KR102465621B1 - 경사 조절기를 포함하는 풋웨어 - Google Patents

경사 조절기를 포함하는 풋웨어 Download PDF

Info

Publication number
KR102465621B1
KR102465621B1 KR1020227002738A KR20227002738A KR102465621B1 KR 102465621 B1 KR102465621 B1 KR 102465621B1 KR 1020227002738 A KR1020227002738 A KR 1020227002738A KR 20227002738 A KR20227002738 A KR 20227002738A KR 102465621 B1 KR102465621 B1 KR 102465621B1
Authority
KR
South Korea
Prior art keywords
chamber
article
electrode
delivery channel
chamber wall
Prior art date
Application number
KR1020227002738A
Other languages
English (en)
Other versions
KR20220017522A (ko
Inventor
스티븐 에이치. 워커
레이몬드 엘. 니콜라이
롤란도 파우살
Original Assignee
나이키 이노베이트 씨.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나이키 이노베이트 씨.브이. filed Critical 나이키 이노베이트 씨.브이.
Priority to KR1020227038884A priority Critical patent/KR102652683B1/ko
Publication of KR20220017522A publication Critical patent/KR20220017522A/ko
Application granted granted Critical
Publication of KR102465621B1 publication Critical patent/KR102465621B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B5/00Footwear for sporting purposes
    • A43B5/06Running shoes; Track shoes
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/143Soles; Sole-and-heel integral units characterised by the constructive form provided with wedged, concave or convex end portions, e.g. for improving roll-off of the foot
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/189Resilient soles filled with a non-compressible fluid, e.g. gel, water
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B7/00Footwear with health or hygienic arrangements
    • A43B7/14Footwear with health or hygienic arrangements with foot-supporting parts
    • A43B7/24Insertions or other supports preventing the foot canting to one side , preventing supination or pronation
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/37Sole and heel units
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/24Collapsible or convertible
    • A43B3/246Collapsible or convertible characterised by the sole
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B3/00Footwear characterised by the shape or the use
    • A43B3/34Footwear characterised by the shape or the use with electrical or electronic arrangements
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B5/00Footwear for sporting purposes
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B5/00Footwear for sporting purposes
    • A43B5/10Tennis shoes
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/14Soles; Sole-and-heel integral units characterised by the constructive form
    • A43B13/18Resilient soles
    • A43B13/187Resiliency achieved by the features of the material, e.g. foam, non liquid materials
    • A43B13/188Differential cushioning regions

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

밑창 구조는 전기유변 유체를 포함하는 챔버 및 전달 채널을 포함할 수 있다. 전극은 전극에 걸친 전압에 반응하여, 전달 채널 내 전기유변 유체의 적어도 일부에 전기장을 생성하도록 위치할 수 있다. 밑창 구조는 프로세서 및 메모리를 포함하는 제어기를 더 포함할 수 있다. 프로세서 및 메모리 중 적어도 하나는 프로세서에 의해 실행가능한 명령을 저장하여 동작을 수행할 수 있고, 당해 동작은 전달 채널을 통한 전기유변 유체의 흐름이 차단되는 하나 이상의 흐름-저지 레벨로 전극에 걸친 전압을 유지하는 것, 전달 채널을 통한 전기유변 유체의 흐름을 허용하는 하나 이상의 흐름-가능 레벨로 전극에 걸친 전압을 유지하는 것을 더 포함한다.

Description

경사 조절기를 포함하는 풋웨어{FOOTWEAR INCLUDING AN INCLINE ADJUSTER}
관련 출원에 대한 상호 참조
본 출원은 2017년 8월 31일자로 출원되고 명칭이 "경사 조절기를 포함하는 풋웨어(FOOTWEAR INCLUDING AN INCLINE ADJUSTER)"인 미국 가특허 출원 제62/552,548호에 대한 우선권을 주장한다. 제62/552,548호는 전체적으로 본원에 참조로 포함된다.
종래의 풋웨어 물품은 일반적으로 갑피 및 밑창 구조를 포함한다. 갑피는 발에 대한 외피를 제공하고 밑창 구조에 대해 발을 안전하게 위치시킨다. 밑창 구조는 갑피의 아랫부분에 고정되고 착용자가 서거나, 걷거나, 뛰고 있을 때 발 및 지면 사이에 위치하도록 구성된다.
종래의 풋웨어는 대개 특정 조건 또는 일련의 조건들에 대해 신발을 최적화하는 목적을 갖고 설계된다. 예를 들어, 스포츠, 예컨대 테니스 및 농구는 상당한 좌우(side-to-side) 움직임을 필요로 한다. 그러한 스포츠를 하면서 착용하기 위해 설계된 신발은 대개 상당한 보강재를 포함하고/하거나 측방으로 움직이는 동안 보다 많은 힘을 받는 영역을 지지한다. 다른 예로서, 러닝화는 대개 착용자에 의한 직선의 전진 운동을 위해 설계된다. 상황이 변화하는 동안, 또는 다수의 상이한 유형의 움직임을 취하는 동안 신발을 착용하고 있어야만 할 때 어려움이 발생할 수 있다.
이러한 발명의 내용은 하기 발명을 실시하기 위한 구체적인 내용에서 더 설명될 개념의 선택을 간략화된 형태로 소개하기 위해 제공된다. 이러한 발명의 내용은 본 발명의 주요 특징 또는 본질적 특징을 밝히고자 하는 것은 아니다.
적어도 몇몇 실시형태에서, 경사 조절기는 가변-체적 외측 챔버 및 가변-체적 내측 챔버를 포함할 수 있다. 경사 조절기는 외측 챔버와 내측 챔버 사이에서 연장되는 전달 채널, 외측 챔버, 전달 채널 및 내측 챔버를 채우는 전기유변 유체, 및 전달 채널을 따라 전기유변 유체에 노출되는 대향 전극을 더 포함할 수 있다. 전극은, 예를 들어 금속 시트 또는 전도성 고무로 형성될 수 있다.
몇몇 실시형태에서, 경사 조절기는 가변-체적 제1 챔버 및 가변-체적 제2 챔버를 포함할 수 있다. 경사 조절기는 제1 챔버와 제2 챔버 사이에서 연장되는 전달 채널, 제1 챔버, 전달 채널 및 제2 챔버를 채우는 전기유변 유체, 및 전달 채널을 따라 전기유변 유체에 노출되는 대향 전극을 더 포함할 수 있다. 제1 챔버는 제1 챔버 벽 중앙 섹션, 및 제1 챔버 벽 중앙 섹션을 둘러싸는 제1 챔버 벽 측부 섹션을 더 포함하는 가요성의 제1 챔버 벽을 포함할 수 있다. 제1 챔버 벽 측부 섹션은 제1 챔버의 벨로우즈 형상(bellows shape)을 한정하는 적어도 하나의 접힘부(fold)를 포함할 수 있다.
몇몇 실시형태에서, 경사 조절기를 제조하는 방법은 내측 및 외측 챔버의 제1 부분 및 전달 채널의 제1 부분이 내부에 한정되고 제1 전극의 일부가 전달 채널의 제1 부분을 따라 노출되는 제1 구성요소를 성형하는 단계를 포함할 수 있다. 상기 방법은 또한 내측 및 외측 챔버의 제2 부분 및 전달 채널의 제2 부분이 내부에 한정되고 제2 전극의 일부가 전달 채널의 제2 부분을 따라 노출되는 제2 구성요소를 성형하는 단계를 포함할 수 있다. 상기 방법은 경사 조절기를 제작하기 위해 제1 구성요소를 제2 구성요소에 접합하는 단계를 더 포함할 수 있으며, 내측 챔버의 제1 및 제2 부분은 내측 챔버를 형성하도록 조합되고, 외측 챔버의 제1 및 제2 부분은 외측 챔버를 형성되도록 조합되고, 전달 채널의 제1 및 제2 부분은 전달 채널을 형성하도록 조합되며, 전달 채널은 내측 챔버와 외측 챔버를 연결한다.
추가 실시형태가 본 명세서에 설명된다.
몇몇 실시형태는 비슷한 참조 부호가 유사한 요소를 나타내는 첨부 도면의 도해로, 제한으로서가 아니라 예로서 예시된다.
도 1은 몇몇 실시형태에 따른 신발의 내측 외측도이다.
도 2a는 도 1의 신발의 밑창 구조의 저면도이다.
도 2b는 도 1의 신발의 밑창 구조의 저면도이나, 전족부 겉창 요소가 제거되었다.
도 2c는 도 1의 신발의 밑창 구조의 전족부 겉창 요소의 저면도이다.
도 3은 도 1의 신발의 밑창 구조의 부분적인 분해 조립도의 내측 사시도이다.
도 4a는 도 1의 신발의 경사 조절기의 확대된 후방 외측 상부 사시도이다.
도 4b는 도 4a의 경사 조절기의 상면도이다.
도 4c는 도 4b에 표시된 평면으로부터 취한 영역 단면도이다.
도 5a는 금속제 제1 전극과 함께, 도 4a의 경사 조절기의 제1 구성요소의 제1 층을 도시한다.
도 5b는 도 5a의 제1 전극의 부착 후의 도 5a의 제1 층을 도시한다.
도 5c는 제1 층 및 부착된 제1 전극 위에 제2 층을 성형한 후의 도 4a의 경사 조절기의 제1 구성요소를 도시한다.
도 6a는 금속의 제2 전극과 함께, 도 4a의 경사 조절기의 제2 구성요소의 제1 층을 도시한다.
도 6b는 도 6a의 제2 전극의 부착 후의 도 6a의 제1 층을 도시한다.
도 6c는 제1 층 및 부착된 제2 전극 위에 제2 층을 성형한 후의 도 4a의 경사 조절기의 제2 구성요소를 도시한다.
도 7a 및 도 7b는 도 5c의 제1 구성요소 및 도 6c의 제2 구성요소로부터의 도 4a의 경사 조절기의 조립을 도시한다.
도 7c는 조립 후 및 ER 유체로 채우기 전의 경사 조절기의 확대된 후방 외측 상부 사시도이다.
도 8은 도 4a의 경사 조절기의 전달 채널의 일부의 확대된 영역 단면도이다.
도 9는 도 1의 신발에서의 전기적 시스템 구성요소를 도시하는 블록도이다.
도 10a 내지 도 10d는 최소 경사 상태에서 최대 경사 상태로 되어갈 때 도 1의 신발의 경사 조절기의 작동을 도시하는, 부분적인 영역의 개략적인 단면도이다.
도 10e는 도 1의 신발의 경사 조절기 및 저부 플레이트의 상면도이고, 도 10a 내지 도 10d의 도면에 대응하는 단면선의 대략적인 위치를 나타내고 있다.
도 11a는 최소 경사 상태로부터 최대 경사 상태로 이행하는 동안, 상이한 시간에서의 발 상태, 압력차, 전압 레벨 및 경사각의 그래프이다.
도 11b는 최대 경사 상태로부터 최소 경사 상태로 이행하는 동안, 상이한 시간에서의 발 상태, 압력차, 전압 레벨 및 경사각의 그래프이다.
도 12a는 추가 실시형태에 따른 경사 조절기의 후방 외측 상부 사시도이다.
도 12b는 도 12a의 경사 조절기의 후방 내측 상부 사시도이다.
도 12c는 도 12a의 경사 조절기의 상면도이다.
도 13은 도 12c에 표시된 평면으로부터 취한 확대된 영역 단면도이다.
도 14는 별도로 형성된 제1 및 제2 구성요소로부터의 도 12a 내지 도 12c의 경사 조절기의 조립을 도시한다.
다양한 유형의 활동에서, 신발의 착용자가 뛰고 있거나, 아니면 다른 활동에 참여하고 있을 때 신발 또는 신발 부분의 형상을 바꾸는 것이 바람직할 수 있다. 많은 달리기 경주에서, 예를 들어, 선수는 "굽이(bend)"로서도 알려진, 커브 부분을 갖는 트랙 주위를 달린다. 몇몇 경우, 특히 보다 단거리 종목, 예컨대 200 미터 또는 400 미터 경주에서, 선수는 트랙 굽이 상에서 전력 질주하는 페이스로 달리고 있을 수 있다. 그러나 빠른 페이스로 평평한 커브를 달리는 것은 생체역학적으로 비효율적이며 불편한 신체 움직임을 필요로 할 수 있다. 그러한 영향을 상쇄시키기 위해, 몇몇 러닝 트랙 중 굽이는 경사진다. 이러한 경사는 보다 효율적인 신체 움직임을 가능하게 하고 통상적으로 러닝 타임을 보다 단축시킨다. 테스트를 통해 유사한 이점이 신발의 형상을 변경함으로써 달성될 수 있다는 것이 드러났다. 특히, 지면에 대해 경사져 있는 풋베드를 갖는 신발을 신고 평평한 트랙 굽이를 달리는 것은 경사지지 않은 풋베드를 갖는 신발을 신고 경사진 굽이를 달리는 이점과 흡사할 수 있다. 그러나, 경사진 풋베드는 러닝 트랙의 직선 부분 상에서는 불리하다. 굽이를 달릴 때 경사진 풋베드를 제공할 수 있고 직선 트랙 섹션을 달릴 때 경사를 감소 또는 제거할 수 있는 풋웨어는 상당한 이점을 제공할 수 있다.
몇몇 실시형태에 따른 풋웨어에서, 하나 이상의 신발 부분의 형상을 바꾸기 위해 전기유변(ER) 유체가 사용된다. ER 유체는 통상적으로 매우 작은 입자가 현탁되어 있는 비전도성 오일 또는 다른 유체를 포함한다. 몇몇 유형의 ER 유체에서, 입자는 아마도 5 마이크론 이하의 직경을 가질 수 있고 폴리스티렌 또는 쌍극 분자를 갖는 다른 폴리머로 형성될 수 있다. ER 유체에 걸쳐 전기장이 작용될 때, 유체의 점도는 전기장의 강도가 증가함에 따라 증가한다. 아래에서 보다 상세하게 설명될 바와 같이, 이러한 효과는 유체의 전달을 제어하여 풋웨어 구성요소의 형상을 수정하기 위해 사용될 수 있다. 처음에는 트랙 슈즈의 실시형태가 설명되지만, 다른 실시형태는 다른 스포츠용 또는 활동용으로 의도된 풋웨어를 포함한다.
"신발(슈즈)" 및 "풋웨어 물품"은 인간의 발에 착용하도록 의도된 물품을 나타내기 위해 본원에서 호환하여 사용된다. 신발은 착용자의 발 전체를 감쌀 수도 있고 감싸지 않을 수도 있다. 예를 들어, 신발은 착용한 발의 많은 부분을 노출시키는 샌들 모양의 갑피를 포함할 수 있다. 신발 요소는 그 신발을 착용한 인간의 발의 영역 및/또는 해부학적 구조에 기초하여, 그리고 신발의 내부가 일반적으로 착용한 발에 정합하며 그 외에 착용한 발에 적절하게 사이징되는 것을 가정함으로써, 설명될 수 있다. 발의 전족부 영역은 중족골의 맨 윗부분 및 중심부뿐만 아니라, 지골을 포함한다. 신발의 전족부 요소는 신발이 착용될 때 착용자의 전족부(또는 이의 일부)의 아래에, 위에, 외측 및/또는 내측으로, 및/또는 앞에 배치되는 하나 이상의 부분을 갖는 요소이다. 발의 중족부 영역은 투자골, 주상골 및 경상골뿐만 아니라, 중족골의 기저부를 포함한다. 신발의 중족부 요소는 신발이 착용될 때 착용자의 중족부(또는 이의 일부)의 아래에, 위에, 및/또는 외측 및/또는 내측으로 배치되는 하나 이상의 부분을 갖는 요소이다. 발의 뒤꿈치 영역은 거골 및 종골을 포함한다. 신발의 뒤꿈치 요소는 신발이 착용될 때 착용자의 뒤꿈치(또는 이의 일부)의 아래에, 및/또는 외측 및/또는 내측으로, 및 또는 뒤에 배치되는 하나 이상의 부분을 갖는 요소이다. 전족부 영역은 중족부 영역과 겹칠 수 있고, 중족부 및 뒤꿈치 영역도 그럴 수 있다.
도 1은 몇몇 실시형태에 따른 트랙 슈즈(10)의 내측 외측도이다. 신발(10)의 외측은 유사한 구성 및 외관을 갖지만, 착용자의 발의 외측에 대응하도록 구성된다. 신발(10)은 오른쪽 발에 착용하도록 구성되며, 신발(10)의 거울상이고 왼쪽 발에 착용하도록 구성된 신발(미도시)을 포함하는 한 켤레 중 한 짝이다. 그러나, 아래에서 보다 상세하게 설명될 바와 같이, 신발(10) 및 그에 대응하는 왼쪽 신발은 주어진 일련의 조건하에 상이한 방식으로 그것들의 형상을 변경하도록 구성될 수 있다.
신발(10)은 밑창 구조(12)에 부착되는 갑피(11)를 포함한다. 갑피(11)는 임의의 다양한 유형 또는 재료로 형성될 수 있고 임의의 다양한 상이한 구성을 가질 수 있다. 몇몇 실시형태에서, 예를 들어, 갑피(11)는 단일 유닛으로 짜일 수 있고, 다른 유형의 안감의 부티를 포함하지 않을 수 있다. 몇몇 실시형태에서, 갑피(11)는 발을 수용하는 내부 공간을 감싸기 위해 갑피(11)의 저부 가장자리를 스티칭함으로써 슬립 라스팅(slip last)될 수 있다. 다른 실시형태에서, 갑피(11)는 스트로벨(strobel)로 또는 몇몇 다른 방식으로 라스팅될 수 있다. 배터리 조립체(13)는 갑피(11)의 뒤쪽 뒤꿈치 영역에 배치되고, 제어기에 전력을 제공하는 배터리를 포함한다. 제어기는 도 1에 보이지 않으나, 다른 도시된 도면과 관련하여 아래에서 설명된다.
밑창 구조(12)는 풋베드(14), 겉창(15) 및 경사 조절기(16)를 포함한다. 경사 조절기(16)는 전족부 영역에서 겉창(15)과 풋베드(14) 사이에 위치한다. 아래에서 보다 상세하게 설명될 바와 같이, 경사 조절기(16)는 풋베드(14)의 내측 전족부 부분을 지지하는 내측 유체 챔버뿐만 아니라, 풋베드(14)의 외측 전족부 부분을 지지하는 외측 유체 챔버를 포함한다. ER 유체는 그러한 챔버들 사이에서 챔버 둘 모두의 내부와 유체 연통하는 연결된 전달 채널을 통해 전달될 수 있다. 그러한 유체 전달은 하나의 챔버에 대한 다른 챔버의 높이를 상승시킴으로써, 챔버 위에 배치된 풋베드(14)의 일부에 경사를 생성할 수 있다. 채널을 통한 ER 유체의 추가 흐름이 중단될 때, 경사는 ER 유체 흐름이 재개되는 것이 가능해질 때까지 유지된다.
겉창(15)은 밑창 구조(12)의 지면-접촉 부분을 형성한다. 신발(10)의 실시형태에서, 겉창(15)은 전방 겉창 섹션(17) 및 뒤쪽 겉창 섹션(18)을 포함한다. 전방 겉창 섹션(17) 및 뒤쪽 겉창 섹션(18)의 관계는 밑창 구조(12)의 저면도인 도 2a와, 전족부 겉창 섹션(17)이 제거된 밑창 구조(12)의 저면도인 도 2b를 비교함으로써 알 수 있다. 도 2c는 밑창 구조(12)로부터 제거된 전족부 겉창 섹션(17)의 저면도이다. 도 2a에서 볼 수 있는 바와 같이, 전방 겉창 섹션(17)은 밑창 구조(12)의 전족부 및 중앙 중족부 영역을 통해 연장되고, 협소한 말단(19)을 향해 가늘어진다. 단부(19)는 뒤꿈치 영역에 배치된 결합부(20)에서 뒤쪽 겉창 섹션(18)에 부착된다. 뒤쪽 겉창 섹션(18)은 외측 중족부 영역 위에, 그리고 뒤꿈치 영역 위에 연장되고 풋베드(14)에 부착된다. 또한 전방 겉창 섹션(17)은 지레받침 요소(fulcrum element)에 의해, 그리고 경사 조절기(16)의 상기 언급된 유체 챔버에 의해 풋베드(14)에 커플링된다. 전족부 겉창 섹션(17)은 결합부(20) 및 전족부 지레받침 요소를 통과하는 종축(L1) 주위에서 피봇팅한다. 특히, 그리고 아래에서 설명될 바와 같이, 전족부 겉창 섹션(17)은 풋베드(14)의 전족부 부분이 전족부 겉창 섹션(17)에 대해 경사져 있을 때 축(L1)의 주위를 회전한다.
겉창(15)은 폴리머 또는 폴리머 복합체로 형성될 수 있고 지면-접촉면 상에 고무 및/또는 다른 마모-방지 재료를 포함할 수 있다. 정지 마찰 요소(21)는 겉창(15)의 저부의 안으로 성형되거나, 아니면 그 안에 형성될 수 있다. 또한 전족부 겉창 섹션(17)은 하나 이상의 제거 가능한 스파이크 요소(22)를 유지하기 위한 리셉터클을 포함할 수 있다. 다른 실시형태에서, 겉창(15)은 상이한 구성을 가질 수 있다.
풋베드(14)는 중창(25)을 포함한다. 신발(10)의 실시형태에서, 중창(25)은 인간의 발의 외형에 대략적으로 대응하는 사이즈 및 형상을 갖고, 풋베드(14)의 전체 길이 및 폭을 연장하는 단편이며, 윤곽진 상면(26)을 포함한다(도 3에 도시됨). 상면(26)의 윤곽은 인간 발의 발바닥 영역의 형상에 대체로 대응하도록, 그리고 아치 지지부를 제공하도록 구성된다. 중창(25)은 에틸렌초산비닐(EVA, ethylene vinyl acetate) 및/또는 하나 이상의 다른 독립기포 폴리머 발포 재료로 형성될 수 있다. 또한 중창(25)은 아래에서 설명될 바와 같이, 그 안에 제어기 및 다른 전자 소자를 하우징하도록 형성된 포켓(27 및 28)을 가질 수 있다. 또한 뒤쪽 겉창 섹션(18)의 내측 및 외측을 위를 향하여 연장시키면, 추가의 내측 및 외측의 지지를 착용자의 발에 제공할 수 있다. 다른 실시형태에서, 풋베드는 상이한 구성을 가질 수 있다. 예를 들어, 중창은 밑창 전체를 커버하지는 않을 수 있거나 완전히 부재할 수 있고/있거나, 풋베드는 다른 구성요소를 포함할 수 있다.
도 3은 밑창 구조(12)의 부분적인 분해 조립도의 내측 사시도이다. 저부 지지 플레이트(29)는 신발(10)의 발바닥 영역에 배치된다. 신발(10)의 실시형태에서, 저부 지지 플레이트(29)는 전방 겉창 섹션(17)의 상면(30)에 부착된다. 상대적으로 강성인 폴리머 또는 폴리머 복합체로부터 형성될 수 있는 저부 지지 플레이트(29)는 전방 겉창 섹션(17)의 전족부 영역을 경화시키고 경사 조절기(16)에 안정적인 베이스를 제공하는 것을 돕는다. 내측 힘-감지 저항기(FSR, force-sensing resistor)(32) 및 외측 FSR(31)은 저부 지지 플레이트(29)의 상면(33)에 부착된다. 아래에 설명될 바와 같이, FSR(31 및 32)은 경사 조절기(16)의 챔버 내의 압력을 판정하는 것을 돕는 출력을 제공한다.
지레받침 요소(34)는 하부 지지 플레이트(29)의 상면(33)에 부착된다. 지레받침 요소(34)는 FSR(31 및 32)의 사이에서 저부 지지 플레이트(29)의 앞부분에 위치한다. 지레받침 요소(34)는 경질 고무, 또는 신발(10)의 착용자가 달릴 때 야기되는 하중 하에서 대체로 압축불가능한 하나 이상의 다른 재료로 형성될 수 있다.
경사 조절기(16)는 하부 지지 플레이트(29)의 상면(33)에 부착된다. 경사 조절기(16)의 외측 챔버(35)는 외측 FSR(31) 위에 위치한다. 경사 조절기(16)의 내측 챔버(36)는 내측 FSR(32) 위에 위치한다. 경사 조절기(16)는 애퍼처(37)를 포함하고, 그를 통해 지레받침 요소(34)가 연장된다. 지레받침 요소(34)의 적어도 일부는 챔버(35 및 36) 사이에 위치한다. 경사 조절기(16)의 관통 구멍(51)은 아래에서 보다 상세하게 설명되는 바와 같이, 경사 조절기(51)를 제조할 때 사용될 수 있다. 관통 구멍(51)은 또한 바닥 지지 플레이트(29)에 대해 경사 조절기(16)를 위치시키고 고정하는 데 사용될 수 있다. 도 3에는 도시되지 않은 대응하는 돌출부는 상면(33) 상에 형성되고, 경사 조절기(16)의 저측부로부터 관통 구멍(51) 내로 연장될 수 있다.
상부 지지 플레이트(41)는 신발(10)의 발바닥 영역에 배치되고 경사 조절기(16) 위에 위치한다. 신발(10)의 실시형태에서, 상부 지지 플레이트(41)는 저부 지지 플레이트(29)와 대체로 정렬된다. 또한 상대적으로 강성인 폴리머 또는 폴리머 복합체로 형성될 수 있는 상부 지지 플레이트(41)는 경사 조절기(16)가 밀릴 수 있고 풋베드(14)의 전족부 영역을 지지하는 안정적이고 상대적으로 변형 불가능한 영역을 제공한다.
중창(25) 밑면의 전족부 영역 부분은 상부 지지 플레이트(41)의 상면(42)에 부착된다. 뒤꿈치 및 측부 중족부 영역에서의 중창(25) 밑면 부분은 뒤쪽 겉창 섹션(18)의 상면(43)에 부착된다. 전방 겉창 섹션(17)의 말단(19)은 결합부(20)를 형성하기 위해 뒤쪽 겉창 섹션(18)의 전단의 가장 뒤쪽 위치(44)에서 뒤쪽 겉창 섹션(18)에 부착된다. 몇몇 실시형태에서, 말단(19)은 위치(14)에서 또는 그 부근에서 섹션(18)에 형성되는 슬롯에 미끄러져 들어가는 탭일 수 있고/있거나, 중창(25)의 상면(43)과 밑면 사이에 끼워넣어질 수 있다.
또한 도 3에는 제어기(47)의 DC 대 고전압-DC 컨버터(45) 및 인쇄 회로 기판(PCB, printed circuit board)(46)이 도시된다. 컨버터(45)는 저전압 DC 전기 신호를 경사 조절기(16) 내의 전극에 인가되는 고전압(예를 들어 5000V) DC 신호로 변환한다. PCB(46)는 하나 이상의 프로세서, 메모리 및 다른 구성요소를 포함하고, 컨버터(45)를 통해 경사 조절기(16)를 제어하도록 구성된다. 또한 PCB(46)는 FSR(31 및 32)로부터 입력을 수신하고 배터리 유닛(13)으로부터 전력을 수신한다. PCB(46) 및 컨버터(45)는 중족부 영역(48)에서의 전방 겉창 섹션(17)의 상면에 부착될 수 있고, 또한 밑면 중창(25)에 포켓(28 및 27) 내에 각각 놓일 수 있다.
도 4a는 경사 조절기(16)의 확대된 후방 외측 상부 사시도이다. 도 4b는 경사 조절기(16)의 확대된 상면도이다. 도 4c는 도 4b에 표시된 평면으로부터 취한 영역 단면도이다. 경사 조절기(16)는 본체(65)를 포함한다(도 4b). 외측 챔버(35)의 일부는 본체(65)의 상부(66)의 외측으로부터 상향으로 연장되는 가요성의 윤곽 벽(67)에 의해 경계지어진다. 외측 챔버(35)의 다른 부분은 본체(65) 내의 대응하는 영역(69)에 의해 경계지어진다(도 4c). 내측 챔버(36)의 일부는 상측부(66)의 내측으로부터 상향으로 연장되는 가요성의 윤곽 벽(68)에 의해 경계지어지고, 내측 챔버(36)의 다른 부분은 본체(65) 내의 대응하는 영역(70)에 의해 경계지어진다.
외측 챔버(35)는, 본체(65)의 중앙 부분에 한정되고 챔버(35 및 36) 사이에서 연장되는 유체 전달 채널(60)을 통해 내측 챔버(36)와 유체 연통한다. 경사 조절기(16)는 도 4a 내지 도 4c의 실시형태에서 불투명하며, 따라서 전달 채널(60)의 위치는 도 4b에서 짧은 파선으로 표시되어 있다. ER 유체(59)는 챔버(35 및 36) 및 전달 채널(60)을 채운다. 몇몇 실시형태에서 사용될 수 있는 ER 유체의 일례는 ERF Produktion W
Figure 112022009342646-pat00001
rzberg GmbH에 의해 "RheOil 4.0"이라는 이름으로 판매된다. 외측 챔버(35)의 내부 체적은 ER 유체(59)가 외측 챔버(35) 내로 또는 밖으로 흐름에 따라 변할 수 있다. 벽(67)에 의해 형성된 챔버(35)의 부분은 ER 유체(59)가 외측 챔버(35) 내로 흐를 때 팽창함으로써, 벽(67)의 중앙 섹션(71)을 본체(65)로부터 상향으로 변위시키도록 구성된다. 내측 챔버(36)의 내부 체적은 유사하게 ER 유체(59)가 내측 챔버(36) 내로 또는 밖으로 흐름에 따라 변할 수 있다. 벽(68)에 의해 형성된 챔버(36)의 부분은 ER 유체(59)가 내측 챔버(36) 내로 흐를 때 팽창함으로써, 벽(68)의 중앙 섹션(72)을 본체(65)로부터 상향으로 변위시키도록 구성된다.
한 쌍의 대향 전극은 저측부 및 상측부 상에서 전달 채널(60) 내에 위치하고, 도 4b에서 긴 파선으로 표시된 전달 채널(60)의 흐름 조절 부분(61)을 따라 연장된다. 리드(lead)(53 및 54)는 저부 및 상부 전극과 각각 전기적으로 접촉하고, 컨버터(45)에 연결된다. 전달 채널(60)은 채널(60) 내의 ER 유체(59)에 전기장을 생성하기 위해 채널(60) 내의 전극에 증가된 표면적을 제공하도록 구불구불한 형상을 가진다. 예를 들어, 그리고 도 4b에 볼 수 있는 바와 같이, 채널(60)은 챔버(35 및 36) 사이의 공간을 커버하는 채널(60)의 다른 섹션을 결합하는 3개의 180° 곡선 섹션을 포함한다. 몇몇 실시형태에서, 전달 채널(60)은 1 밀리미터(mm)의 전극 사이에서 최대 높이(h), 2 mm의 평균 폭(w), 및 챔버(35 및 36) 사이에서 흐름 방향에 따른 적어도 200 mm의 길이를 가질 수 있다. 몇몇 실시형태에서, 전달 채널(60)은 1 밀리미터(mm)의 전극 사이에서 최대 높이(h), 4 mm의 평균 폭(w), 및 챔버(35 및 36) 사이에서 흐름 방향에 따른 적어도 200 mm의 길이를 가질 수 있다.
몇몇 실시형태에서, 전달 채널의 높이는 실제로는 적어도 0.250 mm 내지 3.3 mm 이하의 범위로 제한될 수 있다. 유연한 재료로 구성된 경사 조절기는 사용되는 동안 신발과 함께 굴곡할 수 있을 수 있다. 전달 채널에 걸쳐 굴곡시키는 것은 굴곡점에서의 높이를 국부적으로 감소시킨다. 충분한 허용량에 이르지 못하면, 전기장 강도의 대응하는 증가는 ER 유체의 최대 절연 강도를 초과하여, 전기장이 붕괴되게 할 수 있다. 극단적으로, 전극은 너무 가까워서 사실상 접촉하게 될 수 있으며, 전기장 붕괴라는 동일한 결과를 낳는다.
ER 유체의 점도는 인가된 전기장 강도에 따라 증가된다. 효과는 비선형적이고 최적의 전기장 강도는 밀리미터당 3 킬로볼트 내지 6 킬로볼트(kV/mm)의 범위 내이다. 3 내지 5 V의 배터리를 부스팅하기 위해 사용되는 고전압 dc-dc 컨버터는 물리적 사이즈 및 안전상의 고려에 의해 2 W 미만으로 제한될 수 있거나 10 kV 이하의 최대 출력 전압으로 제한될 수 있다. 전기장 강도를 바람직한 범위 내로 유지하기 위해, 그에 따라 전달 채널의 높이는 몇몇 실시형태에서 최대 약 3.3 mm(10 kV/3 kV/mm)로 제한될 수 있다.
전달 채널의 폭은 실제로는 0.5 mm 이상 4 mm 이하의 범위로 제한될 수 있다. 채널의 최대 폭은 경사 조절기의 두 개의 챔버 사이의 물리적 공간에 의해 제한될 수 있다. 채널이 넓은 경우, 중간층 내의 재료는 얇아지고, 구성 중에 지지되지 않을 수 있고, 채널의 벽은 쉽게 이탈할 수 있다. 또한 ER 유체의 등가 직렬 저항은 채널 폭이 증가됨에 따라 감소될 것이며, 이는 전력 소비를 증가시킨다. 최소 M7(US)까지의 신발 사이즈 범위에 있어서, 실제 폭은 4 mm 미만으로 제한될 수 있다.
전달 채널(60)의 흐름 조절 부분(61) 내의 대향 전극은 흐름 조절 부분(61) 내의 ER 유체(59)의 점도를 증가시키도록 통전됨으로써, 채널(60)을 통한 ER 유체(59)의 흐름을 늦추거나 중지시킬 수 있다. 전달 채널(60)을 통한 흐름이 가능한 경우, 섹션(72)에 대한 하향력은 ER 유체(59)를 내측 챔버(36)로부터 전달 채널(60)을 통해 외측 챔버(35) 내로 강제한다. ER 유체(59)가 내측 챔버(36)로부터 외측 챔버(35) 내로 전달됨에 따라, 섹션(72)은 본체(65)를 향해 하향으로 이동하고, 섹션(71)은 본체(65)로부터 상향으로 멀리 이동한다. 반대로, 섹션(71)에 대한 하향력(전달 채널(60)을 통한 흐름이 가능한 경우)은 ER 유체(59)를 외측 챔버(35)로부터 전달 채널(60)을 통해 내측 챔버(36) 내로 강제한다. ER 유체(59)가 외측 챔버(35)로부터 내측 챔버(36) 내로 전달됨에 따라, 섹션(71)은 본체(65)를 향해 하향으로 이동하고, 섹션(72)은 본체(65)로부터 상향으로 멀리 이동한다. 도 10a 내지 도 10d와 관련하여 아래에서 보다 상세하게 논의되는 바와 같이, 섹션(71)과 섹션(72)의 상대 높이의 변화는 저부 지지 플레이트(29)에 대한 상부 지지 플레이트(41)의 경사각을 변화시킨다.
전달 채널의 바람직한 길이는 사용할 때 경사 조절기의 챔버 사이의 최대 압력차의 함수일 수 있다. 채널이 길수록, 견뎌낼 수 있는 압력차가 커진다. 최적의 채널 길이는 용도 및 구성에 의해 좌우될 수 있으며, 그에 따라 실시형태들 사이에서 다를 수 있다. 긴 채널로 인한 불이익은 전기장이 제거될 때 유체 흐름에 대한 보다 큰 제한이다. 몇몇 실시형태에서, 채널 길이의 실제 제한은 25 mm 내지 350 mm의 범위 내이다. 적어도 몇몇 실시형태에서, 흐름 조절 부분(61)은 적어도 50의 L/w 비를 가질 수 있으며, 여기서 L은 흐름 조절 부분(61)의 길이이고, w는 흐름 조절 부분(61)의 평균 폭이다. 다른 실시형태에서, 전달 채널의 흐름 조절 부분의 L/w 비에 대한 예시적인 최소 값은 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160 및 170을 포함한다. 몇몇 실시형태에서, 흐름 조절 전달 채널 부분에서 ER 유체와 접촉하는 각 대향 전극의 최소 면적은, 4 mm의 평균 채널 폭을 갖는 전달 채널의 경우, 800 제곱 밀리미터일 수 있다. 아래에서 보다 상세하게 설명되는 바와 같이, 전극의 장착 특징부는 채널의 벽 내에 캡슐화될 수 있고, 그에 따라 ER 유체와 접촉하지 않을 수 있다. 따라서, 전극의 총 면적은 노출된 기능적 면적보다 클 수 있다.
도 4c에서 볼 수 있는 바와 같이, 외측 챔버(35)의 벽(67)은, 상측부(66)로부터 상향으로 연장되고 내측부 섹션(75)과 결합하는 외측부 섹션(73)을 가지며, 내측부 섹션(75)은 섹션(71)에 결합되어 있다. 섹션(75 및 71)은 외측 챔버(35)의 외부 형상에 함몰부를 형성한다. 이러한 함몰부는 시스템 내에 필요한 ER 유체(59)의 총 체적의 감소를 가능하게 한다. 도 4a 내지 도 4c의 실시형태에서, 외측 챔버(35)만이 외부 함몰부를 포함한다. 다른 실시형태에서, 외측 및 내측 챔버 모두가 외부 함몰부를 포함할 수 있다. 또 다른 실시형태에서, 내측 챔버만이 함몰부를 포함할 수 있다. 또 다른 실시형태에서, 내측 챔버도 외측 챔버도 함몰부를 포함하지 않는다.
몇몇 실시형태에서, 경사 조절기 챔버는 벨로우즈 형상을 가질 수 있다. 예를 들어, 도 4c에서 볼 수 있는 바와 같이, 외측부 섹션(73)은 외측 챔버(35)의 벨로우즈 형상을 한정하는 접힘부를 갖는다. 벽(68)의 측부 섹션(74)은 또한 내측 챔버(36)의 벨로우즈 형상을 한정하는 접힘부를 갖는다. 도 4a 내지 도 4c의 실시형태에서, 외측 챔버의 측부는 내측 챔버의 측부보다 많은 접힘부를 갖는다. 몇몇 실시형태에서, 양 측부 상의 챔버는 동일한 수의 접힘부를 가질 수 있는 한편, 또 다른 실시형태에서, 내측 챔버는 외측 챔버보다 많은 접힘부를 가질 수 있다. 챔버의 벨로우즈 형상에 의해, 챔버의 팽창 및 수축 동안에 만곡이 증가하기 쉽다. 이것은 마모를 최소화할 뿐만 아니라, 시스템 내에 필요한 ER 유체의 총량을 감소시키는 것을 돕는다. 몇몇 실시형태에서, 하나 또는 양 챔버는 벨로우즈 형상을 갖지 않을 수 있다.
몇몇 실시형태에서, 경사 조절기(16)는 저부 및 상부 구성요소를 별도로 형성함으로써 제조될 수 있다. 저부 구성요소는 챔버(35 및 36) 각각의 영역(69 및 70), 전달 채널(60)의 저부 부분 및 저부 전극을 포함할 수 있다. 상부 구성요소는 챔버(35 및 36) 각각의 벽(67 및 68), 전달 채널(60)의 상부 부분 및 상부 전극을 포함할 수 있다. 일단 형성되면, 저부 구성요소의 상측부는 상부 구성요소의 저측부에 접합될 수 있다. 이어서, 챔버(35), 챔버(36) 및 전달 채널(60)의 내부 체적을 포함하는 내부 체적은 ER 유체(59)로 채워지고, 내부 체적은 밀봉될 수 있다.
도 5a 내지 도 5c는 경사 조절기(16)의 저부 구성요소를 형성함에 있어서의 단계를 도시하고 있다. 우선, 도 5a에 도시된 바와 같이, 제1 층(101)이 사출 성형된다. 층(101)은 저부 구성요소의 저부 층을 형성할 것이다. 층(101)의 둘레부는, 후방 연장부(103 및 104)를 제외하고는, 본체(65)의 둘레부의 형상과 동일한 형상을 갖는다. 관통 구멍(51)의 최저부 부분을 형성하는 개구(51.1), 및 애퍼처(37)의 최저부 부분을 형성하는 개구(37.1)를 제외하고는, 층(101)은 연속적이다. 층(101)의 상면(105)은 융기 부분(106)을 포함한다. 융기 부분(106)은, 저부 전극(107)에 대응하고 저부 전극(107)에 대한 안착부(seat)를 한정하는 형상을 갖는다.
또한 도 5a에 도시된 저부 전극(107)은 연속 금속 시트이다. 몇몇 실시형태에서, 저부 전극(107)은 .05 mm 두께의 1010 니켈 도금된 냉간 압연강으로 형성될 수 있다. 전극(107)은 리드(53)의 부착을 위한 패드(108)를 포함한다. 전극(107)의 가장자리는 또한 양쪽 가장자리를 따라 형성된 일련의 슬롯(109)을 포함한다. 슬롯(109)에 대한 예시적인 치수는 .5 mm x 1 mm이다. 아래에서 보다 상세하게 설명되는 바와 같이, 전극(107)을 제 위치에 고정시키기 위해 저부 구성요소의 성형 동안에 재료가 슬롯(109) 내로 흐를 수 있다.
연장부(103 및 104)는 경사 조절기(16)를 ER 유체(59)로 채울 수 있는 스프루(sprue)를 갖는 넥부의 부분을 형성할 것이다. 채워진 후에, 이들 스프루는 밀봉되고, 넥부가 제거될 수 있다. 연장부(103) 내의 채널(129)은 외측 스프루의 일부를 형성할 것이다. 연장부(104) 내의 채널(110)은 내측 스프루의 일부를 형성할 것이다.
도 5b에서, 전극(107)은 융기 부분(106)에 부착된다. 몇몇 실시형태에서, 후속 성형 작업(아래에서 설명됨) 동안에 전극(107)을 제자리에 유지하기 위해, 감압 접착제(PSA)가 전극(107)의 저면 및/또는 융기 부분(106)의 상면에 도포될 수 있다. 리드(53)는 납땜에 의해, 전도성 에폭시의 사용에 의해, 또는 다른 기법에 의해 제자리에 놓이고 패드(108)에 부착될 수 있다.
전극(107) 및 리드(53)의 부착 후에, 제2 층(112)이 층(101) 상에 오버몰딩(overmolding)된다. 경사 조절기(16)의 결과적인 저부 구성요소(115)는 도 5c에 도시되어 있다. 챔버(35 및 36) 각각의 영역(69 및 70)은 저부 구성요소(115)의 상면(116)에 한정된다. 전달 채널(60)의 저부 부분(60.1)은 유사하게 상면(116)에 형성된다. 전극(107)의 일부는 저부 부분(60.1)에서 노출된다. 층(101)의 개구(51.1 및 37.1)와 정렬되는 층(112)의 개구(51.2 및 37.2)는 완성된 경사 조절기(16)에서 관통 구멍(51) 및 애퍼처(37)의 추가 부분을 형성할 것이다. 층(112)은 또한 층(101)의 연장부(103 및 104) 위에 놓이는 연장부(113 및 114)를 포함한다. 리드(53) 위로 상면(116)으로부터 연장되는 융기 영역(119)은 경사 조절기(16)의 상부 구성요소의 저면의 함몰부에 끼워맞춰질 것이다. 상부 구성요소의 저면에서 리드(54)에 대응하는 대응 융기 영역을 수용하기 위해 함몰부(120)가 상면(116)에 형성된다.
몇몇 실시형태에서, 층(101)은 열가소성 폴리우레탄(TPU)으로 사출 성형될 수 있다. 층(112)은 추가적인 TPU의 사출 성형에 의해 (전극(107) 및 리드(53)가 부착된) 층(101) 상에 오버몰딩될 수 있다. 층(112)은 층(101)을 형성하는 데 사용된 것과 동일한 유형의 TPU로 형성될 수 있다.
도 6a 내지 도 6c는 경사 조절기(16)의 상부 구성요소를 형성함에 있어서의 단계를 도시하고 있다. 우선, 도 6a에 도시된 바와 같이, 제1 층(151)이 사출 성형된다. 층(151)은 상부 구성요소의 상부 층을 형성할 것이다. 층(151)의 둘레부는, 후방 연장부(153 및 154)를 제외하고는, 본체(65)의 둘레부의 형상과 동일한 형상을 갖는다. 관통 구멍(51)의 최상부 부분을 형성하는 개구(51.3), 및 애퍼처(37)의 최상부 부분을 형성하는 개구(37.3)를 제외하고는, 층(151)은 연속적이다. 층(151)의 상면(155)은 융기 부분(156)을 포함한다. 융기 부분(156)은, 상부 전극(157)에 대응하고 상부 전극(157)에 대한 안착부를 한정하는 형상을 갖는다. 또한 도 6a에서 볼 수 있는 바와 같이, 층(151)은 윤곽 벽(67 및 68)을 포함하고, 이들 벽은 그 가장자리 주위에서 층(151)의 나머지 부분에 결합된다. 도 6a에서, 층(151)은 도 4a의 경사 조절기(16)의 배향으로부터 반전된다. 특히, 층(151)의 저측부는 도 6a에서 볼 수 있다. 벽(67 및 68)을 둘러싸는 층(151)의 상측부의 부분은 도 6a에서는 보이지 않지만, 완성된 경사 조절기(16)에서 본체(65)의 상부(66)를 형성할 것이다. 연장부(153 및 154)는 경사 조절기(16)를 ER 유체(59)로 채울 수 있는 스프루를 갖는 넥부의 부분을 형성할 것이다. 연장부(153) 내의 채널(179)은 외측 스프루의 일부를 형성할 것이다. 연장부(154) 내의 채널(160)은 내측 스프루의 일부를 형성할 것이다.
상부 전극(157)이 또한 도 6a에 도시되어 있다. 전극(157)은 또한 연속 금속 시트이고, 전극(107)을 형성하는 데 사용된 것과 동일한 재료로 형성될 수 있다. 전극(157)은 리드(54)의 부착을 위한 패드(158)를 포함한다. 전극(157)의 가장자리는 또한 양쪽 가장자리를 따라 형성된 일련의 슬롯(159)을 포함한다. 슬롯(159)에 대한 예시적인 치수는 전극(107)의 슬롯(109)의 치수와 동일할 수 있다.
전극(157)은 도 6b에서 융기 부분(156)에 부착된다. 몇몇 실시형태에서, 후속 성형 작업(아래에서 설명됨) 동안에 전극(157)을 제자리에 유지하기 위해, PSA가 전극(157)의 상면 및/또는 융기 부분(156)의 저면에 도포될 수 있다. 리드(54)는 납땜에 의해, 전도성 에폭시의 사용에 의해, 또는 다른 기법에 의해 제자리에 놓이고 패드(158)에 부착될 수 있다.
전극(157) 및 리드(54)의 부착 후에, 제2 층(162)이 층(151) 상에 오버몰딩된다. 경사 조절기(16)의 결과적인 상부 구성요소(165)가 도 6c에 도시되어 있다. 벽(67 및 68) 각각 내의 챔버(35 및 36)의 내부 영역에 대한 개구는 상부 구성요소(165)의 저면(166)에 한정된다. 전달 채널(60)의 상부 부분(60.2)은 유사하게 저면(166)에 형성된다. 전극(157)의 일부는 상부 부분(60.2)에서 노출된다. 층(151)의 개구(51.3 및 37.3)와 정렬되는 층(162)의 개구(51.4 및 37.4)는 완성된 경사 조절기(16)에서 관통 구멍(51) 및 애퍼처(37)의 추가 부분을 형성할 것이다. 층(162)은 또한 층(151)의 연장부(153 및 154) 위에 놓이는 연장부(163 및 164)를 포함한다. 리드(54) 위로 저면(166)으로부터 연장되는 융기 영역(169)은 저부 구성요소(115)의 상면(116)의 함몰부(120) 내에 끼워맞춰질 것이다. 저부 구성요소(115)의 상면(116)에서 융기 영역(119)을 수용하기 위해 함몰부(170)가 저면(166)에 형성된다.
몇몇 실시형태에서, 층(151)은 TPU로 사출 성형될 수 있다. 층(162)은 추가적인 TPU의 사출 성형에 의해 (전극(157) 및 리드(54)가 부착된) 층(151) 상에 오버몰딩될 수 있다. 층(151 및 162)은 층(101 및 112)을 형성하는 데 사용된 것과 동일한 유형의 TPU로 형성될 수 있거나, 상이한 유형의 TPU로 형성될 수 있다.
도 7a는 저부 구성요소(115) 및 상부 구성요소(116)의 제조 후의 경사 조절기(16)의 조립을 도시하고 있다. 상부 구성요소(165)의 저면(166)은 저부 구성요소(115)의 상면(116)과 접촉하여 배치된다. 구성요소(115 및 165)는, 저부 부분(60.1)과 상부 부분(60.2)이 전달 채널(60)을 형성하도록 정렬되고, 영역(69)이 외측 챔버(35)를 형성하도록 벽(67)에 의해 경계지어진 공동의 내부에 대한 개구와 정렬되고, 영역(70)이 내측 챔버(36)를 형성하도록 벽(68)에 의해 경계지어진 공동의 내부에 대한 개구와 정렬되고, 융기 영역(119)이 함몰부(170) 내에 배치되며, 융기 영역(169)이 함몰부(120) 내에 배치되도록 조립된다.
도 7b는 몇몇 실시형태에 따른 조립 동안의 구성요소(115 및 165)의 정렬을 도시하고 있다. 다월(dowel)(91)은 층(101)의 구멍(50.1) 및 층(112)의 구멍(50.2)에 의해 형성된 구성요소(115)의 뒤쪽 외측 구멍을 통해 삽입된다. 이어서, 다월(91)은 층(151)의 구멍(50.3) 및 층(162)의 구멍(50.4)에 의해 형성된 구성요소(165)의 뒤쪽 외측 구멍을 통해 삽입된다. 유사한 방식으로, 다월(92)은 구성요소(115)의 뒤쪽 내측 구멍 및 구성요소(165)의 뒤쪽 내측 구멍을 통해 삽입되고, 다월(93)은 구성요소(115)의 전방 외측 구멍 및 구성요소(165)의 전방 외측 구멍을 통해 삽입되고, 다월(94)은 구성요소(115)의 전방 내측 구멍 및 구성요소(165)의 전방 내측 구멍을 통해 삽입된다. 이어서, 구성요소(115 및 165)는 표면(116 및 166)이 접촉될 때까지 다월(91 내지 94)을 따라 슬라이딩될 수 있다. 이어서, 표면(116 및 166)은 RF 용접 또는 화학 접착제를 사용하여 함께 접합될 수 있다.
도 7c는 구성요소(115 및 165)의 접합 후, 그러나 경사 조절기(16)를 ER 유체(59)로 채우기 전의 경사 조절기(16)의 확대된 사시도이다. 예시의 목적으로, 층(101, 112, 151 및 152)이 도 7c에 표시되어 있다. 그러나, 적어도 몇몇 실시형태에서(예를 들어, 동일한 색상의 동일한 재료가 모든 층에 사용되는 경우), 개별 층은 경사 조절기(16)에서 구별되지 않을 수 있다.
넥부(193)는 층(101 및 112) 각각의 후방 연장부(103 및 113)뿐만 아니라, 층(151 및 162) 각각의 후방 연장부(153 및 163)에 의해 형성된다. 채널(129 및 179)에 의해 형성된 스프루(191)는 외측 챔버(35) 내로의 통로를 제공한다. 넥부(194)는 층(101 및 112) 각각의 후방 연장부(104 및 114)뿐만 아니라, 층(151 및 162) 각각의 후방 연장부(154 및 164)에 의해 형성된다. 채널(110 및 160)에 의해 형성된 스프루(192)는 내측 챔버(36) 내로의 통로를 제공한다. 이어서, ER 유체(59)는 스프루(191 또는 192) 중 하나를 통해, 다른 스프루(191 또는 192)로부터 유출될 때까지 주입될 수 있다. 몇몇 실시형태에서, 미국 특허 출원 공개 제2017/0150785호(본원에 참조로 포함됨)에 개시된 바와 같은 탈기 절차가 사용될 수 있다. 몇몇 실시형태에서, 명칭이 "탈기 전기유변 유체(Degassing Electrorheological Fluid)"인 미국 가특허 출원(본 출원과 동일자로 출원되고, 대리인 참조번호 제215127.02298/170259US04호를 가짐)(본원에 참조로 포함됨)에 개시된 바와 같은 탈기 절차가 이용될 수 있다. 채우거나 탈기한 후에, 스프루(191 및 192)는 (예를 들어, 스프루(191 및 192)를 가로지르는 RF 용접에 의해) 밀봉되고, 그에 따라 챔버(35 및 36) 및 전달 채널(60)의 내부 체적에 의해 형성된 내부 체적을 밀봉할 수 있다. 이어서, 시일의 후방의 넥부(193 및 194)의 부분은 절단될 수 있다.
도 8은 도 4b의 영역 단면도의 확대된 부분이고, 매립된 전극(107 및 157)을 갖는 전달 채널의 추가 세부사항을 도시하고 있다. 저부 전극(107)은 흐름 조절 부분(61)에서 전달 채널(60)의 저부에 걸쳐 있다. 상부 전극(157)은 흐름 조절 부분(61)에서 전달 채널(60)의 상부에 걸쳐 있다. 전극(107 및 157)의 측부 가장자리는 전달 채널(60)의 측부를 넘어서 본체(65)의 재료 내로 연장된다. 도 8에서 볼 수 있는 바와 같이, 본체(65)의 재료는 슬롯(109 및 159) 내로 흘러들고 슬롯(109 및 159) 내에서 응고되었고, 전극(107 및 157)을 제자리에 고정시킨다. 위에서 표시한 바와 같이, 몇몇 실시형태에서, 전달 채널(60)은 1 밀리미터(mm)의 전극 사이에서 최대 높이(h), 2 mm의 평균 폭(w)을 가질 수 있다.
도 9는 신발(10)의 전기적 시스템 구성요소를 나타내는 블록도이다. 도 9에서의 블록으로의 또는 그로부터의 각각의 선은 신호(예를 들어 데이터 및/또는 전력) 흐름 경로를 나타내고 반드시 각각의 전도체를 나타내도록 의도되는 것은 아니다. 배터리 팩(13)은 충전 가능한 리튬 이온 배터리(201), 배터리 커넥터(202) 및 리튬 이온 배터리 보호 IC(집적 회로)(203)를 포함한다. 보호 IC(203)는 비정상적인 충전 및 방전 상태를 검출하고, 배터리(201)의 충전을 제어하며, 다른 종래의 배터리 보호 회로 동작을 수행한다. 또한 배터리 팩(13)은, 제어기(47)와 통신하고 배터리(201)를 충전하기 위한 USB(범용 직렬 버스) 포트(208)를 포함한다. 전력 경로 제어 유닛(209)은 전력이 제어기(47)에 USB 포트(208)로부터 공급되는지 또는 배터리(201)로부터 공급되는지 여부를 제어한다. 온/오프(O/O) 버튼(206)은 제어기(47) 및 배터리 팩(13)을 활성화 또는 비활성화한다. LED(발광 다이오드)(207)는 전기 시스템이 온인지 오프인지 여부를 나타낸다. 배터리 팩(13)의 상술된 각각의 요소는 종래의 것일 수도 있고, 본 명세서에 설명된 신규하고 진보성 있는 방식으로 조합 및 사용되는 시중에서 구할 수 있는 구성요소일 수도 있다.
제어기(47)는 PCB(46) 상에 하우징되는 구성요소뿐만 아니라 컨버터(45)를 포함한다. 다른 실시형태에서, PCB(46) 및 컨버터(45)의 구성요소는 단일 PCB 상에 포함될 수 있거나, 또는 몇몇 다른 방식으로 패키징될 수 있다. 제어기(47)는 프로세서(210), 메모리(211), 관성 측정 유닛(IMU, inertial measurement unit)(213) 및 저에너지 무선 통신 모듈(212)(예를 들어 블루투스(BLUETOOTH) 통신 모듈)을 포함한다. 메모리(211)는 프로세서(210)에 의해 실행될 수 있는 명령을 저장하고 다른 데이터를 저장할 수 있다. 프로세서(210)는, 메모리(211)에 의해 저장되고/되거나 프로세서(210)에 의해 저장되는 명령을 실행하며, 이러한 실행은 제어기(47)가 예컨대 본 명세서에 설명된 동작을 수행하게 한다. 본 명세서에 사용된 바와 같이, 명령은 하드 코딩된 명령 및/또는 프로그램 가능한 명령을 포함할 수 있다.
IMU(213)는 자이로스코프 및 가속도계 및/또는 자기력계를 포함할 수 있다. IMU(213)에 의해 출력되는 데이터는 신발(10)의, 그리고 그에 따라 신발(10)을 착용한 발의 배향 및 모션의 변화를 검출하기 위해 프로세서(210)에 의해 사용될 수 있다. 아래에서 보다 상세하게 설명될 바와 같이, 프로세서(10)는 신발(10)의 일부의 경사가 바뀌어야 할 때를 판정하기 위해 그러한 정보를 사용할 수 있다. 무선 통신 모듈(212)은 ASIC(주문형 집적 회로(application specific integrated circuit))를 포함할 수 있고, 프로그래밍 및 다른 명령을 프로세서(210)에 전달하기 위해, 뿐만 아니라 메모리(211) 또는 프로세서(210)에 의해 저장될 수 있는 데이터를 다운로드하기 위해 사용될 수 있다.
제어기(47)는 저-드롭아웃 전압 조절기(LDO)(214) 및 부스트 조절기/컨버터(215)를 포함한다. LDO(214)는 배터리 팩(13)으로부터 전력을 수신하고 프로세서(210), 메모리(211), 무선 통신 모듈(212) 및 IMU(213)에 정전압을 출력한다. 부스트 조절기/컨버터(215)는 허용 가능한 입력 전압을 컨버터(45)에 제공하는 레벨(예를 들어 5 볼트)로 배터리 팩(13)으로부터의 전압을 부스팅한다. 이어서, 컨버터(45)는 그러한 전압을 훨씬 더 높은 레벨(예를 들어, 5000 볼트)까지 증가시키고, 그러한 고전압을 경사 조절기(16)의 전극(107 및 157)에 걸쳐 공급한다. 부스트 조절기/컨버터(215) 및 컨버터(45)는 프로세서(210)로부터의 신호에 의해 활성화(enable) 및 비활성화(disable)된다. 제어기(47)는 외측 FSR(31)로부터 그리고 내측 FSR(32)로부터 신호들을 더 수신한다. 그러한 FSR(31 및 32)로부터의 신호에 기초하여, 프로세서(210)는 착용자의 발로부터 외측 유체 챔버(35) 및 내측 유체 챔버(36)에 대한 힘이 챔버(36) 내의 압력보다 높은 챔버(35) 내의 압력을 생성하고 있는지를 판정한다.
제어기(47)의 상술된 각각의 요소는 종래의 것일 수도 있고, 본 명세서에 설명된 신규하고 진보성 있는 방식으로 조합 및 사용되는 시중에서 구할 수 있는 구성요소일 수도 있다. 또한, 제어기(47)는 메모리(211) 및/또는 프로세서(210)에 저장된 명령에 의해, 신발(10) 풋베드(14)의 전족부 부분의 경사를 조절하기 위해 챔버(35 및 36) 사이에서 유체의 전달을 제어하는 것과 관련하여 본 명세서에 설명된 신규하고 진보성 있는 동작을 수행하도록 물리적으로 구성된다.
도 10a 내지 도 10d는 몇몇 실시형태에 따라, 최소 경사 상태에서 최대 경사 상태로 되어갈 때의 경사 조절기(16)의 작동을 나타내는 부분적인 영역의 개략적인 단면도이다. 최소 경사 상태에서, 저부 플레이트에 대한 상부 플레이트의 경사각(α)은 밑창 구조(12)가 전족부 영역에 제공하도록 구성된 최소 경사량을 나타내는 αmin의 값을 갖는다. 몇몇 실시형태에서, αmin = 0°이다. 최대 경사 상태에서, 경사각(α)은 밑창 구조(12)가 제공하도록 구성된 최대 경사량을 나타내는 αmax의 값을 갖는다. 몇몇 실시형태에서, αmax는 적어도 5°이다. 몇몇 실시형태에서, αmax = 10°이다. 몇몇 실시형태에서, αmax는 10°보다 클 수 있다.
도 10a 내지 도 10d에 저부 플레이트(29), 경사 조절기(16), 상부 플레이트(41), FSR(31), FSR(32) 및 지레받침 요소(34)가 나타나 있지만, 다른 요소는 간결성을 위해 생략된다. 밑창 구조(12)의 상부 플레이트(41) 및 다른 요소는 경사 조절기(16)를 향하는 방향으로의 플레이트(41)에 대한 하향력이 내측 챔버(36) 및 외측 챔버(35), 및/또는 지레받침(34) 및/또는 다른 요소로 전달되지만, 챔버(35 및 36) 사이의 본체(65)의 중앙 부분으로는 전달되지 않도록, 그리고 플레이트(41)에 대한 그러한 하향력이 전극(107 및 157)을 포함하는 중앙 부분의 영역을 압축하지 않도록 구성된다. 도 10e는 (최소 경사 상태에서의) 경사 조절기(16) 및 저부 플레이트(29)의 상면도이고, 도 10a 내지 도 10d의 도면에 대응하는 단면선의 대략적인 위치를 나타내고 있다. 상부 플레이트(41)는 도 10e에서 생략되지만, 상부 플레이트(41)가 도 10e에 포함된다면 상부 플레이트(41)의 주변 가장자리는 저부 플레이트(29)의 주변 가장자리와 대체로 일치할 것이다. 지레받침 요소(34)는 도 10e의 단면선에 따른 영역 단면에는 보이지 않을 수 있으나, 도 10a 내지 도 10d에서의 다른 요소의 내측 및 외측에 대한 지레받침 요소(34)의 일반적인 위치가 파선으로 표시된다.
또한 내측 스톱(83) 및 외측 스톱(82)이 도 10a 내지 도 10d에 표시된다. 경사 조절기(16) 및 상부 플레이트(41)가 최대 경사 상태에 있을 때 내측 스톱(83)은 상부 플레이트(41)의 내측을 지지한다. 경사 조절기(16) 및 상부 플레이트(41)가 최소 경사 상태에 있을 때 외측 스톱(82)이 상부 플레이트(41)의 외측을 지지한다. 외측 스톱(82)은 상부 플레이트(41)가 외측을 향해 기우는 것을 방지한다. 경주 동안 주자는 트랙 주위를 반시계방향으로 나아가기 때문에, 신발(10)의 착용자는 트랙의 커브 부분을 달릴 때 자신의 왼쪽으로 기울어질 것이다. 그러한 사용 시나리오에 있어서, 오른쪽 신발 밑창 구조의 풋베드가 외측을 향해 경사지도록 할 필요는 없을 것이다. 그러나 다른 실시형태에서, 밑창 구조는 내측 또는 외측으로 기울어질 수 있다.
몇몇 실시형태에서, 신발(10)을 포함하는 한 켤레의 신발 중 왼쪽 신발은 도 10a 내지 도 10d에 도시된 것과는 약간 상이한 방식으로 구성될 수 있다. 예를 들어, 내측 스톱은 신발(10)의 외측 스톱(82)의 높이와 유사한 높이에 있을 수 있고, 외측 스톱은 신발(10)의 내측 스톱(83)의 높이와 유사한 높이에 있을 수 있다. 그러한 실시형태에서, 왼쪽 신발의 상부 플레이트는 상부 플레이트가 외측으로 경사지는 최대 경사 상태와 최소 경사 상태 사이를 오간다.
내측 스톱(83) 및 외측 스톱(82)의 위치는 도 10a 내지 도 10d에 개략적으로 표현되고, 이전 도면에는 도시되지 않는다. 몇몇 실시형태에서, 외측 스톱(82)은 저부 플레이트(29)의 외측 또는 가장자리 상에 림(rim)으로서 형성될 수 있다. 유사하게, 내측 스톱(83)은 저부 플레이트(29)의 내측 또는 가장자리 상에 림으로서 형성될 수 있다.
도 10a는 상부 플레이트(41)가 최소 경사 상태에 있을 때의 경사 조절기(16)를 도시한다. 신발(10)은 신발(10)의 착용자가 경주를 개시하기 직전에 서 있거나 스타팅 블록에 있을 때, 또는 착용자가 트랙의 직선 부분을 달리고 있을 때, 상부 플레이트(41)를 최소 경사 상태로 두도록 구성될 수 있다. 도 10a에서, 제어기(47)는 전극(107 및 157)에 걸친 전압을 하나 이상의 흐름-저지 전압 레벨(V = Vfi)에서 유지하고 있다. 전극(107 및 157)에 걸친 전압은 전달 채널(60) 내의 ER 유체(59)의 점도를 챔버(35 및 36) 밖으로 또는 내로 흐르는 것을 방지하는 점도 레벨까지 증가시키기에 충분한 강도를 갖는 전기장을 생성할 만큼 충분히 높다. 몇몇 실시형태에서, 흐름-저지 전압 레벨(Vfi)은 전극(107 및 157) 사이에 3 kV/mm 내지 6 kV/mm의 전기장 강도를 생성하기에 충분한 전압이다. 도 10a 내지 도 10d에서, ER 유체(59)가 정상 점도 레벨의 점도를 갖는 것, 즉 전기장에 의해 영향을 받지 않는 것을 연한 점묘를 사용하여 나타낸다. 점도가 채널(60)을 통한 흐름을 차단하는 레벨까지 상승된 ER 유체(59)를 나타내기 위해서는 빽빽한 반점이 사용된다. ER 유체(59)는 도 10a에 도시된 상태 하에서 채널(60)을 통해 흐를 수 없기 때문에, 신발(10)의 착용자가 신발(10)의 내측 및 외측 사이에서 체중을 옮기는 경우, 상부 플레이트(41)의 경사각(α)은 바뀌지 않는다.
도 10b는 상부 플레이트(41)가 최대 경사 상태에 놓여야 한다는 것, 즉 α = αmax까지 경사져야 한다고 제어기(47)에 의해 판정된 직후의 경사 조절기(16)를 나타낸다. 몇몇 실시형태에서, 그리고 아래에서 설명될 바와 같이, 제어기(47)는 신발(10) 착용자의 많은 걸음 수에 기초하여 그러한 판정을 한다. 상부 플레이트(41)가 αmax까지 경사져야 함을 결정할 시, 제어기(47)는 신발(10)을 착용한 발이 착용자의 보행 사이클의 일부에 있는지 판정하며, 여기서 신발(10)은 지면과 접촉한다. 또한 제어기(47)는 내측 챔버(36) 내의 ER 유체(59)의 압력(PM)과, 외측 챔버(35) 내의 ER 유체(59)의 압력(PL)의 차이(ΔPM-L)가 양인지, 즉 PM - PL이 0보다 큰지 판정한다. 신발(10)이 지면에 닿고 있고 ΔPM-L이 양인 경우, 제어기(47)는 전극(107 및 157)에 걸친 전압을 흐름-가능 전압 레벨(Vfe)까지 감소시킨다. 특히, 전극(107 및 157)에 걸친 전압은 전달 채널(60) 내의 ER 유체(59)의 점도가 정상 점도 레벨에 있도록 전달 채널(60) 내의 전기장의 강도를 감소시키기에 충분히 낮은 레벨까지 감소한다.
전극(107 및 157)에 걸친 전압을 Vfe 레벨까지 감소시킬 시, 채널(60) 내의 ER 유체(59)의 점도는 감소한다. 이어서, ER 유체(59)는 챔버(36)로부터 챔버(35) 내로 흐르기 시작한다. 이는 상부 플레이트(41)의 내측이 저부 플레이트(29)를 향해 이동하기 시작하는 것, 및 상부 플레이트(41)의 외측이 저부 플레이트(29)로부터 떨어져 이동하기 시작하는 것을 가능하게 한다. 그 결과, 경사각(α)은 αmin으로부터 증가되기 시작한다.
몇몇 실시형태에서, 제어기(47)는 IMU(213)로부터의 데이터에 기초하여 신발(10)이 보행 사이클의 걸음 부분에 있는지, 그리고 지면과 접촉하고 있는지 판정한다. 특히, IMU(213)는 3축 가속도계 및 3축 자이로스코프를 포함할 수 있다. 가속도계 및 자이로스코프로부터의 데이터를 사용하여, 그리고 주자의 발의 알려진 생체역학, 예를 들어 보행 사이클의 상이한 부분 동안 다양한 방향으로의 회전 및 가속에 기초하여, 제어기(47)는 신발(10) 착용자의 오른쪽 발이 지면을 디디고 있는지 여부를 판정할 수 있다. 제어기(47)는 FSR(31) 및 FSR(32)로부터의 신호에 기초하여 ΔPM-L이 양인지 판정할 수 있다. 그러한 각각의 신호는 착용자의 발이 FSR을 눌러내리는 힘의 크기에 대응한다. 그러한 힘의 크기 및 챔버(35 및 36)의 알려진 치수에 기초하여, 제어기(47)는 FSR(31) 및 FSR(32)로부터의 신호의 값을 ΔPM-L의 크기 및 부호와 상관시킬 수 있다.
도 10c는 도 10b와 연관된 시간의 바로 직후의 경사 조절기(16)를 도시한다. 도 10c에서, 상부 플레이트(41)는 최대 경사 상태에 도달했다. 구체적으로, 상부 플레이트(41)의 경사각(α)은 αmax에 도달했다. 내측 스톱(83)은 경사각(α)이 αmax를 초과하는 것을 방지한다. 도 10d는 도 10c와 연관된 시간의 바로 직후의 경사 조절기(16)를 도시한다. 도 10d에서, 제어기(47)는 전극(107 및 157)에 걸친 전압을 흐름-저지 전압 레벨(Vfi)까지 상승시켰다. 이는 전달 채널(60)을 통한 추가 흐름을 방지하고 상부 플레이트(41)를 최대 경사 상태로 유지시킨다. 정상적인 보행 사이클 동안, 신발에 대한 오른쪽 발의 하향력은 초기에 전족부가 내측으로 말림에 따라 외측에 대한 그것보다 높다. 채널(60)을 통한 흐름이 방지되지 않으면, 착용자 오른쪽 발의 외측 상의 초기 하향력은 경사각(α)을 감소시킬 것이다.
몇몇 실시형태에서, 신발(10)의 착용자는 상부 플레이트(41)가 최대 경사에 도달하도록 몇 걸음을 걸을 필요가 있을 수 있다. 그에 따라, 제어기(47)는, 제어기(47)가 착용자의 발이 지면에서 떨어졌음을 (IMU(213) 및 FSR(31 및 32)로부터의 데이터에 기초하여) 판정할 때 전극(107 및 157)에 걸친 전압을 상승시키도록 구성될 수 있다. 이어서, 신발(10)이 지면을 디디고 있으며 ΔPM-L이 양이라고 다시 판정할 때, 제어기(47)는 그러한 전압을 강하시킬 수 있다. 이는 사전에 결정된 걸음 수 동안 반복될 수 있다. 이는 최소 경사 상태로부터 최대 경사 상태로의 이행 동안 상이한 시간에서의 내측-외측 압력차(ΔPM-L), 전극(107 및 157)에 걸친 전압, 및 경사각(α)의 그래프인 도 11a에 예시된다.
시간 T1에서, 제어기(47)는 신발(10)의 상부 플레이트(41)가 최대 경사 상태로 이행해야 함을 판정한다. 시간 T2에서, 제어기(47)는 신발(10)이 지면을 디디고 있으나 ΔPM-L은 음이라고 판정한다. 시간 T3에서, 제어기(47)는 신발(10)이 지면을 디디고 있으며 ΔPM-L이 양이라고 판정하고, 제어기는 전극(107 및 157)에 걸친 전압을 Vfe까지 감소시킨다. 그 결과, 상부 플레이트(41)의 경사각(α)이 αmin로부터 증가하기 시작한다. 시간 T4에서, 제어기(47)는 신발(10)이 더 이상 지면을 디디고 있지 않는다고 판정하고, 제어기는 전극(107 및 157)에 걸친 전압을 Vfi까지 상승시킨다. 그 결과, 경사각(α)은 그 현재 값을 유지한다. 시간 T5에서, 제어기(47)는 다시 신발(10)이 지면을 디디고 있으나 ΔPM-L은 음이라고 판정한다. 시간 T6에서, 제어기(47)는 신발(10)이 지면을 디디고 있으며 ΔPM-L이 양이라고 판정하고, 제어기는 다시 전극(107 및 157)에 걸친 전압을 Vfe까지 감소시키며, 경사각(α)의 증가가 재개된다. 시간 T7에서, 경사각(α)은 αmax에 도달한다. 상부 플레이트(41)가 추가로 기울어지는 것이 내측 스톱(83)에 의해 방지되기 때문에, 경사각(α)의 증가는 멈춰진다. 시간 T8에서, 제어기(47)는 신발(10)이 더 이상 지면을 디디고 있지 않는다고 판정하고, 제어기는 다시 전극(107 및 157)에 걸친 전압을 Vfi까지 상승시킨다. 제어기(47)에 의해 상부 플레이트(41)가 최소 경사 상태로 이행해야 한다는 것이 판정될 때까지, 제어기(47)는 추가 걸음 사이클 동안 해당 전압을 Vfi로 유지한다.
도 11b는 최대 경사 상태로부터 최소 경사 상태로의 이행 동안 상이한 시간에서의 내측-외측 압력차(ΔPM-L), 전극(107 및 157)에 걸친 전압, 및 경사각(α)의 그래프이다. 시간 T11에서, 제어기(47)는 신발(10)의 상부 플레이트(47)가 최소 경사 상태로 이행해야 함을 판정한다. 시간 T12에서, 제어기(47)는 신발(10)이 지면을 디디고 있으며 ΔPM-L이 음이라고 판정하고, 제어기(47)는 전극(107 및 157)에 걸친 전압을 Vfe까지 감소시킨다. 그 결과, 음의 ΔPM-L이 내측 챔버(36) 내의 압력(Pmed)보다 높은 외측 챔버(35) 내의 압력(Plat)을 나타내기 때문에, ER 유체(59)는 외측 챔버(35)로부터 유출되고 내측 챔버(36) 내로 유입되기 시작하며, 경사각(α)은 αmax로부터 감소하기 시작한다. 시간 T13에서, 제어기(47)는 신발(10)이 지면을 디디고 있으나 ΔPM-L이 양이라고 판정하고, 제어기(47)는 전극(107 및 157)에 걸친 전압을 Vfi까지 증가시킨다. 그 결과, 상부 플레이트(41)의 경사각(α)은 유지된다. 시간 T14에서, 제어기(47)는 신발(10)이 다시 지면을 디디고 있으며 ΔPM-L이 음이라고 판정하고, 제어기(47)는 전극(107 및 157)에 걸친 전압을 Vfe까지 낮춘다. 그 결과, 경사각(α)은 계속해서 감소한다. 시간 T15에서, 경사각(α)은 αmin에 도달한다. 상부 플레이트(41)가 추가로 기울어지는 것이 외측 스톱(82)에 의해 방지되기 때문에, 경사각(α)의 감소는 멈춰진다. 시간 T16에서, 제어기(47)는 ΔPM-L이 양이라고 판정하고, 제어기(47)는 다시 전극(107 및 157)에 걸친 전압을 Vfi까지 증가시킨다. 제어기(47)에 의해 상부 플레이트(41)가 최대 경사 상태로 이행해야 한다는 것이 판정될 때까지, 제어기(47)는 추가 걸음 사이클 동안 해당 전압을 Vfi로 유지한다.
상기 예에서, 제어기(47)는 경사 상태 사이에서의 이행을 위해 두 걸음 사이클 동안 전극(107 및 157)에 걸친 전압을 낮췄다. 그러나 다른 실시형태에서, 제어기(47)는 해당 전압을 보다 적거나 보다 많은 걸음 사이클 동안 낮출 수 있다. 최소 경사로부터 최대 경사로 이행하기 위한 걸음 사이클의 수는 최대 경사로부터 최소 경사로 이행하기 위한 걸음 사이클의 수와 동일하지 않을 수 있다.
몇몇 실시형태에서, 제어기(47)는 초기화 이후의 걸음 수를 카운팅하고 해당 걸음 수가 트랙 굽이(track bend)의 일부에 신발(10) 착용자가 위치하기에 충분한지를 판정함으로써 최대 경사 위치로의 전달 시기를 결정한다. 통상적으로, 육상 선수의 보폭의 길이는 매우 일관적이다. 트랙 치수, 및 각 트랙 레인의 스타트 라인으로부터 굽이까지의 거리는 제어기(47)에 의해 저장될 수 있는 공지된 양이다. 신발(10) 착용자에게 할당된 트랙 레인을 나타내는, 해당 신발(10) 착용자로부터 제어기(47)로의 입력뿐만 아니라, 해당 착용자의 보폭의 길이를 나타내는 입력에 기초하여, 제어기(47)는 달린 걸음수를 기억함으로써 착용자의 트랙 위치를 판정할 수 있다. 위에서 논의된 바와 같이, 제어기(47)는 IMU(213)로부터의 데이터에 기초하여 신발(10)이 보행 사이클 내에 있을 수 있는 경우를 판정할 수 있다. 이러한 보행 사이클 판정은 걸음을 내디뎠을 때를 나타낼 수 있다.
몇몇 실시형태에서, 신발(10)을 포함하는 한 켤레의 신발 중 왼쪽 신발은 신발(10)에 대해 위에서 설명된 방식과 유사한 방식으로 작동할 수 있으나, 최대 경사 상태는 왼쪽 신발 상부 플레이트가 외측을 향해 최대로 경사져있음을 나타낸다. 왼쪽 신발 제어기에 의해 수행된 동작은 도 11a 및 도 11b와 관련하여 위에서 설명된 것과 유사하며, 여기서 판정은 ΔPL-M = PL - PM의 부호에 기초하는 대신, ΔPM-L의 부호에 기초했으며, 여기서 PL은 왼쪽 신발 외측 유체 챔버 내의 압력이고, PM은 왼쪽 신발 내측 유체 챔버 내의 압력이다.
몇몇 실시형태에서, 신발 제어기는 다른 유형의 입력에 기초하여, 최소 경사로부터 최대 경사로, 그리고 그 반대로 이행할 때를 판정할 수 있다. 몇몇 그러한 실시형태에서, 예를 들어, 신발 착용자는 착용자의 신발로부터 변위된 몇몇 다른 위치 및/또는 몸통 상에 배치된 하나 이상의 IMU를 포함하는 의복을 착용할 수 있다. 그러한 센서의 출력은 무선 모듈(212)(도 9)과 유사한 무선 인터페이스를 통해 신발 제어기에 전달될 수 있다. 그러한 센서로부터 (예를 들어 트랙 굽이를 달릴 때 착용자의 신체가 옆으로 기울어짐에 따라) 착용자가 신발 상부 플레이트를 경사지게 할 필요와 합치되는 신체의 위치를 점했음을 나타내는 출력을 수신할 시, 제어기는 신발 상부 플레이트를 경사지게 하기 위한 동작을 수행할 수 있다. 또 다른 실시형태에서, 신발 제어기는 몇몇 다른 방식으로 (예를 들어, GPS 신호에 기초하여) 위치를 판정할 수 있다.
제어기는 밑창 구조 내에 배치되지 않아도 된다. 몇몇 실시형태에서, 예를 들어, 제어기의 몇몇 또는 모든 구성요소는 배터리 조립체, 예컨대 배터리 조립체(13)의 하우징과 함께 배치되고/되거나, 풋웨어 갑피 상에 위치하는 또 다른 하우징에 배치될 수 있다.
도 12a는 추가 실시형태에 따른 경사 조절기(316)의 확대된 후방 외측 상부 사시도이다. 경사 조절기(316)는 경사 조절기(16)와 관련하여 위에서 설명된 것과 유사한 방식으로 작동하고, 신발(10)의 밑창 구조(12)의 경사 조절기(16)를 대체할 수 있다. 아래에서 보다 상세하게 거론되는 것을 제외하고는, 경사 조절기(316)는 경사 조절기(16)의 구조와 동일하거나 유사한 구조를 가질 수 있다. 도 12b는 경사 조절기(316)의 확대된 후방 내측 상부 사시도이다. 도 12c는 경사 조절기(316)의 확대된 상면도이다. 도 13은 도 12c에 표시된 평면으로부터 취한 확대된 영역 단면도이다.
경사 조절기(316)는 본체(365)를 포함한다. 외측 챔버(335)의 일부는 본체(365)의 상부(366)의 외측으로부터 상향으로 연장되는 가요성의 윤곽 벽(367)에 의해 경계지어진다. 본체(365) 내의 대응하는 영역(369)에 의해 경계지어진 외측 챔버(335)의 다른 부분(도 13). 내측 챔버(336)의 일부는 상측부(366)의 내측으로부터 상향으로 연장되는 가요성의 윤곽 벽(368)에 의해 경계지어지고, 내측 챔버(336)의 다른 부분은 본체(365) 내의 대응하는 영역(370)에 의해 경계지어진다. 영역(370)은 도 12a 내지 도 13에서는 보이지 않지만, 도 14에 도시되어 있다(아래에서 논의됨).
외측 챔버(335)는, 본체(365)의 중앙 부분에 한정되고 챔버(335 및 336) 사이에서 연장되는 유체 전달 채널(360)(도 12c)을 통해 내측 챔버(336)와 유체 연통한다. ER 유체(59)는 챔버(335 및 336) 및 전달 채널(360)을 채운다. 한 쌍의 대향 전극은 전달 채널(360) 내에 위치하고, 전달 채널(360)의 흐름 조절 부분을 따라 연장된다. 도 12a 내지 도 13의 예에서, 흐름 조절 부분은 전달 채널(360) 전체와 동일한 공간을 차지한다. 리드(353 및 354)는 저부 전극 및 상부 전극과 각각 전기적으로 접촉하고, 컨버터(45)에 연결될 수 있다.
챔버(335)는 본체(65)의 평면에서의 챔버(35)의 형상과 유사한 본체(365)의 평면에서의 형상을 갖지만, 챔버(35)의 수직 윤곽과 상이한 수직 윤곽을 갖는다. 특히, 벽(367)의 외측부 섹션은 접힘부를 포함하지 않는다. 그러나, 챔버(35)와 마찬가지로, 챔버(335)는 그 외부 형상에 함몰부를 포함한다. 유사하게, 챔버(336)는 본체(65)의 평면에서의 챔버(36)의 형상과 유사한 본체(365)의 평면에서의 형상을 갖지만, 챔버(36)의 수직 윤곽과 상이한 수직 윤곽을 갖는다. 챔버(335)의 벽(367)과 같이, 벽(368)의 외측부 섹션은 접힘부를 포함하지 않는다. 챔버(336)의 상부는 대체로 편평하지만, 하나의 영역에 형성된 트로프(trough)(599)를 포함한다.
금속 시트로 형성된 전극(107 및 157)을 포함하는 경사 조절기(16)와 달리, 경사 조절기(316)는 전도성 고무로 형성된 전극을 포함한다. 또한, 경사 조절기(316)의 전극은 전극(107 및 157)과 상이한 단면 프로파일 및 상대 위치를 갖는다. 도 13에서 볼 수 있는 바와 같이, 상부 전극(457)의 단면은 대체로 시계방향으로 90도 회전된 "C"의 형상을 갖는다. 상부 전극의 오목한 내측부는 하향으로 향하여 있고, 흐름 조절 부분을 따라 전달 채널(360)의 상벽 및 측벽을 형성한다. 전극(457)의 외측부뿐만 아니라, 가장자리 근처의 전극(457)의 내측부의 작은 부분은 홈(594, 595 및 597)에서 본체(365)의 재료에 매립된다. 저부 전극(407)은 대체로 반원에 결합된 정사각형의 단면인 단면을 갖는다. 전극(407)의 저부 부분은 홈(596)에서 본체(365)의 재료에 매립된다. 반원형 단면 형상을 갖는 전극(407)의 부분은 전달 채널(360) 내로, 그리고 전극(457)의 오목한 내측부의 오목부 내로 상향으로 돌출한다.
몇몇 실시형태에서, ER 유체(59)에 노출된 전극(457)의 오목한 내측부의 반경, 및 오목부 내로 돌출하는 전극(407)의 부분의 반경은 원형이고 동심이며, 그에 따라 전달 채널(60)의 단면 형상은 반환형이다. 몇몇의 그러한 실시형태에서, ER 유체(59)에 노출된 전극(457)의 오목한 내측부의 반경 및 오목부 내로 돌출하는 전극(407)의 부분의 반경에 대한 값은 각각 1.5 mm 및 0.5 mm이다. 전극(407 및 457)을 형성할 수 있는 재료의 일례는 RTP Co.에 의해 제품명 EMI 2862-60A로 판매되는 매립된 스테인리스강 섬유를 갖는 열가소성 폴리올레핀 엘라스토머(TEO)로서, 60의 쇼어 A 경도를 갖고 하기와 같은 전형적인 전기적 특성을 갖는다: 1 ohm-cm 미만의 체적 저항률(ASTM D 257에 따라 측정됨), 10,000 ohm/square 미만의 표면 저항률(ASTM D 257 및 ESD STM11.11에 따라 측정됨), 1000 ohm 미만의 표면 저항(ESD STM11.11에 따라 측정됨), 및 (MIL-PRF-81705D, 5 kV 내지 50 V, 12% RH에 의해) 2 초 미만의 정적 감쇠(static decay)(FTMS101C 4046.1에 따라 측정됨).
다른 실시형태에서, 경사 조절기는 경사 조절기(316)와 유사하지만(전극(407 및 457)과 유사한 전극을 포함함), 벨로우즈 형상의 챔버(예를 들어, 경사 조절기(16)의 챔버(35 및 36)와 유사함)를 더 포함할 수 있다. 대안적으로, 그러한 실시형태에서 챔버 중 하나만이 벨로우즈 형상을 포함할 수 있다.
경사 조절기(316)는 도 14에 도시된 바와 같이, 저부 구성요소(315)과 상부 구성요소(365)를 별도로 형성함으로써 제조될 수 있다. 저부 구성요소는 챔버(335 및 336) 각각의 영역(369 및 370), 전달 채널(360)의 저부 부분, 및 저부 전극(407)을 포함할 수 있다. 상부 구성요소는 챔버(335 및 336) 각각의 벽(367 및 368), 전달 채널(360)의 상부 부분, 및 상부 전극(457)을 포함할 수 있다.
저부 구성요소(315)는 2-단계 사출 성형 절차로 형성될 수 있다. 제1 단계에서, 전극(407)을 갖지 않는 저부 구성요소(315)에 대응하는 층이 성형된다. 해당 층에서, 전달 채널(360)의 저부 부분에는, 전극(407)의 일부가 매립될 홈(596)(도 13 참조)이 형성된다. 전달 채널(360)의 저부 부분의 가장자리에는, 상부 전극(457)의 가장자리가 조립 동안에 배치될 홈(594 및 595)이 형성된다. 리드(353)는 또한 해당 층 내에 성형될 수 있으며, 일단 형성되면 리드의 일부는 하부 전극(407)과 접촉하도록 홈(596) 내로 연장된다. 사출 성형 절차의 제2 단계에서, 전극(407)이 제자리에 성형될 수 있다.
상부 구성요소(365)는 또한 2-단계 사출 성형 절차로 형성될 수 있다. 제1 단계에서, 전극(457)을 갖지 않는 상부 구성요소(365)에 대응하는 층이 성형된다. 해당 층에서, 전달 채널(360)의 상부 부분에는, 전극(457)의 일부가 매립될 홈(597)(도 13 참조)이 형성된다. 리드(354)는 또한 해당 층 내에 성형될 수 있으며, 일단 형성되면 리드의 일부는 상부 전극(457)과 접촉하도록 홈(597) 내로 연장된다. 사출 성형 절차의 제2 단계에서, 전극(457)이 제자리에 성형될 수 있다.
구성요소(315 및 365)가 형성된 후에, 저부 구성요소(315)의 상측부는 상부 구성요소(365)의 저측부에 접합될 수 있다. 구성요소(315 및 365)는 전달 채널(360)의 저부 및 상부 부분이 전달 채널(360)을 형성하기 위해 정렬되고 전극(457)의 가장자리가 홈(594 및 595) 내로 연장되도록 조립된다. 영역(369)은 외측 챔버(335)를 형성하도록 벽(367)에 의해 경계지어진 공동의 내부에 대한 개구와 정렬된다. 영역(370)은 내측 챔버(336)를 형성하도록 벽(368)에 의해 경계지어진 공동의 내부에 대한 개구와 정렬된다. 조립 동안의 구성요소(315 및 365)의 정렬은 도 7b와 관련하여 설명된 것과 유사한 방식으로 수행될 수 있다. 조립 후에, 구성요소(315)의 상측부 및 구성요소(365)의 저측부의 접촉 표면은 RF 용접 또는 화학 접착제를 사용하여 접합될 수 있다. 이어서, 챔버(335), 챔버(336) 및 전달 채널(360)의 내부 체적을 포함하는 내부 체적은 ER 유체(59)로 채워지고, 내부 체적은 경사 조절기(316)와 관련하여 설명된 것과 유사한 방식으로 밀봉될 수 있다.
의혹의 방지를 위해, 본 출원은 다음 넘버링된 단락("para.")에 설명된 청구 대상을 포함한다.
단락 1. 물품으로서, 본체, 본체의 외측 상에서 바깥쪽으로 연장되는 가변-체적 외측 챔버, 및 본체의 내측 상에서 바깥쪽으로 연장되는 가변-체적 내측 챔버를 포함하는 경사 조절기를 포함하며, 경사 조절기는 본체의 중앙 부분에 한정되고 외측 챔버와 내측 챔버 사이에서 연장되는 전달 채널; 외측 챔버, 전달 채널 및 내측 챔버를 채우는 전기유변 유체; 중앙 부분에 매립되고 전달 채널을 따라 전기유변 유체에 노출되는 금속 시트제의 제1 전극; 및 제1 전극에 대향하는 위치에서 중앙 부분에 매립되고 전달 채널을 따라 전기유변 유체에 노출되는 금속 시트제의 제2 전극을 더 포함하는, 물품.
단락 2. 단락 1의 물품으로서, 외측 챔버에 대응하는 경사 조절기의 외부 부분은 전달 채널로부터 외측 챔버 내로의 전기유변 유체의 흐름에 응답하여 바깥쪽으로 팽창하도록 구성되고, 내측 챔버에 대응하는 경사 조절기의 외부 부분은 전달 채널로부터 내측 챔버 내로의 전기유변 유체의 흐름에 응답하여 바깥쪽으로 팽창하도록 구성되는, 물품.
단락 3. 단락 1 또는 2의 물품으로서, 전달 채널의 경로는 외측 챔버와 내측 챔버 사이의 비선형 전달 채널 경로를 따라 연장되고, 제1 전극 및 제2 전극 각각은 전달 채널 경로의 형상에 대응하는 형상을 갖는, 물품.
단락 4. 단락 3의 물품으로서, 제1 전극 및 제2 전극 둘 모두가 연장되는 전달 채널 경로의 일부는 길이 L 및 평균 폭 W를 가지며, L/W 비는 적어도 50인, 물품.
단락 5. 단락 1 내지 4 중 어느 한 단락의 물품으로서, 제1 전극 및 제2 전극 각각은, 중앙 부분에 매립되고 전기유변 유체에 노출되지 않는 측부 가장자리를 갖는, 물품.
단락 6. 단락 5의 물품으로서, 측부 가장자리 각각은 측부 가장자리에 대응하는 전극을 완전히 관통하여 연장되는 애퍼처를 포함하고, 애퍼처 각각은 중앙 부분을 형성하는 고체 재료로 채워지는, 물품.
단락 7. 단락 1 내지 6 중 어느 한 단락의 물품으로서, 외측 챔버는 본체의 상부 외측으로부터 상향으로 연장되는 가요성의 외측 챔버 벽을 포함하고, 내측 챔버는 본체의 상부 내측으로부터 상향으로 연장되는 가요성의 내측 챔버 벽을 포함하는, 물품.
단락 8. 단락 7의 물품으로서, 외측 챔버 벽은 외측 챔버 벽 중앙 섹션, 및 외측 챔버 벽 중앙 섹션을 둘러싸는 외측 챔버 벽 측부 섹션을 포함하고, 외측 챔버 벽 측부 섹션은 외측 챔버의 벨로우즈 형상을 한정하는 적어도 하나의 접힘부를 포함하는, 물품.
단락 9. 단락 7의 물품으로서, 내측 챔버 벽은 내측 챔버 벽 중앙 섹션, 및 내측 챔버 벽 중앙 섹션을 둘러싸는 내측 챔버 벽 측부 섹션을 포함하고, 내측 챔버 벽 측부 섹션은 내측 챔버의 벨로우즈 형상을 한정하는 적어도 하나의 접힘부를 포함하는, 물품.
단락 10. 단락 9의 물품으로서, 외측 챔버 벽은 외측 챔버 벽 중앙 섹션, 및 외측 챔버 벽 중앙 섹션을 둘러싸는 외측 챔버 벽 측부 섹션을 포함하고, 외측 챔버 벽 측부 섹션은 외측 챔버의 벨로우즈 형상을 한정하는 적어도 하나의 접힘부를 포함하는, 물품.
단락 11. 단락 1 내지 10 중 어느 한 단락의 물품으로서, 외측 챔버 및 내측 챔버 중 적어도 하나는 함몰부를 포함하는 외부 형상을 갖는, 물품.
단락 12. 단락 1 내지 11 중 어느 한 단락의 물품으로서, 물품은 밑창 구조를 포함하는 풋웨어 물품이고, 경사 조절기는 밑창 구조의 전족부 부분의 일부를 형성하는, 물품.
단락 13. 단락 12의 물품으로서, 플레이트는 경사 조절기 위에 배치되고, 내측 챔버 및 외측 챔버 상에 놓이며, 플레이트는 경사 조절기를 향하는 방향으로의 플레이트에 대한 하향력이 중앙 부분으로는 전달되지 않으면서 내측 챔버 및 외측 챔버로 전달되도록 위치하는, 물품.
단락 14. 단락 12 또는 13의 물품으로서, 플레이트는 경사 조절기 위에 배치되고, 내측 챔버, 중앙 부분 및 외측 챔버 위로 연장되며, 플레이트 및 경사 조절기는 경사 조절기를 향하는 플레이트에 대한 하향력이 제1 및 제2 전극을 포함하는 중앙 부분의 영역을 압축하지 않도록 배열되는, 물품.
단락 15. 물품으로서, 본체, 본체의 외측 상에서 바깥쪽으로 연장되는 가변-체적 외측 챔버, 및 본체의 내측 상에서 바깥쪽으로 연장되는 가변-체적 내측 챔버를 포함하는 경사 조절기를 포함하며, 경사 조절기는 본체의 중앙 부분에 한정되고 외측 챔버와 내측 챔버 사이에서 연장되는 전달 채널; 외측 챔버, 전달 채널 및 내측 챔버를 채우는 전기유변 유체; 중앙 부분에 매립되고 전달 채널을 따라 전기유변 유체에 노출되는 전도성 고무제의 제1 전극; 및 제1 전극에 대향하는 위치에서 중앙 부분에 매립되고 전달 채널을 따라 전기유변 유체에 노출되는 전도성 고무제의 제2 전극을 더 포함하는, 물품.
단락 16. 단락 15의 물품으로서, 외측 챔버에 대응하는 경사 조절기의 외부 부분은 전달 채널로부터 외측 챔버 내로의 전기유변 유체의 흐름에 응답하여 바깥쪽으로 팽창하도록 구성되고, 내측 챔버에 대응하는 경사 조절기의 외부 부분은 전달 채널로부터 내측 챔버 내로의 전기유변 유체의 흐름에 응답하여 바깥쪽으로 팽창하도록 구성되는, 물품.
단락 17. 단락 15 또는 16의 물품으로서, 전달 채널의 경로는 외측 챔버와 내측 챔버 사이의 비선형 전달 채널 경로를 따라 연장되고, 제1 전극 및 제2 전극 각각은 전달 채널 경로의 형상에 대응하는 형상을 갖는, 물품.
단락 18. 단락 17의 물품으로서, 제1 전극 및 제2 전극 둘 모두가 연장되는 전달 채널 경로의 일부는 길이 L 및 평균 폭 W를 가지며, L/W 비는 적어도 50인, 물품.
단락 19. 단락 15 내지 18 중 어느 한 단락의 물품으로서, 제1 전극의 오목한 측부는 전기유변 유체에 노출되고, 오목한 측부의 오목부 내로 돌출하는 제2 전극의 일부는 전기유변 유체에 노출되는, 물품.
단락 20. 단락 15 내지 19 중 어느 한 단락의 물품으로서, 외측 챔버는 본체의 상부 외측으로부터 상향으로 연장되는 가요성의 외측 챔버 벽을 포함하고, 내측 챔버는 본체의 상부 내측으로부터 상향으로 연장되는 가요성의 내측 챔버 벽을 포함하는, 물품
단락 21. 단락 20의 물품으로서, 외측 챔버 벽은 외측 챔버 벽 중앙 섹션, 및 외측 챔버 벽 중앙 섹션을 둘러싸는 외측 챔버 벽 측부 섹션을 포함하고, 외측 챔버 벽 측부 섹션은 외측 챔버의 벨로우즈 형상을 한정하는 적어도 하나의 접힘부를 포함하는, 물품.
단락 22. 단락 20의 물품으로서, 내측 챔버 벽은 내측 챔버 벽 중앙 섹션, 및 내측 챔버 벽 중앙 섹션을 둘러싸는 내측 챔버 벽 측부 섹션을 포함하고, 내측 챔버 벽 측부 섹션은 내측 챔버의 벨로우즈 형상을 한정하는 적어도 하나의 접힘부를 포함하는, 물품.
단락 23. 단락 22의 물품으로서, 외측 챔버 벽은 외측 챔버 벽 중앙 섹션, 및 외측 챔버 벽 중앙 섹션을 둘러싸는 외측 챔버 벽 측부 섹션을 포함하고, 외측 챔버 벽 측부 섹션은 외측 챔버의 벨로우즈 형상을 한정하는 적어도 하나의 접힘부를 포함하는, 물품.
단락 24. 단락 15 내지 23 중 어느 한 단락의 물품으로서, 외측 챔버 및 내측 챔버 중 적어도 하나는 함몰부를 포함하는 외부 형상을 갖는, 물품.
단락 25. 단락 15 내지 24 중 어느 한 단락의 물품으로서, 물품은 밑창 구조를 포함하는 풋웨어 물품이고, 경사 조절기는 밑창 구조의 전족부 부분의 일부를 형성하는, 물품.
단락 26. 단락 25의 물품으로서, 플레이트는 경사 조절기 위에 배치되고, 내측 챔버 및 외측 챔버 상에 놓이며, 플레이트는 경사 조절기를 향하는 방향으로의 플레이트에 대한 하향력이 중앙 부분으로는 전달되지 않으면서 내측 챔버 및 외측 챔버로 전달되도록 위치하는, 물품.
단락 27. 단락 25의 물품으로서, 플레이트는 경사 조절기 위에 배치되고, 내측 챔버, 중앙 부분 및 외측 챔버 위로 연장되며, 플레이트 및 경사 조절기는 경사 조절기를 향하는 플레이트에 대한 하향력이 제1 및 제2 전극을 포함하는 중앙 부분의 영역을 압축하지 않도록 배열되는, 물품.
단락 28. 물품으로서, 본체, 본체의 상부 제1 측부로부터 상향으로 연장되는 가변-체적 제1 챔버, 및 본체의 상부 제2 측부로부터 상향으로 연장되는 가변-체적 제2 챔버를 포함하는 경사 조절기를 포함하며, 본체의 상부 제1 측부는 본체의 상부 내측 및 상부 외측 중 하나이고, 상부 제2 측부는 본체의 상부 내측 및 상부 외측 중 다른 하나이며, 경사 조절기는, 본체의 중앙 부분에 한정되고 제1 챔버와 제2 챔버 사이에서 연장되는 전달 채널; 제1 챔버, 전달 채널 및 제2 챔버를 채우는 전기유변 유체; 중앙 부분에 매립되고 전달 채널을 따라 전기유변 유체에 노출되는 제1 전극; 및 제1 전극에 대향하는 위치에서 중앙 부분에 매립되고 전달 채널을 따라 전기유변 유체에 노출되는 제2 전극을 더 포함하며, 제1 챔버는 본체의 상부 제1 측부로부터 상향으로 연장되는 가요성의 제1 챔버 벽을 포함하고, 제1 챔버 벽은 제1 챔버 벽 중앙 섹션, 및 제1 챔버 벽 중앙 섹션을 둘러싸는 제1 챔버 벽 측부 섹션을 포함하고, 제1 챔버 벽 측부 섹션은 제1 챔버의 벨로우즈 형상을 한정하는 적어도 하나의 접힘부를 포함하는, 물품.
단락 29. 단락 28의 물품으로서, 제2 챔버는 본체의 상부 제2 측부로부터 상향으로 연장되는 가요성의 제2 챔버 벽을 포함하고, 제2 챔버 벽은 제2 챔버 벽 중앙 섹션, 및 제2 챔버 벽 중앙 섹션을 둘러싸는 제2 챔버 벽 측부 섹션을 포함하고, 제2 챔버 벽 측부 섹션은 제2 챔버의 벨로우즈 형상을 한정하는 적어도 하나의 접힘부를 포함하는, 물품.
단락 30. 단락 28 또는 29의 물품으로서, 제1 챔버 및 제2 챔버 중 적어도 하나는 함몰부를 포함하는 외부 형상을 갖는, 물품.
단락 31. 단락 28 내지 30 중 어느 한 단락의 물품으로서, 물품은 밑창 구조를 포함하는 풋웨어 물품이고, 경사 조절기는 밑창 구조의 전족부 부분의 일부를 형성하는, 물품.
단락 32. 단락 31의 물품으로서, 플레이트는 경사 조절기 위에 배치되고, 제1 챔버 및 제2 챔버 상에 놓이며, 플레이트는 경사 조절기를 향하는 방향으로의 플레이트에 대한 하향력이 중앙 부분으로는 전달되지 않으면서 제1 챔버 및 제2 챔버로 전달되도록 위치하는, 물품.
단락 33. 단락 31의 물품으로서, 플레이트는 경사 조절기 위에 배치되고, 제1 챔버, 중앙 부분 및 제2 챔버 위로 연장되며, 플레이트 및 경사 조절기는 경사 조절기를 향하는 플레이트에 대한 하향력이 제1 및 제2 전극을 포함하는 중앙 부분의 영역을 압축하지 않도록 배열되는, 물품.
단락 34. 방법으로서, 내측 부분, 중앙 부분 및 외측 부분과, 상측부를 포함하는 제1 구성요소를 성형하는 단계로서, 중앙 부분은 내측 부분과 외측 부분 사이에 있고, 내측 및 외측 챔버의 제1 부분은 각각 상측부 상에서 내측 및 외측 부분에 한정되고, 전달 채널의 제1 부분은 상측부 상에서 중앙 부분에 한정되며, 제1 전극의 일부는 전달 채널의 제1 부분을 따라 노출되는, 단계; 내측 부분, 중앙 부분 및 외측 부분과, 저측부를 포함하는 제2 구성요소를 성형하는 단계로서, 제2 구성요소의 중앙 부분은 제2 구성요소의 내측 부분과 외측 부분 사이에 있고, 내측 및 외측 챔버의 제2 부분은 각각 제2 구성요소의 내측 및 외측 부분에 한정되고, 전달 채널의 제2 부분은 저측부 상에서 제2 구성요소의 중앙 부분에 한정되며, 제2 전극의 일부는 전달 채널의 제2 부분을 따라 노출되는, 단계; 경사 조절기를 제작하기 위해 제1 구성요소의 상측부를 제2 구성요소의 저측부에 접합하는 단계로서, 내측 챔버의 제1 및 제2 부분은 내측 챔버를 형성하도록 조합되고, 외측 챔버의 제1 및 제2 부분은 외측 챔버를 형성되도록 조합되고, 전달 채널의 제1 및 제2 부분은 전달 채널을 형성하도록 조합되며, 전달 채널은 내측 챔버와 외측 챔버를 연결하는, 단계; 내부 체적을 전기유변 유체로 채우는 단계로서, 내부 체적은 내측 챔버, 전달 채널 및 외측 챔버의 내부 체적을 포함하는, 단계; 및 내부 체적을 밀봉하는 단계를 포함하는, 방법.
단락 35. 단락 34의 방법으로서, 제1 구성요소를 성형하는 단계는 제1 구성요소의 제1 층을 성형하고, 제1 전극을 제1 구성요소의 제1 층에 부착하고, 제1 구성요소의 제1 층 및 제1 전극 상에 제1 구성요소의 제2 층을 성형하는 단계를 포함하며, 제2 구성요소를 성형하는 단계는 제2 구성요소의 제1 층을 성형하고, 제2 전극을 제2 구성요소의 제1 층에 부착하고, 제2 구성요소의 제1 층 및 제2 전극 상에 제2 구성요소의 제2 층을 성형하는 단계를 포함하며, 제2 구성요소의 제1 층은 내측 챔버의 제2 부분을 형성하는 가요성의 내측 챔버 벽, 및 외측 챔버의 제2 부분을 형성하는 가요성의 외측 챔버 벽을 포함하는, 방법.
단락 36. 단락 34의 방법으로서, 제1 구성요소를 성형하는 단계는 제1 구성요소의 제1 층을 성형한 후에, 이어서 제1 전극을 제1 구성요소의 제1 층 내에 성형하는 단계를 포함하며, 제2 구성요소를 성형하는 단계는 제2 구성요소의 제1 층을 성형한 후에, 이어서 제2 전극을 제2 구성요소의 제1 층 내에 성형하는 단계를 포함하는, 방법.
단락 37. 단락 34 또는 35의 방법으로서, 제1 및 제2 전극 각각은 연속 금속 시트인, 방법.
단락 38. 단락 34 또는 36의 방법으로서, 제1 및 제2 전극 각각은 전도성 고무의 연속편(continuous piece)인, 방법.
실시형태에 대해 전술한 설명은 예시 및 설명의 목적을 위하여 제시되었다. 전술한 설명은 망라적인 것 또는 본 발명의 실시형태를 개시된 정확한 형태로 제한하고자 하는 것이 아니며, 수정 및 변형이 상술한 교시 내용에 비추어 가능하거나 다양한 실시형태의 실시로부터 습득될 수 있다. 본 명세서에서 논의된 실시형태는 당업자가 본 발명을 다양한 실시형태로, 그리고 고려된 특정 목적에 적합하게 다양하게 변형하여 이용할 수 있게 하도록 다양한 실시형태 및 이들의 실제 적용예의 원리 및 속성을 설명하기 위해 선택되고 설명되었다. 본 명세서에 설명된 실시형태로부터의 특징의 모든 조합, 하위 조합 및 치환은 본 발명의 범위 내에 있다. 청구범위에서, 구성요소의 잠재적 또는 의도된 착용자 또는 이용자에 관한 언급은 구성요소의 실제 착용 또는 사용, 또는 착용자 또는 사용자의 존재를 청구된 발명의 일부로서 필요로 하는 것이 아니다.

Claims (20)

  1. 물품으로서,
    본체, 상기 본체의 외측 상에서 바깥쪽으로 연장되는 가변-체적 외측 챔버, 및 상기 본체의 내측 상에서 바깥쪽으로 연장되는 가변-체적 내측 챔버를 포함하는 경사 조절기를 포함하며, 상기 경사 조절기는,
    상기 본체의 중앙 부분에 한정되고 상기 외측 챔버와 상기 내측 챔버 사이에서 연장되는 전달 채널;
    상기 외측 챔버, 상기 전달 채널 및 상기 내측 챔버를 채우는 전기유변 유체;
    상기 중앙 부분에 매립되고 상기 전달 채널을 따라 상기 전기유변 유체에 노출되는 금속 시트제의 제1 전극;
    상기 제1 전극에 대향하는 위치에서 상기 중앙 부분에 매립되고 상기 전달 채널을 따라 상기 전기유변 유체에 노출되는 금속 시트제의 제2 전극; 및
    상기 경사 조절기 위에 배치되는 플레이트로서, 상기 경사 조절기를 향하는 방향으로의 상기 플레이트에 대한 하향력이 상기 제1 및 제2 전극을 포함하는 상기 중앙 부분의 영역을 압축하지 않도록 배열되는 것인, 플레이트
    를 더 포함하며,
    상기 외측 챔버는 상기 본체의 상부 외측으로부터 상향으로 연장하는 가요성의 외측 챔버 벽을 포함하고, 상기 가요성의 외측 챔버 벽은 외측 챔버 벽 중앙 섹션 및 상기 외측 챔버 벽 중앙 섹션을 둘러싸는 외측 챔버 벽 측부 섹션을 포함하며, 상기 외측 챔버 벽 측부 섹션은 상기 외측 챔버의 벨로우즈 형상(bellows shape)을 한정하는 적어도 하나의 접힘부(fold)를 포함하고, 상기 외측 챔버 벽 중앙 섹션은 함몰부(depression)를 포함하는 외부 형상을 가지며,
    상기 경사 조절기는 최소 경사 상태 및 최대 경사 상태 사이에서 이동 가능하며, 상기 전기유변 유체는 상기 경사 조절기가 최소 경사 상태에서 최대 경사 상태로 이동할 때 상기 내측 챔버로부터 상기 외측 챔버로 이동하고, 상기 전기유변 유체의 상기 외측 챔버로의 이동은 상기 외측 챔버 벽 측부 섹션의 벨로우즈 형상이 팽창하도록 하고 그리고 함몰부를 형성하는 상기 외측 챔버 벽 중앙 섹션이 상향으로 변위되도록 하는 것인, 물품.
  2. 제1항에 있어서,
    상기 내측 챔버에 대응하는 상기 경사 조절기의 외부 부분은 상기 전달 채널로부터 상기 내측 챔버 내로의 상기 전기유변 유체의 흐름에 응답하여 바깥쪽으로 팽창하도록 구성되는,
    물품.
  3. 제1항에 있어서,
    상기 전달 채널의 경로는 상기 외측 챔버와 상기 내측 챔버 사이의 비선형 전달 채널 경로를 따라 연장되고,
    상기 제1 전극 및 상기 제2 전극 각각은 상기 전달 채널 경로의 형상에 대응하는 형상을 갖는,
    물품.
  4. 제3항에 있어서,
    상기 제1 전극 및 상기 제2 전극 둘 모두가 연장되는 상기 전달 채널 경로의 일부는 길이 L 및 평균 폭 W를 가지며,
    L/W 비는 적어도 50인,
    물품.
  5. 제1항에 있어서, 상기 제1 전극 및 상기 제2 전극 각각은, 상기 중앙 부분에 매립되고 상기 전기유변 유체에 노출되지 않는 측부 가장자리를 갖는, 물품.
  6. 제5항에 있어서,
    상기 제1 전극 및 상기 제2 전극 각각은 상기 측부 가장자리를 따라 형성된 일련의 슬롯을 포함하고,
    상기 슬롯 각각은 상기 중앙 부분을 형성하는 고체 재료로 채워지는,
    물품.
  7. 제1항에 있어서,
    상기 내측 챔버는 상기 본체의 상부 내측으로부터 상향으로 연장되는 가요성의 내측 챔버 벽을 포함하는,
    물품.
  8. 삭제
  9. 제7항에 있어서,
    상기 내측 챔버 벽은 내측 챔버 벽 중앙 섹션, 및 상기 내측 챔버 벽 중앙 섹션을 둘러싸는 내측 챔버 벽 측부 섹션을 포함하고,
    상기 내측 챔버 벽 측부 섹션은 상기 내측 챔버의 벨로우즈 형상을 한정하는 적어도 하나의 접힘부를 포함하는,
    물품.
  10. 삭제
  11. 제7항에 있어서, 상기 내측 챔버는 함몰부를 포함하는 외부 형상을 갖는, 물품.
  12. 제1항에 있어서,
    상기 물품은 밑창 구조를 포함하는 풋웨어 물품이고,
    상기 경사 조절기는 상기 밑창 구조의 전족부 부분의 일부를 형성하는,
    물품.
  13. 제12항에 있어서, 플레이트는 상기 내측 챔버 및 상기 외측 챔버 상에 놓이며, 상기 플레이트는 상기 경사 조절기를 향하는 방향으로의 상기 플레이트에 대한 하향력이 상기 중앙 부분으로는 전달되지 않으면서 상기 내측 챔버 및 상기 외측 챔버로 전달되도록 위치하는, 물품.
  14. 제12항에 있어서,
    플레이트는 상기 내측 챔버, 상기 중앙 부분 및 상기 외측 챔버 위로 연장되는,
    물품.
  15. 물품으로서,
    본체, 상기 본체의 상부 제1 측부로부터 상향으로 연장되는 가변-체적 제1 챔버, 및 상기 본체의 상부 제2 측부로부터 상향으로 연장되는 가변-체적 제2 챔버를 포함하는 경사 조절기를 포함하며,
    상기 본체의 상기 상부 제1 측부는 상기 본체의 상부 내측 측부 및 상부 외측 측부 중 하나이고, 상기 상부 제2 측부는 상기 본체의 상기 상부 내측 측부 및 상기 상부 외측 측부 중 다른 하나이며,
    상기 경사 조절기는,
    상기 본체의 중앙 부분에 한정되고 상기 제1 챔버와 상기 제2 챔버 사이에서 연장되는 전달 채널;
    상기 제1 챔버, 상기 전달 채널 및 상기 제2 챔버를 채우는 전기유변 유체;
    상기 중앙 부분에 매립되고 상기 전달 채널을 따라 상기 전기유변 유체에 노출되는 제1 전극; 및
    상기 제1 전극에 대향하는 위치에서 상기 중앙 부분에 매립되고 상기 전달 채널을 따라 상기 전기유변 유체에 노출되는 제2 전극
    을 더 포함하며,
    상기 제1 챔버는 상기 본체의 상기 상부 제1 측부로부터 상향으로 연장되는 가요성의 제1 챔버 벽을 포함하고,
    상기 제1 챔버 벽은 제1 챔버 벽 중앙 섹션, 및 상기 제1 챔버 벽 중앙 섹션을 둘러싸는 제1 챔버 벽 측부 섹션을 포함하고,
    상기 제1 챔버 벽 측부 섹션은 상기 제1 챔버의 벨로우즈 형상을 한정하는 적어도 하나의 접힘부를 포함하고,
    상기 제1 챔버 벽 중앙 섹션은 함몰부를 포함하는 외부 형상을 가지며,
    상기 경사 조절기는 최소 경사 상태 및 최대 경사 상태 사이에서 이동 가능하며, 상기 전기유변 유체는 상기 경사 조절기가 최소 경사 상태에서 최대 경사 상태로 이동할 때 상기 제2 챔버로부터 상기 제1 챔버로 이동하고, 상기 전기유변 유체의 상기 제1 챔버로의 이동은 상기 제1 챔버 벽 측부 섹션의 벨로우즈 형상이 팽창하도록 하고 그리고 함몰부를 형성하는 상기 제1 챔버 벽 중앙 섹션이 상기 본체로부터 상향으로 변위되도록 하는 것인, 물품.
  16. 제15항에 있어서,
    상기 제2 챔버는 상기 본체의 상기 상부 제2 측부로부터 상향으로 연장되는 가요성의 제2 챔버 벽을 포함하고,
    상기 제2 챔버 벽은 제2 챔버 벽 중앙 섹션, 및 상기 제2 챔버 벽 중앙 섹션을 둘러싸는 제2 챔버 벽 측부 섹션을 포함하고,
    상기 제2 챔버 벽 측부 섹션은 상기 제2 챔버의 벨로우즈 형상을 한정하는 적어도 하나의 접힘부를 포함하는,
    물품.
  17. 제16항에 있어서, 상기 제1 챔버 및 상기 제2 챔버 중 적어도 하나는 함몰부를 포함하는 외부 형상을 갖는, 물품.
  18. 제15항에 있어서,
    상기 물품은 밑창 구조를 포함하는 풋웨어 물품이고,
    상기 경사 조절기는 상기 밑창 구조의 전족부 부분의 일부를 형성하는,
    물품.
  19. 제18항에 있어서, 플레이트는 상기 경사 조절기 위에 배치되고, 상기 제1 챔버 및 상기 제2 챔버 상에 놓이며, 상기 플레이트는 상기 경사 조절기를 향하는 방향으로의 상기 플레이트에 대한 하향력이 상기 중앙 부분으로는 전달되지 않으면서 상기 제1 챔버 및 상기 제2 챔버로 전달되도록 위치하는, 물품.
  20. 제18항에 있어서,
    플레이트는 상기 경사 조절기 위에 배치되고, 상기 제1 챔버, 상기 중앙 부분 및 상기 제2 챔버 위로 연장되며,
    상기 플레이트 및 상기 경사 조절기는 상기 경사 조절기를 향하는 상기 플레이트에 대한 하향력이 상기 제1 및 제2 전극을 포함하는 상기 중앙 부분의 영역을 압축하지 않도록 배열되는,
    물품.
KR1020227002738A 2017-08-31 2018-08-30 경사 조절기를 포함하는 풋웨어 KR102465621B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227038884A KR102652683B1 (ko) 2017-08-31 2018-08-30 경사 조절기를 포함하는 풋웨어

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762552548P 2017-08-31 2017-08-31
US62/552,548 2017-08-31
PCT/US2018/048719 WO2019046516A1 (en) 2017-08-31 2018-08-30 FOOTWEAR COMPRISING A TILT ADJUSTMENT ELEMENT
KR1020207009391A KR102358288B1 (ko) 2017-08-31 2018-08-30 경사 조절기를 포함하는 풋웨어

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207009391A Division KR102358288B1 (ko) 2017-08-31 2018-08-30 경사 조절기를 포함하는 풋웨어

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227038884A Division KR102652683B1 (ko) 2017-08-31 2018-08-30 경사 조절기를 포함하는 풋웨어

Publications (2)

Publication Number Publication Date
KR20220017522A KR20220017522A (ko) 2022-02-11
KR102465621B1 true KR102465621B1 (ko) 2022-11-09

Family

ID=63529016

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020207009391A KR102358288B1 (ko) 2017-08-31 2018-08-30 경사 조절기를 포함하는 풋웨어
KR1020227002738A KR102465621B1 (ko) 2017-08-31 2018-08-30 경사 조절기를 포함하는 풋웨어
KR1020227038884A KR102652683B1 (ko) 2017-08-31 2018-08-30 경사 조절기를 포함하는 풋웨어

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020207009391A KR102358288B1 (ko) 2017-08-31 2018-08-30 경사 조절기를 포함하는 풋웨어

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020227038884A KR102652683B1 (ko) 2017-08-31 2018-08-30 경사 조절기를 포함하는 풋웨어

Country Status (6)

Country Link
US (3) US10980312B2 (ko)
EP (2) EP3675669B1 (ko)
JP (3) JP7007463B2 (ko)
KR (3) KR102358288B1 (ko)
CN (2) CN111278317B (ko)
WO (1) WO2019046516A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3103044B1 (en) 2014-02-03 2021-04-28 NIKE Innovate C.V. Visualization of activity points
US9820531B2 (en) 2015-05-29 2017-11-21 Nike, Inc. Footwear including an incline adjuster
US10932523B2 (en) 2015-11-30 2021-03-02 Nike, Inc. Electrorheological fluid structure with attached conductor and method of fabrication
EP3675669B1 (en) 2017-08-31 2023-01-04 NIKE Innovate C.V. Footwear including an incline adjuster
EP3909458A1 (en) * 2017-08-31 2021-11-17 Nike Innovate C.V. Incline adjuster with multiple discrete chambers
EP3694361A1 (en) * 2017-10-13 2020-08-19 NIKE Innovate C.V. Footwear midsole with electrorheological fluid housing
KR102588072B1 (ko) 2018-08-27 2023-10-12 삼성전자주식회사 인솔 제조 방법
USD879440S1 (en) * 2019-02-28 2020-03-31 Nike, Inc. Shoe
USD872984S1 (en) * 2019-02-28 2020-01-21 Nike, Inc. Shoe
USD871036S1 (en) * 2019-05-10 2019-12-31 Nike, Inc. Shoe
CN113891663B (zh) * 2019-05-31 2023-10-20 耐克创新有限合伙公司 具有自适应高度的囊元件的鞋类物品
CN114269188A (zh) * 2019-05-31 2022-04-01 耐克创新有限合伙公司 自适应支撑服装系统和方法
USD922745S1 (en) * 2020-01-31 2021-06-22 Nike, Inc. Shoe
USD958507S1 (en) * 2021-04-29 2022-07-26 Donghui Li Sole

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6519873B1 (en) 1999-10-21 2003-02-18 Yamamoto Limited Plastic bellows inserted into soles
US20080245985A1 (en) * 1999-07-20 2008-10-09 Sri International Electroactive polymer devices for controlling fluid flow
US20170150780A1 (en) * 2015-11-30 2017-06-01 Nike, Inc. Electrorheological Fluid Structure with Attached Conductor and Method of Fabrication

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3906185A (en) 1974-11-07 1975-09-16 Comfort Prod Inc Heated insole construction
US4183156A (en) 1977-01-14 1980-01-15 Robert C. Bogert Insole construction for articles of footwear
US4219945B1 (en) 1978-06-26 1993-10-19 Robert C. Bogert Footwear
US4471538A (en) 1982-06-15 1984-09-18 Pomeranz Mark L Shock absorbing devices using rheopexic fluid
US4651443A (en) * 1985-11-22 1987-03-24 Red Wing Shoe Company, Inc. Welting for a shoe
DE3609861A1 (de) 1986-03-22 1987-09-24 Bayer Ag Sensorgesteuertes hydraulisches system mit elektroviskosen fluessigkeiten
US4952868A (en) 1986-05-19 1990-08-28 Scherer Iii Robert P Moisture sensing system for an irrigation system
CA1338369C (en) 1988-02-24 1996-06-11 Jean-Pierre Vermeulen Shock absorbing system for footwear application
US4923057A (en) * 1988-09-20 1990-05-08 Lord Corporation Electrorheological fluid composite structures
US5155927A (en) 1991-02-20 1992-10-20 Asics Corporation Shoe comprising liquid cushioning element
US5222312A (en) * 1991-07-02 1993-06-29 Doyle Harold S Shoe with pneumatic inflating device
DE4200041A1 (de) 1992-01-02 1993-08-05 Kneissl Dachstein Sportartikel Laufsohle, insbesondere fuer einen wander- oder bergschuh
US5335382A (en) 1992-11-23 1994-08-09 Huang Yin Jun Inflatable cushion device
US6138382A (en) 1993-04-15 2000-10-31 Schoesler; Henning R. Fluid filled insole
US5771606A (en) * 1994-10-14 1998-06-30 Reebok International Ltd. Support and cushioning system for an article of footwear
US6453577B1 (en) 1996-02-09 2002-09-24 Reebok International Ltd. Support and cushioning system for an article of footwear
US5794366A (en) 1994-09-15 1998-08-18 Chien; Tseng-Lu Multiple segment electro-luminescent lighting arrangement
FR2725298B1 (fr) 1994-09-30 1996-12-20 Framatome Sa Coeur d'un reacteur nucleaire a eau sous pression et embout superieur d'un assemblage de combustible du coeur
US5686167A (en) 1995-06-05 1997-11-11 Robert C. Bogert Fatigue resistant fluid containing cushioning device for articles of footwear
DK172114B1 (da) 1995-07-14 1997-11-17 Soeren Vindriis Indlægssål indeholdende væske
US5813142A (en) 1996-02-09 1998-09-29 Demon; Ronald S. Shoe sole with an adjustable support pattern
ATE254545T1 (de) 1996-08-08 2003-12-15 Jerr Dan Corp Verriegelungsvorrichtung für räderwiege an einer hebeschleppeinrichtung
JP4388603B2 (ja) 1997-02-07 2009-12-24 エス アール アイ・インターナショナル 弾性誘電体ポリマフィルム音波アクチュエータ
US6812624B1 (en) 1999-07-20 2004-11-02 Sri International Electroactive polymers
US7204041B1 (en) 1997-08-14 2007-04-17 Promdx Technology, Inc. Ergonomic systems and methods providing intelligent adaptive surfaces
JPH11117985A (ja) * 1997-10-13 1999-04-27 Fujikura Kasei Co Ltd 電気制御可撓性ブロック
US5896682A (en) 1998-03-30 1999-04-27 Gnan-Jang Plastics Co., Ltd. Shock-absorbing rib and sole mounting arrangement
DE19820569A1 (de) 1998-05-08 1999-11-11 Schenck Ag Carl Ventil auf Basis elektrorheologischer und/oder magnetorheologischer Flüssigkeiten
US7334350B2 (en) 1999-03-16 2008-02-26 Anatomic Research, Inc Removable rounded midsole structures and chambers with computer processor-controlled variable pressure
US7219449B1 (en) 1999-05-03 2007-05-22 Promdx Technology, Inc. Adaptively controlled footwear
KR200201418Y1 (ko) 2000-04-17 2000-11-01 권해붕 바닥재(밑창) 경사가 조정되는 골프화
US6430843B1 (en) 2000-04-18 2002-08-13 Nike, Inc. Dynamically-controlled cushioning system for an article of footwear
AU2001271778A1 (en) 2000-06-30 2002-01-14 Roland J. Christensen Prosthetic foot
FR2817126B1 (fr) 2000-11-29 2003-01-24 Salomon Sa Semelle de chaussure, en particulier de sport, l'un de ses procedes de fabrication et chaussure comprenant ladite semelle
US7171331B2 (en) 2001-12-17 2007-01-30 Phatrat Technology, Llc Shoes employing monitoring devices, and associated methods
US20030154628A1 (en) 2002-02-15 2003-08-21 Kaj Gyr Dynamic canting and cushioning system for footwear
US6971193B1 (en) 2002-03-06 2005-12-06 Nike, Inc. Bladder with high pressure replenishment reservoir
US7288075B2 (en) * 2002-06-27 2007-10-30 Ethicon, Inc. Methods and devices utilizing rheological materials
DE10240530A1 (de) 2002-09-03 2004-03-11 Völkl Tennis GmbH Schuh bzw. Sportschuh
US7225565B2 (en) 2003-03-10 2007-06-05 Adidas International Marketing B.V. Intelligent footwear systems
US7631382B2 (en) 2003-03-10 2009-12-15 Adidas International Marketing B.V. Intelligent footwear systems
US7188439B2 (en) 2003-03-10 2007-03-13 Adidas International Marketing B.V. Intelligent footwear systems
US6889451B2 (en) 2003-04-23 2005-05-10 Mike, Inc. Fluid system with internal filter
US7200956B1 (en) 2003-07-23 2007-04-10 Materials Modification, Inc. Magnetic fluid cushioning device for a footwear or shoe
US7254908B2 (en) 2004-02-06 2007-08-14 Nike, Inc. Article of footwear with variable support structure
US8256147B2 (en) 2004-11-22 2012-09-04 Frampton E. Eliis Devices with internal flexibility sipes, including siped chambers for footwear
US8291618B2 (en) 2004-11-22 2012-10-23 Frampton E. Ellis Devices with internal flexibility sipes, including siped chambers for footwear
US8205356B2 (en) 2004-11-22 2012-06-26 Frampton E. Ellis Devices with internal flexibility sipes, including siped chambers for footwear
US20060248750A1 (en) * 2005-05-06 2006-11-09 Outland Research, Llc Variable support footwear using electrorheological or magnetorheological fluids
US20070006489A1 (en) 2005-07-11 2007-01-11 Nike, Inc. Control systems and foot-receiving device products containing such systems
US8468722B2 (en) 2005-08-03 2013-06-25 Inventus Engineering Gmbh Shoe, in particular running shoe or ski boot, and skiing equipment
US7409779B2 (en) 2005-10-19 2008-08-12 Nike, Inc. Fluid system having multiple pump chambers
WO2007125148A1 (es) 2006-04-27 2007-11-08 Universidad De Granada Calzado con amortiguación
US7607243B2 (en) 2006-05-03 2009-10-27 Nike, Inc. Athletic or other performance sensing systems
CN100577782C (zh) * 2006-06-15 2010-01-06 中国科学院物理研究所 表面改性的电流变液电极板
US8256141B2 (en) 2006-12-13 2012-09-04 Reebok International Limited Article of footwear having an adjustable ride
US7950169B2 (en) 2007-05-10 2011-05-31 Nike, Inc. Contoured fluid-filled chamber
DE102007045110B4 (de) 2007-09-20 2010-05-20 Inventus Engineering Gmbh Ventil für magnetorheologische Flüssigkeiten
JP5374900B2 (ja) 2008-03-27 2013-12-25 富士通株式会社 コンピュータシステムのバックアップ方法
US8324800B2 (en) 2008-06-12 2012-12-04 Global Oled Technology Llc Phosphorescent OLED device with mixed hosts
US9549585B2 (en) 2008-06-13 2017-01-24 Nike, Inc. Footwear having sensor system
US20100184564A1 (en) 2008-12-05 2010-07-22 Nike, Inc. Athletic Performance Monitoring Systems and Methods in a Team Sports Environment
DE202009007220U1 (de) 2009-05-19 2010-09-23 Puma Ag Rudolf Dassler Sport Schuh, insbesondere Sportschuh
CN101708087A (zh) 2009-05-25 2010-05-19 李一波 智能仿生气动鞋
US8613149B2 (en) 2009-11-10 2013-12-24 Nike, Inc. Footwear incorporating a composite shell sole structure
US8460224B2 (en) 2010-04-09 2013-06-11 Michael L. Wilford Therapeutic compression apparatus
US9055784B2 (en) 2011-01-06 2015-06-16 Nike, Inc. Article of footwear having a sole structure incorporating a plate and chamber
WO2012096666A1 (en) * 2011-01-13 2012-07-19 2Empire Technology Development Llc Haptic feedback device using electro-rheological fluid
JP5841616B2 (ja) 2011-02-17 2016-01-13 ナイキ イノベイト セー. フェー. センサーシステムを有する履物
KR101618841B1 (ko) 2011-02-17 2016-05-10 나이키 이노베이트 씨.브이. 센서 시스템을 가지는 신발류
LU91810B1 (en) 2011-04-22 2012-10-23 Iee Sarl Footwear article with pressure sensor
US8973613B2 (en) 2011-04-27 2015-03-10 Google Inc. Electrorheological valve
WO2013010171A1 (en) 2011-07-14 2013-01-17 Mc10, Inc. Detection of a force on a foot or footwear
CN202286561U (zh) 2011-10-24 2012-07-04 东莞市孕宝孕婴用品有限公司 一种缓解水肿的鞋底
KR20130048669A (ko) 2011-11-02 2013-05-10 실버레이 주식회사 안정적인 전원공급이 가능한 발열체와 이를 적용한 신발깔창
KR101318868B1 (ko) 2011-12-16 2013-10-17 동아대학교 산학협력단 사이즈 가변형 신발
US20130213144A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US20130213147A1 (en) 2012-02-22 2013-08-22 Nike, Inc. Footwear Having Sensor System
US20130232818A1 (en) 2012-03-07 2013-09-12 W.L. Gore & Associates, Inc. Strobel Footwear Construction
JP2013215530A (ja) 2012-04-12 2013-10-24 Seiko Epson Corp 反発力調整装置、靴の中敷、靴、反発力調整装置の制御方法
US20130278436A1 (en) 2012-04-18 2013-10-24 Frampton E. Ellis Smartphone-controlled active configuration of footwear including with concavely rounded soles
DE112013002836B4 (de) 2012-06-06 2022-07-14 Iee International Electronics & Engineering S.A. Drucksensor, z. B. für ein Fussbekleidungsstück
US10631593B2 (en) 2012-08-21 2020-04-28 Levi J. Patton Fluid-filled chamber with a stabilization structure
US9259047B2 (en) 2012-09-13 2016-02-16 Thomas Nikita Krupenkin Apparatus for footwear-embedded mechanical energy harvesting system based on dual-loop channel
US10856612B2 (en) 2012-09-20 2020-12-08 Nike, Inc. Sole structures and articles of footwear having plate moderated fluid-filled bladders and/or foam type impact force attenuation members
US9198478B2 (en) * 2013-03-05 2015-12-01 Nike, Inc. Support members with variable viscosity fluid for footwear
KR101443777B1 (ko) * 2013-03-06 2014-09-26 인하대학교 산학협력단 등산화
ITAN20130026U1 (it) 2013-03-08 2014-09-09 Safe Way S R L Calzatura integrante sensori
US9279734B2 (en) 2013-03-15 2016-03-08 Nike, Inc. System and method for analyzing athletic activity
US20150157091A1 (en) 2013-12-11 2015-06-11 Ming-Wen Hsu Shock absorbing and pressure releasing damper apparatus for shoe insole
CN104146850B (zh) 2014-07-31 2016-05-04 上海交通大学 一种模仿行走动力模式的康复气垫鞋
CN204580030U (zh) 2014-09-01 2015-08-26 宋元征 一种鞋
WO2016075599A1 (fr) * 2014-11-10 2016-05-19 Ecole Polytechnique Federale De Lausanne (Epfl) Système de régulation de pression agissant localement sur la peau et le tissu sous-cutané
US20170336273A1 (en) 2014-12-10 2017-11-23 Hci Viocare Technologies Ltd. Force sensing device
CN105266256A (zh) 2015-01-04 2016-01-27 邢台职业技术学院 一种老年人专用平衡鞋
US10264850B2 (en) * 2015-02-16 2019-04-23 Vocational Training Council Flexible cushioning device for shoes and methods of producing the same
US9609904B2 (en) 2015-04-23 2017-04-04 Adidas Ag Shoes for ball sports
US10070689B2 (en) * 2015-05-28 2018-09-11 Nike, Inc. Sole structure with electrically controllable damping element
US9743712B2 (en) 2015-05-28 2017-08-29 Nike, Inc. Sole structure with electrically controllable damping element
US9820531B2 (en) * 2015-05-29 2017-11-21 Nike, Inc. Footwear including an incline adjuster
US10835181B2 (en) 2015-06-16 2020-11-17 Fossil Group, Inc. Apparatuses, methods, and systems for measuring insole deformation
KR101645319B1 (ko) * 2015-09-16 2016-08-03 김용수 경사도에 따라 부분적인 높이 조절이 가능한 신발 밑창
KR20170045868A (ko) 2015-10-20 2017-04-28 주식회사 만도 자전거 및 그 제어방법
US10709206B2 (en) 2015-11-30 2020-07-14 Nike, Inc. Method of filling electrorheological fluid structure
US10813407B2 (en) * 2015-11-30 2020-10-27 Nike, Inc. Electrorheological fluid structure having strain relief element and method of fabrication
CN105631195B (zh) 2015-12-18 2017-12-26 合肥工业大学 一种可穿戴式多信息融合的步态分析系统及其方法
US20170200351A1 (en) 2016-01-11 2017-07-13 Robert Grubba Sound-Producing Shoe Including Impact and Proximity Detections
CN205568003U (zh) 2016-04-27 2016-09-14 三六一度(中国)有限公司 智能平衡运动鞋
CN206025343U (zh) 2016-09-09 2017-03-22 东莞宸帏电子有限公司 一种感压式应急充电鞋
CN106595912A (zh) 2016-11-01 2017-04-26 中国海洋大学 一种人足动态力学实时检测评估系统及方法
US10721993B2 (en) * 2016-11-15 2020-07-28 Rosalind Franklin University Of Medicine And Science Intelligent offloading insole device
EP3909458A1 (en) * 2017-08-31 2021-11-17 Nike Innovate C.V. Incline adjuster with multiple discrete chambers
EP3675669B1 (en) * 2017-08-31 2023-01-04 NIKE Innovate C.V. Footwear including an incline adjuster
EP3694361A1 (en) * 2017-10-13 2020-08-19 NIKE Innovate C.V. Footwear midsole with electrorheological fluid housing

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080245985A1 (en) * 1999-07-20 2008-10-09 Sri International Electroactive polymer devices for controlling fluid flow
US6519873B1 (en) 1999-10-21 2003-02-18 Yamamoto Limited Plastic bellows inserted into soles
US20170150780A1 (en) * 2015-11-30 2017-06-01 Nike, Inc. Electrorheological Fluid Structure with Attached Conductor and Method of Fabrication

Also Published As

Publication number Publication date
CN111278317B (zh) 2022-03-29
EP3675669A1 (en) 2020-07-08
WO2019046516A1 (en) 2019-03-07
US10980312B2 (en) 2021-04-20
KR20220017522A (ko) 2022-02-11
US20190059511A1 (en) 2019-02-28
KR102652683B1 (ko) 2024-03-28
CN111278317A (zh) 2020-06-12
EP3675669B1 (en) 2023-01-04
EP4094615A1 (en) 2022-11-30
JP2022058508A (ja) 2022-04-12
CN114766774A (zh) 2022-07-22
JP2020532370A (ja) 2020-11-12
KR20200059230A (ko) 2020-05-28
JP2024026435A (ja) 2024-02-28
KR102358288B1 (ko) 2022-02-08
KR20220152342A (ko) 2022-11-15
EP4094615B1 (en) 2024-07-10
US20230087070A1 (en) 2023-03-23
JP7408697B2 (ja) 2024-01-05
JP7007463B2 (ja) 2022-01-24
US20210204648A1 (en) 2021-07-08
US11576464B2 (en) 2023-02-14

Similar Documents

Publication Publication Date Title
KR102465621B1 (ko) 경사 조절기를 포함하는 풋웨어
JP6574058B2 (ja) 傾斜アジャスタを含む履物
CN108697192B (zh) 鞋类鞋底部件及制造鞋类鞋底部件的方法
US11666116B2 (en) Incline adjuster with multiple discrete chambers
CN108366645B (zh) 具有应变释放元件的电致流变流体结构和制造方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant