KR102499973B1 - 수직축 풍차 및 풍력 발전 장치 - Google Patents

수직축 풍차 및 풍력 발전 장치 Download PDF

Info

Publication number
KR102499973B1
KR102499973B1 KR1020197027413A KR20197027413A KR102499973B1 KR 102499973 B1 KR102499973 B1 KR 102499973B1 KR 1020197027413 A KR1020197027413 A KR 1020197027413A KR 20197027413 A KR20197027413 A KR 20197027413A KR 102499973 B1 KR102499973 B1 KR 102499973B1
Authority
KR
South Korea
Prior art keywords
wing
blade
inclined portion
vertical
tip inclined
Prior art date
Application number
KR1020197027413A
Other languages
English (en)
Other versions
KR20190126086A (ko
Inventor
다케루 이토
Original Assignee
엔티엔 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2017050999A external-priority patent/JP7089848B2/ja
Priority claimed from JP2017051024A external-priority patent/JP7220018B2/ja
Priority claimed from JP2017050981A external-priority patent/JP2018155128A/ja
Application filed by 엔티엔 가부시키가이샤 filed Critical 엔티엔 가부시키가이샤
Publication of KR20190126086A publication Critical patent/KR20190126086A/ko
Application granted granted Critical
Publication of KR102499973B1 publication Critical patent/KR102499973B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/061Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

수직축 풍차는, 수직 주축에 지지체를 통해 날개(9)가 연결되어 있다. 날개(9)는, 수직 주축과 평행하게 연장되는 메인 날개부(10)와, 이 메인 날개부(10)의 양 단부로부터 수직 주축의 측으로 경사지게 절곡되어 연장되는 날개끝 경사부(11)를 구비한다. 날개(9)의 횡단면 형상은, 날개(9)의 회전 진행 방향의 전단 가까이의 개소에서 직경 방향의 두께가 가장 두꺼워지도록, 직경 방향 외측 및/또는 내측의 면이 날개(9)의 회전 진행 방향의 전후 양단으로부터 점차로 직경 방향의 외측 및/또는 내측으로 팽창하고 있는 형상이다. 날개끝 경사부(11)는, 선단측으로 감에 따라 날개(9)의 회전 진행 방향의 폭이 좁아지는 형상이다. 날개끝 경사부(11)의 정상점 위치 P는, 회전 진행 방향의 후단으로부터의 거리(B2)가, 날개(9)의 회전 진행 방향의 폭 B1에 대하여 50% 내지 83%의 범위 내에 있다.

Description

수직축 풍차 및 풍력 발전 장치
본 출원은, 2017년 3월 16일자 일본 특허출원 제2017-050981, 특허출원 제2017-050999 및 특허출원 제2017-051024의 우선권을 주장하는 것이며, 그 전체를 참조에 의해 본원의 일부를 이루는 것으로서 인용한다.
본 발명은, 본 발명은, 수직 주축을 가지는 수직축 풍차(vertical axis wind turbine), 및 이 수직축 풍차를 구비한 풍력 발전 장치(wind generation device)에 관한 것이다.
풍력 발전 장치에 사용되는 풍차는, 수평축식과 수직축식으로 대별된다. 수직축식은, 풍향을 불문하고 회전력이 얻어져, 풍향에 대한 제어가 불필요하므로, 비교적 소형의 풍차에 사용되는 경우가 많다. 수직축식의 풍차에 있어서, 날개의 형상에 따라 발전량이 좌우되는 것이 알려져 있고, 양호한 효율의 발전이 가능한 날개의 개발이 진행되고 있다. 그 하나로서, 날개끝(blade end)에 날개끝 경사부를 설치한 날개가 있다(예를 들면, 특허문헌 1 내지 4). 날개끝 경사부는, 선단측을 수직 주축에 근접하도록 경사지게 한 날개끝판이다. 날개끝 경사부를 설치함으로써, 날개끝에서의 소용돌이의 발생이 억제된다. 이로써, 바람으로부터 받는 에너지를 회전 에너지로 변환하는 회전 에너지 변환 효율을 향상시킬 수 있고, 또한 풍절음(風切音)에 의한 소음(騷音)을 저감할 수 있다.
일본 공개특허 제2004-204801호 공보 일본 공개특허 제2004-293409호 공보 일본 공개특허 제2011-169267호 공보 일본 공개특허 제2016-205204호 공보
전술한 날개끝 경사부의 효과는 경험적으로는 알려져 있지만, 날개 전체의 형상과 날개끝 경사부의 형상이 어떻게 관계되는지, 또한 날개끝 경사부를 어떠한 형상으로 하면 최적의 효과가 얻어지는 것인지에 대하여, 아직 충분히는 연구되어 있지 않은 사항이 있다. 예를 들면, 날개끝 경사부에서의 상기 축심(軸心; axis) 방향의 최선단(最先端)의 위치인 정상점(頂点) 위치와, 소음 및 공전(空轉) 시의 저항과의 각 관계가 명확하지 않았다. 공전 시의 저항은, 자연계의 변동풍 하에 있어서 회전이 정지하기 쉬운지의 판단 재료로 되어, 발전 효율에 영향을 준다. 종래의 날개끝 경사부를 구비한 수직축 풍차는, 날개끝 경사부의 정상점 위치가 경험적으로 결정되어 있고, 적절한 위치인지가 명확하지 않았다.
본 발명의 목적은, 소음을 억제할 수 있어, 공전 시의 저항이 작아서, 소음 및 공전 시의 저항에 있어서 총합적으로 우수한 수직축 풍차를 제공하는 것이다.
본 발명의 다른 목적은, 소음이 적고, 또한 자연계의 변동풍 하에 있어서 발전 효율이 양호한 풍력 발전 장치를 제공하는 것이다.
본 발명의 수직축 풍차는, 회전 가능하게 설치되는 수직 주축과,
상기 수직 주축에 설치된 지지체와,
상기 수직 주축에 상기 지지체를 통해 연결되고 바람을 받아 상기 수직 주축의 축심(axis) 주위로 회전하는 날개
를포함하는 수직축 풍차로서,
상기 날개는, 상기 수직 주축과 평행하게 연장되는 메인 날개부와, 이 메인 날개부의 양 단부(端部)로부터 상기 수직 주축의 측으로 경사지게 절곡되어 연장되는 날개끝 경사부를 가지고, 상기 메인 날개부 및 상기 날개끝 경사부에 걸쳐 상기 날개의 횡단면 형상은, 상기 날개의 회전 진행 방향의 중앙보다 전단(前端) 가까이의 개소에서 직경 방향의 두께가 가장 두꺼워지도록, 직경 방향 외측 및 내측 중 적어도 한쪽 면이 상기 날개의 회전 진행 방향의 전후 양단으로부터 점차로 직경 방향의 외측 및/또는 내측으로 팽창하고 있는 형상이며, 상기 날개끝 경사부는, 선단측으로 감에 따라 직경 방향 외측의 면의 팽창량이 점차로 작아지게 되는 형상이며, 또한 상기 날개끝 경사부는, 선단측으로 감에 따라 상기 날개의 회전 진행 방향의 폭이 좁아지는 형상이며,
상기 날개끝 경사부에서의 상기 축심 방향의 최선단의 위치인 정상점 위치는, 상기 회전 진행 방향의 후단(後端)으로부터의 거리가, 상기 날개의 상기 회전 진행 방향의 폭에 대하여 50% 내지 83%의 범위 내에 있다.
상기 정상점 위치는, 더욱 바람직하게는 상기 회전 진행 방향의 후단으로부터의 거리가, 상기 날개의 상기 회전 진행 방향의 폭에 대하여 60% 내지 75%의 범위 내에 있다.
날개끝 경사부는, 날개단 와류(渦流)의 억제를 목적으로 하는 부위이지만, 날개끝 경사부의 정상점 위치가, 소음의 발생 정도 및 공전 시의 저항에 영향을 준다.
날개끝 경사부의 정상점 위치와, 소음 및 공전 시의 저항과의 관계에 대하여 유체(流體) 해석을 행했던 바, 다음의 결과가 얻어졌다. 즉, 소음에 대하여는, 날개의 회전 진행 방향의 폭에 대한 날개의 후단으로부터 정상점 위치까지의 거리의 비율이 클수록 소음이 적고, 상기 비율이 50% 전후 이하에서는 소음이 높은 레벨인 채 유지되고, 상기 비율이 50% 전후를 넘으면 소음 레벨이 2차 곡선적으로 저하된다. 또한, 공전 시의 저항에 대하여는, 전체적으로 상기 비율이 클수록 저항이 작고, 상기 비율이 50% 전후 이상에서는 저항이 어느 정도 낮게 억제되고, 50% 전후 이하로 되면 저항이 급격하게 크다.
이로써, 상기 비율이 50% 내지 83%의 범위 내에 있는 것이, 소음 및 공전 시의 저항에 있어서, 총합적으로 우수할 것을 알 수 있었다. 또한, 상기 비율이 60% 내지 75%의 범위 내에 있는 것이 더욱 바람직한 것을 알 수 있었다.
본 발명에 있어서, 상기 메인 날개부 및 상기 날개끝 경사부에 걸쳐 상기 날개의 횡단면 형상은, 상기 날개의 회전 진행 방향의 중앙보다 전단 가까이의 개소에서 직경 방향의 두께가 가장 두꺼워지도록, 직경 방향 외측의 면이 상기 날개의 회전 진행 방향의 전후 양단으로부터 점차로 직경 방향의 외측으로 팽창하고 있는 형상이며, 상기 메인 날개부에 대한 상기 날개끝 경사부의 절곡 각도가 20° 내지 55°의 범위 내에서 있어도 된다. 상기 날개끝 경사부의 절곡 각도는, 더욱 바람직하게는 40° 내지 50°의 범위 내이다.
날개끝 경사부는, 날개단 와류의 억제를 목적으로 하는 부위이지만, 그 절곡 각도가, 바람 에너지를 날개의 회전 에너지로 변환하는 회전 에너지 변환 효율에 영향을 준다. 또한, 날개끝 경사부의 절곡 각도는, 공전 시의 저항, 및 풍절음에 의한 소음의 정도에도 영향을 준다. 상기 공전 시의 저항이 크면, 변동풍에 있어서 바람이 약해졌을 때 날개의 회전이 멈추기 쉽다.
날개끝 경사부의 절곡 각도와, 회전 에너지 변환 효율, 공전 시의 저항, 및 소음과의 관계에 대하여 유체 해석을 행했던 바, 회전 에너지 변환 효율은, 절곡 각도가 커지게 됨에 따라 저하되지만, 50°전후까지는 어느 정도 높게 유지되는 것을 알 수 있었다. 공전 시의 저항은, 20°전후에서 가장 작고, 이보다 각도가 커져도 작아져도 저항은 커지게 되지만, 45°전후까지는 변화가 완만한 것을 알 수 있었다. 소음은, 0° 내지 45°전후까지는 점차로 작아지지만, 45°을 넘으면 별로 변하지 않고, 오히려 절곡 각도가 커지게 되면 소음이 약간 커지는 것을 알 수 있었다.
이로써, 날개끝 경사부의 절곡 각도가 20° 내지 55°의 범위 내인 것이, 회전 에너지 변환 효율, 공전 시의 저항, 및 소음에 있어서, 총합적으로 우수한 것을 알 수 있었다. 또한, 절곡 각도가 40° 내지 50°의 범위 내가 더욱 바람직한 것을 알 수 있었다.
본 발명에 있어서, 상기 날개 전체의 상기 축심 방향의 길이의 절반의 길이에 대한 상기 날개끝 경사부의 상기 축심 방향의 길이의 비율이 10% 내지 20%의 범위 내에서 있어도 된다. 상기 날개 전체의 상기 축심 방향의 길이의 절반의 길이에 대한 상기 각 날개끝 경사부의 상기 축심 방향의 길이의 비율은, 더욱 바람직하게는 16% 내지 18%의 범위 내이다.
날개끝 경사부는, 날개단 와류의 억제를 목적으로 하는 부위이지만, 날개의 전체 길이와 날개끝 경사부의 길이와의 비율이, 바람 에너지를 날개의 회전 에너지로 변환하는 회전 에너지 변환 효율에 영향을 준다.
날개의 전체 길이와 날개끝 경사부의 길이와의 비율과, 회전 에너지 변환 효율과의 관계에 대하여 유체 해석을 행했던 바, 날개 전체의 축심 방향의 길이의 절반의 길이에 대한 날개끝 경사부의 길이의 비율이 17% 전후에서 회전 효율이 가장 높고, 이보다 커져도 작아져도 회전 에너지 변환 효율이 저하되는 것을 알 수 있었다. 또한, 상기 비율이 10% 내지 20%의 범위 내에서는, 어느 정도 높은 회전 효율이 유지되는 것을 알 수 있었다. 이로부터, 날개의 전체 길이에 대한 날개끝 경사부의 길이의 비율은, 10% 내지 20°의 범위 내가 바람직하고, 16% 내지 18°의 범위 내가 더욱 바람직하다고 할 수 있다.
본 발명의 풍력 발전 장치는, 상기 수직축 풍차와, 이 수직축 풍차의 상기 수직 주축의 회전으로 발전하는 발전기를 구비한다.
이 풍력 발전 장치에 사용되는 수직축 풍차는, 전술한 바와 같이, 소음을 억제할 수 있어, 공전 시의 저항이 작다. 그러므로, 이 풍력 발전 장치는, 소음이 적고, 또한 자연계의 변동풍이 불어 가는 쪽에서 발전 효율이 양호하다.
특허청구범위 및/또는 명세서 및/또는 도면에 개시된 2개 이상의 구성의 어떠한 조합도, 본 발명에 포함된다. 특히, 청구의 범위의 각 청구항의 2개 이상의 어떠한 조합도, 본 발명에 포함된다.
본 발명은, 첨부한 도면을 참고로 한 이하의 바람직한 실시형태의 설명으로부터, 보다 명료하게 이해할 수 있을 것이다. 그러나, 실시형태 및 도면은 단순한 도시 및 설명을 위한 것이며, 본 발명의 범위를 정하기 위해 이용되는 한 것은 아니다. 본 발명의 범위는 첨부한 청구의 범위에 의해 정해진다. 첨부 도면에 있어서, 복수의 도면에서의 동일한 부호는, 동일 또는 상당하는 부분을 나타낸다.
도 1은 본 발명의 일 실시형태에 관한 수직축 풍차를 구비한 풍력 발전 장치의 정면도이다.
도 2는 동 풍력 발전 장치의 평면도이다.
도 3a는 동 수직축 풍차의 날개의 정면도이다.
도 3b는 도 3a의 날개의 측면도이다.
도 4a는 도 3a의 부분 확대도이다.
도 4b는 도 3b의 부분 확대도이다.
도 5a는 도 4b의 VA-VA 단면도(斷面圖)이다.
도 5b는 도 4b의 VB-VB 단면도이다.
도 5c는 도 4b의 VC-VC 단면도이다.
도 6은 날개끝 경사부의 절곡 각도의 해석에 사용한 각 날개 샘플의 일부를 나타낸 정면도이다.
도 7은 날개끝 경사부의 절곡 각도와, 바람에 의해 날개가 회전할 때 수직 주축에 작용하는 회전 모멘트와의 관계를 나타내는 그래프이다.
도 8은 날개끝 경사부의 절곡 각도와, 날개의 공전 시에 수직 주축에 작용하는 회전 모멘트와의 관계를 나타내는 그래프이다.
도 9는 날개끝 경사부의 절곡 각도와 소음과의 관계를 나타내는 그래프이다.
도 10은 각 날개 샘플의 날개끝에서의 최대 음향 발생 개소(箇所)와 그 음향의 크기를 나타낸 도면이다.
도 11은 날개의 전체 길이에 대한 날개끝 경사부의 길이의 해석에 사용한 각 날개 샘플의 정면도이다.
도 12는 날개의 전체 길이에 대한 날개끝 경사부의 길이와, 바람에 의해 수직축 풍차가 회전할 때 날개에 작용하는 회전 모멘트와의 관계를 나타내는 그래프이다.
도 13은 날개끝 경사부의 정상점 위치의 해석에 사용한 각 날개 샘플의 일부를 단면(斷面)으로 나타낸 평면도이다.
도 14는 날개끝 경사부의 정상점 위치와 소음과의 관계를 나타내는 그래프이다.
도 15는 각 날개 샘플의 날개끝에서의 최대 음향 발생 개소와 그 음향의 크기를 나타낸 도면이다.
도 16은 날개끝 경사부의 정상점 위치와, 수직축 풍차의 공전 시에 날개에 작용하는 회전 모멘트와의 관계를 나타내는 그래프이다.
본 발명의 실시형태를 도면과 함께 설명한다. 도 1은 본 발명의 일 실시형태에 관한 수직축 풍차를 구비한 풍력 발전 장치의 정면도, 도 2는 그 평면도이다. 지면에 쌓아 올려진 기초(1)에 철탑(2)이 구축되고, 이 철탑(2) 상에 풍력 발전 장치(3)가 설치되어 있다. 풍력 발전 장치(3)는, 수직축 풍차(4)와, 이 수직축 풍차(4)의 수직 주축(5)의 회전으로 발전하는 발전기(6)와, 그 외의 배전용, 제어용 등의 기기를 구비한다. 수직 주축(5)은 상하 방향을 따라 연장되는 축으로서, 베어링에 의해 회전 가능하게 지지되고, 하부가 발전기(6)에 연결되어 있다. 수직 주축(5), 발전기(6), 및 다른 기기(機器)는, 커버(7)에 의해 덮혀져 있다.
수직축 풍차(4)는, 상기 수직 주축(5)에 지지체(8)를 통해 복수의 날개(9)가 장착되어 있다. 도면의 예에서는, 날개(9)의 수가 2개이며, 각각의 날개(9)는 수직 주축(5)을 중심으로 하여 180°위상이 상이한 위치에 설치되어 있다. 날개(9)의 수는 3개 이상이라도 된다. 지지체(8)는, 수직 주축(5)의 상단(上端)에 수평으로 고정된 1개의 수평 암(arm)(8a)과, 이 수평 암(8a)의 중앙부 부근으로부터 각각 도면의 좌우 양측을 향해 상방향의 경사 방향 및 하방향의 경사지게 연장되는 합계 4개의 경사 암(8b)으로 이루어진다. 수평 암(8a)의 좌측단 및 좌측의 2개의 경사 암(8b)의 선단에 좌측의 날개(9)가 결합되고, 수평 암(8a)의 우측단 및 우측의 2개의 경사 암(8b)의 선단에 우측의 날개(9)가 결합되어 있다. 수직축 풍차(4)는, 바람을 받으면, 수직 주축(5)의 축심 O의 주위에 도 2의 화살표 방향으로 회전한다.
도 3a, 도 3b는 각각 날개(9)의 정면도와 측면도이다. 날개(9)는, 수직 주축(5)(도 1 참조)과 평행, 즉 상하 방향을 따라 연장되는 메인 날개부(10)와, 이 메인 날개부(10)의 상하 양단으로부터 각각 수직 주축(5) 측으로 경사지게 절곡되어 연장되는 상하의 날개끝 경사부(11)로 이루어진다. 날개끝 경사부(11)는 직선형으로 연장되어 있어도 되고, 곡선형으로 연장되어 있어도 된다. 곡선형인 경우, 그 곡선은, 원호형이라도, 곡률이 상이한 복수의 원호가 조합된 것이라도 된다. 상하의 날개끝 경사부(11)는, 메인 날개부(10)의 길이 방향 중간부의 중심선 CL에 대하여, 선대칭으로 되는 동일 형상으로 형성되어 있다.
그리고, 이하의 설명에서는, 수직 주축(5)의 축심 방향을 「상하 방향」이라고 한다. 또한, 수직 주축(5)의 축심 O을 중심으로 하여 직경 방향의 외경측을 「외측」, 내경측(內徑側)을 「내측」이라고 한다. 또한, 수직축 풍차(4)가 도 2의 화살표 방향으로 회전할 때 날개(9)가 진행하는 측을 「전방측」, 그 반대측을 「후방측」이라고 한다. 날개(9)의 회전 진행 방향 R은, 후술하는 날개(9)의 단면 형상을 따라 정해진다.
도 3a에 나타낸 바와 같이, 메인 날개부(10)의 단면 형상 및 단면 치수는 상하 전역(全域)에 걸쳐서 일정하고, 날개끝 경사부(11)는 선단측으로 갈수록 두께가 얇게 되어 있다. 단, 메인 날개부(10) 및 날개끝 경사부(11)의 어딘가에 대해서도, 다음에 설명하는 바와 같이 회전 진행 방향 R의 위치에 따라서 두께가 상이하게 되어 있다. 먼저 설명한 날개끝 경사부(11)의 두께는, 회전 진행 방향의 최대 두께부의 두께에 대한 것이다.
도 3b에, 메인 날개부(10) 및 날개끝 경사부(11)의 최대 두께부의 위치가 선(A1, A2)으로 나타나 있다. 메인 날개부(10)의 최대 두께부를 나타낸 선(A1)은 직선이다. 날개끝 경사부(11)의 최대 두께부를 나타낸 선(A2)는, 날개끝 경사부(11)의 상하 방향의 최선단의 위치인 정상점 위치 P에 의해 변경된다. 정상점 위치 P는 선(A2) 상에 위치한다. 도 3b에 나타낸 예와 같이, 정상점 위치 P가 메인 날개부(10)의 최대 두께부를 나타낸 선(A1)의 연장선 상에 위치하는 경우, 날개끝 경사부(11)의 최대 두께부를 나타낸 선(A2)은 직선으로 된다. 정상점 위치 P가 메인 날개부(10)의 최대 두께부를 나타낸 선(A1)의 연장선으로부터 어긋나 있는 경우, 날개끝 경사부(11)의 최대 두께부를 나타낸 선(A2)는, 메인 날개부(10)의 최대 두께부를 나타낸 선(A1)에 대하여 구부러진 선으로 된다. 이 경우, 선(A2)은 곡선이라도 직선이라도 되지만, 어느 경우라도, 선(A1)의 선단과 선(A2)의 기단(基端)은, 그 연결부가 원활하게 연결되어 있는 것이 바람직하다.
도 3b의 부분 확대도인 도 4b에 나타낸 바와 같이, 메인 날개부(10)는, 전방측의 에지(13F) 및 후방측의 에지(13R)가 각각 직선으로 형성되고, 회전 진행 방향 R의 폭 B1이 일정하다. 날개끝 경사부(11)의 전방측의 에지(14F) 및 후방측의 에지(14R)는, 메인 날개부(10)의 전후의 에지(13F, 13R)와 각각 원활하게 연결되는 곡선으로 형성되어 있고, 회전 진행 방향 R의 폭은 선단측으로 감에 따라 연속하여 서서히 좁게 되어 있다. 날개끝 경사부(11)의 전후의 에지(14F, 14R)는 서로 원활하게 연결되어, 그 연결부가 상기 정상점 위치 P로 된다. 날개끝 경사부(11)의 전후의 에지(14F, 14R)를 이루는 곡선은, 예를 들면, 원호, 타원호(楕圓弧)로 이루어진다. 상기 에지(14F, 14R)를 이루는 곡선은, 단일의 곡선이라도 되고, 복수의 곡선이 조합되어 있어도 된다. 또한, 전후의 에지(14F, 14R)는, 직선과 곡선을 조합시켜 구성되어 있어도 된다.
도 3a의 부분 확대도인 도 4a에 나타낸 바와 같이, 날개끝 경사부(11)는, 메인 날개부(10)의 상하 양단에 계속되는 벤트부(bent portion)(11a)와, 이 벤트부(11a)로부터 경사지게 연장되는 경사부(11b)로 이루어진다. 메인 날개부(10)의 전방측의 에지(13F)는 정면에서 볼 때 직선형이다. 날개끝 경사부(11)의 전방측의 에지(14F)는, 이 예에서는, 벤트부(11a)에서는 메인 날개부(10)의 전방측의 에지(13F)에 원활하게 연결되는 원호형이며, 경사부(11b)에서는 직선형이다. 메인 날개부(10) 및 날개끝 경사부(11)의 후방측의 에지(13R, 14R)는, 정면에서 볼 때 전방측의 에지(13F, 14F)와 동일 위치에 중첩된다.
메인 날개부(10)의 외측면(15)과 날개끝 경사부(11)의 벤트부(11a)의 외측면(16a)이 원활하게 연결되고, 날개끝 경사부(11)의 벤트부(11a)의 외측면(16a)과 경사부(11b)의 외측면(17)이 원활하게 연결되어 있다. 벤트부(11a)의 외측면(16a)과 경사부(11b)의 외측면(16b)과, 날개끝 경사부(11)의 외측면(16)을 구성한다. 도 3a, 도 4a에서의 메인 날개부(10) 및 날개끝 경사부(11)의 외측의 외형선은, 도 3b, 도 4b에서의 선(A1, A2)에 상당하고, 메인 날개부(10) 및 날개끝 경사부(11)의 최대 두께부를 나타낸다. 도 4a에 나타낸 정면에서 볼 때에 있어서, 메인 날개부(10)의 외측의 외형선은 직선형이며, 날개끝 경사부(11)의 외측의 외형선은, 벤트부(11a)에서는 원호형, 경사부(11b)에서는 상기 원호에 원활하게 연결되는 곡선 또는 직선이다.
또한, 메인 날개부(10)의 내측면(17)과 날개끝 경사부(11)의 벤트부(11a)의 내측면(18a)이 원활하게 연결되어, 날개끝 경사부(11)의 벤트부(11a)의 내측면(18a)과 경사부(11b)의 내측면(18b)이 원활하게 연결되어 있다. 이 예에서는, 날개끝 경사부(11)의 경사부(11b)의 내측면(18b)는, 선단 부분을 제외하고 평면형으로, 선단부는 곡면형이다. 벤트부(11a)의 내측면(18a)과 경사부(11b)의 내측면(18b)과, 날개끝 경사부(11)의 내측면(18)을 구성한다.
도 5a, 5b, 5c는, 각각 도 4b의 VA-VA 단면도, VB-VB 단면도, 및 VC-VC 단면도이다. 이들 각각의 단면도에서는, 메인 날개부(10) 및 날개끝 경사부(11)가 중실(中實)로 나타나 있지만, 실제로는, 경량화를 위해 다양한 재료로 구성되어 있다. 예를 들면, 섬유 강화 수지 등에 의해 중공형으로 형성되는지, 또는 발포체나 알루미늄 등의 경량인 재료로 형성되어 있어도 된다.
도 5a, 5b, 5c에 나타낸 바와 같이, 메인 날개부(10) 및 날개끝 경사부(11)는, 회전 진행 방향 R의 중앙보다 전단 가까이의 개소에서 직경 방향의 두께가 가장 두꺼워지도록, 외측면(15, 16)[16a, 16b]과 내측면(17, 18)[18a, 18b]이, 날개 현(弦) 길이[chord length](19)에 대하여, 전후 양단으로부터 점차로 직경 방향의 외측과 내측으로 팽창하고 있는 형상이다. 상기 날개 현 길이(19)는, 날개(9)의 전단 QF 및 후단 QR을 지나는 직선을 가리킨다. 바꾸어 말하면, 외측면(15, 16)은, 날개 현 길이(19)에 대하여 외측으로 팽창하고 있고, 내측면(17, 18)은 날개 현 길이(19)에 대하여 내측으로 팽창하고 있다. 외측면(15, 16) 및 내측면(17, 18) 중 한쪽만이 날개 현 길이(19)에 대하여 팽창한 형상이라도 된다.
도 5a 내지 도 5c의 예의 경우, 메인 날개부(10) 및 날개끝 경사부(11)의 내측면(17, 18)(18a, 18b)은, 전단 QF 부근은 내측으로 팽창한 곡선형으로, 이 곡선형 부분의 끝으로부터 후단 QR에 걸쳐 직선형으로 되어 있지만, 전단으로부터 후단에 걸쳐 전체가 곡선에 의해 직경 방향의 내측으로 팽창한 형상이라도 되고, 또한 직경 방향의 중앙 부분이 오목한 형상이라도 된다. 그리고, 날개(9)의 회전 궤적(C)는, 날개(9)의 전단 QF 및 후단 QR이 지나는 궤적이다.
도 5a에 나타낸 바와 같이, 메인 날개부(10)의 외측면(15) 및 내측면(17)의 전단측(前端側)은 매끈한 곡면으로 서로 연결되어 있고, 이 곡면 상에 메인 날개부(10)의 전단 QF가 위치한다. 또한, 외측면(15) 및 내측면(17)의 후단측은 서로 예각(銳角)을 이루어 교차하고 있고, 이 교차부가 메인 날개부(10)의 후단 QR로 된다. 마찬가지로, 도 5b, 5c에 나타낸 바와 같이, 날개끝 경사부(11)의 외측면(16)[16a, 16b] 및 내측면(18)[18a, 18b)의 전단측은 원활한 곡면으로 서로 연결되어 있고, 이 곡면 상에 날개끝 경사부(11)의 전단 QF가 위치한다. 또한, 외측면(16) 및 내측면(18)의 후단측은 서로 예각을 이루어 교차하고 있고, 이 교차부가 날개끝 경사부(11)의 후단 QR로 된다.
메인 날개부(10)의 선단의 단면 형상과 날개끝 경사부(11)의 기단의 단면 형상은, 서로 같다. 날개끝 경사부(11)에서의 경사 방향의 각 부의 단면 형상은, 경사 방향의 위치에 따라서 치수만이 변화되는 유사형(相似形)이라도 되고, 치수만 아니라 형상도 변화하는 비유사형이라도 된다. 이 실시형태에서는, 메인 날개부(10) 및 날개끝 경사부(11)의 최대 두께부의 위치가 회전 진행 방향 R의 동일 위치에 있으므로, 날개끝 경사부(11)에서의 경사 방향의 각 부의 단면 형상이 서로 대략 유사형으로 되지만, 메인 날개부(10)의 최대 두께부의 위치에 대하여 날개끝 경사부(11)의 최대 두께부의 위치가 회전 진행 방향 R으로 어긋나 있는 경우, 날개끝 경사부(11)에서의 경사 방향의 각 부의 단면 형상이 서로 유사형으로 되지 않는다.
이 구성의 수직축 풍차(4)의 작용, 효과, 및 구체적인 구성을 설명한다. 날개(9)의 횡단면 형상이, 날개(9)의 회전 진행 방향 R의 전단 가까이의 개소에서 직경 방향의 두께가 가장 두꺼워지도록, 외측면(15, 16a, 16b) 및/또는 내측면(17, 18a, 18b)가 날개(9)의 회전 진행 방향 R의 전후 양단으로부터 점차로 직경 방향의 외측 및/또는 내측으로 팽창하고 있는 형상이다. 그러므로, 날개(9)가 바람을 받으면 날개(9)에 양력(揚力)이 발생하고, 이 양력에 의해, 수직축 풍차(4)가 수직 주축(5)의 축심 O 주위에 도 2에 나타낸 회전 진행 방향 R로 회전한다.
날개(9)의 양단에 날개끝 경사부(11)가 설치되어 있으면, 날개(9)의 내측면(17, 18)과 외측면(15, 16)의 압력차가 작아져, 기류의 말려들기(entrainment)가 억제되므로, 날개끝 부근에 소용돌이가 쉽게 발생하지 않아, 소음의 발생이 억제된다.
날개(9)의 단면 형상을, 회전 진행 방향 R의 전단 가까이의 개소에서 직경 방향의 두께가 가장 두꺼워지도록 하였으므로, 회전 진행 방향 R의 전방에 강한 양력이 발생하고, 회전 궤적(C) 상에 날개(9)의 전단 QF 및 후단 QR이 배치되는 피치각이 0°인 상태라도, 날개(9)가 회전할 수 있다. 피치각이 0°로 되므로, 회전 시의 저항, 특히, 공전 시의 저항이 작아져, 수직축 풍차(4)의 회전이 멈추지 않는다.
또한, 날개끝 경사부(11)는, 선단측으로 감에 따라 날개(9)의 회전 진행 방향 R의 폭이 좁아지는 형상이므로, 날개(9)가 회전 진행되고 있을 때에 있어서의 날개끝 주변의 공기의 흐름이 원활하게 되어, 소음의 발생이 억제된다.
이 실시형태의 수직축 풍차(4)는, 또한 회전 에너지 변환 효율을 양호하게 하여, 공전 시의 저항을 작게 하고, 소음을 억제하기 위해, 날개끝 경사부(11)의 상세한 형상이 다음과 같이 정해져 있다.
[날개끝 경사부의 절곡 각도]
메인 날개부(10)에 대한 상하의 날개끝 경사부(11)의 절곡 각도 θ(도 3a)는, 20° 내지 55°의 범위 내, 더욱 바람직하게는 40° 내지 50°의 범위 내로 된다. 여기서, 상기 절곡 각도 θ는, 메인 날개부(10)의 직경 방향의 중심(횡단면의 중심)과 날개끝 경사부(11)의 직경 방향의 중심(횡단면의 중심)이 이루는 각도이며, 이 예에서는, 메인 날개부(10)의 전후의 에지(13F, 13R)와 날개끝 경사부(11)의 경사부(11b)에서의 전후의 에지(14F, 14R)가 서로 이루는 각도와 일치한다. 상기한 바람직한 절곡 각도 θ는, 이하의 유체 해석에 의해 얻어졌다.
시공체(試供體; trial samples)로서 도 6에 나타낸 5개의 날개 샘플을 상정하여 해석을 행하였다. (A)에 나타낸 날개(9A)는, 메인 날개부(10)만으로 이루어지고, 날개끝 경사부를 가지고 있지 않다. (B), (C), (D), (E)에 나타낸 각 날개(9B, 9C, 9D, 9E)는, 날개끝 경사부(11)의 절곡 각도 θ가 각각 0°, 20°, 45°, 60°이다. 날개(9A)의 전체 길이와 날개(9B)의 전체 길이는 같다. 날개(9B, 9C, 9D, 9E)는, 서로 메인 날개부(10)의 길이가 같으며, 또한 서로 날개끝 경사부(11)의 길이도 같다. 날개(9B, 9C, 9D, 9E)의 사이즈는, 전체 길이 2800㎜ 정도로 하였다.
(1) 날개끝 경사부의 절곡 각도와 회전 에너지 변환 효율과의 관계
날개끝 경사부(11)를 가지는 각 날개(9B, 9C, 9D, 9E)에 대하여, 일정 방향으로 부는 바람에 의해 날개(9)가 회전할 때 수직 주축(5)에 작용하는 회전 모멘트를 계산하였다. 날개(9)의 회전 속도를 4방법으로 바꾸어 계산을 행하여, 그 중 가장 양호한 효율의 결과가 얻어진 회전 속도의 해석 결과를 도 7에 나타낸다. 이 해석 결과로부터, 전체적으로 절곡 각도 θ가 커질수록 회전 에너지 변환 효율이 저하되지만, 절곡 각도 θ가 50°전후까지는 회전 에너지 변환 효율이 높게 유지되고, 50°를 넘으면 회전 에너지 변환 효율의 저하율이 커지는 것을 알 수 있었다.
(2) 날개끝 경사부의 절곡 각도와 공전 시의 저항과의 관계
무풍 환경에 있어서 날개(9)를 회전시키고, 이 때 수직 주축(5)에 작용하는 회전 모멘트를 계산하였다. 이로써, 공전 시의 저항, 즉 바람이 약해졌을 때의 날개(9)의 회전이 쉽게 멈추지 않음을 알 수 있다. 날개(9)의 회전 속도는, 상기 「날개끝 경사부의 절곡 각도와 회전 에너지 변환 효율과의 관계」의 해석에 의해 얻어지는 가장 양호한 효율의 회전 속도로 하였다. 그 해석 결과를 도 8에 나타낸다. 이 해석 결과로부터, 절곡 각도 θ가 20°전후에서 공전 시의 저항이 가장 작고, 이보다 절곡 각도 θ가 커져도 작아져도 공전 시의 저항이 커지는 것을 알 수 있었다. 또한, 절곡 각도 θ가 45°전후에서 공전 시의 저항이 커지게 되는 비율이 느슨해지는 것도 알 수 있었다. 참고로, 날개끝 경사부를 가지고 있지 않은 날개(9A)에 대하여도 동 조건 하에서 회전 모멘트를 계산하였으나, 날개끝 경사부(11)를 가지는 날개(9B, 9C, 9D, 9E)와 비교하여, 날개(9A)는 공전 시의 저항이 극단적으로 큰 것을 알 수 있다.
(3) 날개끝 경사부의 절곡 각도와 소음과의 관계
무풍 환경에 있어서 날개(9)를 회전시키고, 날개끝에서의 음향을 계산하였다. 날개(9)의 회전 속도는, 상기 「날개끝 경사부의 절곡 각도와 회전 에너지 변환 효율과의 관계」의 해석에 의해 얻어지는 가장 양호한 효율의 회전 속도로 하였다. 그 해석 결과를 도 9에 나타낸다. 또한, 날개끝 경사부를 가지고 있지 않은 날개(9A), 및 날개끝 경사부(11)의 절곡 각도 θ가 각각 0°, 20°, 45°, 60°인 날개(9B, 9C, 9D, 9E)에 대하여, 날개끝에서의 최대 음향 발생 개소와 그 음향의 크기를 도 10에 나타낸다. 이들의 해석 결과로부터, 절곡 각도 θ가 0° 내지 45°전후까지는 소음이 점차로 작아지지만, 45°을 넘으면 소음의 저하가 서로 없어지고, 절곡 각도 θ이상으로 되면 오히려 소음이 커지게 되는 경향이 있는 것을 알 수 있었다.
(1) 내지 (3)의 해석 결과로부터, 회전 에너지 변환 효율에 대하여는 절곡 각도 θ가 55°미만인 것이 바람직하고, 공전 시의 저항에 대하여는 날개끝 경사부(11)를 가지고 있으면 되고, 소음에 대하여는 절곡 각도 θ가 20°이상인 것이 바람직한 것으로 할 수 있다. 이들을 복합적으로 판단하면, 메인 날개부(10)에 대한 날개끝 경사부(11)의 절곡 각도 θ가 20° 내지 55°의 범위 내인 것이 바람직하고, 더욱 바람직하게는 40° 내지 50°이다. 이와 같이, 날개끝 경사부(11)의 절곡 각도 θ를 설정함으로써, 회전 에너지 변환 효율, 공전 시의 저항, 및 소음의 어딘가에 대하여도 만족시킬 수 있는 수직축 풍차(4)를 얻을 수 있다.
[날개 전체 길이의 절반의 길이에 대한 날개끝 경사부의 길이]
날개(9) 전체의 상하 방향 전체 길이의 절반의 길이 L1(도 3a)에 대한 날개끝 경사부(11)의 상하 방향의 길이 L2(도 3a)의 비율은, 10% 내지 20%의 범위 내, 더욱 바람직하게는 16% 내지 18%의 범위 내로 된다. 여기서, 날개끝 경사부(11)의 상하 방향의 길이 L2는, 날개끝 경사부(11)의 벤트부(11a)의 기단으로부터 날개끝 경사부(11)의 정상점 위치 P까지의 상하 방향의 길이를 가리킨다. 상기한 바람직한 비율은, 이하의 유체 해석에 의해 얻어졌다.
시공체로서 도 11에 나타낸 3개의 날개 샘플을 상정하여 해석을 행하였다. (A)에 나타낸 날개(9F)는 (L2/L1)이 11.4%이며, (B)에 나타낸 날개(9G)는 (L2/L1)이 17.0%이며, (C)에 나타낸 날개(9H)는 (L2/L1)이 26.8%이다. 각 날개(9F, 9G, 9H)는, 전체 길이가 같으며(예를 들면, L1이 약 1400㎜), 날개끝 경사부(11)의 절곡 각도 θ는 모두 45°로 하였다.
각 날개(9F, 9G, 9H)에 대하여, 바람에 의해 날개(9)가 회전할 때 수직 주축(5)에 작용하는 회전 모멘트를 계산하였다. 날개(9)의 회전 속도를 4가지 방법으로 바꾸어 계산을 행하고, 그 중 가장 양호한 효율의 결과가 얻어진 회전 속도의 해석 결과를 도 12에 나타낸다. 이 해석 결과로부터, (L2/L1)가 17% 전후에서 회전 에너지 변환 효율이 가장 높고, 이보다 커져도 작아져도 회전 에너지 변환 효율이 저하되는 것을 알 수 있었다. 또한, (L2/L1)가 10% 내지 20%의 범위 내에서는, 어느 정도 높은 회전 에너지 변환 효율이 유지되는 것을 알 수 있었다. 이들로부터, 날개(9)의 길이와 날개끝 경사부(11)의 길이와의 상기 바람직한 비율이 안내된다.
[날개끝 경사부의 정상점 위치]
날개끝 경사부(11)의 정상점 위치 P(도 3b)는, 날개(9)의 회전 진행 방향 R의 폭 B1에 대한 날개(9)의 회전 진행 방향 R의 후단으로부터의 거리(B2)의 비율이 50% 내지 83%의 범위 내, 더욱 바람직하게는 60% 내지 75%의 범위 내로 된다. 이 바람직한 날개끝 경사부(11)의 정상점 위치 P는, 이하의 유체 해석에 의해 얻어졌다.
시공체로서 도 13에 나타낸 4개의 날개 샘플을 상정하여 해석을 행하였다. (A)에 나타낸 날개(9I)는 (B2/B1)이 83%이며, (B)에 나타낸 날개(9J)는 (B2/B1)이 75%이며, (C)에 나타낸 날개(9K)는 (B2/B1)이 53%이며, (D)에 나타낸 날개(9L)는 (B2/B1)이 33%이다. 각 날개(9I, 9J, 9K, 9L)의 진행 방향의 폭 B1은 동일하며, 두께도 동일하다.
(1) 날개끝 경사부의 정상점 위치와 소음과의 관계
무풍 환경에 있어서 날개(9)를 회전시키고, 날개끝에서의 음향을 계산하였다. 그 해석 결과를 도 14에 나타낸다. 또한, 각 날개(9I, 9J, 9K, 9L)에 대하여, 날개끝에서의 최대 음향 발생 개소와 그 음향의 크기를 도 15에 각각 나타낸다. 이 해석 결과로부터, 전체적으로 (B2/B1)가 클수록, 즉 날개끝 경사부(11)의 정상점 위치 P가 회전 진행 방향 R의 전방측에 위치할수록 소음이 적고, 또한 (B2/B1)이 50% 전후 이하에서는 소음이 높은 레벨인 채 유지되고, (B2/B1)이 50% 전후를 넘으면 소음 레벨이 2차 곡선적으로 저하되는 것을 알 수 있었다.
(2) 날개끝 경사부의 정상점 위치와 공전 시의 저항과의 관계
무풍 환경에 있어서 날개(9)를 회전시키고, 이 때 수직 주축(5)에 작용하는 회전 모멘트를 계산하였다. 이로써, 공전 시의 저항, 즉 변동풍에 있어서 바람이 약해졌을 때의 날개(9)의 회전이 쉽게 멈추지 않는다. 그 해석 결과를 도 16에 나타낸다. 이 해석 결과로부터, 전체적으로(B2/B1)가 클수록, 즉 날개끝 경사부(11)의 정상점 위치 P가 회전 진행 방향 R의 전방측에 위치할수록 공전 시의 저항이 작은 것을 알 수 있었다. 또한, (B2/B1)이 50% 전후 이상에서는 공전 시의 저항이 어느 정도 낮게 억제되고, 50% 전후 이하로 되면 공전 시의 저항이 급격하게 큰 것을 알 수 있었다.
(1), (2)의 해석 결과로부터, 소음에 대하여는 (B2/B1)가 50% 이상인 것이 바람직하고, 또한 공전 시의 저항에 대해서도 (B2/B1)가 50% 이상인 것이 바람직한 것으로 할 수 있다. 단, 날개끝 경사부(11)의 정상점 위치 P가 너무나 전방측이면, 날개끝 경사부(11)의 전단의 면이 넓어지고, 공기 저항이 커지게 된다. 이들을 복합적으로 판단한 결과, B2/B1 값이 50% 내지 83%의 범위 내가 바람직하고, 60% 내지 75%의 범위 내가 더욱 바람직하다. 이와 같이, 날개끝 경사부의 정상점 위치 P를 설정함으로써, 소음 및 공전 시의 저항의 어딘가에 대하여도 만족시킬 수 있는 수직축 풍차(4)를 얻을 수 있다.
이상 설명한 바와 같이, 이 수직축 풍차(4)는, 공전 시의 저항이 작고, 소음을 억제할 수 있다. 그러므로, 이 수직축 풍차(4)를 사용한 풍력 발전 장치(3)는, 발전 효율이 양호하고, 또한 소음이 적다.
이상, 실시예에 기초하여 본 발명을 실시하기 위한 형태를 설명하였으나, 여기서 개시한 실시형태는 모든 점에서 예시로서 제한적인 것은 아니다. 본 발명의 범위는 상기한 설명에서가 아니라 특허 청구의 범위에 의해 표시되고, 특허 청구의 범위와 균등한 의미 및 범위 내에서의 모든 변경이 포함되는 것이 의도된다.
다음에, 상기에서 설명한 수직축 풍차에 있어서, 날개끝 경사부에서의 정상점 위치를 한정하지 않고, 본 발명의 범위에 포함되지 않은 응용 태양(態樣)에 관한 수직축 풍차에 대하여 설명한다. 이 응용 태양은, 이하의 태양 1 내지 태양 6을 포함한다. 이 응용 형태에 관한 수직축 풍차에 의해서도, 회전 에너지 변환 효율이 우수하고, 및/또는 공전 시의 저항이 작아 소음을 억제할 수 있는 수직축 풍차를 얻을 수 있다.
[태양 1]
회전 가능하게 설치되는 수직 주축과, 이 수직 주축에 설치된 지지체와, 상기 수직 주축에 상기 지지체를 통해 연결되고 바람을 받아 상기 수직 주축의 축심 주위로 회전하는 날개를 구비한 수직축 풍차로서,
상기 날개는, 상기 수직 주축과 평행하게 연장되는 메인 날개부와, 이 메인 날개부의 양 단부로부터 상기 수직 주축의 측으로 경사지게 절곡되어 연장되는 날개끝 경사부를 가지고, 상기 메인 날개부 및 상기 날개끝 경사부에 걸쳐 상기 날개의 횡단면 형상은, 상기 날개의 회전 진행 방향의 중앙보다 전단 가까이의 개소에서 직경 방향의 두께가 가장 두꺼워지도록, 직경 방향 외측의 면이 상기 날개의 회전 진행 방향의 전후 양단으로부터 점차로 직경 방향의 외측으로 팽창하고 있는 형상이며, 또한 상기 날개끝 경사부는, 선단측으로 감에 따라 직경 방향 외측의 면의 팽창량이 점차로 작아지게 되는 형상이며,
상기 메인 날개부에 대한 상기 날개끝 경사부의 절곡 각도가 20°내지 55°의 범위 내인 수직축 풍차.
[태양 2]
태양 1에 기재된 수직축 풍차에 있어서, 상기 날개끝 경사부의 절곡 각도가 40° 내지 50°의 범위 내인 수직축 풍차.
[태양 3]
회전 가능하게 설치되는 수직 주축과, 이 수직 주축에 설치된 지지체와, 상기 수직 주축에 상기 지지체를 통해 연결되고 바람을 받아 상기 수직 주축의 축심 주위로 회전하는 날개를 구비한 수직축 풍차로서,
상기 날개는, 상기 수직 주축과 평행하게 연장되는 메인 날개부와, 이 메인 날개부의 양 단부로부터 상기 수직 주축의 측으로 경사지게 절곡되어 연장되는 날개끝 경사부를 가지고, 상기 메인 날개부 및 상기 날개끝 경사부에 걸쳐 상기 날개의 횡단면 형상은, 상기 날개의 회전 진행 방향의 중앙보다 전단 가까이의 개소에서 직경 방향의 두께가 가장 두꺼워지도록, 직경 방향 외측 및 내측 중 적어도 한쪽 면이 상기 날개의 회전 진행 방향의 전후 양단으로부터 점차로 직경 방향의 외측 및/또는 내측으로 팽창하고 있는 형상이며, 상기 날개끝 경사부는, 선단측으로 감에 따라 직경 방향 외측의 면의 팽창량이 점차로 작아지게 되는 형상이며, 또한 상기 날개끝 경사부는, 선단측으로 감에 따라 상기 날개의 회전 진행 방향의 폭이 좁아지는 형상이며,
상기 날개 전체의 상기 축심 방향의 길이의 절반의 길이에 대한 상기 날개끝 경사부의 상기 축심 방향의 길이의 비율이 10% 내지 20%의 범위 내인 수직축 풍차.
[태양 4]
태양 3에 기재된 수직축 풍차에 있어서, 상기 날개 전체의 상기 축심 방향의 길이의 절반의 길이에 대한 상기 각 날개끝 경사부의 상기 축심 방향의 길이의 비율이 16% 내지 18%의 범위 내인 수직축 풍차.
[태양 5]
태양 3 또는 태양 4에 기재된 수직축 풍차에 있어서, 상기 메인 날개부에 대한 상기 날개끝 경사부의 절곡 각도가 20° 내지 55°의 범위 내인 수직축 풍차.
[태양 6]
태양 1 내지 태양 6 중 어느 하나에 기재된 수직축 풍차와, 이 수직축 풍차의 상기 수직 주축의 회전으로 발전하는 발전기를 구비하는 풍력 발전 장치.
3: 풍력 발전 장치
4: 수직축 풍차
5: 수직 주축
6: 발전기
8: 지지체
9: 날개
10: 메인 날개부
11: 날개끝 경사부
15: 메인 날개부의 외측면
16a, 16b: 날개끝 경사부의 외측면
B1: 날개의 회전 진행 방향의 폭
B2: 날개의 회전 진행 방향의 후단으로부터 정상점 위치까지의 거리
O: 축심
P: 정상점 위치
R: 회전 진행 방향

Claims (7)

  1. 회전 가능하게 설치되는 수직 주축(vertical main shaft);
    상기 수직 주축에 설치된 지지체(support body); 및
    상기 수직 주축에 상기 지지체를 통해 연결되고 바람을 받아 상기 수직 주축의 축심(axis) 주위로 회전하는 날개;
    를 포함하는 수직축 풍차(vertical axis wind turbine)로서,
    상기 날개는, 상기 수직 주축과 평행하게 연장되는 메인 날개부와, 상기 메인 날개부의 양 단부(端部)로부터 상기 수직 주축의 측으로 경사지게 절곡되어 연장되는 날개끝(blade end) 경사부를 구비하고, 상기 메인 날개부 및 상기 날개끝 경사부에 걸쳐 상기 날개의 횡단면 형상은, 상기 날개의 회전 진행 방향의 중앙보다 전단(前端) 가까이의 개소에서 직경 방향의 두께가 가장 두꺼워지도록, 직경 방향 외측의 면이 상기 날개의 회전 진행 방향의 전후 양단으로부터 점차로 직경 방향의 외측으로 팽창하고 있는 형상이며, 상기 날개끝 경사부는, 선단측으로 감에 따라 직경 방향 외측의 면의 팽창량이 점차로 작아지게 되는 형상이며, 또한 상기 날개끝 경사부는, 선단측으로 감에 따라 상기 날개의 회전 진행 방향의 폭이 좁아지는 형상이며,
    상기 날개끝 경사부에서의 상기 축심 방향의 최선단(最先端)의 위치인 정상점(頂点) 위치는, 상기 회전 진행 방향의 후단(後端)으로부터의 거리가, 상기 날개의 상기 회전 진행 방향의 폭에 대하여 50% 내지 83%의 범위 내에 있고,
    상기 메인 날개부에 대한 상기 날개끝 경사부의 절곡 각도는 45°보다도 크고, 또한 55°이하의 범위 내인,
    수직축 풍차.
  2. 제1항에 있어서,
    상기 정상점 위치는, 상기 회전 진행 방향의 후단으로부터의 거리가, 상기 날개의 상기 회전 진행 방향의 폭에 대하여 60% 내지 75%의 범위 내인, 수직축 풍차.
  3. 제1항 또는 제2항에 있어서,
    상기 날개 전체의 상기 축심 방향의 길이의 절반의 길이에 대한 상기 날개끝 경사부의 상기 축심 방향의 길이의 비율이 10% 내지 20%의 범위 내인, 수직축 풍차.
  4. 제3항에 있어서,
    상기 날개 전체의 상기 축심 방향의 길이의 절반의 길이에 대한 상기 각 날개끝 경사부의 상기 축심 방향의 길이의 비율이 16% 내지 18%의 범위 내인, 수직축 풍차.
  5. 제1항 또는 제2항에 기재된 수직축 풍차; 및
    상기 수직축 풍차의 상기 수직 주축의 회전으로 발전하는 발전기;
    를 포함하는, 풍력 발전 장치(wind generation device).
  6. 삭제
  7. 삭제
KR1020197027413A 2017-03-16 2018-03-12 수직축 풍차 및 풍력 발전 장치 KR102499973B1 (ko)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JPJP-P-2017-050981 2017-03-16
JPJP-P-2017-051024 2017-03-16
JPJP-P-2017-050999 2017-03-16
JP2017050999A JP7089848B2 (ja) 2017-03-16 2017-03-16 垂直軸風車および風力発電装置
JP2017051024A JP7220018B2 (ja) 2017-03-16 2017-03-16 垂直軸風車および風力発電装置
JP2017050981A JP2018155128A (ja) 2017-03-16 2017-03-16 垂直軸風車および風力発電装置
PCT/JP2018/009439 WO2018168746A1 (ja) 2017-03-16 2018-03-12 垂直軸風車および風力発電装置

Publications (2)

Publication Number Publication Date
KR20190126086A KR20190126086A (ko) 2019-11-08
KR102499973B1 true KR102499973B1 (ko) 2023-02-14

Family

ID=63523589

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197027413A KR102499973B1 (ko) 2017-03-16 2018-03-12 수직축 풍차 및 풍력 발전 장치

Country Status (2)

Country Link
KR (1) KR102499973B1 (ko)
WO (1) WO2018168746A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102507916B1 (ko) * 2021-08-12 2023-03-07 연세대학교 원주산학협력단 틸팅각 조절장치를 갖는 수직형 풍력터빈
KR102507915B1 (ko) * 2021-08-12 2023-03-07 연세대학교 원주산학협력단 틸팅각도 조절용 블레이드를 갖는 수직형 풍력터빈

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038251A1 (ja) * 2003-10-22 2005-04-28 Global Energy Co., Ltd. 縦軸風車
US20160123299A1 (en) 2014-11-02 2016-05-05 Tangshan TOYODA Technology Co., Ltd Dual rotor wind turbine generator set
JP2016176369A (ja) 2015-03-19 2016-10-06 Ntn株式会社 翼車および自然エネルギー発電機
JP2016205204A (ja) * 2015-04-21 2016-12-08 中島 紳一郎 風車翼

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4173727B2 (ja) 2002-12-26 2008-10-29 株式会社グローバルエナジー 風車の受風羽根
JP4184847B2 (ja) 2003-03-27 2008-11-19 株式会社東芝 風車装置及びそれを用いた風力発電装置
JP2011169267A (ja) 2010-02-19 2011-09-01 Global Energy Co Ltd 縦軸風車

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038251A1 (ja) * 2003-10-22 2005-04-28 Global Energy Co., Ltd. 縦軸風車
US20160123299A1 (en) 2014-11-02 2016-05-05 Tangshan TOYODA Technology Co., Ltd Dual rotor wind turbine generator set
JP2016176369A (ja) 2015-03-19 2016-10-06 Ntn株式会社 翼車および自然エネルギー発電機
JP2016205204A (ja) * 2015-04-21 2016-12-08 中島 紳一郎 風車翼

Also Published As

Publication number Publication date
KR20190126086A (ko) 2019-11-08
WO2018168746A1 (ja) 2018-09-20

Similar Documents

Publication Publication Date Title
CN100353053C (zh) 垂直轴式风力涡轮机
EP2604856B1 (en) Wind turbine blade, wind power generation device provided with same, and design method for wind turbine blade
US20080187432A1 (en) Vertical axis wind turbine
US9328717B1 (en) Golden ratio axial flow apparatus
CA2710524C (en) Wind turbine blade and assembly
US20110211966A1 (en) Wind power generation system
US20090257884A1 (en) Wind turbine blade and assembly
US20100247320A1 (en) Wind turbine blade
WO2015166477A1 (en) A vertical axis wind turbine with self-orientating blades
KR102499973B1 (ko) 수직축 풍차 및 풍력 발전 장치
US20150061294A1 (en) Magnus type wind power generator
JPWO2018194105A1 (ja) 垂直軸型タービン
JP5479300B2 (ja) 風車翼およびこれを備えた風力発電装置ならびに風車翼の設計方法
EP2541048A2 (en) Airfoil, wind rotor and wind rotor arrangement
PL241530B1 (pl) Turbina wiatrowa o pionowej osi obrotu i zmiennej geometrii łopat
JP2018155128A (ja) 垂直軸風車および風力発電装置
JP6904766B2 (ja) 垂直軸風車および風力発電装置
JP7089848B2 (ja) 垂直軸風車および風力発電装置
JP7220018B2 (ja) 垂直軸風車および風力発電装置
US20160252074A1 (en) Vane assembly for a fluid dynamic machine and propulsion device
JP6126287B1 (ja) 垂直軸型螺旋タービン
CN112703314A (zh) 具有带空气动力学特性的叶片承载结构的风力涡轮机
JP6733080B1 (ja) 対称流線球面チューブ形状羽根式風車
WO2018193998A1 (ja) 垂直軸風車および風力発電装置
JP2018178918A (ja) 垂直軸風車および風力発電装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant