1 1.1 g (quant.)을 얻었다.
단계 2: (E)-4-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-2-phenylbut-1-en-1-yl)phenol ( 11 )의 제조
THF (1 mL)에 zinc (16 mg, 0.25 mmol)을 넣고 0℃로 온도를 낮춘 뒤 TiCl4 (14 μL, 0.12 mmol)을 천천히 첨가하였다. 반응액을 60℃에서 두시간 가열한 뒤 화합물 j-1 (10 mg, 0.031 mmol)과 화합물 k-1 (5 mg, 0.037 mmol)을 넣어주었다. 반응액을 50℃로 1시간 가열하였다. 반응혼합물을 10% 포타슘카보네이트 수용액에 붓고 30분간 교반시킨 뒤 셀라이트를 이용해 여과시켰다. 여액을 에틸아세테이트로 추출한 뒤 유기층을 무수 Na2SO4로 건조시켜 여과하였다. 용매를 감압증류하여 얻은 잔사를 컬럼 크로마토그래피법을 이용, 정제하여 목적화합물 11 1 mg (7%)을 얻었다.
[실시예 22] (E)-1-isopropyl-4-(4-(1-(4-methoxyphenyl)-4-methyl-2-phenylpent-1-en-1-yl)phenyl)piperazine (17)의 제조
Figure 112022052039669-pat00035
단계 1: (4-(4-isopropylpiperazin-1-yl)phenyl)(4-methoxyphenyl)methanone (j-2)의 제조
화합물 i-1 대신에 화합물 i-2를 사용한 것을 제외하고는 실시예 21의 단계 1과 동일한 방법으로 목적화합물 j-2 1.33 g (90 %)을 얻었다.
단계 2: (E)-1-isopropyl-4-(4-(1-(4-methoxyphenyl)-4-methyl-2-phenylpent-1-en-1-yl)phenyl)piperazine ( 17 )의 제조
화합물 j-1 대신에 화합물 j-2를 사용하고, 화합물 k-1 대신에 화합물 k-2를 사용한 것을 제외하고는 실시예 21의 단계 2와 동일한 방법으로 목적화합물 17 12 mg (26%, E/Z = 3:1)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.18-7.08 (m, 7H), 6.93 (d, J = 8.4 Hz, 2H), 6.88 (d, J = 8.5 Hz, 2H), 6.81 (d, J = 8.9 Hz, 2H), 3.82 (s, 3H), 3.78 (d, J = 12.9 Hz, 2H), 3.63-3.57 (m, 3H), 3.37-3.28 (m, 2H), 3.19 (t, J = 12.5 Hz, 2H), 2.37 (d, J = 7.3 Hz, 2H), 1.55-1.48 (m, 1H), 1.42 (d, J = 6.6 Hz, 6H), 0.82 (d, J = 6.6 Hz, 6H); MS (ESI+) m/z calcd for C32H40N2O [M+H]+ 469.31; found 469.16.
[실시예 23] (E)-1-isopropyl-4-(4-(1-(4-methoxyphenyl)-2-phenylhex-1-en-1-yl)phenyl)piperazine (18)의 제조
Figure 112022052039669-pat00036
화합물 j-1 대신에 화합물 j-2를 사용하고, 화합물 k-1 대신에 화합물 k-3를 사용한 것을 제외하고는 실시예 21의 단계 2와 동일한 방법으로 목적화합물 18 12 mg (25%, E/Z = 4:1)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.22-7.08 (m, 8H), 6.93 (d, J = 8.4 Hz, 2H), 6.88-6.81 (m, 3H), 3.83 (s, 3H), 3.79 (d, J = 13.4 Hz, 2H), 3.63-3.58 (m, 3H), 3.41-3.33 (m, 2H), 3.21 (t, J = 12.4 Hz, 2H), 2.49-2.42 (m, 2H), 1.42 (d, J = 6.5 Hz, 6H), 1.36-1.17 (m, 4H), 0.80 (t, J = 7.1 Hz, 3H); MS (ESI+) m/z calcd for C32H40N2O [M+H]+ 469.31; found 469.15.
[실시예 24] (E)-1-isopropyl-4-(4-(1-(4-methoxyphenyl)-2-phenylprop-1-en-1-yl)phenyl)piperazine (19)의 제조
Figure 112022052039669-pat00037
화합물 j-1 대신에 화합물 j-2를 사용하고, 화합물 k-1 대신에 화합물 k-4를 사용한 것을 제외하고는 실시예 21의 단계 2와 동일한 방법으로 목적화합물 19 17 mg (36%, E/Z = 3:1)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.37-7.19 (m, 3H), 7.18-7.05 (m, 5H), 7.04-6.90 (m, 5H), 3.83 (s, 3H), 3.81-3.76 (m, 2H), 3.70-3.62 (m, 3H), 3.60-3.44 (m, 5H), 1.96-1.83 (m, 4H), 1.74-1.63 (m, 1H), 1.49-1.38 (m, 7H); MS (ESI+) m/z calcd for C32H38N2O [M+H]+ 467.30; found 467.06.
[실시예 25] (E)-1-(4-(2-cyclopentyl-1-(4-methoxyphenyl)-2-phenylvinyl)phenyl)-4-isopropylpiperazine (20)의 제조
Figure 112022052039669-pat00038
화합물 j-1 대신에 화합물 j-2를 사용하고, 화합물 k-1 대신에 화합물 k-5를 사용한 것을 제외하고는 실시예 21의 단계 2와 동일한 방법으로 목적화합물 20 27 mg (56%, E/Z = 5:1)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.23-7.14 (m, 5H), 7.12-7.05 (m, 3H), 7.00-6.92 (m, 5H), 3.82 (s, 3H), 3.79-3.73 (m, 2H), 3.67-3.57 (m, 3H), 3.52-3.39 (m, 4H), 3.04-2.91 (m, 1H), 1.75-1.61 (m, 3H), 1.51-1.34 (m, 11H); MS (ESI+) m/z calcd for C33H40N2O [M+H]+ 481.31; found 481.15.
[실시예 26] (E)-1-(4-(2-cyclohexyl-1-(4-methoxyphenyl)-2-phenylvinyl)phenyl)-4-isopropylpiperazine (21)의 제조
Figure 112022052039669-pat00039
화합물 j-1 대신에 화합물 j-2를 사용하고, 화합물 k-1 대신에 화합물 k-6를 사용한 것을 제외하고는 실시예 21의 단계 2와 동일한 방법으로 목적화합물 21 17 mg (33%, E/Z = 19:1)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.21-7.13 (m, 4H), 7.11-7.04 (m, 3H), 6.96-6.89 (m, 4H), 6.81 (d, J = 8.6 Hz, 2H), 3.83 (s, 3H), 3.75 (d, J = 13.1 Hz, 2H), 3.62-3.53 (m, 3H), 3.37-3.30 (m, 2H), 3.20 (t, J = 12.4 Hz, 2H), 2.74-2.61 (m, 1H), 1.76-1.60 (m, 4H), 1.58-1.49 (m, 1H), 1.41 (d, J = 6.6 Hz, 6H), 1.21-1.07 (m, 4H), 1.00-1.87 (m, 1H); MS (ESI+) m/z calcd for C34H42N2O [M+H]+ 495.33; found 495.60.
[실시예 27] (E)-1-isopropyl-4-(4-(3-methyl-1-(4-(methylthio)phenyl)-2-phenylbut-1-en-1-yl)phenyl)piperazine (22)의 제조
Figure 112022052039669-pat00040
단계 1: (4-(4-isopropylpiperazin-1-yl)phenyl)(4-(methylthio)phenyl)methanone (j-3)의 제조
화합물 i-1 대신에 화합물 i-3를 사용한 것을 제외하고는 실시예 21의 단계 1과 동일한 방법으로 목적화합물 j-3 0.19 g (56 %)을 얻었다.
단계 2: (E)-1-isopropyl-4-(4-(3-methyl-1-(4-(methylthio)phenyl)-2-phenylbut-1-en-1-yl)phenyl)piperazine ( 22 )의 제조
화합물 j-1 대신에 화합물 j-3를 사용하고, 화합물 k-1 대신에 화합물 k-7를 사용한 것을 제외하고는 실시예 21의 단계 2와 동일한 방법으로 목적화합물 22 9 mg (18%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.29 (d, J = 8.1 Hz, 2H), 7.21-7.17 (m, 4H), 7.13-7.08 (m, 3H), 6.91 (d, J = 8.5 Hz, 2H), 6.76 (d, J = 8.6 Hz, 2H), 3.74 (d, J = 13.3 Hz, 2H), 3.62-3.54 (m, 3H), 3.29-3.26 (m, 2H), 3.12 (t, J = 12.3 Hz, 2H), 3.06-3.00 (m, 1H), 2.50 (s, 3H), 1.40 (d, J = 6.6 Hz, 6H), 0.96 (d, J = 6.9 Hz, 6H); MS (ESI+) m/z calcd for C31H38N2S [M]+ 470.28; found 470.80.
[실시예 28] (Z)-4-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)-N,N-dimethylaniline (23)의 제조
Figure 112022052039669-pat00041
단계 1: (4-(dimethylamino)phenyl)(4-(4-isopropylpiperazin-1-yl)phenyl)methanone (j-4)의 제조
화합물 i-4 대신에 화합물 i-4를 사용한 것을 제외하고는 실시예 21의 단계 1과 동일한 방법으로 목적화합물 j-4 0.17 g (63 %)을 얻었다.
단계 2: (Z)-4-(1-(4-(4-isopropylpiperazin-1-yl)phenyl)-3-methyl-2-phenylbut-1-en-1-yl)-N,N-dimethylaniline ( 23 )의 제조
화합물 j-1 대신에 화합물 j-4를 사용하고, 화합물 k-1 대신에 화합물 k-7를 사용한 것을 제외하고는 실시예 21의 단계 2와 동일한 방법으로 목적화합물 23 6 mg (12%, E/Z = 19:1)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.33 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 8.4 Hz, 2H), 7.20-7.11 (m, 9H), 3.95 (d, J = 13.2 Hz, 2H), 3.67-3.60 (m, 3H), 3.41-3.32 (m, 2H), 3.25 (t, J = 12.4 Hz, 2H), 3.15 (s, 6H), 3.09-3.02 (m, 1H), 1.46 (d, J = 6.6 Hz, 6H), 0.97 (d, J = 6.8 Hz, 6H); MS (ESI+) m/z calcd for C32H41N3 [M+H]+ 468.33; found 468.10.
[실시예 29] (Z)-5-(1-(3-hydroxyphenyl)-3-methyl-2-phenylbut-1-en-1-yl)-2-(4-isopropylpiperazin-1-yl)phenol (29)의 제조
Figure 112022052039669-pat00042
단계 1: (Z)-1-isopropyl-4-(2-methoxy-4-(1-(3-methoxyphenyl)-3-methyl-2-phenylbut-1-en-1-yl)phenyl)piperazine (j-5)의 제조
화합물 i-4 대신에 화합물 i-5를 사용한 것을 제외하고는 실시예 21의 단계 1과 동일한 방법으로 목적화합물 j-5 6 mg (8%)을 얻었다.
단계 2: 1-isopropyl-4-(2-methoxy-4-((Z)-1-(3-methoxyphenyl)-3-methyl-2-phenylbut-1-enyl)phenyl)piperazine (m-1)의 제조
화합물 j-1 대신에 화합물 j-5를 사용하고, 화합물 k-1 대신에 화합물 k-7를 사용한 것을 제외하고는 실시예 21의 단계 2와 동일한 방법으로 목적화합물 m-1 6 mg (8 %)을 얻었다.
단계 3: (Z)-5-(1-(3-hydroxyphenyl)-3-methyl-2-phenylbut-1-en-1-yl)-2-(4-isopropylpiperazin-1-yl)phenol ( 29 )의 제조
화합물 6 대신에 화합물 m-1을 사용하는 것을 제외하고는 실시예 12와 동일한 방법으로 목적화합물 29 1 mg (30%)을 얻었다.
1H NMR (400 MHz, CD3OD) δ 7.17 (t, J = 7.4 Hz, 3H), 7.10 (dd, J = 8.9, 7.5 Hz, 3H), 6.73 (d, J = 7.5 Hz, 1H), 6.69 (d, J = 6.2 Hz, 2H), 6.60 (d, J = 8.2 Hz, 1H), 6.47 (d, J = 1.8 Hz, 1H), 6.43 (dd, J = 8.2, 1.9 Hz, 1H), 3.55-3.48 (m, 1H), 3.41 (t, J = 14.9 Hz, 4H), 3.24 (d, J = 9.9 Hz, 2H), 3.06-2.99 (m, 1H), 2.85 (t, J = 11.7 Hz, 2H), 1.37 (d, J = 6.6 Hz, 6H), 0.93 (d, J = 6.9 Hz, 6H); MS (ESI+) m/z calcd for C30H37N2O2 [M+H]+ 457.29; found 457.20.
[실험예 1] ERRγ, ERRα, ERRβ, ERα 결합 분석법(binding assay)
1) ERRγ 결합 분석법 (inverse agonist assay)
본 발명의 화합물을 최종농도가 10μM부터 시작해서, 농도가 2배수로 희석되도록 순차적으로 384 well plate에 넣어주었다. 그리고, GST가 결합된 ERR gamma LBD (ligand-binding domain)를 최종농도 5nM이 되도록 첨가해 주고, fluorescien-conjugated coacitivator PGC1a와 Tb-a-GST antibody가 각각 500nM과 5nM이 되도록 첨가해 주었다. 모든 reagents가 첨가된 후, 20 ℃에서 1시간 동안 gently shaking을 해 주면서 반응시키고, 반응 후 binding activity는 TR-FRET 방식으로 측정하였다. 즉, 340nm에서 excitation 시키고, 495nm와 520nm에서 각각 emission 값을 측정한 후, 결과 분석은 490nm 측정값/520nm측정값으로 하였으며 분석프로그램은 Prism 6를 사용하였다.
2) ERRα / ERRβ / ERα 결합 분석법 (Selectivity test)
ERR alpha binding assay는 GST가 결합된 ERR alpha LBD를 사용하였으며, 그 이외의 모든 실험방법은 ERR gamma binding assay와 동일하였다.
ERR beta binding assay는 GST가 결합된 ERR alpha LBD를 최종농도 10nM, fluorescien-conjugated coacitivator PGC1a는 250nM이 되도록 사용하였으며, 그 이외의 모든 실험방법은 ERR gamma binding assay와 동일하였다.
ER alpha binding assay는 본 발명의 화합물이 첨가된 384 well plate에 GST가 결합된 ER alpha LBD (ligand-binding domain)를 최종농도 7.3nM이 되도록 첨가해 주었다. 그리고, fluorescien-conjugated coacitivator PGC1a와 Tb-a-GST antibody가 각각 250nM과 5nM, agonist인 beta-estradiol을 최종농도 4nM이 되도록 첨가해 주었다. 이후의 모든 실험방법은 ERR gamma binding assay와 동일하였다.
[실험예 2] ERRγ 역작동제 기능 분석법 (inverse agonist functional assay)
AD293을 9 × 104개/well 농도로 0.5% FBS를 첨가한 DMEM High glucose (Hyclone, USA) 배양액을 사용하여 24 well plate에서 24시간 배양하였다. 10% FBS를 첨가한 DMEM High glucose 배양액으로 교체하고, TransIT-LT1 transfection reagent (Mirus, USA)와 pCMX-Gal4-ERRγ, pFR-luciferase reporter plasmid, pCMV-β-gal을 섞어 함께 처리한 후 24시간 배양하였다. 이후 본 발명의 화합물을 24시간 처리한 뒤 얻은 lysate로 luciferase activity assay와 β-gal assay를 각각 수행하였다. 모든 결과는 세 번 이상의 독립되고 반복된 실험으로부터 도출하였다.
상기 실험예 1 및 실험예 2의 결과를 하기 표 1 및 표 2에 나타내었다.
ERRγ/ERRβ 결합분석 (농도: 10 μM)
화합물 번호 Binding assay at 10 μM, (% of control)
ERRγ ERRβ
1 4.98 0
4 3.03 2.744
10 2.8 4.7
11 6.6 3.5
12 2.63 0
13 6.74 1.86
19 3.5 -9.0
20 2.1 -2.9
22 3.1 -2.0
ERRγ/ERRα/ERRβ 결합분석 및 ERRγ 역작동제 기능분석 (IC50)
화합물 번호 Binding Assay, IC50 (μM) functional assay,
IC50 (μM)
ERRγ ERRα ERRβ ERα ERRγ
1 0.023 0.850 0.033 0.730 0.010
12 0.021 >10 0.010 0.088 0.004
13 0.026 >10 0.018 0.165 0.005
[실험예 3] 생체 내 약물동태(in vivo PK) 평가
본 발명의 화합물을 랫(rat)에 정맥 또는 경구투여하였을 때 약물동태학적 거동을 알아보기 위하여 최소 200g의 랫을 사용하여 다음과 같은 실험을 실시하였으며, 그 결과를 하기 표 3에 나타내었다.
가. 실험방법
1. 경구투여군에 대해 하루전에 절식을 시킨다
2. 각 동물의 시간 0 혈액을 채취한다
3. 정맥투여군(IV)에 꼬리정맥으로 1mg/kg 용량으로 약물을 투입한다 (주사기).
4. 경구투여군(PO)에게 경구로 10mg/kg 용량으로 약물을 투입한다 (경구용 zondec).
5. 투여 후 정맥투여 군의 경우 0.08, 0.25, 0.5, 1, 2, 4, 6, 8, 24시간 동안 9번의 채혈을 경정맥에서 실시한다. 1회 채혈량은 200ul이다.
6. 투여 후 경구투여군의 경우 0.25, 0.5, 1, 4, 6, 8, 10, 24시간 동안 10번의 채혈을 경정맥에서 실시한다. 1회 채혈량은 200ul이다.
7. 각 혈액을 K2EDTA 튜브에 넣어 얼음에 보관한다.
8. 원심분리기를 통해서 상등액 plasma를 모은다.
9. LC-MS/MS 시스템에 주입하여 약물을 분석한다.
화합물 번호 투여군 AUCall
(μMh)
AUCINF
(μMh)
BA
(%)
Cmax
(μM)
Cl(observed)/F
(mL/min/kg)
Tmax (h) t1/2 (h) Vss (L/Kg) FW
1 IV 1.88 1.95 66.2 16.2 5.45 5.57 529.55
PO 12.44 12.70 1.33 3 4.06
[실험예 4] 대장암, 난소암, 전립선암, 유방암, 신경모세포종, 미분화 및 탈분화갑상선암에 대한 실험
1. 재료 및 방법
1.1. 생물 정보학 분석
ERRβ/γ 유전자 분석에 온코마인(Oncomine) 데이터베이스로부터 얻어진 대장암 데이터 세트를 사용하였다.
1.2. 임상 조직 샘플 분석
조직학적 분석을 위하여 종양 마이크로어레이(tumor microarray, TMA; BC051110c)를 US Biomax, Inc.로부터 구매하였다. 암 병변의 대표적인 영역은 헤마톡실린(hematoxylin)과 에오신(eosin)으로 염색된 섹션에서 신중하게 선택되었고, 각 파라핀 블록에서 2개의 조직 코어(직경 2mm)를 얻었다. TMA의 면역조직화학(Immunohistochemical, IHC) 염색은 anti-human ERR gamma (mouse monoclonal antibody; PP-H6812-00; dilution 1:100; R&D systems, Minneapolis, MN) 및 anti-human ERR beta (mouse monoclonal antibody; PP-H6707-00; dilution 1:100; R&D systems, Minneapolis, MN)를 사용하여 수행되었다.
1.3. 동물
특정 병원균이 없는(Specific pathogen-free, SPF), 6주령의 수컷 Balb/c 누드 마우스와 면역 적격(immunocompetent) Balb/c 마우스는 SLC, Inc.로부터 구매하였다. 모든 동물 실험 절차는 대구 경북 의료 혁신 재단 실험 동물 센터 연구소의 실험 동물 관리 및 사용 지침에 따라 유지 및 사용되었다. 동물 실험은 대구 경북 의료 혁신 재단 동물 실험 윤리 기관 심사위원회 (승인 번호 : DGMIF-19020701-00)의 승인을 거쳐 진행되었다.
1.4. 세포
HCT-116, RKO, SW480, CT26, PC-3, A2780, MDA-MB231, MCF-7, BE2C, CAL62, BHT101, BHP103scp, BcPAP 및 BJ (Human fibroblast) 세포는 ATCC (American Type Culture Collection)에서 구입하였다.
A2780, HCT-116, RKO, CT26, PC3, MDA-MB231, MCF-7, BHP103scp 및 SW480 세포는 10% FBS (Gibco FBS; Thermo Fisher Scientific) 및 1% 스트렙토마이신/페니실린이 보충된 RPMI 1640에서 유지되었다. BJ 세포는 10% 소 태아 혈청(FBS) 및 1% 스트렙토마이신/페니실린을 함유하는 고-글루코스 Dulbecco 변형 Eagle 배지(high-glucose Dulbecco modified Eagle medium)에서 배양되었다. BE2C는 10% FBS 및 1% 스트렙토마이신/페니실린이 보충된 DMEM:F-12에서 유지되었다. CAL62와 BcPAP는 10% FBS 및 1% 스트렙토마이신/페니실린이 보충된 DMEM에서 유지되었다. BHT101은 20% FBS 및 1% 스트렙토마이신/페니실린이 보충된 DMEM에서 유지되었다. 모든 세포는 37℃, 5% CO2 분위기 하에서 성장되었다. 미코플라스마(Mycoplasma) 테스트는 BioMycoX Mycoplasma PCR Detection Kit (CellSafe)를 사용하여 매달 정기적으로 수행되었다.
Figure 112022052039669-pat00043
1.5. 세포 생존력(Cell viability) 분석
세포 생존율은 Cell Counting Kit-8 (Dojindo molecular technologies, MD, USA)을 사용하여 분석되었다. 각 세포를 96-well plate에 파종하고, 화합물 1(DN203368) 또는 화합물 12(DN3317)을 상이한 농도로 처리하였다. 표시된 시점에서 CCK-8 (10 μL/well) 시약을 세포에 첨가한 다음, 37℃에서 90분 동안 추가로 배양하였다. 플레이트 리더(BioTek Instruments, Winooski, USA)를 사용하여 450nm에서의 흡광도를 측정하였다.
1.6. 웨스턴 블롯
총 단백질(total protein)의 추출을 위해, 세포를 37℃, CO2 인큐베이터에서 24시간 동안 화합물 1(DN203368)로 처리하고, PBS(phosphate-buffered saline)로 2회 세척하였다. 세포 펠렛은 프로테아제 및 포스파타제 저해제 칵테일 키트(protease and phosphatase inhibitor cocktail kit) (Thermo Fisher Scientific)를 함유하는 RIPA(radioimmunoprecipitation assay) 버퍼 (Thermo Fisher Scientific, IL, USA)를 사용하여 용균시켰다. 용균된 세포(lysed cells)를 간격을 두고 짧게 와동시킨 다음, 4℃에서 13,000 xg로 원심분리하였다. 단백질 샘플은 BCA(bicinchoninic acid) 단백질 분석 키트 (Thermo Fisher Scientific)로 정량화되었다.
동일한 양의 단백질을 10% SDS(sodium dodecyl sulfate)-PAGE(polyacrylamide gel electrophoresis)에 로딩하고, PVDF 막 (Millipore, Billerica, MA, USA)으로 이동시켰다. 막을 TBS-T(Tween-20)을 함유하는 TBS(Tris-buffered saline)에서 5% 탈지유(skim milk)로 1시간 동안 블록킹시키고, 4℃에서 밤새 5% BSA에서 일차 항체로 프로브시켰다. 인큐베이션 후, 막을 HRP(horseradish peroxidase)-공액된 이차 항체로 실온에서 1시간 동안 프로브시켰다. 막을 TBS-T로 세 번 세척하고, ECL(enhanced chemiluminescence) 검출 시약 (GE Healthcare Life Sciences, Pittsburgh, PA, USA)을 사용하여 신호를 시각화하였다.
사용된 일차 항체는 다음과 같다: ERRβ (R&D systems), ERRγ (R&D systems), PARP (Cell signaling; working dilution 1:1000), cleaved caspase3 (Cell signaling; dilution 1:1000), acetyl-p53 (Cell Signaling; dilution 1:1000), Bcl-2 (Cell Signaling; dilution 1:1000), BID (Cell Signaling; dilution 1:1000), p21 (Cell Signaling; dilution 1:1000), Cyclin D1 (Cell Signaling; dilution 1:1000), CDK4 (Cell Signaling; dilution 1:1000), 및 β-actin (Cell Signaling; dilution 1:5000).
사용된 HRP-공액된 이차 항체는 다음과 같다: anti-mouse (Cell Signaling) 및 anti-rabbit (Cell Signaling).
1.7. 세포주기(Cell-cycle) 분석
세척 및 고정된 세포를 0.5mL PI(propidium iodide)/RNase 염색 완충액으로 암실에서 15분 동안 실온에서 염색하였다. DNA 함량, 세포주기 프로필 및 전방 산란(forward scatter, FSC)은 488 nm (excitation) 및 575 nm (peak emission)에서 방출 검출 기능이 있는 Becton Dickinson LSRFortessaTM (BD Diagnostics)를 사용하여 분석되었다. FlowJo (BD biosciences)를 사용하여 데이터를 분석하였다.
1.8. 세포사멸(Apoptosis) 분석
세포를 1% HS(horse serum)를 함유하는 PBS로 세척하고, FITC-Annexin V 세포사멸 검출 키트 I (BD Biosciences)로 실온에서 30분간 암실에서 염색하였다. Becton Dickinson LSRFortessaTM를 사용하여 DNA 함량, 세포주기 프로파일 및 전방 산란 프로파일을 결정하고, FlowJo software로 분석하였다.
1.9. Caspase3/7 활성(Caspase3/7 activity) 분석
화합물 1(DN203368) 처리 후 caspase3/7 활성을 luminescent Caspase-Glo3/7 (Promega) assay를 사용하여 제조업체의 지침에 따라 측정하였다. 즉, 각각의 HCT-116, SW480, RKO 세포를 104/웰의 밀도로 흰색-벽 96-웰 배양 플레이트(white-walled 96-well culture plate)에 시딩하였다. 화합물 1(DN203368) 처리 후 다양한 시점에서 세포를 처리하였다. 배양 후 100μL Caspase-Glo3/7 시약을 각 샘플에 첨가하였다. IVIS LuminaⅢ를 사용하여 발광 정도를 측정하였다.
1.10. 생체 내 요법( In vivo therapy)
세포 HCT116, RKO, SW480, CT26, BE2C, A2780, MDA-MB231 및 BHP103scp를 각각 2 × 106 개씩 마우스의 피하에 접종하였다. 유방암 동소이식 제작을 위하여 마취하에 MDA-MB231 세포를 유두 바로 아래의 mammary fat pad에 주사하였다. 시진(inspection) 및 촉진(palpation)에 의해 종양 형성이 발견되었을 때, 화합물 1(DN203368)을 10일 동안 하루에 한번 복강 내 또는 경구 투여하였다.
비히클(vehicle) 정보는 다음과 같다 : 비히클 용액은 10% DMSO, 15% DW 및 75% PEG (복강 주사용), 0.5% 메틸 셀룰로오스 용액(경구 투여용)이다.
지정된 시점에서 캘리퍼로 종양 크기를 측정하고, 종양 부피(mm3)를 하기 식을 사용하여 계산하였다.
종양 부피(mm3) = d2 × D/2
여기서, d와 D는 각각 mm 단위의 최단 및 최장 직경이다.
추가 실험을 위해 절제된 HCT116, RKO, SW480 및 BHP103scp 종양을 절개하고, 10% 포르말린에 고정하였다.
1.11. H&E 염색 및 IHC
포르말린에 고정후 파라핀에 포매된 조직을 표준 H&E 염색 프로토콜에 따라 섹션으로 절단하였다. SW480, RKO 및 BHP103scp 종양 조직 각각의 파라핀 포매 섹션에서 파라핀을 제거하고, 수화한 다음, IHC 염색을 위한 항원 복원(antigen retrieval)을 수행하였다. 내인성 과산화 효소를 과산화수소에 의해 10분간 비활성화시켰다. 종양 조직 섹션을 제조업체의 지침을 따라 rabbit monoclonal anti-Ki-67 (1:200, ab16667; Abcam) 및 rabbit polyclonal anti-cleaved caspase-3 (9661, #1:200 dilution, Cell Signaling, Boston, MA, USA)으로 처리하였다. 시각화를 위해 DAB 검출 키트 (Pierce, Rockland, IL, USA)를 사용하였다.
1.12. 통계 분석(Statistical Analysis)
모든 데이터는 평균±표준 편차(mean ± standard deviation, SD)로 표시되며, 통계적 유의성은 GraphPad Prism 5 (La Jolla, CA, USA)의 unpaired Student's test를 사용하여 결정되었다. 0.05 미만의 P 값은 통계적으로 유의하다고 간주되었다.
2. 결과
2.1. 대장암에서 ERRβ 및 ERRγ의 상향 조절(Up-regulation of ERRβ and ERRγ in colorectal cancer)
ERRβ/γ 발현과 대장암 발암의 임상적 상관관계를 조사하기 위해, 온코마인(Oncomine) 데이터베이스를 사용하여 대장암 환자에서 ERRβ/γ 발현을 분석한 결과, 쌍을 이룬 비종양 조직보다 대장암 조직에서 더 높은 것을 확인하였다.
웨스턴 블롯팅을 사용하여 정상 조직과 종양 조직 모두에서 ERRβ/γ 발현을 관찰한 결과, ERRβ/γ 발현은 정상 조직보다 종양 조직에서 상향 조절되었음을 확인하였다(도 1의 A 및 B).
대장암 환자로부터 얻은 상업적 종양 마이크로어레이(BC051110c, 12개의 정상 조직 및 108개의 종양 조직을 포함함)를 사용하여 인간 대장암과 정상 대장 조직에서 ERRβ/γ 단백질 발현의 차이를 확인하였다. ERRβ/γ-특이적 항체를 사용한 조직 마이크로어레이(TMA) 분석 결과, 대장암 조직에서 정상 조직에 비해 더 높은 수준의 ERRβ/γ 발현을 나타냈다(도 1의 C).
이러한 결과는 ERRβ/γ가 대장암의 병태생리학적 특성과 관련이 있음을 나타내며, 이로부터 ERRβ/γ가 생체 내 대장암의 유망한 치료 표적임을 확인하였다.
2.2. 화합물 1(DN203368)에 의한 대장암 세포 증식의 억제
HCT116, RKO, SW480 및 CT26 세포와 같은 다른 돌연변이를 가진 여러 유형의 대장암 세포의 증식에 대한 화합물 1(DN203368)의 억제 효과를 알아보고자 하였다.
시험관 내(in vitro)에서 화합물 1(DN203368)의 증식 억제 효과를 평가하기 전에, ERRβ/γ의 내인성 발현 정도를 알아보기 위하여 ERRβ/γ의 특이적 항체를 이용하여 웨스턴 블롯팅 분석을 수행하였다. 도 2에 도시한 바와 같이, ERRβ/γ의 차별적인 내인성 발현 수준이 대장암 세포에서 발견되었다. CCK-8 분석의 결과는 화합물 1(DN203368)이 대장암 세포 증식의 용량-의존적 억제를 유도함을 보여주었다(도 4 및 도 5). 50% 세포 성장 억제(50% cell growth inhibition, GI50)를 유발하는 농도는 HCT-116, SW480, RKO 및 CT26 세포에서 각각 3.5 μM, 4.9 μM, 3.9 μM 및 2.2 μM이었다(도 6). 그러나, 섬유 아세포 (BJ 세포) 및 상피 세포 (CHO 세포)와 같은 정상 세포에서는 항-증식 효과가 나타나지 않았다(도 3). 상기 결과로부터, 대장암 세포 내 화합물 1(DN203368)의 선택적 세포 독성을 확인하였다.
옥살리플라틴(Oxaliplatin)과 5-플루오로우라실(5-fluorouracil, 5-FU)은 대장암 세포의 1 차 치료법으로, 단독 또는 다른 치료제와 함께 병용하여 널리 적용되고 있다. 대장암 세포에서 기존 항암제 및 화합물 1(DN203368)을 비교한 결과, 화합물 1(DN203368)을 처리한 세포에서의 항증식 효과가 기존 항암제인 옥살리플라틴 또는 5-FU를 처리한 세포보다 더 높았다(도 7 및 도 8).
2.3. 대장암 세포에서 화합물 1(DN203368)-매개 세포주기 정지(cell cycle arrest) 및 세포사멸(apoptosis)의 유도
화합물 1(DN203368)은 5 μM 및 10 μM에서 정상 섬유아세포 및 상피 세포에서 어떠한 세포 독성도 나타내지 않았다. 대장암 세포의 화합물 1(DN203368)-매개 억제가 세포주기 정지 및 세포사멸 유도와 관련이 있는지 알아보고자 하였다.
세포 증식 억제와 함께, 세포주기 분석은 화합물 1(DN203368)-처리된 세포에서 sub-G1 분획의 용량-의존적 증가를 입증하였다(도 9). Annexin V 및 PI를 사용한 FACS 분석 결과, 비히클-처리된 세포와는 달리 화합물 1(DN203368)-처리된 세포에서 용량-의존적 방식으로 세포사멸 분획(apoptotic fraction, AF)의 현저한 상향 조절을 나타냈었다(도 10).
2.4. p53 아세틸화의 상향 조절을 통한 대장암 세포에서 caspase-3-의존적 세포사멸의 활성화
대장암 세포에서 화합물 1(DN203368)의 항-증식 효과와 관련된 신호 경로를 확인하기 위해, 화합물 1(DN203368)-처리된 대장암 세포에서 ERRβ/γ의 내인성 발현 수준을 확인하였다. ERRβ 발현의 감소는 화합물 1(DN203368)-처리된 세포에서 용량-의존적으로 나타났다. 유사하게, ERRγ는 대장암 세포에서 화합물 1(DN203368)에 의해 하향 조절되는 것으로 확인되었다(도 11의 A).
화합물 1(DN203368)-매개 세포사멸에 관련된 다른 경로를 확인하기 위해, 30개의 신호 전달 경로에서 1318개의 부위-특이적 항체와 포스포-특이적 항체를 포함하는 항체 어레이를 화합물 1(DN203368)-처리된 SW480 대장암 세포를 사용하여 수행하였다. p53의 인산화와 세포주기 및 세포사멸을 조절하는 단백질의 현저한 변화가 화합물 1(DN203368)-처리된 세포에서 발견되었다.
웨스턴 블롯 분석을 통해 항체 어레이에서 발견되는 상향 또는 하향 조절된 단백질을 추가로 확인하였다. 세포주기 정지 및 세포사멸의 유도는 p53 활성화의 가장 눈에 띄는 생물학적 결과에 해당된다. 화합물 1(DN203368) 처리 후 종양 억제제로서 p53의 아세틸 화 상태를 분석한 결과, 도 11의 C에 도시된 바와 같이, p53 아세틸화 수준은 비히클-처리된 세포에 비해 화합물 1(DN203368)-처리된 세포에서 더 높았다. p53에 의한 세포주기 정지는 주로 p21/WAF1의 전사 활성화에 의해 매개된다. 도 11의 B에 도시된 바와 같이, 화합물 1(DN203368)-처리된 대장암 세포에서 p21 (세포주기 억제제)이 증가하는 것을 발견하였다. p21은 cyclin E/Cdk2 및 cyclin D/Cdk4 복합체에 결합하여 세포주기의 G1-단계 정지를 유도하고, CDK4 및 cyclin D1의 하향 조절은 화합물 1(DN203368)-처리된 세포에서 확인되었다.
세포사멸-관련 단백질은 화합물 1(DN203368)-처리된 대장암 세포에서 추가로 확인되었다. 도 11의 C에 도시된 바와 같이, Bcl-2 (anti-apoptotic protein)는 화합물 1(DN203368)-처리된 세포에서 하향 조절되었으나, 반대로 화합물 1(DN203368)은 BID (proapoptotic protein)의 증가를 나타냈다. 특히, 화합물 1(DN203368) 처리로 인해 절단된 카스파제 3(caspase 3) 및 절단된 PARP의 용량-의존적 증가가 발생하였다. 게다가, 화합물 1(DN203368)-처리된 HCT116 세포에서 Bcl-2의 시간-의존적 감소뿐만 아니라, 절단된 카스파제 3 및 절단된 PARP1의 증가를 확인하였다(도 11의 E).
대장암 세포의 화합물 1(DN203368)-매개 성장 억제가 카스파제 3-의존적 경로에 기인하는지 확인하기 위하여, 활성 카스파제 3(active caspase 3)의 시간- 및 용량-의존적 변화를 Caspase-Glo 3/7 assay 및 Z-VAD (pan-caspase inhibitor)를 사용하여 분석하였다. 즉, 대장암 세포의 화합물 1(DN203368) 처리 후, IVIS 이미징 시스템을 사용하여 각 대장암 세포에서 caspase 3/7 수준의 상태를 보여주는 발광 신호의 변화를 모니터링하였다. 도 12의 A 및 C에 도시한 바와 같이, 발광 신호의 시간- 및 용량-의존적 증가는 화합물 1(DN203368)-처리된 세포에서 검출 가능하였다. 따라서, 세포 생존력의 감소는 화합물 1(DN203368)-처리된 세포에서 시간- 및 용량-의존적으로 발생하였다(도 12의 B). 한편, Z-VAD 억제제는 화합물 1(DN203368)-처리된 세포에서 증가된 발광 신호를 기저 수준으로 하향 조절하였다(도 12의 D).
이상의 결과로부터, 화합물 1(DN203368)에 의한 성장 억제는 대장암 세포에서 p53- 매개 G1-세포주기 정지 및 caspase 3-의존적 세포사멸 유도와 관련이 있음을 확인하였다.
2.5. 생체 내( in vivo ) 대장암의 이종이식 모델(xenograft model)에서 화합물 1(DN203368) 유도된 강력한 항종양 효과
대장암 모델에서 화합물 1(DN203368)의 항종양 효과를 평가하기 위해, 면역결핍 마우스에 대장암 세포(HCT-116)를 접종하였다(도 13의 A). HCT116 종양 보유 마우스에게 10일 동안 1일 1회 복강 내 주사를 통해 화합물 1(DN203368)을 투여하였다. 도 13의 B 및 C에 도시한 바와 같이, 비히클-처리된 마우스는 생체 내 연구 동안 빠른 종양 성장을 나타냈으나, 화합물 1(DN203368)의 처리군은 HCT-116 종양 성장에 있어 용량-의존적 억제를 초래하였다. 5 mg/kg 화합물 1(DN203368)-처리된 마우스에서 종양 성장 억제 효과가 나타났지만, 비히클-처리된 마우스와 통계적 차이는 발견되지 않았다. 10 mg/kg 화합물 1(DN203368)-처리된 마우스의 경우, 치료 후 7일째부터 17일까지 상당한 종양 성장 억제가 관찰되었다. 체 내 치료 동안, 화합물 1(DN203368)-처리된 마우스에서 비정상적인 행동과 체중 감소는 관찰되지 않았다(도 13의 D). 간 독성에 대한 혈청 생화학 적 분석을 통해 혈중 총 단백질, 알부민, 총 콜레스테롤, 트리글리세리드, AST(aspartate aminotransferase), ALT(alanine aminotransferase) 및 ALP(alkaline phosphatase)의 수준이 비히클-처리된 마우스와 화합물 1(DN203368)-처리된 마우스 간에 유의한 차이가 없는 것으로 나타났다(도 13의 E).
대장암 모델, RKO 및 SW480에서 화합물 1(DN203368)의 치료 효과를 알아보기 위하여, 도 14의 A에 도시된 바와 같이, 화합물 1(DN203368)을 10일 동안 매일 복강 내 주사를 통해 각 종양 보유 마우스에 투여하였다. SW480 이종 이식의 경우, 항종양 효과는 4일째에 유의한 차이를 가지고 처음 발견되었으며, 18일째까지도 지속되었다(도 14의 B). RKO 이종 이식의 경우, 치료 후 6일째에 화합물 1(DN203368)-처리된 마우스에서 종양 성장 억제가 유의하게 발견되었고, 항종양 효과는 16일째에도 발견되었다(도 14의 C). 화합물 1(DN203368)을 투여하는 동안 비정상적인 행동과 체중 감소는 발견되지 않았다(도 14의 D 및 E). 생체 내 치료 후 SW480 및 RKO 종양을 절제하고, 면역조직화학 분석을 수행하여 종양 세포 증식 및 절단된 카스파제-3 수준을 결정하였다. 도 14의 F에 도시한 바와 같이, 종양 세포 증식 마커로서 Ki-67 항체를 사용한 면역조직화학 검사는 비히클-처리된 SW480 종양에서 화합물 1(DN203368)-처리된 SW480 종양에서보다 더 높은 발현을 나타냈다. 절단된 카스파제-3 항체를 사용한 면역조직화학적 염색은 비히클-처리된 종양보다 화합물 1(DN203368)-처리된 종양에서 더 많은 발현 증가를 보였다(도 14의 F 및 G). 이로부터 화합물 1(DN203368)은 대장암을 치료하기 위한 항암제로 사용가능함을 확인하였다.
2.6. 생체 내( in vivo ) 경구용 항암제로서의 화합물 1(DN203368)의 가능성
화합물 1(DN203368)의 경구 투여를 통한 대장암에 대한 항종양 효과를 확인하지 위하여, 도 15에 도시된 바와 같이 HCT-116 및 CT26 세포를 포함하는 대장암 모델을 사용하여 실험을 진행하였다. 종양 보유 마우스에게 10일 동안 1일 1회 경구 투여를 통해 10 mg/kg 화합물 1(DN203368)을 투여하였다. 도 15의 B에 도시된 바와 같이, 화합물 1(DN203368)의 경구 투여는 HCT-116 이종 이식에서 항종양 효과를 성공적으로 유도했으며, 치료 후 13일째에 유의한 차이가 처음 관찰되었다. 또한, 화합물 1(DN203368)-처리된 마우스에서 CT26 종양 성장이 현저하게 억제되는 반면, 비히클-처리된 마우스에서는 관찰되지 않았다(도 15의 D). 실험 기간 동안 비정상적인 행동과 체중 감소는 발견되지 않았다(도 15의 C와 E). CT26 종양 보유 마우스의 혈청 생화학적 검사는 비히클-처리된 마우스와 화합물 1(DN203368)-처리된 마우스에서 간 및 신장 독성 관련 바이오 마커의 수준에 있어서 별다른 차이가 없음을 보였다(도 16). 이러한 결과로부터, 화합물 1(DN203368)은 대장암 치료를 위한 경구 활성 항암제로서 유용함을 확인할 수 있었다.
2.7. 화합물 1(DN203368)에 의한 다양한 종양 세포 증식의 억제
대장암 이외 다양한 암 세포, 즉 전립선암(PC-3), 난소암(A2780), 유방암(MDA-MB231, MCF-7), 신경모세포종(BE2C), 미분화 및 탈분화갑상선암(CAL62, BHT101, BHP103scp, BcPAP) 세포의 증식에 대한 화합물 1(DN203368)의 억제 효과를 알아보고자 하였다.
CCK-8 분석의 결과는 화합물 1(DN203368)이 전립선암, 난소암, 유방암, 신경모세포종, 미분화 및 탈분화갑상선암 세포 증식의 용량-의존적 억제를 유도함을 보여주었다(도 17의 A 및 B). 그러나, 섬유 아세포 (BJ 세포) 및 상피 세포 (CHO 세포)와 같은 정상 세포에서는 항-증식 효과가 나타나지 않았다(도 3 및 도 17의 A). 상기 결과로부터, 전립선암, 난소암, 유방암, 신경모세포종, 미분화 및 탈분화갑상선암 세포 내 화합물 1(DN203368)의 선택적 세포 독성을 확인하였다.
2.8. 생체 내( in vivo ) 신경모세포종 및 난소암의 이종이식 모델(xenograft model)에서 화합물 1(DN203368) 유도된 강력한 항종양 효과
신경모세포종 BE2C 이종 이식모델에서 화합물 1(DN203368)의 치료 효과를 알아보기 위하여, 화합물 1(DN203368)을 14일 동안 매일 복강 내 주사를 통해 각 종양 보유 마우스에 투여하였다. 항종양 효과는 14일째부터 확인되었으며, 30일째까지도 지속되었으며 유의성 또한 확인되었다(도 18의 A).
난소암 A2780 이종 이식모델에서 화합물 1(DN203368)의 치료 효과를 알아보기 위하여, 화합물 1(DN203368)을 14일 동안 매일 복강 내 주사를 통해 각 종양 보유 마우스에 투여하였다, 치료 후 10일째에 화합물 1(DN203368)-처리된 마우스에서 종양 성장 억제가 유의하게 발견되었고, 항종양 효과는 16 일째에도 지속적으로 발견되었다(도 18의 B).
2.9. 생체 내( in vivo ) 유방암의 이종이식 모델(xenograft model) 및 동소이식 모델(orthotopic model)에서 화합물 1(DN203368) 유도된 강력한 항종양 효과
유방암 MDA-MB231 이종이식 모델에서 화합물 1(DN203368)의 치료 효과를 알아보기 위하여, 화합물 1(DN203368)을 14일 동안 매일 복강 내 주사를 통해 각 종양 보유 마우스에 투여하였다. 치료 후 15일째에 화합물 1(DN203368)-처리된 마우스에서 종양 성장 억제가 발견되었고, 항종양 효과는 23 일째에도 발견되었으며 유의성 또한 확인되었다 (도 19의 A).
유방암 MDA-MB231 동소이식 모델에서 화합물 1(DN203368)의 치료 효과를 알아보기 위하여, 화합물 1(DN203368)을 14일 동안 매일 복강 내 주사를 통해 각 종양 보유 마우스에 투여하였다. 치료 후 3일째에 화합물 1(DN203368)-처리된 마우스에서 종양 성장 억제가 유의하게 발견되었고, 항종양 효과는 23 일째에도 발견되었다 (도 19의 B).
2.10. 생체 내( in vivo ) 탈분화갑상선암의 이종이식 모델(xenograft model)에서 화합물 1(DN203368) 유도된 강력한 항종양 효과
탈분화갑상선암 BHP103scp 이종 이식모델에서 화합물 1(DN203368)의 치료 효과를 알아보기 위하여, 화합물 1(DN203368)을 14일 동안 매일 복강 내 주사를 통해 종양 보유 마우스에 투여하였다. 치료 후 8일째에 화합물 1(DN203368)-처리된 마우스에서 종양 성장 억제가 유의하게 발견되었고, 항종양 효과는 14일째에도 발견되었다(도 20의 A). 화합물 1(DN203368)을 투여하는 동안 비정상적인 행동과 체중 감소는 발견되지 않았다(도 20의 B). 생체 내 치료 후 BHP103scp 종양을 절제하고, 면역조직화학 분석을 수행하여 종양 세포 증식 및 절단된 카스파제-3 수준을 결정하였다. 도 20의 C에 도시한 바와 같이, 종양 세포 증식 마커로서 Ki-67 항체를 사용한 면역조직화학 검사는 비히클-처리된 BHP103scp 종양에서 화합물 1(DN203368)-처리된 BHP103scp 종양에서보다 더 높은 발현을 나타냈다. 절단된 카스파제-3 항체를 사용한 면역조직화학적 염색은 비히클-처리된 종양보다 화합물 1(DN203368)-처리된 종양에서 더 많은 발현 증가를 보였다(도 20의 C).
이상 살핀 바와 같이, 화합물 1(DN203368)은 대장암, 신경모세포종, 난소암, 유방암, 탈분화갑상선암 등의 다양한 난치성암 등을 치료하기 위한 항암제로 사용가능함을 확인하였다.
2.11. 화합물 12(DN3317)에 의한 다양한 종양 세포 증식의 억제
전립선암(PC-3), 난소암(A2780), 교모세포종(U87MG) 및 탈분화갑상선암(BHP103scp, BcPAP) 세포의 증식에 대한 화합물 12(DN3317)의 억제 효과를 알아보고자 하였다.
CCK-8 분석 결과, 화합물 12(DN3317)이 전립선암, 난소암, 교모세포종 및 탈분화갑상선암 세포 증식을 용량-의존적으로 억제함을 확인할 수 있었다(도 21).
2.12. 화합물 1(DN203368)과 항암제와의 병용 투여에 의한 대장암 세포 증식의 억제
대장암 세포(HCT116, SW480 및 CT26 세포)에서 기존 항암제와 화합물 1(DN203368)의 병용 투여로 인한 대장암 세포 증식 억제 효과를 알아보고자 하였다.
기존 항암제로 아파티닙(Apatinib), 옥살리플라틴(Oxaliplatin), 5-플루오로우라실(5-fluorouracil, 5-FU)을 사용하였다.
대장암 세포주 HCT-116 세포에서 기존 30μM 아파티닙(Apatinib)과 5μM DN203368을 단독처리 했을 때에는 각각 83%, 79%의 세포 생존율을 보였다. 그러나 30μM 아파티닙(Apatinib)과 5μM DN203368을 동시에 처리한 경우에는 27%의 세포 생존율을 보였다(도 22의 A 및 B). 대장암 세포주 HCT-116 세포에서 2 μM 5-플루오로우라실(5-fluorouracil, 5-FU)과 2.5 μM DN203368을 단독으로 처리한 경우에는 각각 70%, 68%의 세포 생존율을 보였다. 2 μM 5-플루오로우라실(5-fluorouracil, 5-FU)과 2.5 μM DN203368을 동시에 처리한 경우에는 54%의 세포 생존율을 보였다(도 22의 C). 대장암 세포주 HCT-116 세포에서 0.5 μM 옥살리플라틴(Oxaliplatin)과 2.5 μM DN203368을 단독처리 했을 때에는 각각 82%, 68%의 세포 생존율을 보였다. 0.5 μM 옥살리플라틴(Oxaliplatin)과 2.5 μM DN203368을 동시에 처리한 경우에는 56%의 세포생존율을 보였다(도 22의 D).
대장암 세포주 SW480 세포에서 2 μM 5-플루오로우라실(5-fluorouracil, 5-FU)과 2.5 μM DN203368을 단독으로 처리한 경우에는 각각 79%, 80%의 세포 생존율을 보였다. 2 μM 5-플루오로우라실(5-fluorouracil, 5-FU)과 2.5 μM DN203368을 동시에 처리한 경우에는 49 %의 세포 생존율을 보였다(도 23의 A). 대장암 세포주 SW480 세포에서 0.5 μM 옥살리플라틴(Oxaliplatin)과 2.5 μM DN203368을 단독처리 했을 때에는 각각 92%, 80%의 세포 생존율을 보였다. 0.5 μM 옥살리플라틴(Oxaliplatin)과 2.5 μM DN203368을 동시에 병용으로 처리한 경우에는 68% 세포 생존율을 보였다(도 23의 B).
대장암 세포주 CT26 세포에서 6 μM 아파티닙(Apatinib)과 5 μM DN203368을 단독처리 후 24시간 때에는 각각 94%, 70%의 세포 생존율을 보였다. 6 μM 아파티닙(Apatinib)과 5 μM DN203368을 동시에 처리했을 때에는 9%의 세포 생존율을 보였다(도 24).
이상 살핀 바와 같이, 본 발명에 따른 에텐 화합물은 암세포에 대하여 선택적으로 높은 억제 활성 및 항증식 효과를 나타내므로, 암의 예방 또는 치료에 유용하게 사용될 수 있다. 또한, 본 발명에 따른 에텐 화합물은 기존 항암제와 병용함으로써 각각 단독 사용시에 비해 암세포 생존율을 현저히 감소시킬 수 있으며, 장시간에 걸쳐 지속적인 항증식 효과가 유지될 수 있다.
이상에서 본 발명은 기재된 실시예에 대해서만 상세히 기술되었지만, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.

Claims (16)

  1. 하기 화학식 1로 표시되는 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드:
    [화학식 1]
    Figure 112023014886107-pat00044

    상기 화학식 1에서,
    R1은 C2-C5알킬 또는 C3-C7사이클로알킬이고;
    R2는 OH, OCH3, SCH3, OCOCH3 또는 N(CH3)2이고;
    A1 내지 A4는 각각 CH이고;
    R3는 C3알킬이고;
    L은 CH 또는 N이고;
    m은 1 내지 2의 정수이고, m이 2의 정수인 경우 R2는 동일하거나 상이할 수 있으며;
    n은 0 또는 1의 정수임.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 삭제
  6. 삭제
  7. 제 1항에 있어서,
    상기 R1은 에틸, n-프로필, 이소프로필, n-부틸, 이소부틸, t-부틸, n-펜틸, 이소펜틸, 네오펜틸, t-펜틸, s-펜틸, 3-펜틸, s-이소펜틸, 사이클로프로필, 사이클로부틸, 사이클로펜틸, 사이클로헥실 또는 사이클로헵틸인, 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드.
  8. 제 1항에 있어서,
    상기 에텐 화합물은 하기 구조에서 선택되는 적어도 하나인, 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드:
    Figure 112023014886107-pat00049

    Figure 112023014886107-pat00050

    Figure 112023014886107-pat00051

    Figure 112023014886107-pat00052

    Figure 112023014886107-pat00053

    Figure 112023014886107-pat00054

    Figure 112023014886107-pat00080
  9. 제1항, 제7항 내지 제8항에서 선택되는 어느 한 항에 따른 에텐 화합물, 이의 약학적으로 허용가능한 염 또는 이의 N-옥사이드를 유효성분으로 포함하는, 암의 예방 또는 치료용 약학적 조성물.
  10. 삭제
  11. 제9항에 있어서,
    상기 암은 난소암, 전립선암, 유방암, 신경모세포종, 교모세포종, 미분화 갑상선암, 탈분화 갑상선암 및 대장암으로 이루어진 군으로부터 선택되는 것인, 약학적 조성물.
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
KR1020220060100A 2021-05-18 2022-05-17 신규 에텐 화합물 및 이를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물 KR102503296B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/KR2022/007099 WO2022245124A1 (ko) 2021-05-18 2022-05-18 신규 에텐 화합물 및 이를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물
KR1020220124847A KR102503295B1 (ko) 2021-05-18 2022-09-30 신규 에텐 화합물을 포함하는 암의 예방 또는 치료용 병용 제제

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210064352 2021-05-18
KR20210064352 2021-05-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020220124847A Division KR102503295B1 (ko) 2021-05-18 2022-09-30 신규 에텐 화합물을 포함하는 암의 예방 또는 치료용 병용 제제

Publications (2)

Publication Number Publication Date
KR20220156459A KR20220156459A (ko) 2022-11-25
KR102503296B1 true KR102503296B1 (ko) 2023-02-24

Family

ID=84237396

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220060100A KR102503296B1 (ko) 2021-05-18 2022-05-17 신규 에텐 화합물 및 이를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물

Country Status (1)

Country Link
KR (1) KR102503296B1 (ko)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112015022566A2 (pt) * 2013-03-14 2017-07-18 Seragon Pharmaceuticals Inc composto e composição farmacêutica
CA3120530A1 (en) 2018-11-21 2020-05-28 Accutar Biotechnology Inc. Novel compounds having estrogen receptor alpha degradation activity and uses thereof

Also Published As

Publication number Publication date
KR20220156459A (ko) 2022-11-25

Similar Documents

Publication Publication Date Title
TWI623533B (zh) 作為檢測點激酶1 (chk1)抑制劑之3,5-二取代吡唑及其製備及應用
JP2021119191A (ja) がんを処置するための組合せ治療
JP6134824B2 (ja) テロメラーゼ活性化化合物及びその使用方法
JP7181565B2 (ja) Yap-tead結合を阻害する化合物、およびそれを有効成分として含有する癌の予防または治療用医薬組成物
TR201807981T4 (tr) Nörodejeneratif hastalığın tedavi edilmesine veya önlenmesine yönelik verbenon türevi içeren farmasötik bileşim.
KR101792743B1 (ko) 신규한 노카벤즈옥사졸 유도체, 이의 제조방법 및 이의 용도
WO2012064396A9 (en) Novel ezrin inhibitors and methods of making and using
KR102034276B1 (ko) Idf-11774 및 자가용해소체 형성 저해제를 포함하는 암의 예방 또는 치료용 조성물
KR102503296B1 (ko) 신규 에텐 화합물 및 이를 유효성분으로 포함하는 암의 예방 또는 치료용 약학적 조성물
KR102503295B1 (ko) 신규 에텐 화합물을 포함하는 암의 예방 또는 치료용 병용 제제
KR20230008908A (ko) 신규 메틸설폰아미드 유도체 화합물의 암전이 억제용 조성물
KR101777475B1 (ko) 신규한 디히드로피라노피리미디논 유도체 및 이들의 용도
KR101457637B1 (ko) 디히드로피라졸카르보티오아미드 유도체 및 그 제법 및 그 유도체를 포함하는 항암제 조성물
KR102422090B1 (ko) Yap-tead 상호작용 저해제 및 혈당 강하제를 포함하는 암의 예방 또는 치료용 약학적 조성물
KR20230094996A (ko) 치환된 티아졸리딘디온 유도체 화합물 및 이를 포함하는 암의 예방 또는 치료용 약학적 조성물
WO2023244619A2 (en) Flavonoid compounds and methods and materials for using flavonoid compounds to treat fibrotic conditions

Legal Events

Date Code Title Description
A107 Divisional application of patent
A302 Request for accelerated examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant