KR102480319B1 - 복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템 - Google Patents

복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템 Download PDF

Info

Publication number
KR102480319B1
KR102480319B1 KR1020177006213A KR20177006213A KR102480319B1 KR 102480319 B1 KR102480319 B1 KR 102480319B1 KR 1020177006213 A KR1020177006213 A KR 1020177006213A KR 20177006213 A KR20177006213 A KR 20177006213A KR 102480319 B1 KR102480319 B1 KR 102480319B1
Authority
KR
South Korea
Prior art keywords
tip
handpiece
drive signal
vibration mode
signal
Prior art date
Application number
KR1020177006213A
Other languages
English (en)
Other versions
KR20170039726A (ko
Inventor
아담 다우니
로버트 볼드윈
Original Assignee
스트리커 코포레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스트리커 코포레이션 filed Critical 스트리커 코포레이션
Priority to KR1020227044446A priority Critical patent/KR20230003402A/ko
Publication of KR20170039726A publication Critical patent/KR20170039726A/ko
Application granted granted Critical
Publication of KR102480319B1 publication Critical patent/KR102480319B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0269Driving circuits for generating signals continuous in time for generating multiple frequencies
    • B06B1/0276Driving circuits for generating signals continuous in time for generating multiple frequencies with simultaneous generation, e.g. with modulation, harmonics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00026Conductivity or impedance, e.g. of tissue
    • A61B2017/0003Conductivity or impedance, e.g. of tissue of parts of the instruments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00106Sensing or detecting at the treatment site ultrasonic
    • A61B2017/0011Sensing or detecting at the treatment site ultrasonic piezoelectric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00137Details of operation mode
    • A61B2017/00141Details of operation mode continuous, e.g. wave
    • A61B2017/00146Details of operation mode continuous, e.g. wave with multiple frequencies
    • A61B2017/0015Details of operation mode continuous, e.g. wave with multiple frequencies applied simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00681Aspects not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B17/22004Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for using mechanical vibrations, e.g. ultrasonic shock waves
    • A61B2017/22005Effects, e.g. on tissue
    • A61B2017/22007Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing
    • A61B2017/22009Cavitation or pseudocavitation, i.e. creation of gas bubbles generating a secondary shock wave when collapsing reduced or prevented
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/32007Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with suction or vacuum means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320072Working tips with special features, e.g. extending parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/32Surgical cutting instruments
    • A61B17/320068Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic
    • A61B2017/320098Surgical cutting instruments using mechanical vibrations, e.g. ultrasonic with transverse or torsional motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • B06B1/0607Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements
    • B06B1/0611Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction using multiple elements in a pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/76Medical, dental

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Dentistry (AREA)
  • Surgical Instruments (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)

Abstract

복수의 모드에서 동시에 진동할 수 있는 팁을 갖는 초음파 수술 도구 시스템(3). 이 시스템은 복수의 성분을 포함하는 구동 신호를 팁에 공급할 수 있는 콘솔(24)을 포함한다. 각 성분은 팁의 기계적인 구성 요소들을 통과하는 전류의 등가치에 부분적으로 기초한 주파수 특성을 가지고 있다. 주파수 성분들은 서로 다르다. 구동 신호의 인가에 기초하여 상기 팁은 비-선형 진동을 수행한다.

Description

복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템{ULTRASONIC SURGICAL TOOL CAPABLE OF VIBRATING IN PLURAL MODES AND A DRIVE SYSTEM THAT INDUCES NON-LINEAR VIBRATIONS IN THE TOOL TIP}
본 출원은 일반적으로 초음파 구동식 수술 핸드피스에 관한 것이다. 보다 상세하게는, 본 발명은 복수의 진동 모드를 갖는 초음파 구동식 핸드피스, 및 팁 헤드가 비-선형 진동을 수행하도록 핸드피스를 구동하는 방법에 관한 것이다.
초음파 수술 기구는 특정 의료 및 수술 절차를 수행하는데 유용한 수술 기구이다. 일반적으로, 초음파 수술 도구는 적어도 하나의 압전 구동기를 포함하는 핸드피스를 포함한다. 팁은 구동기에 기계적으로 결합되고, 이 팁은 구동기가 배치된 하우징 또는 쉘(shell)로부터 전방으로 연장된다. 이 팁에는 헤드가 있다. 헤드에는 특정 의료/수술 작업을 수행하도록 구성된 크기를 갖는 특징부, 종종 치형부(teeth)가 있다. 초음파 도구 시스템은 또한 제어 콘솔을 포함한다. 제어 콘솔은 AC 구동 신호를 구동기에 공급한다. 구동기에 구동 신호가 인가될 때, 구동기는 주기적으로(cyclically) 팽창하고 수축한다. 구동기의 팽창/수축은 팁에 그리고 보다 구체적으로 팁의 헤드에 동일한 움직임을 유도한다. 팁이 이렇게 움직일 때, 팁은 진동하는 것으로 간주된다. 팁의 진동 헤드는 특정 수술 또는 의료 작업을 수행하기 위해 조직에 적용된다. 예를 들어, 일부 팁 헤드는 경질 조직(hard tissue)에 적용된다. 경질 조직의 한 형태는 뼈이다. 이런 유형의 팁 헤드가 진동할 때, 팁 치형부가 전후(back and forth)로 진동하여 인접한 경질 조직을 톱질하여 제거한다. 또 다른 팁 헤드는 연질 조직(soft tissue)에 대해 놓이도록 설계된다. 일부 초음파 도구는 또한 조직 및 주변 유체에 공동화(cavitation)를 유도하는 것에 의해 조직을 제거한다. 팁 헤드가 전후로 움직인 결과 공동화가 발생한다. 구체적으로, 이러한 진동의 결과, 작은 공극, 즉 공동(cavity)이 조직 및 주변 유체에 형성된다. 이 공동은 극히 낮은 압력의 작은 구역이다. 조직을 형성하는 세포와 이들 공동 사이에 압력 차가 발생한다. 이 압력 차의 크기는 비교적 크기 때문에 세포 벽이 파열된다. 이 세포 벽이 파열되면 조직을 형성하는 세포가 제거되어 식각된다.
초음파 팁의 헤드는 종종 비교적 작다. 일부 헤드의 직경은 1.0 cm 미만이다. 초음파 도구는 본질적으로 헤드가 적용되는 곳에 인접한 조직만을 제거한다. 헤드의 표면적이 상대적으로 작기 때문에 초음파 핸드피스는 경질 조직과 연질 조직을 모두 정확히 제거하는데 유용한 도구로 입증되었다.
대부분의 팁은 구동 신호가 인가될 때 팁 헤드가 단일 모드에서 진동하도록 설계된다. 여기서 진동 모드는 팁 헤드가 움직이는 이동 경로인 것으로 이해된다. 대부분의 팁은 선형으로 진동하도록 설계된다. 이것은 헤드가 팁을 따라 근위와-원위간-길이방향 축과 본질적으로 일치하는 축을 따라 전후로 움직인다는 것을 의미한다. 일부 팁은 진동시 헤드가 비틀림 진동 또는 회전 진동에 참여하도록 설계된다. 이것은 진동으로 여기될 때 헤드가 팁의 길이방향 축 주위로 회전한다는 것을 의미한다. 또 다른 팁은 굴곡되도록(flex) 설계된다. 이것은 팁이 여기될 때 팁의 길이방향 축이 전후로 휘어지는(bend) 것을 의미한다. 팁 헤드는 팁이 휘어지고, 굴곡되며 움직인다.
문제는 팁 헤드가 길이방향으로만 진동할 때 발생할 수 있다. 이것은 이러한 유형의 팁 헤드의 움직임이 종종 팁 샤프트를 따라 조직에 공동화를 유도하기 때문이다. 이것은 제거되지 않아야 하는 연질 조직과 매우 근접한 경질 조직, 즉 뼈를 이 팁을 사용하여 제거할 때 문제될 수 있다. 제거되지 않아야 할 연질 조직의 유형에는 신경계의 일부인 조직과 혈관이 포함된다. 문제는 공동화로 인해 이 연질 조직이 원치 않게 제거될 수 있기 때문에 발생한다.
이러한 원치 않는 공동화를 감소시키는 팁이 이제 이용가능하다. 이 팁은 두 가지 모드에서 진동하도록 설계된다. 팁은 길이방향으로 진동한다. 또한 팁은 팁 샤프트의 길이방향 축 주위로 비틀림 진동한다. 이러한 팁 중 하나는 미시간(Michigan)주, 칼라마주(Kalamazoo)에 소재하는 출원인인 스트리커 코포레이션(Stryker Corporation)사로부터 이용 가능한 롱 마이크로 클로 팁(Long Micro Claw tip)이다. 이 팁의 구조는, 전체 내용이 본 명세서에 명시적으로 병합된, 발명의 명칭이 "COUPLING VIBRATION ULTRASONIC HAND PIECE"인 미국 특허 번호 6,955,680에 개시되어 있다.
상이한 모드들에서 진동할 수 있는 팁에 구동 신호가 인가될 때, 팁 헤드는 진동 변위의 합으로 움직임을 수행한다. 구동시 길이방향 진동과 비틀림 진동이 동시에 발생할 수 있는 팁의 헤드는 길이방향과 회전 방향으로 동시에 진동한다. 도 1은 팁 헤드 상의 한 지점에서의 이러한 움직임을 보여준다. 이러한 동시 진동의 결과 팁 헤드 상의 한 지점은 나선형(helix) 구획을 따라 전후로 움직인다. 따라서, 이러한 움직임은 헤드의 길이방향 축을 따라 근위 방향과 원위 방향으로 그리고 길이방향 축 주위로 회전방향으로 일어난다.
팁을 이렇게 진동시키는 이점은 팁 샤프트가 길이방향으로 진동하는 정도가 감소된다는 것이다. 이것은 샤프트에 인접한 조직이 원치 않게 제거되는 것을 동일하게 감소시킨다.
상기 초음파 도구 시스템은 유용하지만, 일부 단점이 없지 않다. 하나의 단점은 이 시스템이 기능하기 위해서는 두 가지 진동 모드가 동일한 주파수에서 발생해야 한다는 것이다. 이것은 이 팁은 특히 이 모드에서 진동하도록 설계되어야 할 것을 요구한다. 이것은 팁을 특정 크기와 형상으로 제한한다. 이로 인해 특정 조직을 제거하는 절차를 수행하기 위해 부위(site)에 적용될 수 있는 팁을 제공하는 것이 어렵게 될 수 있다. 또한, 이런 요구조건에 맞게 팁을 설계하는 것은 팁을 제조하는 비용을 상대적으로 비싸게 할 수 있다.
또한, 팁 헤드가 이러한 유형의 움직임을 수행할 때, 팁 헤드 상의 개별 치형부가 나선형 구획에서 전후로 움직인다. 이러한 움직임은 길이가 일반적으로 300 미크론 미만의 트랙 상에서 일어난다. 실제로 단일 치형부의 움직임은 팁 샤프트의 길이방향 축에 대각선인 라인(line)을 따른다. 개별 치형부가 뼈를 절삭할 때 치형부는 이 축과 대각선으로 그루브(groove)를 형성한다. 그루브 내에서 치형부가 전후로 움직이는 것은 그루브의 방향을 따르지 않는 헤드의 움직임을 방해하는 저항을 팁에 제공한다. 이 저항은 각 치형부가 자기의 그루브에서 이동하기 때문에 상당할 수 있다. 이것은 시술자(practitioner)가 원하는 방향으로 팁을 조향시킬 수 있는, 즉 위치시킬 수 있는 것을 방해한다.
또한, 임의의 절삭 동작의 결과, 절삭된 재료는 절삭을 수행하는 도구 부근에 파편을 형성한다. 이것은 초음파 수술 도구를 사용하여 조직을 제거하는 상황에도 적용된다. 초음파 수술 도구의 치형부가 선형 이동 경로로 전후로 움직일 때 파편은 치형부들 사이에 축적되는 경향이 있다. 이러한 파편의 축적은 치형부가 조직을 파서 제거하는 능력에 악영향을 미친다.
본 발명은 새롭고 유용한 초음파 수술 도구 시스템에 관한 것이다. 본 발명의 시스템은 진동시 복수의 모드에서 진동하는 팁을 포함한다. 본 발명의 시스템은 진동시 팁 헤드를 비-선형 이동 경로를 따라 이동시키는 구동 신호를 팁에 인가하는 구동 시스템을 더 포함한다.
본 발명의 시스템은 일반적으로 누적(cumulative) 구동 신호를 제공할 수 있는 구동 시스템을 포함한다. 이 누적 구동 신호는 복수의 이산 성분들의 합이다. 일반적으로, 이 구동 신호는 팁의 각 진동 모드에 대해 하나의 성분을 갖는다. 본 발명의 많은 실시예에서, 각 성분은 주파수 특성을 갖는다. 이 주파수 특성은 팁의 특정 진동 모드의 목표 주파수이거나 또는 이 목표 주파수 부근의 주파수이다. 여기서 진동 모드는 단일 평면에서, 길이방향으로, 비틀림 방향으로 또는 굴곡 방향(flexural)으로 팁이 진동하는 것일 수 있다. 일반적으로, 상이한 진동 모드들의 주파수 특성들은 서로 상이하다. 대안적으로, 이 진동 모드는 진동이 2개 이상의 평면에서 동시에 발생하는 것일 수 있다. 여기서, 목표 주파수는 팁이 진동하여야 하는 특정 주파수 범위에 대한 주파수 범위 내에서 팁의 공진 주파수와 반-공진 주파수 사이에서 이들을 포함하는 임의의 주파수이다.
본 발명의 추가적인 특징은 구동 신호의 각 성분의 특성, 즉 주파수와 전압을 변화시키는 것이다. 이러한 특성은, 초음파 도구를 사용하는 동안, 팁 헤드가 저항, 즉 기계적인 부하를 받기 때문에, 변화된다. 이 부하는 핸드피스의 기계적인 구성 요소의 임피던스의 등가치를 변화시킨다. 핸드피스의 이러한 특성이 변하면, 구동 신호의 인가에 응답하여 팁 헤드가 움직이고 진동하는 방식이 변화된다. 팁 헤드가 시술자에 의해 요구되는 움직임에 참여하는 것을 보장하기 위해, 본 발명의 시스템은 구동 신호를 조절한다. 이 구동 신호를 조절하는 것은 구동 신호의 성분들의 특성을 조절하는 것에 의해 수행된다.
본 발명은 청구 범위에 구체적으로 제시된다. 본 발명의 상기 및 다른 특징 및 이점은 첨부 도면을 참조하여 취해진 다음의 상세한 설명으로부터 더 잘 이해될 것이다.
도 1은 종래 기술의 시스템을 사용하여 작동시 팁 헤드의 진동 운동을 도시한다.
도 2는 본 발명의 특징을 포함하는 초음파 도구 시스템의 기본 성분을 나타낸다.
도 3은 시스템의 도구, 핸드피스, 팁 및 슬리브의 기계적인 구성 요소의 개략적인 분해도이다.
도 4는 핸드피스와 팁의 전기적인 구성 요소들과 이 구성 요소들이 제어 콘솔에 연결된 방식을 나타내는 블록도이다.
도 5는 핸드피스 내부 메모리에 저장된 데이터의 유형을 도시한다.
도 6은 도구 팁과 일체인 메모리에 저장된 데이터의 유형을 도시한다.
도 7은 본 발명의 시스템의 제어 콘솔의 전기적인 구성 요소들과 핸드피스 구성 요소들의 블록도이다.
도 8은 본 발명의 시스템에 따라 핸드피스에 인가되는 구동 신호의 파형을 도시한다.
도 9a 및 도 9b는 핸드피스를 통과하는 전류 흐름과 핸드피스의 상이한 구성 요소들의 임피던스를 나타내는 도면이다.
도 10a 내지 도 10d는, 함께 조립될 때, 본 발명의 시스템의 동작 흐름도를 형성한다.
도 11은 본 발명에 따라 팁이 작동될 때 초음파 팁의 헤드 상의 단일 지점의 움직임을 나타낸다.
I. 시스템 개요 및 하드웨어
본 발명의 특징을 포함하는 초음파 도구 시스템(30)이 이제 일반적으로 도 2 및 도 3을 참조하여 도시되어 있다. 시스템(30)은 핸드피스(32)를 포함한다. 팁(142)은 핸드피스(32)에 부착되어 이 핸드피스로부터 원위 방향으로 전방으로 연장된다. (여기서, "원위"라는 것은 시술자로부터 멀어지는 방향으로 핸드피스가 적용되는 부위 쪽을 향하는 것을 의미하는 것으로 이해된다. "근위"라는 것은 핸드피스가 적용되는 부위로부터 멀어지는 방향으로 핸드피스를 잡고 있는 시술자 쪽을 향하는 것을 의미하는 것으로 이해된다.) 팁(142)은 원하는 의료/수술 절차를 수행하기 위해 조직에 적용되는 시스템(30)의 구성 요소이다. 시스템(30)은 또한 제어 콘솔(240)을 포함한다. 제어 콘솔(240)은 핸드피스(32)에 인가되는 구동 신호를 공급한다. 이 구동 신호의 인가에 응답하여, 핸드피스(32)는 팁(142)을 진동시킨다.
핸드피스(32)는, 도 2에만 도시된, 본체 또는 쉘(34)을 포함한다. 도 3 및 도 4로부터, 하나 이상의 진동 압전 구동기(36)(4개가 도시됨)가 쉘(34) 내부에 배치된 것을 볼 수 있다. 각 구동기(36)는 전류가 구동기에 인가될 때 순간적인 팽창 또는 수축을 나타내는 물질로 형성된다. 이러한 팽창/수축은 구동기(36)의 길이방향 축, 즉 구동기의 근위 방향을 향하는 면과 원위 방향을 향하는 면 사이에서 연장된 축 상에서 일어난다. 한 쌍의 리드(lead)(38)가 각 구동기(36)로부터 멀어지는 방향으로 연장된다. 이 리드(38)는 구동기의, 서로 대향하는, 근위 방향을 향하는 면과 원위 방향을 향하는 면에 부착된다. 모든 것은 아니지만 많은 핸드피스(32)는 디스크 형상의 구동기(36)를 포함한다. 구동기(36)는 단 대 단이 스택되어 배열된다. 리드(38)는 구동 신호를 구동기(36)에 인가하는 시스템(30)의 구성 요소이다. 절연 디스크(40)(하나가 도시됨)는 인접한 구동기들 사이에 배치된다. 도 2에서, 구동기(36)와 절연 디스크(40)는 서로 이격되어 도시되어 있다. 이것은 구성 요소들을 용이하게 설명하기 위한 것이다. 실제로, 구동기(36)와 절연 디스크(40)는 밀접히 접해 있다.
포스트(44)는 구동기(36), 리드(38) 및 절연 디스크를 통해 길이방향으로 연장된다. 포스트(44)는 구동기(36), 리드(38) 및 절연 디스크(40)를 통해 그리고 이들 구성 요소의 동일 선상의 길이방향 축을 따라 연장된다. 포스트(44)가 관통 연장하는, 구동기(36), 리드(38) 및 절연 디스크의 내부 관통 보어는 보이지 않는다. 포스트(44)는 가장 근위에 위치된 구동기(36)와 가장 원위에 위치된 구동기 모두의 외측으로 돌출한다.
근위 단부 매스(mass)(46)는 가장 근위에 위치된 구동기(36)에 인접하여 위치되고 이 가장 근위에 위치된 구동기(36)의 근위 방향을 향하는 면에 접해 있다. 매스(46)는 포스트(44)의 근위 단부 구획에 부착된다. 포스트(44)에 나사산이 형성된 경우, 매스(36)는 너트일 수 있다.
도 3에만 도시된 혼(horn)(48)은 가장 원위에 위치된 구동기(36)의 원위 방향을 향하는 면으로부터 전방으로 연장된다. 혼(48)은 구동기(36)의 직경과 대략 동일한 직경을 갖는 베이스를 갖는다. 구동기(36)로부터 원위 방향으로 전방으로 연장되면서 혼(48)의 직경이 감소한다. 포스트(44)의 노출된 원위 단부 구획이 혼(48)에 부착된다. 본 발명의 많은 실시예에서, 포스트(44)와 혼(48)은 단일체 유닛이다. 핸드피스(32)는 구동기(36)와 절연 디스크의 스택이 근위 매스(36)와 혼(48) 사이에서 압축되도록 구성된다.
또한 핸드피스 쉘(34) 내에는 핸드피스 메모리(56)가 배치된다. 메모리(56)는 핸드피스(32)와 팁(142)의 동작을 조절하는데 사용되는 데이터를 포함한다. 메모리(56)는 EPROM, EEPROM 또는 RFID 태그의 형태를 취할 수 있다. 메모리의 구조는 발명의 일부가 아니다. 설명을 위한 목적으로, 핸드피스 메모리(56)는 RFID 태그이다. 코일(54)은 메모리(56)에 연결된 것으로 도시되어 있다. 코일(54)은 핸드피스와 관련된 구성 요소이고, 이 코일을 통해 제어 콘솔(240)이 핸드피스 메모리(56)로부터 판독하고 이 메모리에 기록한다.
도 5는 핸드피스 메모리(56)에 저장된 데이터의 유형을 도시한다. 필드(62)로 나타낸 데이터는 핸드피스(32)를 식별하는 데이터를 포함한다. 이 데이터는 콘솔(240)이 핸드피스에 구동 신호를 인가할 수 있는지를 확인하는데 사용된다. 필드(62) 내의 데이터는 또한 콘솔 디스플레이(278) 상에 제시되는 핸드피스에 관한 정보의 유형을 나타낼 수 있다. 핸드피스 메모리(56) 내의 다른 데이터는 구동기(36)에 구동 신호를 공급하는 것을 조절하는데 사용된다. 이 데이터를 사용하는 것은 아래에 설명되어 있지만, 데이터의 유형이 이제 설명된다. 필드(64)는 커패시턴스(CO), 즉 구동기(36)의 스택의 커패시턴스를 나타내는 데이터를 포함한다. 구동기 커패시턴스는 핸드피스(34)를 조립하는 과정 동안 분석하는 것에 의해 결정될 수 있다. 종종 구동기의 커패시턴스의 합은 500 내지 5000 pF이다. 핸드피스(36)에 인가되어야 하는 최대 전류(전류
Figure 112017022143318-pct00001
)에 관한 데이터가 필드(66)에 포함된다. 전류
Figure 112017022143318-pct00002
는 종종 1 암페어 피크 미만이고, 더욱 종종 0.5 암페어 피크 이하이다. 필드(68)는, 핸드피스의 아래에서 논의된 기계적인 구성 요소를 통해 흘러야 하는 전류의 최대 등가치(
Figure 112017022143318-pct00003
)를 나타내는 데이터를 포함한다. 전류
Figure 112017022143318-pct00004
는 일반적으로 0.25 암페어 피크 이하이다. 구동 신호의 최대 전위(전압
Figure 112017022143318-pct00005
)는 필드(70)에 저장된다. 전압
Figure 112017022143318-pct00006
는 종종 1500볼트 AC 피크이다.
또한, 핸드피스 메모리(56)에는 핸드피스(32)에 인가되어야 하는 구동 신호의 최소 주파수와 최대 주파수를 나타내는 데이터가 저장되어 있다. 필드(72)에 저장된 최소 주파수는 일반적으로 제어 콘솔에 의해 공급될 수 있는 구동 신호의 최소 주파수이다. 필드(74)에 저장된 구동 신호의 최대 주파수는 일반적으로 최소 주파수보다 5kHz 내지 40kHz 더 크다.
필드(76)는 제어기(96)에 의해 출력된 제어 신호들을 필터링하는 계수를 포함한다. PID 제어 루프들은 이들 신호 각각에 대한 최종 레벨을 수립하는데 사용된다. 필드(76)는 이들 제어 루프 각각에 대한 계수를 포함한다. 필드(64) 내의 데이터와 같이 필드(62, 66, 68, 70, 72, 74 및 76) 내의 데이터는 핸드피스를 조립하는 공정의 일부로서 핸드피스 메모리(56)에 저장되는 것으로 이해되어야 한다.
핸드피스 메모리(56)는 또한 사용 이력 필드로서 필드(78)를 포함한다. 제어 콘솔(240)은 핸드피스(32)의 사용 동안 핸드피스의 동작의 로그(log)를 제공하기 위해 필드(128)에 데이터를 기록한다.
도 4를 다시 참조하면, 핸드피스(32) 내부에는 2개의 전도체(132)가 도시되어 있는 것을 또한 볼 수 있다. 전도체(132)는 코일(54)로부터 핸드피스의 원위 단부로 연장된다. 전도체(132)는 또한 핸드피스(32) 내에 배치된 제 2 코일, 즉 코일(134)에 연결된다.
팁(142)은 핸드피스 혼(48)으로부터 전방으로 연장된다. 팁(142)은 대체로 원통형인 샤프트(144)를 갖는다. 본 발명의 모두가 아닌 일부 실시예에서, 샤프트(144)는 상이한 단면 직경을 각각 갖는 복수의 구획을 구비한다. 본 발명의 도시된 실시예에서, 팁 샤프트(144)는 근위 구획(146)을 구비한다. 샤프트 근위 구획(146)은 팁을 핸드피스(32)에 제거가능하게 결합하도록 설계된 결합 특징부(coupling feature)를 갖게 형성된다. 본 발명의 일 실시 예에서, 핸드피스 결합 특징부는 혼(48)으로부터 전방으로 연장되는 보스(boss)(49)이다. 보스(49)의 외부 표면은 나사산(미도시)을 갖게 형성된다. 팁의 결합 특징부는 부분적으로 샤프트 근위 구획(145)을 통해 샤프트(144)의 근위 단부로부터 안쪽으로 연장되는 폐쇄된 단부 보어(145)이다. 보어(145)에는 핸드피스 혼(48)과 일체인 나사산 형성된 보스와 결합하도록 설계된 나사산(미도시)이 제공된다.
본 발명의 도시된 실시 예에서, 샤프트(144)는 샤프트 근위 구획(146)으로부터 전방으로 연장되는 중간 구획(150)을 구비한다. 중간 구획(150)의 직경은 근위 구획(146)의 직경보다 작다. 도시된 샤프트(144)는 원위 구획(156)을 구비한다. 샤프트 원위 구획(156)의 직경은 중간 구획(150)의 직경보다 작다.
헤드(158)는 팁(142)의 가장 원위 부분이다. 헤드(158)는 샤프트 근위 구획(156)의 바로 전방에 위치된다. 헤드(158)는 종종 치형부 또는 플루트(flute)(미도시)를 갖게 형성된다. 팁 헤드(158)는 원하는 절차를 수행하기 위해 조직에 가압되는 시스템(30) 부분이다. 치형부 또는 플루트는 헤드(158)가 움직일 때 치형부 또는 플루트가 조직을 지지하도록 설계된다. 헤드가 움직인 결과, 치형부 또는 플루트가 조직을 제거한다. 팁의 치형부 또는 플루트의 기하학적 형상은 본 발명의 일부가 아니다.
핸드피스(32)는 일반적으로 구동기의 전후 운동이 팁(142)에 동일한 진동 운동을 유도하도록 설계된다. 이 전후 운동은 움직임이 팁의 길이방향 축, 보다 구체적으로 샤프트를 따라 전후 방향으로 일어나는 길이방향 진동이다. 본 발명의 팁은, 샤프트의 근위 단부에 인가되는, 근위에서 원위로의 진동 운동을 적어도 2개의 상이한 유형의 진동 운동으로 변환시키는 특징부를 더 구비한다. 도시된 팁(142)에서, 이 특징부는 샤프트 중간 구획(150)의 외부 표면으로부터 안쪽으로 연장되는 나선형 그루브(152)이다. 그루브(152)가 존재하는 것으로 인해 샤프트 근위 구획에 인가되는 길이방향 운동의 일부가 그루브의 전방 팁 구획을 길이방향으로 진동시키는 것에 더하여 회전 방향으로 진동시키는 것으로 변환된다. 회전 진동은 샤프트(144)의 길이방향 축 주위로 연장되는 호(arc)에서 샤프트와 팁이 진동하는 것을 의미하는 것으로 이해된다.
본 발명의 시스템(30)에 통합된 팁(142)은 진동 모드들의 공진 주파수들이 상이하도록 더 설계된다. 종종 이러한 공진 주파수들은 200 Hz 내지 2000 Hz로 서로 이격된다.
슬리브(170)는 팁 샤프트(144) 주위에 배치된다. 슬리브(170)는 플라스틱으로 형성된다. 슬리브의 근위 단부는 핸드피스 혼(48)의 원위 단부에 슬리브를 분리가능하게 결합시키는 특징부를 갖게 형성된다. 시스템(30)을 형성하는 구성 요소들은 슬리브가 팁 샤프트(144)로부터 방사방향으로 멀어지는 방향으로 그리고 팁 헤드(160)로부터 길이방향으로 멀어지는 방향으로 이격되도록 형성된다. 보다 구체적으로, 이 구성 요소들은 팁의 정상 진동 동안 팁이 슬리브와 접해 있지 않도록 구성된 크기를 갖는다.
본 발명의 일부는 아니지만, 슬리브(170)는 종종 고정구(172)를 갖게 형성되는 것을 볼 수 있다. 고정구(172)는 관개 라인(irrigation line)을 수용하도록 형성된다. 시스템(30)의 사용 동안, 관개 유체는 종종 슬리브(170) 내로 유동한다. 유체는 팁(142)과 슬리브(170) 사이의 갭을 통해 주위로 흐르고, 슬리브의 개방된 원위 단부로부터 밖으로 흐른다. 핸드피스 포스트(44)와 팁(142)은 연속된 보어(도시되지 않은 보어)들을 갖게 형성된다. 시술하는 동안 흡입물(suction)은 이들 보어를 통해 유입된다. 흡입물은, 팁 헤드(158)가 적용된 부위로부터, 관개 유체를 유입할 뿐만 아니라 유체에 동반되는 시술에 의해 형성된 파편을 유입한다. 또한, 흡입물은 팁 헤드(158) 쪽으로 조직을 유입한다. 이렇게 팁 헤드(158) 쪽으로 조직을 유입하는 것에 의해 팁 헤드에 의한 조직의 절삭이 향상된다.
도 3에서 대시 라인의 직사각형으로 도시된 팁 메모리(184)가 슬리브 내부에 배치된다. 비록 이 메모리가 슬리브(170) 내에 배치되어 있지만, 이 메모리는 팁(142)의 동작을 제어하는데 사용되기 때문에 이 메모리(184)는 팁 메모리라고 언급된다. 나아가, 팁(142)과 슬리브(170)는 일반적으로 단일 패키지로 함께 분배된다. 팁(142)은 일반적으로 처음에는 먼저 핸드피스(32)에 결합된다. 팁(142)이 제 위치에 있은 후에, 슬리브(170)는 핸드피스에 장착된다. 팁 메모리(184)는 일반적으로 핸드피스 메모리(56)와 동일한 유형의 메모리이다. 따라서, 본 발명의 도시된 실시예에서, 팁 메모리(184)는 RFID 태그이다. 슬리브(170)에 매립된, 도 4에만 도시된, 코일(182)은 팁 메모리(172)의 입력 핀에 연결된다. 시스템(30)을 형성하는 구성 요소들은, 슬리브(170)가 핸드피스(32)에 장착될 때, 핸드피스 코일(134)과 코일(182)이 유도 신호 교환에 참여할 수 있도록 구성된다.
도 6은 팁 메모리(184)에 포함된 데이터의 유형을 나타낸다. 필드(188)로 나타낸 바와 같이, 이 데이터는 팁 식별 필드를 포함한다. 필드(188) 내의 데이터는 팁을 식별하고, 핸드피스 메모리 핸드피스 식별 필드(112) 내의 핸드피스를 식별하는 데이터와 유사하다. 필드(190)에는, 핸드피스의 기계적인 구성 요소들을 통과하여야 하는 전류의 최대 등가치(
Figure 112017022143318-pct00007
)를 나타내는 데이터가 저장된다. 이 개념은 아래에 설명된다. 필드(191)는 구동 신호의 제 1 성분에 대한 최대 전위(
Figure 112017022143318-pct00008
)를 나타내는 데이터를 저장한다. 필드(192)에는, 구동 신호의 성분들 중 제 1 성분에서 기계적인 구성 요소들을 통과하여야 하는 전류의 최대 등가치(
Figure 112017022143318-pct00009
)를 나타내는 데이터가 저장된다. 필드(193)는 구동 신호의 제 2 성분에 대한 최대 전위(
Figure 112017022143318-pct00010
)를 나타내는 데이터를 저장한다. 필드(194)는 구동 신호의 성분들 중 제 2 성분에서 기계적인 구성 요소들을 통과하여야 하는 전류의 최대 등가치(
Figure 112017022143318-pct00011
)를 나타내는 데이터를 저장한다. 필드(196)는 구동 신호의 제 1 성분의 최소 주파수를 한정하는 데이터를 포함한다. 필드(198)는 구동 신호의 제 1 성분의 최대 주파수를 한정하는 데이터를 포함한다. 필드(202)는 구동 신호의 제 1 성분에 대한 제 1 목표 주파수(ω목표1)를 한정하는 데이터를 포함한다. 필드(204)는, 구동 신호의 제 1 성분에 대한 목표 주파수와 관련하여 사용되는 가상 임피던스 계수(m1)를 포함한다.
필드(206)는 구동 신호의 제 2 성분의 최소 주파수를 한정하는 데이터를 포함한다. 필드(208)는 구동 신호의 제 2 성분의 최대 주파수를 한정하는 데이터를 포함한다. 필드(210)는 구동 신호의 제 2 성분에 대한 목표 주파수(ω목표2)를 한정하는 데이터를 포함한다. 필드(212)는 구동 신호의 제 2 성분에 대한 목표 주파수와 관련하여 사용되는 가상 임피던스 계수(m2)를 포함한다.
PID 계수 필드(216)는, 팁에 대해 핸드피스 메모리 PID 계수 필드(76) 내의 데이터보다 더 특정적일 수 있는, 제어 신호에 대한 필터링 계수를 포함한다. 팁 메모리(184)는 또한 팁 사용 이력 필드(218)를 포함한다. 시스템(30)이 동작하는 동안, 제어 콘솔(240)은 팁(142)의 사용에 관한 데이터를 필드(218)에 기록한다.
이제 도 2, 도 4 및 도 7과 관련하여 기술된 제어 콘솔(240)은 팁(142)에 진동을 야기하는 구동 신호를 핸드피스(32)에 공급한다. 이 구성 요소들은 전원(242)을 포함한다. 전원(242)은 일반적으로 1 내지 250 VDC의 상수 전압 신호를 출력한다. 본 발명의 많은 실시예에서, 전원(242)에서 출력되는 전압의 최대 전위는 150 VDC 이하이다. 전원(242)에서 생성된 전압은 가변 이득 증폭기(244)에 인가된다. 제어 신호, 구체적으로, 파형_설정(W_S) 신호가 증폭기(244)에 인가된다. 파형_설정 신호는 증폭기에서 생성된 신호의 이득을 수립한다. 본 발명의 많은 실시예에서, 증폭기(244)는 파형_설정 신호에 응답하여 AC 신호를 출력할 수 있는 가변 이득 등급(Class) A 증폭기이다. 보다 구체적으로, 증폭기(244)는 10 kHz 내지 100 kHz의 주파수를 갖는 신호를 출력할 수 있다. 종종 신호는 20 kHz의 최소 주파수를 구비한다.
증폭기(244)로부터의 출력 신호는 또한 제어 콘솔(240)의 일부인 변압기(248)의 1차 권선(254)에 인가된다. 변압기(248)의 2차 권선(258) 양단에 존재하는 전압은 핸드피스 구동기(36)에 인가되는 구동 신호이다. 이 전압은 일반적으로 최대 1500 볼트 AC 피크이다. 구동 신호는 구동기(36) 양단에 병렬로 인가된다.
변압기(248)는 티클러 코일(tickler coil)(256)을 포함한다. 티클러 코일(256) 양단에 존재하는 전압은 전압 측정 회로(262)에 인가된다. 티클러 코일(256) 양단의 신호에 기초하여, 회로(262)는 전압(VS)의 전위와 위상을 나타내는 신호를 생성하고, 구동 신호의 전압은 핸드피스(32)에 인가된다. 제어 콘솔(72) 내에 또한 배치된 코일(264)은 변압기의 2차 권선(258)으로부터 연장되는 전도체들 중 하나에 근접하여 위치된다. 코일(264) 양단에 존재하는 신호는 전류 측정 회로(266)에 인가된다. 회로(266)는 전류(iS), 즉 핸드피스를 통과하는 구동 신호의 전류의 세기와 위상을 나타내는 신호를 생성한다.
변압기의 2차 권선(258) 양단에 존재하는 구동 신호는 제어 콘솔(소켓은 도시되지 않음)과 일체인 소켓에 부착된 2개의 전도성 접점(266)에 존재한다.
구동 신호는 도 1에만 도시된 케이블(230)에 의해 핸드피스 구동기에 인가된다. 시스템(30)의 많은 구성물에서, 핸드피스(30)와 케이블(230)은 단일 유닛이다. 케이블(230)은 접점(266)이 위치된 제어 콘솔 소켓에 연결된다.
핸드피스(32)와 케이블(230)이 단일 유닛인 본 발명의 실시예에서, 핸드피스 코일(54)은 케이블과 일체인 플러그 내에 배치된다. 콘솔 소켓 내에는 상보 코일(complementary coil)(268)이 배치된다. 시스템을 형성하는 구성 요소들은 케이블(230)과 일체형인 플러그가 핸드피스 소켓에 안착될 때 코일(54 및 268)이 유도적으로 신호를 교환할 수 있도록 구성된다.
구동 신호를 나타내는 신호들, 즉 핸드피스 구동기(36)에 공급되는 전압(Vs) 및 전류(is)는 또한 제어 콘솔(240) 내부 프로세서(276)에 인가된다. 제어 콘솔(240)은 또한 메모리 판독기(272)를 포함한다. 메모리 판독기(272)는 일 단부에서 콘솔 코일(268)에 연결되고, 타 단부에서 프로세서(276)에 연결된다. 메모리 판독기(272)는 코일(268) 양단에 존재하는 신호를, 프로세서(272)가 판독할 수 있는 데이터 신호로 변환한다. 또한 메모리 판독기(272)는, 프로세서(272)에 의해 출력된 신호에 응답하여, 신호를 코일(268) 양단에 출력하는데, 이 신호는 코일(268)이 신호를 출력해서 핸드피스 메모리(56)와 팁 메모리(184)에 데이터를 기록하게 한다. 메모리 판독기(268)의 구조는 핸드피스 메모리(102)를 보완한다. 따라서, 메모리 판독기는 EPROM 또는 EEPROM에서 데이터를 판독할 수 있는 조립체이거나 또는 RFID 태그로부터 데이터를 질의하고 판독할 수 있는 조립체일 수 있다.
프로세서(272)는 증폭기(244)에 인가되는 파형_설정 신호를 생성한다. 따라서 프로세서(276)는 제어 콘솔(240)에 의해 출력되어 핸드피스(32)에 인가되는 구동 신호의 특성을 설정한다. 프로세서(276)에 의해 설정된 구동 신호의 특성은 구동 신호의 전압과 주파수이다. 프로세서(276)는 핸드피스(32)의 특성과 팁(134)의 특성의 함수로 이러한 특성을 결정한다. 또한 프로세서(96)는 전압(Vs)과 전류(is)의 획득된 측정값의 함수로서 구동 신호를 결정한다.
디스플레이(278)가 제어 콘솔(240)에 형성된다. 디스플레이(278)상의 이미지는 프로세서(276)에 의해 생성된 것으로 도시된다. 디스플레이(278) 상에 표시된 정보는 핸드피스(32)와 팁을 식별하는 정보; 및 시스템의 동작 상태의 특성을 기술하는 정보를 포함한다. 디스플레이(278)는 종종 터치 스크린 디스플레이이다. 프로세서(272)는 버튼의 이미지를 디스플레이 상에 표시한다. 버튼을 누름으로써, 시술자는 시스템(30)의 특정 동작 특성으로서 자신이 원하는 것을 설정할 수 있다.
디스플레이(278) 상에 제시된 버튼에 더하여, 일반적으로 제어 콘솔과 관련된 적어도 하나의 온/오프 스위치가 있다. 도 2 및 도 7에, 이 온/오프 스위치는 발 스위치(footswitch)(280)로 도시된다. 발 스위치(280)는 스위치가 눌러진 정도에 따라 변하는 신호를 생성하도록 구성된다. 이 신호는 프로세서(280)에 공급된다. 발 스위치(280)에 의해 공급되는 신호의 상태에 기초하여, 프로세서(276)는 구동 신호의 생성을 조절하여, 팁이 진동하는지 여부 및 팁 헤드가 진동하는 크기를 제어한다.
II. 동작의 기초
본 발명의 시스템(30)은 팁 헤드(158)가 비-선형이라고 여겨질 수 있는 이동 경로를 따라 움직이도록 하는 구동 신호를 제어 콘솔(240)이 출력하도록 설계된다. 본 발명의 목적을 위해, 비-선형 이동 경로는, 팁 헤드(158)가 전후로 진동할 때, 헤드의 단일 지점의 움직임이 공간에서 2개의 상이한 지점 세트를 따라 일어나도록 하는 이동 경로이다. 팁 헤드가 시작점으로부터 단일 움직임 사이클의 아웃바운드 국면(outbound phase)에 참여하면, 팁 헤드는 제 1 지점 세트를 따라 이동한다. 팁 헤드가 시작점으로 돌아가기 위해 동일한 사이클의 인바운드 국면(inbound phase)에 참여하면, 팁 헤드는 제 1 지점 세트와는 다른 제 2 지점 세트를 따라 이동한다. 나아가, 제 1 전체 진동 사이클 동안 팁 헤드의 지점이 이동하는 지점 세트는 그 다음 진동 사이클에서 팁 헤드가 이동하는 지점 세트와는 상이할 수 있다. 진동 사이클 동안 팁 헤드가 이동하는 지점 세트는 단일 평면 상에 있지 않을 수도 있다는 것을 알아야 한다. 지점 세트는 복수의 평면에 있을 수 있다. 다시 말해, 이 지점 세트는 하나 이상의 축 주위로 회전할 수 있다.
도 8은 팁 헤드(158)의 전술된 움직임을 유도하기 위해 제어 콘솔(240)이 핸드피스 구동기(36)에 출력하는 구동 신호의 파형을 도시한다. 구동 신호는 이제 구동 신호 성분이라고 언급되는 2개의 AC 신호의 합이다. 각 구동 신호 성분은 자기 주파수와 자기 전위를 가지고 있다. 일반적으로 이러한 상이한 성분들의 주파수들은 상이하다. 또한, 종종, 구동 신호의 상이한 성분들의 전위들은 서로 상이하다.
본 발명의 많은 실시예의 또 다른 특징은 구동 신호의 각 성분이 팁의 특정 진동 모드의 목표 주파수에 있거나 또는 목표 주파수 부근의 주파수에 있는 것이다. 시스템(30)은, 진동 모드가 단일 평면에서, 길이방향으로, 비틀림 방향으로 또는 굴곡 방향으로 팁이 진동하도록 구성될 수 있다. 여기에서, 길이방향 평면에서 진동하는 것이란 팁(142)의 길이방향 축을 따라 왕복 운동하는 것인 것으로 이해된다. 비틀림 평면에서 진동하는 것이란 팁 헤드의 길이방향 축에 수직인 평면에서 팁 헤드(158)가 회전 왕복 운동하는 것인 것으로 이해된다. 굴곡 운동은 팁의 길이방향 축이 배치된 평면에서 팁 헤드가 왕복 운동하는 것이다. 굴곡 운동은 샤프트(144) 주위로 팁이 휘어지는 것이다. 이 굴곡 운동은 샤프트 주위로 360° 임의의 방향으로 발생할 수 있다. 대안적으로, 팁(42)의 진동 모드는 2개의 평면에서 팁이 동시에 왕복 운동하는 진동일 수 있다. 예를 들어, 하나의 진동 모드는 운동이 팁 샤프트의 길이방향 축과 교차하는 제 1 라인을 따라 일어나도록 길이방향과 비틀림 방향으로 일어날 수 있다. 제 2 모드는 라인을 따르는 제 2 길이방향과 비틀림 방향으로 일어나는 운동이 결합된 것일 수 있다. 이 2가지 진동 모드의 차이는 제 2 모드의 진동이 제 1 모드의 진동 라인과는 다른 라인을 따른다는 것이다.
본 발명에 따른 팁 진동 모드에 대한 "목표 주파수"는 팁(142)이 진동하기로 되어 있는 주파수 범위 내의 주파수이다. 목표 주파수는 일반적으로 진동 모드에 대한 공진 주파수; 진동 모드에 대한 반-공진 주파수; 또는 공진 주파수와 반-공진 주파수 사이의 주파수 중 하나일 수 있다. 팁의 진동 모드들의 공진 주파수들은 서로 상이하므로, 진동 모드들의 목표 주파수들도 상이한 것으로 이해된다.
본 발명의 많은 실시예 예에서, 구동 신호의 각 성분의 전위는 핸드피스(32)와 팁(142)의 기계적인 구성 요소들로 알려진 것을 통과하는 전류의 목표 등가치가 흐르도록 설계된 전위에 있다. 이들 구성 요소는 구동기(36), 포스트(44), 근위 단부 매스(46), 혼(48), 및 팁(152)을 포함한다. 슬리브(170)는 일반적으로 전류의 등가치가 흐르는 구성 요소로 고려되지 않는다. 이것은 슬리브(170)가 진동하는 동안 슬리브의 진동은 다른 구성 요소의 진동에 기인하기 때문이다. 추가적인 설명을 간략화하기 위해, 이것은 또한 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 등가치라고 간단히 언급될 것이다. 이 어구는 쉘(170)이 핸드피스(32)의 기계적인 구성 요소인 것으로 고려될 수 있는 경우에도 사용된다.
도 9a는 구동 신호 전류(iS)가 2개의 성분으로 분해되는 방식을 개략적으로 나타낸 것이다. 제 1 성분은 전류(iO), 즉 핸드피스 구동기(36)를 통과하는 전류이다. 제 2 성분은 전류(iM), 즉 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 등가치이다. 옴의 법칙에 따르면, 구동기를 통과하는 전류와, 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 등가치는 구동 신호 전압(VS)과 이들 구성 요소의 임피던스의 함수이다. 도 9a에서, Z0는 핸드피스 구동기(36)의 임피던스이다. 임피던스(ZM)는 핸드피스의 기계적인 구성 요소들의 리액턴스(reactance)의 등가치이다.
구동기(36)의 임피던스는 주로 그 용량성 리액턴스에 기인한다. 따라서, 도 9b의 개략도에서, 구동기 임피던스(Z0)는 구동기 커패시턴스(CO)의 함수로만 있는 것으로 도시된다. 본 발명의 시스템(30)의 목적을 위해, 구동기 커패시턴스(CO)는 일반적으로 일정하다. 핸드피스의 기계적인 구성 요소들의 임피던스의 등가치는 저항 성분, 유도성 리액턴스 성분 및 저항 성분을 갖는다. 따라서, 도 9b에서 기계적인 임피던스(ZM)의 등가치는 저항(RM), 커패시턴스(CM) 및 인덕턴스(LM)의 함수인 것으로 도시된다. 도 9b에서 저항(RM), 커패시턴스(CM) 및 인덕턴스(LM)의 기계적인 등가치가 변수로 도시되어 있다. 이것은 팁이 조직에 적용될 때 핸드피스의 이러한 특성이 팁(142)에 노출되는 기계적인 저항의 함수로서 변하기 때문이다.
임의의 한순간에 핸드피스의 기계적인 구성 요소들을 통해 흐르는 전류의 등가치는 다음 수식에 기초하여 결정된다:
iM = iS - jωCOVS (1)
여기서 ω는 구동 신호의 방사 주파수이다. 수식(1)이 도출되는 방식에 대한 자세한 설명은, 전체 내용은 본 명세서에 명시적으로 병합된, 출원인의 미국 가특허 출원 번호 61/863,152(출원일: 2103년 8월 7일, 발명의 명칭: "핸드피스의 기계적인 임피던스 기능으로서 초음파 핸드피스를 구동하는 시스템 및 방법(SYSTEM AND METHOD FOR DRIVING AN ULTRASONIC HANDPIECE AS A FUNCTION OF THE MECHANICAL IMPEDANCE OF THE HANDPIECE)", 및 W0 2015/021216 A1/미국 특허 공개 번호 ____________________로 공개된 PCT 출원 번호 PCT/US2014/050034에서 찾아볼 수 있다. 전술된 출원 문헌은 그 전체 내용이 모두 본 명세서에 명시적으로 병합된다. 전술된 바와 같이, 본 발명의 시스템(30)에 의해 공급되는 구동 신호는 복수의 성분을 갖는다. 그리하여, 구동 신호의 개별 성분에 대한 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 등가치는 다음 수식에 기초한다:
iM -X = iS -X - jωXCOVS - X (1A)
"-X" 또는 "X"는 전류의 등가치를 계산하고 있는 구동 신호의 특정 성분을 식별한다.
전술된 바와 같이, 본 발명의 시스템(30)은 구동 신호의 각 성분이 핸드피스의 기계적인 구성 요소들의 목표 주파수를, 가능한 한 근접하게, 추적하는 주파수에 있도록 구동 신호를 제어하도록 더 구성된다.
일반적으로, 목표 주파수에 대한 구동 신호의 주파수의 관계는 먼저 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 등가치에 대한 핸드피스 구동기(36)를 통과하는 전류의 비율의 실수 성분을 결정하는 것에 의해 결정될 수 있다. 이 비율은 다음 수식으로 표현된다:
Figure 112017022143318-pct00012
본 명세서에 병합된 미국 가특허 출원 번호 61/863,152는 상기 비율이 핸드피스의 기계적인 구성 요소들의 목표 주파수에 대한 구동 신호의 주파수의 관계를 제공하는 이유에 대한 상세한 설명을 제공한다.
본 발명에 따른 핸드피스 구동기에 인가되는 구동 신호는 복수의 성분으로 구성되기 때문에, 단일 성분에 대한 비율은 다음과 같다:
Figure 112017022143318-pct00013
이 비율은 상수 목표 비율(TR)과 비교된다. 이 목표 비율은 일반적으로 0 내지 1의 숫자(경계값 포함)이다. 구동 신호의 성분이 진동 모드의 공진 주파수에 있는 것이 목표라면, 이 목표 비율은 0이다. 구동 신호의 성분이 진동 모드의 반-공진 주파수에 있는 것이 목표라면, 이 목표 비율은 1이다. 이 구동 신호의 성분의 목표 주파수가 진동 모드의 공진 주파수와 반-공진 주파수 사이의 주파수에 있는 본 발명의 구현 예에서, 이 구동 주파수는 0과 1 사이의 수이다.
목표 비율에 대해 수식(2A)의 비율을 비교하는 것이 그 자체로 원하는 목표 주파수에 대한 구동 신호 성분의 주파수의 관계를 잘 나타내지 않는 상황이 있을 수 있다. 이것은 팁 헤드(158)가 조직에 놓인 결과 발생할 수 있다. 보다 구체적으로, 일부 팁 헤드의 고유한 특징은 이 팁 헤드가 조직에 놓이고 부하를 받을 때 목표 주파수를 포함하는 주파수의 범위에 걸쳐 핸드피스의 기계적인 구성 요소들의 리액턴스의 등가치에 큰 변화가 있다는 것이다. 또한, 종종 시술자는 핸드피스(32)를 작동시키기 전에 팁 헤드(158)를 조직에 위치시키기를 원할 수 있다. 이것이 일어날 때, 핸드피스의 기계적인 구성 요소들의 임피던스의 등가치의 저항 성분은 이 임피던스의 이 성분들의 용량성 리액턴스와 유도성 리액턴스 모두보다 상당히 더 클 수 있다. 이들 상황 중 어느 것에서, 수식(2A)의 비율이 목표 비율에 더 가까워지도록 구동 신호 성분의 주파수를 수정(modifying)하는 아래에 논의된 단계로도, 목표 주파수에 가까운 주파수에 있는 성분을 갖는 구동 신호를 공급하지 못할 수 있다.
따라서, 수식(2A)의 아래 수정된 실시예를 사용하여, 구동 신호의 성분이 관련된 진동 모드에 대한 목표 주파수에 가까운 주파수에 이 구동 신호의 성분이 있는지 여부를 결정한다:
Figure 112017022143318-pct00014
수식(2B)에서 플러스 부호의 우측에 있는 부분은 구동 신호의 성분의 실제 주파수(ωX)와, 구동 신호의 성분에 대한 원하는 목표 주파수(ωTRGT-X) 사이의 차이의 함수로서 기본 비율을 수정한다. 이 수정이 두 주파수들 사이의 1차 차이(first order difference)보다 더 높은 값에 기초할 수 있기 때문에 멱지수(exponent)(A)가 존재한다. 계수(mX)는 이 비율의 수정을, 실제 주파수와 목표 주파수의 차이의 함수로 한정하기 위한 기울기를 한정하는 계수이다.
III. 실제 동작
본 발명의 시스템(30)의 동작은 팁(142)을 핸드피스(32)에 연결하는 것으로 시작한다. 슬리브(170)는 팁에 장착되고 또한 핸드피스(32)에 부착된다. 케이블(230)은 제어 콘솔(240)에 부착된다. 이후 콘솔(240)은 턴온될 준비가 된다. 상기 서브-단계는 도 10a의 단계(302)에서 시스템을 초기에 조립하고 활성화하는 것을 형성한다. 제어 콘솔(240)이 초기에 턴온되면, 프로세서(276)는, 단계(304)에서 핸드피스 메모리(56)와 팁 메모리(184)에 저장된 데이터를 판독한다. 프로세서(276)는 메모리 판독기(272)에 적절한 명령을 어서트(assert)함으로써 이 데이터를 수신한다.
판독된 데이터에 기초하여, 단계(306)에서, 프로세서는 시스템을 초기에 구성하는 것을 완료한다. 단계(306)는 다수의 평가를 수행하여, 시스템(30)이 사용을 위해 적절히 구성되었는지 여부를 결정한다. 이러한 평가는 핸드피스가 제어 콘솔(240)이 구동 신호를 공급할 수 있는 핸드피스인지 여부를 결정하는 동작; 및 팁(142)이 핸드피스에 의해 작동하기에 적절한 것인지 여부를 결정하는 동작을 포함한다. 이러한 평가는 핸드피스 식별 필드(62)와 팁 식별 필드(188)로부터의 데이터에 기초할 수 있다. 또한, 프로세서(276)는 핸드피스 사용 이력 필드(78)와 팁 사용 이력 필드(218)로부터의 판독 데이터에 기초하여 핸드피스(32)와 팁(142)이 사용할 상태에 있는지 여부를 평가한다. 사용이 부적절할 수 있음을 나타내는 데이터의 예로는 특정 구성 요소, 즉 핸드피스 또는 팁이 이 구성 요소에 설계된 수명을 초과하는 횟수 또는 전체 시간 동안 사용되었음을 나타내는 데이터이다.
구성 요소들이 시스템으로 사용하기 위해 적절히 조립되었다고 가정하면, 프로세서(276)는 이 효과에 대한 정보를 디스플레이(278)에 제공한다. 프로세서(276)는 또한 팁 헤드(158)의 진동 운동이 시술자가 원하는 운동인 것을 보장하도록 시스템이 구성되어야 하는 방식을 나타내는 정보를 시술자가 입력할 것을 요청한다. 상기는 단계(306)의 모든 부분이다. 시술자의 초기 구성 명령을 수신하는 것도 또한 단계(306)의 일부이다.
핸드피스 메모리(56), 팁 메모리(184)에 있는 데이터, 및 시술자가 입력한 명령에 기초하여, 단계(308)에서 프로세서(276)는, 구동 신호의 각 성분에 대하여 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 선택된 최대 등가치(i선택MAX-X)를 수립한다. 시스템의 동작에 관한 본 예는 도 3의 팁(142)에 기초한다. 구체적으로, 이 팁(142)은 구동 신호가 팁 헤드(158)에 2개의 평면, 즉 길이방향으로 그리고 굴곡 방향으로 움직임을 야기하도록 설계된다. 따라서, 구동 신호는 2개의 성분, 즉: 길이방향 평면에서 진동하는 것과 관련된 목표 주파수에 기초한 제 1 성분; 및 비틀림 평면에서 진동하는 것과 관련된 목표 주파수에 기초한 제 2 성분으로 형성된다. 단계(308)에서, 전류의 선택된 최대 등가치는 다음 수식을 사용하여 구동 신호의 각 성분에 대해 수립된다:
Figure 112017022143318-pct00015
선택된 최대 등가 전류(
Figure 112017022143318-pct00016
)는 팁의 이동 경로에 관한 시술자의 설정에 기초하는 것으로 이해된다. 계수(BX)는 프로세서(276)가 시술자의 설정에 기초하여 생성하는 계수이다. 따라서, 단계(308)를 실행하는 제 1 부분은 프로세서(276)가 시술자의 설정에 기초하여 적절한 BX 계수를 생성하는 것이다. 계수(BX)는 룩업 테이블을 참조하여 생성될 수 있다. 대안적으로, BX 계수는 본 발명의 일부가 아닌 알고리즘에 기초한다. 시술자가 설정한 이동 경로에 관한 정보에 기초하여 이 알고리즘은, 구동 신호를 형성할 때, 팁 헤드가 원하는 이동 경로로 움직이게 하는, 핸드피스에 인가되는 구동 신호를 초래하는 등가 전류(
Figure 112017022143318-pct00017
)를 생성하는 BX 계수를 출력한다.
본 발명의 설명된 실시예에서, 구동 신호는 2개의 성분을 갖는다. 따라서, 단계(308)에서 수식(3)이 2회 실행된다. 첫 번째로 수식이 실행될 때, 제 1 구동 신호 성분에 대한 최대 등가 전류, 즉 최대 전류 필드(192)로부터 전류의 등가치(
Figure 112017022143318-pct00018
)가 변수(
Figure 112017022143318-pct00019
)로 사용된다. 두 번째로 수식(3)이 실행될 때, 필드(194)로부터 전류의 등가치(전류
Figure 112017022143318-pct00020
)가 변수(
Figure 112017022143318-pct00021
)로 사용된다. 전류의 선택된 최대 등가치가 생성되면, 시스템(30)은 작동 준비가 된다.
단계(310)는 시술자가 핸드피스를 활성화시켜 팁 헤드(158)를 진동시키기를 원하는지를 나타내는 것으로 제어 부재가 작동하였는지 여부를 결정하기 위해 프로세서가 대기하는 것을 나타낸다. 본 발명의 설명된 실시 예에서, 프로세서(276)는 발 스위치(280)에 의해 출력되는 신호를 모니터링하는 것에 의해 단계(310)를 실행한다. 시술자가 팁을 작동시키기를 원할 때 시술자는 발 스위치(280)를 누른다. 팁 헤드의 진동의 크기는, 시술자가 발 스위치(280)가 눌려지는 정도를 제어하여 설정된다.
프로세서(276)가 스위치가 눌러졌음을 나타내는 신호를 발 스위치로부터 수신하면, 프로세서는 단계(312)를 실행한다. 단계(312)에서, 프로세서(272)는 구동 신호의 각 성분에 대한 전류의 목표 등가치(
Figure 112017022143318-pct00022
Figure 112017022143318-pct00023
)를 수립한다. 본 발명의 많은 실시예에서, 전류의 각 목표 등가치는 1차 수식을 사용하여 계산된다:
Figure 112017022143318-pct00024
계수(D)는 0.0 내지 1.0(경계값 포함)에 있다. 예를 들어, 시술자가 팁 헤드가 최대 진폭의 진동을 수행하기를 원한다면, 발 스위치(280)는 일반적으로 완전히 눌려진다. 프로세서(276)는, 발 스위치(280)가 이 상태에 있다는 것을 나타내는 신호를 수신한 것에 응답하여, 계수(D)를 1로 설정한다. 시술자가 팁 헤드(158)가 최대 진폭 미만으로 진동하기를 원한다면, 시술자는 발 스위치(280)를 완전히 누르지 않는다. 프로세서(276)는, 발 스위치(280)가 부분적으로만 눌려진 것을 나타내는 신호를 수신하면, 스위치가 눌려지는 정도의 함수로서 계수(D)를 0과 1 사이의 값으로 설정한다.
콘솔(240)이 도 10a 내지 도 10d의 제어 루프를 초기에 실행할 때, 단계(310)를 평가한 후 루프를 처음 실행한 결과 긍정(예)인 경우, 프로세서(276)는 단계(314)를 실행한다. 단계(314)에서, 구동 신호의 성분들의 초기 특성이 생성된다. 각 성분의 주파수는 변수(주파수_성분-X)라고 언급된다. 각 성분의 전압은 변수(전압_성분-X)라고 언급된다. 구동 신호의 각 성분은 초기 주파수와 초기 전위를 갖는다. 성분에 대한 초기 주파수는 팁 메모리(158)로부터 판독된 성분에 대한 최소 주파수이다. 제 1 성분의 경우, 이것은 메모리 필드(196)에 포함된 주파수이다. 제 2 성분의 경우, 이것은 메모리 필드(206)에 포함된 주파수이다. 초기 전위는 구동 신호의 그 성분에 대한 최대 전위의 분율(fraction)인 전위이다. 본 발명의 일부 실시예에서, 초기 전위는 구동 신호의 그 성분에 대한 최대 전위(
Figure 112017022143318-pct00025
)의 0.03과 0.07 사이이다. 구동 신호의 제 1 성분에 대해, 팁 메모리 필드(191)로부터의 전위가
Figure 112017022143318-pct00026
로 사용된다. 팁 메모리 필드(193)로부터의 전위는 구동 신호의 제 2 성분에 대한 초기 전위를 계산하기 위해
Figure 112017022143318-pct00027
로 기능한다.
구동 신호의 개별 성분들의 특성에 기초하여, 단계(315)에서 제어 콘솔(240)은 구동 신호를 출력한다. 단계(315)의 일부로서, 프로세서(276)는 구동 신호의 2개의 성분의 합을 나타내는 파형을 생성한다. 이 파형은 도 8의 파형의 외관을 갖는다. 프로세서(276)는 이 파형을 나타내는 파형_설정 신호를 생성한다. 이 파형_설정 신호는 증폭기(244)의 입력에 인가되고 이 증폭기에는 이득 제어 신호가 공급된다.
증폭기(244)는, 파형_설정 신호를 수신한 것에 응답하여 그리고 단계(315)의 일부로서, 전원(242)으로부터의 신호를 선택적으로 증폭하고 감쇠시킨다. 증폭기로부터의 출력 신호는 변압기 1차 권선(254)에 인가된다. 변압기(248)는 구동 신호를 케이블(230)을 통해 핸드피스 구동기(36)에 출력한다. 상기는 단계(315)의 모든 부분이다.
구동 신호가 핸드피스 구동기(36)에 인가된 것에 응답하여, 구동기는 주기적으로 팽창하고 수축한다. 구동기의 팽창/수축은 구동 신호의 전위에 비례한다. 이 팽창/수축은 구동 신호의 진폭과 구동 신호의 주파수에 비례한다. 핸드피스 혼(48)은 이러한 팽창과 수축을 증폭하여 근위 구획(146)에 전달한다. 이러한 진동은 팁의 길이방향 평면을 따라 일어난다. 그루브(152)는 이 샤프트 운동의 일부를 비틀림 평면에서의 진동으로 변환한다. 팁의 구조와 이러한 진동의 변화 가능성으로 인해, 팁 헤드(158)는 도 11에 도시된 바와 같이 비-선형인 진동 운동으로 유도된다. 도 11에서 가장 왼쪽 등호 부호의 바로 오른쪽에서 이 움직임은 단일 타원형 이동 경로로 보인다.
본 발명에서, 구동 신호의 성분들이 동일한 주파수를 가지지 않기 때문에, 2개의 연속적인 진동 사이클의 이동 경로는 동일하지 않을 것이다. 이로 인해 팁 헤드는 선형이 아닌 것에 더하여 시간에 따라 배향이 변하는 진동을 수행한다. 도 11의 단일 타원형 루프는 실제로 폐쇄된 루프가 아니어야 한다. 도 11에서 중간에 위치된 등호 부호의 우측으로 가는 중간 그림은 팁 헤드가 복수의 진동 사이클에 참여한 후 팁 헤드 상의 한 지점의 이동 경로를 보여준다. 도 11에서 등호 부호의 가장 오른쪽에 있는 그림은 팁 헤드가 더 추가적인 진동 사이클에 참여한 후 팁 헤드 지점의 이동 경로를 보여준다. 이들 그림은 일정 시간 기간에 걸쳐 팁 헤드 상의 지점, 즉 치형부 상의 지점이 표면을 이루는 것을 나타낸다. 도 11에서 표면은 자연적으로 곡선인 것으로 보이지만, 이 표면은 하나 이상의 축 주위로 만곡될 수 있는 것으로 이해되어야 한다. 팁 헤드 지점의 이러한 움직임에서 암시적으로 알 수 있는 것은 연속적인 진동 사이클에서 지점의 이동 경로의 배향이 변한다는 것이다.
시스템(30)은 출력 구동 신호가 팁 헤드(158)의 원하는 움직임을 계속 유도하는 것을 보장하기 위해 피드백 제어 공정에 참여한다. 이 제어를 수행하기 위해, 단계(154)에서 프로세서(272)는 단계(316)에서 시스템(96)이 핸드피스를 통과하는 구동 신호의 전압(Vs)을 모니터링하는 것을 모니터링한다. 이것은 전압 측정 회로(262)에 의해 생성된 출력 신호를 프로세서(272)에 의해 모니터링하는 것이다. 이 모니터링의 일부로서, 프로세서는 전압(VS)을 복수의 성분으로 분해한다. 구체적으로, 전압(VS)은 구동 신호를 포함하는 각 성분에 대해 하나의 성분으로 분해된다. 본 발명의 설명된 실시예에서, 구동 신호는 2개의 성분을 갖는다. 따라서 전압(VS)은 제 1 성분 전위(
Figure 112017022143318-pct00028
)와 제 2 성분 전위(
Figure 112017022143318-pct00029
)로 분해된다. 본 발명의 일부 실시예에서, 프로세서(272)는 고속 푸리에 변환을 사용하여 전압(VS)의 성분들을 분해한다.
피드백 제어의 일부로서, 단계(318)에서, 프로세서(272)는 핸드피스를 통과하는 구동 신호 전류, 즉 전류(iS)를 모니터링한다. 이 모니터링은 전류 측정 회로(266)에서 수행된다. 구동 신호 전위에서와 같이, 구동 신호 전류는 복수의 성분, 즉 구동 신호의 각 성분에 대해 하나의 성분으로 이루어진다. 따라서, 단계(318)의 일부로서, 프로세서는 구동 신호 전류를 제 1 성분 특성 전류(
Figure 112017022143318-pct00030
)와 제 2 성분 특성 전류(
Figure 112017022143318-pct00031
)로 분해한다. 단계(318)에서, 프로세서(272)는 고속 푸리에 변환을 수행하여, 측정된 핸드피스 전류(iS)를
Figure 112017022143318-pct00032
Figure 112017022143318-pct00033
로 분해한다.
단계(320)에서, 프로세서는 구동 신호의 각 성분에 대한 전류의 등가치를 결정한다. 이 전류의 등가치는 측정되는 것이 아니고 계산되는 것이기 때문에, 이는 종종 전류의 계산된 등가치라고도 언급된다. 단계(320)에서 수식(1A)은
Figure 112017022143318-pct00034
, 즉 구동 신호의 제 1 성분에 대한 전류의 계산된 등가치와,
Figure 112017022143318-pct00035
, 즉 구동 신호의 제 2 성분에 대한 전류의 계산된 등가치를 결정하는데 사용된다.
계산된 전류(
Figure 112017022143318-pct00036
Figure 112017022143318-pct00037
)를 결정하는 데 사용되는 변수에는 구동 신호 전위의 개별 성분들에 대한 각 전위(
Figure 112017022143318-pct00038
Figure 112017022143318-pct00039
)가 포함된다. 상기 계산된 제 1 및 제 2 성분 전류 특성(
Figure 112017022143318-pct00040
Figure 112017022143318-pct00041
)은 또한 단계(320)에서 발생하는 전류의 계산된 등가치를 결정하는데 입력 변수이기도 하다. 전류의 계산된 등가치를 각각 결정하는데 제 3 변수는 구동 신호의 성분의 주파수 특성이다. 구동 신호의 제 1 성분에 대해 이것은 ω1이며 제 2 성분에 대해 이것은 ω2 이다. 단계(320)에서, 주파수, 즉 구동 신호의 이전에 생성된 제 1 및 제 2 성분들의 주파수 특성들이 이 변수로 사용된다. 이것은 적어도 본 발명의 바람직한 실시예에서 주파수 특성이 측정되거나 계산된 표현이 구동 신호의 출력을 조절하는 피드백 데이터로 사용되지 않는다는 것을 의미한다.
수식(1A)은 추가적인 변수, 즉 핸드피스 구동기(36)의 커패시턴스(CO)를 갖는다. 프로세서(272)는 핸드피스 메모리 필드(64)로부터 판독된 구동기 커패시턴스를 이 커패시턴스로 사용한다.
단계(322)에서, 구동 신호의 제 1 성분에 대한 전류의 계산된 등가치는 구동 신호의 이 성분에 대한 전류의 목표 등가치와 비교된다. 전류의 등가치가 전류의 목표 등가치보다 낮으면, 관련 진동 모드의 진동이 팁 헤드(158)의 원하는 운동을 촉진시키기에 충분한 진폭이 아닐 가능성이 상당하기 때문에, 이 비교가 수행된다. 핸드피스의 기계적인 구성 요소들에 노출되는 전류의 등가치가 전류의 목표 등가치보다 크면, 팁 헤드(158)는 시술자에 의해 요구되는 것보다 큰 진폭의 진동을 나타낼 수 있다.
본 발명의 일부 실시예에서, 전류의 계산된 등가치가 목표 전류의 10 % 이하이면, 핸드피스의 기계적인 부분들에 인가된 전류의 등가치는 원하는 진동 운동을 촉진하게 된다. 대안적으로, 2개의 전류가 각각 5 % 이하이고 이상적으로는 서로 1 % 이하이면 전류는 충분한 크기이다.
전류의 2개의 등가치가 실질적으로 동일하다면, 시스템(30)은, 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 등가치가, 올바른 주파수를 취하는 구동 신호의 인가시 관련된 진동 모드에서 팁 헤드(52)에 적절한 진폭의 진동을 야기하는 레벨에 있는 상태에 있다. 시스템(30)이 이런 상태에 있다면, 프로세서(96)는 단계(326)로 진행한다.
많은 상황에서, 단계(322)에서 비교한 결과는, 전류의 계산된 기계적인 등가치(
Figure 112017022143318-pct00042
)가 목표 전류(
Figure 112017022143318-pct00043
)와 실질적으로 동일하지 않는 것을 나타낸다. 시스템(30)이 이런 상태에 있을 때, 단계(324)에서 프로세서(272)는 구동 신호의 제 1 성분의 전위 특성을 리셋한다. 보다 구체적으로, 프로세서(272)는, 수식(3)에 기초하여, 핸드피스의 기계적인 구성 요소들을 통과하는 조절된 전류가 전류의 목표 등가치(
Figure 112017022143318-pct00044
)와 실질적으로 동일하게 하는 전위 값(전압-성분1)을 계산한다. 단계(324)에서 이러한 계산은 구동기 커패시턴스와 구동 신호의 주파수 특성이 일정하게 유지되는 것에 기초하여 실행된다.
단계(326)에서, 프로세서(272)는 구동 신호의 제 1 성분의 주파수 특성이 구동 신호의 이 성분에 대한 목표 주파수에 있거나 또는 이 목표 주파수와 실질적으로 동일한지 여부를 결정한다. 이러한 결정은 제 1 성분의 주파수 특성이 팁 헤드의 원하는 움직임을 촉진시키는 구동 신호의 출력을 초래하는 것을 보장하도록 이루어진다. 단계(326)에서, 이러한 결정은 수식(2B)의 비율을 목표 비율과 비교하는 것에 의해 이루어진다. 전류의 계산된 등가치를 생성하기 위해 단계(318)에서 사용된 변수들이 이 비율을 생성하는데 사용된다. 이 비율을 생성하는 데 사용되는 나머지 변수는 주파수 성분에 대한 목표이다. 이것은 팁 메모리(184)의 필드(202)로부터의 ω목표 1 변수이다. 계수(m 1 )는 팁 메모리(184)의 계수 필드(204)로부터 온다. 멱지수(A)는 비율 수정자(ratio modifier)를 생성하는 모든 계산에 대해 일정하고 동일하다고 가정된다. 멱지수(A)가 변할 수 있는 것은 본 발명의 범위 내에 있다.
이 비율이 목표 비율의 10 % 이내이면 주파수 특성이 목표 주파수 특성과 종종 실질적으로 동일한 것으로 간주된다. 본 발명의 또 다른 실시예에서, 이 주파수는 이 비율이 목표 비율의 5 % 이내, 보다 바람직하게는 목표 비율의 1 % 이내에 있는 경우 목표 주파수와 실질적으로 같은 것으로 간주된다.
단계(326)에서 비교한 결과는, 구동 신호의 제 1 성분의 주파수 특성이 구동 신호의 이 성분에 대한 목표 주파수에 있거나 또는 실질적으로 동일한 것을 나타낼 수 있다. 이것은 구동 신호가 구동기(40)의 팽창/수축을 유도하여 팁 헤드를 원하는 패턴으로 이동시키는 것을 초래하는 것을 의미한다. 시스템(30)이 이런 상태에 있다면, 프로세서(272)는 단계(330)를 실행하는 것으로 진행한다.
단계(326)의 평가에서, 구동 신호의 제 1 성분의 주파수 특성이 팁 헤드가 이동할 때 원하는 패턴을 유도하지 않는 구동 신호의 출력을 초래하는 것으로 결정될 수 있다. 프로세서(272)가 이러한 결정을 하는 경우, 단계(328)에서 프로세서는 구동 신호의 이 성분의 주파수 특성, 즉 주파수_성분1을 조절한다. 수식(2B)의 좌측에 있는 비율이 음수이기 때문에, 단계(164)에서 계산한 결과가 음의 결과를 산출하면, 이는 구동 신호의 제 1 성분의 주파수 특성이 증가되어야 한다는 것을 프로세서(272)가 나타낸 것으로 단계(328)에서 해석된다. 단계(326)에서 계산한 결과가 긍정(예)의 결과를 산출하면, 프로세서(272)는, 이 결과를, 핸드피스가 팁 헤드가 원하는 이동 경로로 진행될 가능성을 증가시키기 위해서는 제 1 성분의 주파수 특성을 감소시킬 필요가 있는 상태에 있다는 것을 나타내는 것으로 해석한다.
단계(326) 또는 필요한 경우 단계(328)를 실행한 후에, 프로세서는 단계(330)를 실행한다. 단계(330)는 구동 신호의 제 2 성분에 대한 전류의 계산된 등가치를 전류의 이 등가치에 대한 목표와 비교하는 것이다. 단계(330)는 단계(322)와 실질적으로 동일하다. 단계(322)와 단계(330)의 차이점은 단계(330)에서는 계산된
Figure 112017022143318-pct00045
가 목표 전류(
Figure 112017022143318-pct00046
)와 비교된다는 것이다. 이 2개의 값이 실질적으로 동일하다고 가정하면, 구동 신호의 제 2 성분의 전압 특성은 조절되지 않는다. 프로세서는 단계(334)를 실행한다.
단계(330)에서 비교된 두 값이 실질적으로 동일하지 않으면, 단계(332)에서, 프로세서는 구동 신호의 제 2 성분의 전압 특성을 리셋한다. 구동 신호의 제 1 성분의 전압 특성을 리셋시키기 위해 단계(332)에서 사용된 수단은 단계(324)에서 사용된 수단과 실질적으로 동일하다. 단계(332)의 일부로서, 프로세서(272)는 구동 신호의 제 2 성분의 전압 특성을 임의로 리셋한 것에 기초하여 파형_설정 신호를 리셋한다. 구동 형태의 특성도 마찬가지로 변한다.
단계(330) 및 필요한 경우 단계(332)가 실행된 후, 단계(334)에서 구동 신호의 제 2 성분의 주파수 특성이 평가된다. 이 평가는 구동 신호의 제 1 성분의 주파수 특성을 평가하기 위해 단계(326)에서 사용된 것과 동일한 공정을 사용하여 수행된다. 단계(334)에서, 구동 신호의 제 2 성분의 변수들이 수식(2B)에 적용된다. 수식(2B)의 이러한 사용에서, 팁 메모리 필드(210)로부터의 목표 주파수(ω목표 2 )는, 구동 신호의 제 2 성분이 적절한 주파수 특성을 갖는지 여부를 결정하기 위해 비율을 수정하는 성분(modifying component)으로 사용된다. 팁 메모리 필드(208)로부터의 계수(m 2 )는 이 비율을 수정하는 성분의 계수로 사용된다. 단계(334)에서 평가한 결과가 구동 신호의 제 2 성분의 주파수 특성이 목표 주파수와 충분히 동일한 것을 나타낼 수 있다. 시스템(30)이 이런 상태에 있을 때, 프로세서는 단계(310)로 되돌아가서, 여기서 제어 부재가 활성화된 상태에 유지되고 있는지 여부를 결정한다.
대안적으로, 단계(334)에서 평가한 결과가 구동 신호의 제 2 성분의 주파수 특성이 목표 주파수와 실질적으로 동일하지 않는 것을 나타낼 수 있다. 시스템(30)이 이런 상태에 있다면, 프로세서(276)는 단계(336)에서 이 주파수 특성을 리셋한다.
단계(336)를 실행하고 나서, 프로세서는 단계(310)로 되돌아간다. 단계(310)를 실행하는 동안 단계(310)에서 평가한 결과가 온/오프 스위치가 작동된 상태에 유지되고 있는 것을 나타내는 경우, 단계(312)가 재실행된다. 이 단계는 시술자가 진동의 크기가 이전의 설정으로부터 재설정되어야 하는 것을 나타내는 명령을 입력하였을 수 있기 때문에 재실행된 것이다.
구동 신호의 성분들의 주파수 및 전압 특성이 이전에 설정되어 있었기 때문에, 제어 루프의 이러한 실행에서, 단계(314)는 실행되지 않는다. 그 대신에, 이전에 생성된 구동 신호 성분 특성 세트에 기초하여, 단계(315)가 재실행된다. 구동 신호 성분의 특성이 단계(315)의 이전의 실행 이후 변경된 경우, 이것은 프로세서(276)가 새로운 파형_설정 신호를 생성하게 한다. 그러면 제어 콘솔은 구동 신호의 개별 성분들의 특성에 대해 이전에 계산된 조절에 기초하여 그 특성이 조절된 새로운 구동 신호를 출력한다.
제어 루프를 후속해서 실행할 때, 구동 신호의 성분들의 리셋 주파수 특성들이 변수(ω1 및 ω2)로 사용되어서, 구동 신호가 팁 헤드(158)의 원하는 움직임을 유도하고 있는지 여부를 결정하는 것으로 이해된다.
불가피하게, 핸드피스가 비활성화되어야 할 때가 있을 수 있다. 시술자는 온/오프 스위치를 작동시키는 것을 중지한다. 단계(310)에서 이런 이벤트가 발생했다고 결정되면, 프로세서(276)는 콘솔(240)의 다른 성분들이 핸드피스에 구동 신호의 인가를 종료시키는 명령을 어서트한다(단계는 도시되지 않음).
도시되지는 않았지만, 파형_설정 신호를 초기에 설정하고 이후 재조절하는 동안에, 프로세서(272)는 구동 신호가 핸드피스 메모리(56)와 팁 메모리(184) 모두로부터 판독된 경계 특성에 의해 제한되는 것을 보장하는 것으로 또한 이해된다. 이러한 제한은, 핸드피스 메모리 필드(70)로부터의 최대 구동 신호 전압에 기초하여 구동 신호의 전압; 팁 메모리 필드(191)의 전압 데이터에 기초하여 구동 신호의 제 1 성분의 전압 특성; 팁 메모리 필드(193)의 전압 데이터에 기초하여 구동 신호의 제 2 성분의 전압 특성; 핸드피스 메모리 필드(66)로부터의 데이터에 기초하여 구동 신호의 최대 전류; 핸드피스 메모리 필드(68)로부터의 데이터에 기초하여 핸드피스에 대한 전류의 최대 등가치; 팁 메모리 필드(192)로부터의 데이터에 기초하여 구동 신호의 제 1 성분에 대한 전류의 최대 등가치; 및 팁 메모리 필드(194)로부터의 데이터에 기초하여 구동 신호의 제 2 성분에 대한 전류의 최대 등가치를 제한하는 것을 포함한다.
구동 신호의 주파수 특성은 마찬가지로 핸드피스 메모리(56)와 팁 메모리(184)로부터 판독된 데이터에 기초하여 각각 설정된다. 따라서, 핸드피스 메모리 필드(72 및 74)로부터의 데이터는 구동 신호의 전체 경계를 한정하는데 사용된다. 팁 메모리 필드(196 및 198)로부터의 주파수 범위 데이터는 구동 신호의 제 1 성분의 주파수 특성의 주파수 범위를 한정한다. 팁 메모리 필드(206 및 208)로부터의 주파수 범위 데이터는 구동 신호의 제 1 성분의 주파수 특성의 주파수 범위를 한정한다.
전술된 바와 같이, 본 발명의 시스템(30)은 단일 진동 사이클에서 팁 헤드 상의 지점이 라인을 따라 단순히 전후 방향으로만 왕복하지 않도록 팁 헤드(158)를 진동시키도록 구성된다. 그 대신, 이 지점은 비-선형 이동 경로에 참여한다. 팁 헤드의 지점인 치형부가 뼈로 이동할 때, 치형부는 뼈를 치고 난 직후 뼈를 문지른다. 뼈를 치면, 뼈를 골절시켜 조직을 제거하는 것이 촉진된다. 직후 이어지는 치형부가 뼈를 문지른 동작이 뼈에서 방금 떨어져 나와 제거된 물질을 소거할 수 있다. 따라서, 본 발명의 시스템(30)이 뼈를 제거하고 제거된 조직을 소거할 때 사이에 짧은 시간 간격이 있다. 그 다음 진동 사이클 동안 비교적 적은 양의 파편만이 존재한다. 이러한 파편을 최소화하면, 이러한 파편이 존재하는 것으로 인해 뼈 절삭 공정에 악영향을 미치는 정도를 동일하게 감소시킬 수 있다.
본 발명의 시스템이 팁 헤드의 치형부를 비-선형 운동으로 구동할 때, 단일 사이클 동안, 본질적으로 치형부의 외주(circumference) 전체가 팁 헤드가 놓이는 조직으로 가압된다. 이렇게 치형부가 조직으로 움직이는 것에 의해 조직으로부터 파편을 원하는 대로 긁어내어 제거할 수 있다. 단일 운동 사이클 동안 본질적으로 치형부의 모든 표면이 조직으로 가압되기 때문에 각 표면은 적어도 일부 마모에 노출된다. 따라서, 본 발명은 치형부 표면이 상당히 불균일하게 마모되는 정도를 감소시킨다. 개별 치형부가 불균일하게 마모되는 것을 최소화하는 것에 의해 치형부의 절삭 효율이 감소되는 정도를 동일하게 감소시킬 수 있는 것으로 생각된다. 이것은 시술시 팁의 치형부 세트의 절삭 효율이, 만약 필요치 않은 경우, 팁을 대체하는데 요구되는 레벨로 저하될 수 있는 가능성을 감소시킨다.
더욱이, 단일 운동 사이클 동안, 치형부의 본질적으로 각 표면이 조직으로 가압되기 때문에, 사이클에서 치형부의 단일 표면이 조직으로 가압되는 시간 기간이 연장되지 않는다. 이것은 치형부 표면이 조직으로 지속적으로 가압되는 경우 발생할 수 있는 치형부 표면의 마찰 가열을 제한한다. 이러한 가열을 제한하는 것에 의해, 열이 발생하는 경우에도, 이 열이 팁 헤드에 인접한 조직을 둘러싼 조직을 손상시킬 수 있는 정도가 감소된다.
시스템(30)은 상이한 주파수들로 이루어진 복수의 진동 모드에서 팁을 진동시킬 수 있는 것으로 이해되어야 한다. 2가지 모드에서 진동할 때 공통 주파수에서 진동하는 팁으로 국한되지 않는 팁을 이 시스템과 함께 사용할 수 있다. 복수의 모드에서 진동할 때 공통 주파수에서 진동하는 팁을 제공해야 하는 것은 상당한 제조상의 제약과 비용이 관련된다. 일반적으로 복수의 모드에서 진동할 때 상이한 주파수들에서 진동하는 팁을 제공하는 것은 이러한 제약과 비용이 관련되지 않는다. 따라서, 본 발명의 시스템(30)은 상이한 모드들에서 동시에 진동할 수 있는 상이한 팁들을 제공하는 것을 제조 측면과 경제적 측면에서 보다 실현가능하게 한다.
본 발명의 추가적인 특징은 시술자가 팁 헤드의 비-선형 이동 경로를 설정할 수 있다는 것이다. 보다 구체적으로, 이 이동 경로에 대해 시술자가 설정한 한정 경로에 응답하여, 프로세서(276)는 단계(308)에서 개별 진동 모드에 대한 전류의 개별 최대 등가치, 즉 i선택MAX-X 전류를 설정한다. 하나의 i선택MAX-X 전류를 상대적으로 크게 설정하고 두 번째 i선택MAX-X 전류를 상대적으로 작게 설정하면, 합성 구동 신호는 팁 헤드가 움직이는 단일 사이클에서 팁이 제 1 진동 경로를 따라 상대적으로 크게 움직이고 제 2 진동 경로에서 더 작게 움직이게 하는 신호이다. 2개의 진동 모드에 대한 i선택MAX-X 전류들을 실질적으로 동일하게 설정함으로써, 구동 신호가 움직임을 유도하는 동안 팁은 보다 동일하게 변위되는 2개의 상이한 진동 경로로 동시에 움직임을 수 있게 된다.
시술자가 팁 샤프트의 길이방향 축으로부터 방사방향으로 상당히 이격된 조직으로 팁 헤드를 적용하기를 원하는 경우가 있다. 이렇게 위치된 조직에 시술을 수행하기 위해, 팁 샤프트의 길이방향 축에 대해 비대칭적으로 위치된 헤드를 팁에 제공하는 것이 바람직하다. 이러한 비대칭성으로 인해 팁 헤드는 자연스럽게 복수 모드에서 진동한다. 일반적으로 이러한 진동 모드는 상이한 주파수들에 있다. 본 발명의 시스템(30)은, 이러한 복수의 모드에서 진동하는 것을 조절함으로써, 팁 헤드가 진동할 때 조직을 효율적으로 제거할 수 있으면서도 예측 가능한 이동 경로를 따라 움직임이 일어나는 것을 보장할 수 있다.
또한, 본 발명에 따라 진동으로 여기된 팁 헤드는 비-선형 패턴으로 움직이기 때문에, 각 치형부는 절삭된 조직을 이동 경로로부터 멀어지는 방향으로 밀어내는 경향이 있다. 이렇게 절삭된 조직을 치형부로부터 소거하는 것은 이러한 파편이 그 다음 진동 사이클에서 조직을 절삭하는 효율을 감소시키는 정도를 감소시킨다.
상기 내용은 본 발명의 시스템의 하나의 실시예에 관한 것이다. 본 발명의 시스템의 다른 실시예는 전술된 것과 다른 특징을 가질 수 있다. 예를 들어, 이 시스템의 일부 팁에는 3개 이상의 진동 모드가 있을 수 있다. 이 시스템의 이런 구성에서, 구동 신호는 3개 이상의 성분을 갖는다. 이들 성분 중 일부에 대한 목표 주파수 특성들은 서로 동일하지는 않다 하더라도 근접해 있을 수 있는 것으로 이해되어야 한다. 마찬가지로, 핸드피스의 기계적인 구성 요소들에 인가되는 전류의 등가치가 구동 신호의 상이한 성분들에 대해 정확히 동일하지는 않는다 하더라도 실질적으로 동일하는 경우가 있을 수 있다.
시스템의 성분들의 구조는 설명된 것과 다를 수 있다. 따라서, 시스템의 일부 실시예에서, 콘솔 내부에는 서로 동시에 및 서로 독립적으로 동작하는 복수의 신호 생성기가 있다. 프로세서는 이러한 신호 생성기들 각각에 의해 생성된 신호의 전압과 주파수를 조절한다. 보다 구체적으로, 프로세서는 신호 생성기가 구동 신호의 특정 성분을 출력하도록 각 신호 생성기를 제어한다. 이들 개별 성분은 함께 추가되어, 핸드피스 구동기(36)에 인가되는 구동 신호가 생성된다.
본 발명의 일부 실시예에서, 핸드피스에 구동 신호를 공급하는 조립체는 콘솔 변압기에 인가되는 전압을 변화시키는 증폭기를 포함하지 않을 수 있다. 본 발명의 이러한 실시예에서, 구동 신호가 기초로 하는 신호를 공급하는 조립체는 가변 전류 소스를 포함하였다.
따라서, 본 발명의 대안적인 실시예에서, 개시된 코일(256 및 264) 이외의 조립체가 핸드피스 양단의 구동 신호의 전위와 핸드피스를 통과하는 전류의 척도를 제공하는데 사용될 수 있는 것으로 이해되어야 한다. 본 발명의 일부 실시예에서, 하나 이상의 저항기 네트워크는 전압과 전류의 이들 척도를 결정하는 신호를 제공할 수 있다.
본 발명의 모든 실시예에서 구동기 커패시턴스는 핸드피스와 통합된 메모리로부터 판독된 데이터에 기초해야 할 필요는 없다. 본 발명의 대안적인 실시예에서, 여러 주파수에서 구동 신호를 출력하고 구동 신호의 전압과 전류를 측정함으로써 프로세서는 구동기의 커패시턴스를 결정한다.
주파수 스위프(sweep)를 수행하는 것에 기초한 본 발명의 일부 실시예에서, 프로세서는 각 진동 모드의 공진 모드와 반-공진 모드를 결정한다.
본 발명의 일부 구성에서, 팁 헤드(158)의 한 지점의 이동 경로는 모든 의도와 목적을 위해 비-선형이지만 이 경로는 선형 경로로 보인다는 것을 알아야한다.
도 11에서, 도시된 비-선형 경로는 본질적으로 타원형인 경로로 보인다. 이것은 예시적이고 제한적이지 않은 것으로 이해된다. 본 발명의 다른 단일 진동 경로는 다른 형상을 가질 수 있다. 이러한 형상은 본질적으로 원형이고 본질적으로 초승달 형상을 포함한다. 나아가, 비-선형 경로가 서로 교차하는 경로를 포함하는 것은 본 발명의 범위 내에 있다. 이런 유형의 경로의 전형적인 형태는 8자 경로이다.
본 발명의 일부 실시예에서, 구동 신호의 하나 이상의 성분의 전위는 고정될 수 있다. 본 발명의 이러한 실시예에서, 핸드피스의 기계적인 구성 요소들에 인가되는 전류의 등가치는 이 성분과 관련된 목표 주파수를 조절하는 것에 의해 조절된다.
또한, 일반적으로 구동 신호의 성분들의 주파수 특성들은 상이하지만, 이것은 항상 그러한 것은 아닌 것으로 이해되어야 한다. 팁(158)에 인가되는 기계적인 부하의 유형에 기초하여, 구동 신호의 2개 이상의 성분들의 주파수 특성들은 동일할 수 있는 시기가 있을 수 있다.
따라서, 첨부된 청구 범위의 목적은 본 발명의 진정한 사상과 범위 내에 있는 모든 실시예와 변경을 포함하는 것이다.

Claims (28)

  1. 초음파 핸드피스(32)의 팁(142)을 진동시키기 위한 조립체(240)로서, 상기 핸드피스는 AC 구동 신호가 인가되는 적어도 하나의 구동기(36)를 구비하고, 상기 팁은 조직에 적용되어 수술 작업을 수행하는 헤드(158)를 구비하고, 상기 팁은 복수의 진동 모드에서 진동하도록 설계되며, 상기 조립체는,
    상기 핸드피스(32)의 상기 적어도 하나의 구동기(36)에 인가되는 가변 AC 구동 신호를 생성하는 조립체(242, 244, 254);
    상기 핸드피스에 인가되는 상기 구동 신호의 전압을 측정하고, 구동 신호 전압을 나타내는 신호를 출력하는 조립체(256, 262);
    상기 핸드피스를 통과하는 전류를 측정하고, 상기 핸드피스를 통과하는 전류를 나타내는 신호를 출력하는 조립체(264, 266); 및
    구동 신호 전압을 나타내는 신호 및 상기 핸드피스를 통과하는 전류를 나타내는 신호를 수신하고, 상기 핸드피스를 통과하는 상기 전류 및 구동 신호 전압에 기초하여 상기 구동 신호를 생성하는 조립체(242, 244, 254)를 조절하여, 상기 구동 신호의 특성들을 수립하는 프로세서(276)를 포함하고,
    상기 프로세서는,
    상기 적어도 하나의 구동기의 커패시턴스를 나타내는 데이터(64)를 수신하는 동작;
    상기 구동 신호의 측정된 전압을 복수의 성분으로 분해하는 동작(316)으로서, 상기 측정된 전압의 각 성분은 상기 팁의 특정 진동 모드와 관련된 측정된 전압을 나타내는, 상기 측정된 전압을 복수의 성분으로 분해하는 동작(316);
    상기 핸드피스를 통과하는 상기 측정된 전류를 복수의 성분으로 분해하는 동작(318)으로서, 상기 측정된 전류의 각 성분은 상기 팁의 특정 진동 모드와 관련된 상기 핸드피스를 통과하는 측정된 전류를 나타내는, 상기 측정된 전류를 복수의 성분으로 분해하는 동작(318);
    상기 팁의 각 진동 모드에 대해, 상기 진동 모드와 관련된 주파수 특성, 상기 진동 모드와 관련된 측정된 전압, 상기 진동 모드와 관련된 상기 핸드피스를 통과하는 측정된 전류, 및 상기 적어도 하나의 구동기의 커패시턴스에 기초하여, 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 계산된 등가치를 결정하는 동작;
    상기 팁의 각 진동 모드에 대해, 상기 진동 모드에 대한 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 계산된 등가치를 상기 진동 모드에 대한 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 목표 등가치와 비교하고, 상기 비교에 기초하여, 상기 진동 모드에 대한 전압 특성을 결정하는 동작(322, 324, 330, 332);
    상기 팁의 각 진동 모드에 대해, 상기 진동 모드에 대한 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 계산된 등가치에 대한 상기 진동 모드와 관련된 상기 핸드피스의 적어도 하나의 구동기를 통과하는 전류의 비율을 결정하고; 상기 비율을 상기 진동 모드에 대한 목표 비율과 비교하며; 상기 비교에 기초하여, 상기 진동 모드에 대한 주파수 특성을 조절하는 동작(326, 328, 334, 336) - 적어도 2개의 진동 모드에 대한 상기 주파수 특성들은 서로 상이함 - ; 및
    상기 복수의 진동 모드에 대한 상기 전압 특성과 주파수 특성에 기초하여, 상기 구동 신호에 대한 파형의 구조를 결정하고, 상기 파형에 기초하여, 각 진동 모드에 대한 성분을 포함하는 구동 신호를, 상기 구동 신호를 생성하는 조립체가 생성하게 하기 위한 명령을, 상기 구동 신호를 생성하는 조립체에 어서트(assert)하는 동작(315) - 각 성분은 상기 진동 모드에 대해 결정된 상기 전압 특성과 주파수 특성에 의해 규정됨 - 을 수행하도록 더 구성되는, 조립체(240).
  2. 청구항 1에 있어서, 상기 프로세서(276)는, 상기 구동 신호를 인가한 결과, 상기 팁(142)의 헤드(158)가, 단일 진동 사이클에서, 비-선형 이동 경로에 참여(engage in)하도록, 상기 핸드피스(32)의 상기 적어도 하나의 구동기(36)에 인가되는 상기 구동 신호에 대한 파형의 구조를 결정하도록 더 구성되는, 조립체(240).
  3. 청구항 1 또는 청구항 2에 있어서, 상기 프로세서(276)는, 상기 팁의 각 진동 모드에 대해, 메모리에 저장된 데이터에 기초하여 상기 진동 모드와 관련된 상기 구동 신호의 성분에 대한 초기 주파수 특성을 수립하는 동작(304, 314)을 수행하도록 더 구성되는, 조립체(240).
  4. 청구항 3에 있어서, 상기 프로세서(276)는, 상기 구동 신호의 성분에 대한 초기 주파수 특성을 수립하는데 사용된 데이터를 상기 팁(142)과 관련된 메모리(184)로부터 판독하도록 더 구성되는, 조립체(240).
  5. 청구항 1 또는 청구항 2에 있어서, 상기 프로세서(276)는, 상기 팁(142)의 각 진동 모드에 대해, 메모리에 저장된 데이터에 기초하여, 상기 진동 모드와 관련된 상기 구동 신호의 성분에 대한 초기 전압 특성을 수립하는 동작(304, 314)을 수행하도록 더 구성되는, 조립체(240).
  6. 청구항 5에 있어서, 상기 프로세서(276)는, 상기 구동 신호의 성분에 대한 초기 전압 특성을 수립하는데 사용된 데이터를 상기 팁(142)과 관련된 메모리(184)로부터 판독하도록 더 구성되는, 조립체(240).
  7. 청구항 1 또는 청구항 2에 있어서, 상기 프로세서(276)는, 상기 팁(142)의 적어도 하나의 진동 모드에 대해, 시술자가 설정한 명령에 기초하여 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 목표 등가치를 결정하는 동작(312)을 수행하도록 더 구성되는, 조립체(240).
  8. 청구항 1 또는 청구항 2에 있어서, 상기 프로세서(276)는, 상기 팁(142)의 복수의 진동 모드에 대해, 시술자가 설정한 명령에 기초하여 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 목표 등가치를 결정하는 동작(312)을 수행하도록 더 구성되는, 조립체(240).
  9. 청구항 1 또는 청구항 2에 있어서, 상기 프로세서는, 상기 구동 신호를 인가한 결과, 상기 팁의 상기 헤드(158)가, 단일 진동 사이클에서, 루프로 이동하도록, 상기 적어도 하나의 구동기(36)에 인가되는 상기 구동 신호에 대한 파형의 구조를 결정하도록 더 구성되는, 조립체(240).
  10. 청구항 1 또는 청구항 2에 있어서,
    상기 구동 신호를 생성하는 조립체는 가변 이득 증폭기(244)를 포함하고;
    상기 프로세서(276)는, 상기 증폭기가, 상기 구동 신호의 주파수를 가지며 상기 구동 신호의 전위에 적어도 비례하는 전위를 갖는 신호를 출력하도록, 상기 증폭기의 이득을 조절하는, 조립체(240).
  11. 청구항 1 또는 청구항 2에 있어서,
    상기 구동 신호를 생성하는 조립체는 상기 구동 신호에 비례하는 신호가 인가되는 1차 권선(254), 및 상기 구동 신호가 생성되는 2차 권선(258)을 구비하는 변압기(248)를 포함하고;
    상기 구동 신호의 전압을 측정하는 조립체는 상기 변압기(248)와 일체인 티클러 코일(tickler coil)(256)을 포함하고, 상기 2차 권선 양단에 존재하는 신호는 상기 티클러 코일 양단에 신호를 유도하는, 조립체(240).
  12. 청구항 1 또는 청구항 2에 있어서, 상기 핸드피스를 통과하는 전류를 측정하는 조립체는, 상기 구동 신호를 상기 핸드피스에 인가하는 전도체에 인접하여 코일(264)을 포함하고, 상기 코일은 상기 구동 신호가 상기 코일 양단에 신호를 유도하도록 위치되는, 조립체(240).
  13. 청구항 1 또는 청구항 2에 있어서, 상기 프로세서(276)는, 상기 팁의 적어도 하나의 진동 모드 각각에 대해, 상기 팁의 진동 모드와 관련되는 구동 신호의 성분의 주파수를, 상기 팁의 진동 모드와 관련되는 주파수 특성으로서 사용하여, 상기 진동 모드에 대한 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 계산된 등가치를 결정하는, 조립체(240).
  14. 청구항 1 또는 청구항 2에 있어서, 상기 프로세서(276)는,
    상기 핸드피스(32)와 관련되는 메모리(56)로부터 상기 적어도 하나의 구동기의 커패시턴스를 나타내는 데이터(64)를 획득하는 동작(304); 및
    적어도, 상기 초음파 핸드피스의 팁을 진동시키기 위한 상기 조립체를 초기에 활성화시키면, 상기 팁의 각 진동 모드에 대해, 상기 핸드피스 메모리로부터 획득한 구동기 커패시턴스 데이터에 기초하여, 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 계산된 등가치를 결정하는 동작(320)을 수행하도록 더 구성되는, 조립체(240).
  15. 초음파 핸드피스(32)의 구동기(36)에 결합되며 복수의 진동 모드를 갖는 팁(142)을 진동시키기 위해 구동 신호를 상기 구동기에 인가하는 방법으로서,
    상기 구동기의 커패시턴스를 결정하는 단계(304);
    복수의 성분을 갖는, 가변 전압, 가변 주파수 AC 구동 신호를 상기 구동기에 인가하는 단계(315)로서, 상기 구동 신호의 각 성분은 상기 팁(142)의 진동 모드 중 상이한 하나와 관련되는, 상기 구동 신호 인가 단계(315);
    상기 구동 신호의 전압을 측정하고, 상기 구동 신호의 측정된 전압을 적어도 2개의 성분으로 분해하는 단계(316)로서, 상기 구동 신호의 측정된 전압의 각 성분은 상기 팁의 특정 진동 모드와 관련된 측정된 전압을 나타내는, 상기 분해 단계(316);
    상기 핸드피스를 통과하는 전류를 측정하고, 상기 전류를 적어도 2개의 성분으로 분해하는 단계(318)로서, 상기 측정된 전류의 각 성분은 상기 팁의 특정 진동 모드와 관련된 상기 핸드피스를 통과하는 측정된 전류를 나타내는, 상기 분해 단계(318);
    상기 팁의 각 진동 모드에 대해, 상기 진동 모드와 관련된 주파수 특성, 상기 진동 모드와 관련된 측정된 전압, 상기 진동 모드와 관련된 상기 핸드피스를 통과하는 측정된 전류, 및 상기 구동기의 커패시턴스에 기초하여, 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 계산된 등가치를 결정하는 단계(320);
    상기 팁의 각 진동 모드에 대해, 상기 진동 모드에 대한 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 계산된 등가치를 상기 진동 모드에 대한 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 목표 등가치와 비교하고, 상기 비교에 기초하여, 상기 진동 모드와 관련되는 전압 특성을 결정하는 단계(322, 324, 330, 332);
    상기 팁의 각 진동 모드에 대해, 상기 진동 모드에 대한 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 계산된 등가치에 대한 상기 진동 모드와 관련된 상기 핸드피스의 구동기를 통과하는 전류의 비율을 결정하고; 상기 비율을 상기 진동 모드에 대한 목표 비율과 비교하며; 상기 비교에 기초하여, 상기 진동 모드에 대한 주파수 특성을 조절하는 단계(326, 328, 334, 336) - 적어도 2개의 진동 모드에 대한 상기 주파수 특성들은 서로 상이함 - ; 및
    상기 복수의 진동 모드에 대한 상기 전압 특성과 주파수 특성에 기초하여, 상기 구동 신호에 대한 파형의 구조를 결정하고, 상기 파형에 기초하여, 상기 구동 신호가 각 진동 모드에 대한 성분을 포함하도록 상기 구동기(36)에 인가되는 구동 신호를 조절하는 단계(324, 328, 332, 336) - 각 성분은 상기 진동 모드에 대해 결정된 상기 전압 특성과 주파수 특성에 의해 규정됨 - 를 포함하는, 구동 신호 인가 방법.
  16. 청구항 15에 있어서, 상기 구동기(36)에 구동 신호를 인가하는 단계에서, 상기 팁(142)의 헤드(158)가, 단일 진동 사이클에서, 비-선형 이동 경로에 참여하게 하는 구동 신호가 상기 구동기에 인가되는, 구동 신호 인가 방법.
  17. 청구항 15 또는 청구항 16에 있어서, 상기 구동기에 구동 신호를 인가하는 단계가 초기에 실행될 때, 상기 구동 신호의 각 성분에 대한 초기 주파수 특성이 메모리에 저장된 데이터에 기초하여 수립되는(304, 314), 구동 신호 인가 방법.
  18. 청구항 17에 있어서, 상기 구동 신호의 성분들에 대한 상기 초기 주파수 특성을 수립하는데 사용된 데이터(196, 198, 206, 208)를 상기 팁과 관련된 메모리(184)로부터 판독하는 단계(304)를 더 포함하는, 구동 신호 인가 방법.
  19. 청구항 15 또는 청구항 16에 있어서, 상기 구동기에 구동 신호를 인가하는 단계가 초기에 실행될 때, 상기 구동 신호의 각 성분에 대한 초기 전압 특성이 메모리에 저장된 데이터(191, 193)에 기초하여 수립되는(304), 구동 신호 인가 방법.
  20. 청구항 19에 있어서, 상기 구동 신호의 각 성분에 대한 상기 초기 전압 특성을 수립하는데 사용된 데이터(191, 193)를 상기 팁과 관련된 메모리(184)로부터 판독하는 단계(304)를 더 포함하는, 구동 신호 인가 방법.
  21. 청구항 15 또는 청구항 16에 있어서, 상기 팁의 적어도 하나의 진동 모드에 대해, 시술자가 설정한 명령에 기초하여 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 목표 등가치를 결정하는 단계(312)를 더 포함하는, 구동 신호 인가 방법.
  22. 청구항 21에 있어서, 상기 팁의 각 진동 모드에 대해, 시술자가 설정한 명령에 기초하여 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 목표 등가치를 결정하는 단계(312)를 더 포함하는, 구동 신호 인가 방법.
  23. 청구항 15 또는 청구항 16에 있어서, 상기 구동기(36)에 인가되는 구동 신호를 조절하는 단계에서, 상기 팁(142)의 헤드(156)가, 단일 진동 사이클에서, 루프로 이동하도록, 상기 구동 신호가 조절되는, 구동 신호 인가 방법.
  24. 청구항 15 또는 청구항 16에 있어서, 상기 구동기에 구동 신호를 인가하는 단계는, 상기 구동 신호의 기초가 되는 신호를 출력하는 가변 이득 증폭기(244)를 포함하는 조립체에 의해 실행되며;
    상기 구동기에 구동 신호를 인가하는 단계는, 상기 가변 이득 증폭기가, 상기 구동 신호의 주파수와 상기 구동 신호의 전압에 적어도 비례하는 전압을 갖는 신호를 출력하도록, 상기 가변 이득 증폭기의 이득을 조절하는 단계를 포함하는, 구동 신호 인가 방법.
  25. 청구항 15 또는 청구항 16에 있어서, 상기 구동기에 구동 신호를 인가하는 단계는, 상기 구동 신호에 비례하는 신호가 인가되는 1차 권선(254), 및 상기 구동 신호가 생성되는 2차 권선(258)을 구비하는 변압기(248)를 포함하는 조립체에 의해 실행되며;
    상기 구동 신호의 전압을 측정하는 단계는, 상기 구동 신호가 생성되는 변압기(248)와 일체인 티클러 코일(256) 양단에서 전압을 측정하는 단계를 포함하는, 구동 신호 인가 방법.
  26. 청구항 15 또는 청구항 16에 있어서, 상기 핸드피스를 통과하는 전류를 측정하는 단계는, 상기 구동 신호를 상기 핸드피스에 인가하는 전도체에 인접하여 코일(264) 양단에서 신호를 측정하는 단계를 포함하며, 상기 코일은, 상기 구동 신호가 상기 코일 양단에 신호를 유도하도록 위치되는, 구동 신호 인가 방법.
  27. 청구항 15 또는 청구항 16에 있어서, 상기 팁의 적어도 하나의 진동 모드 각각에 대해 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 계산된 등가치를 결정하는 단계에서, 상기 진동 모드와 관련되는 구동 신호의 성분의 주파수가, 상기 진동 모드에 대해 상기 핸드피스의 기계적인 구성 요소들을 통과하는 전류의 계산된 등가치 결정 시의 주파수 특성으로서 사용되는, 구동 신호 인가 방법.
  28. 청구항 15 또는 청구항 16에 있어서, 상기 핸드피스(32)와 관련되는 메모리(56)로부터 상기 구동기의 커패시턴스를 나타내는 데이터(64)를 획득하는 단계(304); 및
    상기 팁의 각 진동 모드에 대해, 상기 핸드피스 메모리로부터 획득한 구동기 커패시턴스 데이터에 기초하여, 상기 핸드피스의 기계적인 구성요소들을 통과하는 전류의 계산된 등가치를 결정하는 단계(320)를 더 포함하는, 구동 신호 인가 방법.
KR1020177006213A 2014-08-07 2015-08-06 복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템 KR102480319B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227044446A KR20230003402A (ko) 2014-08-07 2015-08-06 복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201462034585P 2014-08-07 2014-08-07
US62/034,585 2014-08-07
PCT/US2015/044023 WO2016022808A1 (en) 2014-08-07 2015-08-06 Ultrasonic surgical tool capable of vibrating in plural modes and a drive system that induces non-linear vibrations in the tool tip

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227044446A Division KR20230003402A (ko) 2014-08-07 2015-08-06 복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템

Publications (2)

Publication Number Publication Date
KR20170039726A KR20170039726A (ko) 2017-04-11
KR102480319B1 true KR102480319B1 (ko) 2022-12-23

Family

ID=53901143

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020227044446A KR20230003402A (ko) 2014-08-07 2015-08-06 복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템
KR1020177006213A KR102480319B1 (ko) 2014-08-07 2015-08-06 복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020227044446A KR20230003402A (ko) 2014-08-07 2015-08-06 복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템

Country Status (8)

Country Link
US (3) US10561435B2 (ko)
EP (2) EP3177217B1 (ko)
JP (3) JP6623212B2 (ko)
KR (2) KR20230003402A (ko)
CN (2) CN107106197B (ko)
AU (2) AU2015300921B2 (ko)
CA (1) CA2957281A1 (ko)
WO (1) WO2016022808A1 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102278174B1 (ko) * 2013-08-07 2021-07-16 스트리커 코포레이션 초음파 핸드피스를 이 핸드피스의 기계 임피던스의 함수로서 구동시키기 위한 시스템 및 방법
KR20230003402A (ko) 2014-08-07 2023-01-05 스트리커 코포레이션 복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템
WO2017106329A1 (en) 2015-12-18 2017-06-22 Stryker Corporation Ultrasonic surgical tool system including a tip capable of simultaneous longitudinal and torsional movement and of substantially torsional oscillations
US11673163B2 (en) 2016-05-31 2023-06-13 Stryker Corporation Power console for a surgical tool that includes a transformer with an integrated current source for producing a matched current to offset the parasitic current
WO2020068756A1 (en) * 2018-09-24 2020-04-02 Stryker Corporation Ultrasonic surgical handpiece assembly
US11918245B2 (en) 2018-10-05 2024-03-05 Kogent Surgical, LLC Ultrasonic surgical handpiece with torsional transducer
US11871953B2 (en) * 2019-04-30 2024-01-16 Stryker Corporation Adapter and methods for coupling an ultrasonic surgical handpiece to a control console
JP6873494B2 (ja) * 2019-07-26 2021-05-19 ミクロン精密株式会社 ハンドピース型高周波振動装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030125620A1 (en) 2001-12-27 2003-07-03 Miwatec Incorporated Coupling vibration ultrasonic hand piece
US20050033201A1 (en) 2003-08-07 2005-02-10 Olympus Corporation Ultrasonic surgical system
US20120078139A1 (en) 2009-10-09 2012-03-29 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US20160324537A1 (en) 2013-12-16 2016-11-10 Ethicon Endo-Surgery, Llc Medical device
US20170071621A1 (en) 2013-08-07 2017-03-16 Stryker Corporation System and method for driving an ultrasonic handpiece as a function of the mechanical impedance of the handpiece
US20170079708A1 (en) 2015-09-17 2017-03-23 Eximis Surgical, LLC Electrosurgical device and methods

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462522A (en) * 1993-04-19 1995-10-31 Olympus Optical Co., Ltd. Ultrasonic therapeutic apparatus
JP3486469B2 (ja) 1994-10-26 2004-01-13 オリンパス株式会社 圧電振動子の駆動装置
JP4384271B2 (ja) 1997-11-14 2009-12-16 オリンパス株式会社 超音波手術装置
JP3286606B2 (ja) 1998-09-03 2002-05-27 住友ベークライト株式会社 超音波振動子の駆動装置
US6527212B2 (en) * 1999-06-03 2003-03-04 Carl A. Rupp Ice shaver
US7476233B1 (en) 2000-10-20 2009-01-13 Ethicon Endo-Surgery, Inc. Ultrasonic surgical system within digital control
JP4084253B2 (ja) * 2002-11-22 2008-04-30 オリンパス株式会社 超音波手術装置、超音波駆動装置および超音波駆動装置の制御方法
US7815433B2 (en) 2005-06-10 2010-10-19 Tti Turner Technology Instruments Inc. Adjustable tool drive arrangement
US20080147092A1 (en) 2006-10-23 2008-06-19 Michael Rogge Hybrid energy instrument combined with clip application capability
US20080208108A1 (en) * 2007-02-28 2008-08-28 Kenichi Kimura Treatment apparatus for operation
US8252012B2 (en) * 2007-07-31 2012-08-28 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument with modulator
US20100125292A1 (en) * 2008-11-20 2010-05-20 Wiener Eitan T Ultrasonic surgical system
US8650728B2 (en) * 2009-06-24 2014-02-18 Ethicon Endo-Surgery, Inc. Method of assembling a transducer for a surgical instrument
EP3263054B1 (en) * 2009-07-15 2019-03-13 Ethicon LLC Ultrasonic surgical instruments having clamp
JP2014513564A (ja) * 2011-02-10 2014-06-05 アクチュエイテッド メディカル インコーポレイテッド 電気機械制御とフィードバック付き医療ツール
KR20230003402A (ko) 2014-08-07 2023-01-05 스트리커 코포레이션 복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030125620A1 (en) 2001-12-27 2003-07-03 Miwatec Incorporated Coupling vibration ultrasonic hand piece
US20050033201A1 (en) 2003-08-07 2005-02-10 Olympus Corporation Ultrasonic surgical system
US20120078139A1 (en) 2009-10-09 2012-03-29 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US20170071621A1 (en) 2013-08-07 2017-03-16 Stryker Corporation System and method for driving an ultrasonic handpiece as a function of the mechanical impedance of the handpiece
US20160324537A1 (en) 2013-12-16 2016-11-10 Ethicon Endo-Surgery, Llc Medical device
US20170079708A1 (en) 2015-09-17 2017-03-23 Eximis Surgical, LLC Electrosurgical device and methods

Also Published As

Publication number Publication date
JP2020049228A (ja) 2020-04-02
JP2017527349A (ja) 2017-09-21
US20200038053A1 (en) 2020-02-06
US20230210550A1 (en) 2023-07-06
CN110251204A (zh) 2019-09-20
EP3177217B1 (en) 2023-03-08
US20170143369A1 (en) 2017-05-25
CN107106197A (zh) 2017-08-29
EP3177217A1 (en) 2017-06-14
AU2015300921B2 (en) 2020-05-07
KR20230003402A (ko) 2023-01-05
WO2016022808A1 (en) 2016-02-11
JP2023029830A (ja) 2023-03-07
CA2957281A1 (en) 2016-02-11
US10561435B2 (en) 2020-02-18
AU2020213394A1 (en) 2020-08-27
JP7169259B2 (ja) 2022-11-10
US11617598B2 (en) 2023-04-04
CN107106197B (zh) 2019-08-27
KR20170039726A (ko) 2017-04-11
AU2015300921A1 (en) 2017-03-02
EP4212112A1 (en) 2023-07-19
JP6623212B2 (ja) 2019-12-18
AU2020213394B2 (en) 2023-02-16

Similar Documents

Publication Publication Date Title
KR102480319B1 (ko) 복수의 모드에서 진동할 수 있는 초음파 수술 도구 및 도구 팁에서 비-선형 진동을 유도하는 구동 시스템
JP6824309B2 (ja) ハンドピースの機械的インピーダンスに応じて超音波式ハンドピースを駆動するためのシステム及び方法
US11812986B2 (en) Ultrasonic surgical tool system including a tip capable of simultaneous longitudinal and torsional movement and a console capable of applying a drive signal to the tip so the tip engages in substantially torsional oscillations

Legal Events

Date Code Title Description
A201 Request for examination
GRNT Written decision to grant