KR102463845B1 - Polyamic acid composition having improved adherent property and trasparent polyimide film using the same - Google Patents

Polyamic acid composition having improved adherent property and trasparent polyimide film using the same Download PDF

Info

Publication number
KR102463845B1
KR102463845B1 KR1020150185930A KR20150185930A KR102463845B1 KR 102463845 B1 KR102463845 B1 KR 102463845B1 KR 1020150185930 A KR1020150185930 A KR 1020150185930A KR 20150185930 A KR20150185930 A KR 20150185930A KR 102463845 B1 KR102463845 B1 KR 102463845B1
Authority
KR
South Korea
Prior art keywords
diamine
compound
polyamic acid
added
reactor
Prior art date
Application number
KR1020150185930A
Other languages
Korean (ko)
Other versions
KR20170076096A (en
Inventor
오현석
김동연
김선영
안경일
Original Assignee
주식회사 두산
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 두산 filed Critical 주식회사 두산
Priority to KR1020150185930A priority Critical patent/KR102463845B1/en
Priority to CN201680075840.1A priority patent/CN108473677B/en
Priority to PCT/KR2016/012828 priority patent/WO2017111299A1/en
Priority to JP2018533263A priority patent/JP2019506478A/en
Publication of KR20170076096A publication Critical patent/KR20170076096A/en
Priority to JP2021036799A priority patent/JP7163437B2/en
Application granted granted Critical
Publication of KR102463845B1 publication Critical patent/KR102463845B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

본 발명은 특정 화학구조를 갖는 화합물을 디아민 성분으로 포함하는 폴리아믹산 조성물 및 상기 조성물로부터 제조된 폴리이미드를 제공한다.
본 발명에 따른 폴리아믹산 조성물은 우수한 광학 특성, 유리기판과의 높은 접착력 특성 및 높은 열특성을 제공하므로, 이를 이용한 폴리이미드 필름은 플렉서블 디스플레이 소재로 적용될 수 있다.
The present invention provides a polyamic acid composition comprising a compound having a specific chemical structure as a diamine component, and a polyimide prepared from the composition.
Since the polyamic acid composition according to the present invention provides excellent optical properties, high adhesion properties with a glass substrate, and high thermal properties, a polyimide film using the same can be applied as a flexible display material.

Description

접착력이 향상된 폴리아믹산 조성물 및 이를 포함하는 폴리이미드 필름 {POLYAMIC ACID COMPOSITION HAVING IMPROVED ADHERENT PROPERTY AND TRASPARENT POLYIMIDE FILM USING THE SAME}Polyamic acid composition with improved adhesion and polyimide film comprising the same

본 발명은 특정 화학구조를 갖는 디아민계 모노머를 포함하여 유리기판에서의 접착력 특성이 향상된 폴리아믹산 조성물 및 상기 폴리아믹산 조성물로부터 제조되고 플렉서블 디스플레이 기판 또는 보호막으로 적용 가능한 무색 투명한 폴리이미드 필름에 관한 것이다.The present invention relates to a polyamic acid composition having improved adhesion properties on a glass substrate including a diamine-based monomer having a specific chemical structure, and a colorless and transparent polyimide film prepared from the polyamic acid composition and applicable as a flexible display substrate or a protective film.

일반적으로 플라즈마 디스플레이, 액정 소자용 디스플레이, 유기 발광 소자용 디스플레이 등과 같은 플랫 패널 디스플레이(Flat Panel Display, FPD)는 유리 기판을 사용하고 있다. 이와 같은 유리 기판을 사용하는 디스플레이는 점차 경박화, 소형화됨에 따라 유리 기판 대체용으로서 투명 플라스틱 기판이 검토되고 있다.In general, a flat panel display (FPD) such as a plasma display, a display for a liquid crystal device, a display for an organic light emitting device, etc. uses a glass substrate. As displays using such a glass substrate are gradually reduced in thickness and size, transparent plastic substrates are being studied as replacements for glass substrates.

상기 유리기판을 대체하는 투명 플라스틱 기판으로서 폴리에틸렌테레프탈레이트 (Polyethylene terephthalate, PET) 필름이나 폴리에테르설폰(Polyether sulfone, PES) 필름을 이용한 기판이 개발되었다. 상기 PET 또는 PES와 같은 고분자 수지를 이용한 투명 플라스틱 기판은 유리 기판에 비해 연성이 좋은 반면, 유리전이온도(glass transition temperature, Tg)가 낮기 때문에 내열성이 떨어지는 문제가 있다. 또한 유리 기판에 비해 열팽창 계수(Coefficient of Thermal Expansion, CTE)가 높기 때문에, 디스플레이 제조공정 중 고온에서 이루어지는 공정(예를 들어, 300℃ 이상의 Thin Film Transistor 공정)에 의해 쉽게 변형이 일어나는 문제도 있다. 따라서, 유리 기판과 같은 투명성을 나타내면서도 고내열성 및 저열팽창 계수를 가지는 투명 플라스틱 기판 소재의 개발이 요구되어 다양한 연구가 이루어지고 있으며, 특히 구부러지거나 접을 수 있는 플렉서블 디스플레이 기판 연구에 주요하게 진행되고 있다. As a transparent plastic substrate replacing the glass substrate, a substrate using a polyethylene terephthalate (PET) film or a polyether sulfone (PES) film has been developed. The transparent plastic substrate using a polymer resin such as PET or PES has good ductility compared to a glass substrate, but has a low heat resistance because of a low glass transition temperature (Tg). In addition, since the coefficient of thermal expansion (CTE) is higher than that of the glass substrate, there is a problem that deformation occurs easily by a process made at a high temperature during the display manufacturing process (eg, a thin film transistor process of 300° C. or higher). Therefore, the development of a transparent plastic substrate material having high heat resistance and low coefficient of thermal expansion while exhibiting the same transparency as a glass substrate is required, and various studies are being conducted. .

일반적으로 폴리이미드(PI)는 우수한 내열성 특성 이외에도 기계적, 화학적, 전기적 특성이 우수하기 때문에, 최근 PI를 포함하는 코팅재료, 성형재료, 복합재료 분야에까지 확대되고 있다. 폴리이미드 수지는 전하이동착물(CTC: Change transfer complex)에 의한 영향으로 갈색 또는 황색으로 착색되어 가시광선 영역에서의 투과도가 낮기 때문에, 유리 기판과 같은 고투명성을 나타내는데 한계가 있다. 따라서 이러한 문제를 해결하기 위한 수많은 연구가 진행 중에 있다. 일반적으로 폴리이미드(PI) 수지는 방향족 디안하이드라이드와 방향족 디아민 또는 방향족 디이소시아네이트를 용액중합하여 폴리아믹산 유도체를 제조한 후, 고온에서 폐환 탈수시켜 이미드화하여 제조되는 고내열 수지를 일컫는다. In general, polyimide (PI) has excellent mechanical, chemical, and electrical properties in addition to excellent heat resistance, so it has recently been expanded to coating materials, molding materials, and composite materials including PI. Since the polyimide resin is colored brown or yellow under the influence of a change transfer complex (CTC) and has low transmittance in the visible light region, there is a limitation in exhibiting high transparency like a glass substrate. Therefore, numerous studies are underway to solve these problems. In general, polyimide (PI) resin refers to a high heat-resistant resin produced by solution polymerization of an aromatic dianhydride and an aromatic diamine or an aromatic diisocyanate to prepare a polyamic acid derivative, followed by ring closure dehydration at a high temperature to imidize it.

상기 폴리이미드 수지를 제조하기 위한 방향족 디안하이드라이드 성분으로는 피로멜리틱 디안하이드라이드 (PMDA) 또는 비페닐테트라카르복실릭 디안하이드라이드(BPDA) 등을 사용하고 있고, 방향족 디아민 성분으로는 2,2'-비스(트리플루오르메틸)-4,4'- 디아미노바이페닐(TFDB), 옥시디아닐린(ODA), p-페닐렌 디아민(p-PDA), m-메틸렌 디아민(m-MDA), 메틸렌 디아민(MDA), 비스아미노페닐헥사플로오로프로판(HFDA) 등을 사용하고 있다. 이와 같은 디안하이드라이드 또는 디아민 모노머로 이루어진 폴리이미드는 유리기판과의 접착력이 낮거나 또는 거의 없으므로, TFT 공정 중에 필름이 유리기판과 분리되는 문제가 발생하게 된다. 또한, 광학특성과 열특성의 연관관계가 Trade-off 관계에 있기 때문에, 각 특성에 적합한 성분의 화합물, 즉 투명 PI용 모너머(Monomer)의 개발이 필요한 실정이며, 이에 따라 높은 광학특성을 나타내면서도 유리기판과의 접착력이 우수하며 높은 열특성을 가지는 투명 플라스틱 기판용 폴리아믹산(Polyamic acid) 조성물 및 폴리이미드 필름의 개발이 요구되고 있다.As the aromatic dianhydride component for preparing the polyimide resin, pyromellitic dianhydride (PMDA) or biphenyltetracarboxylic dianhydride (BPDA) is used, and the aromatic diamine component is 2, 2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (TFDB), oxydianiline (ODA), p-phenylene diamine (p-PDA), m-methylene diamine (m-MDA) , methylene diamine (MDA), bisaminophenylhexafluoropropane (HFDA), and the like are used. The polyimide made of such a dianhydride or diamine monomer has low or almost no adhesion to the glass substrate, so that the film is separated from the glass substrate during the TFT process. In addition, since the correlation between optical properties and thermal properties is in a trade-off relationship, it is necessary to develop a compound having a suitable component for each property, that is, a monomer for transparent PI. Also, there is a demand for the development of a polyamic acid composition and polyimide film for a transparent plastic substrate having excellent adhesion to a glass substrate and high thermal properties.

본 발명은 특정구조와 치환기를 가진 모노머를 도입하면 광학적인 특성, 유리기판과의 접착력 특성, 내열 특성 및 열팽창계수 특성이 기존에 비하여 개선되는 점에 착안하였다.In the present invention, when a monomer having a specific structure and a substituent is introduced, optical properties, adhesion properties with a glass substrate, heat resistance properties, and thermal expansion coefficient properties are improved compared to the prior art.

보다 구체적으로, 본 발명에서는 고투명성, 높은 접착력 및 우수한 열적 특성을 가진 폴리이미드 수지를 얻기 위해서 특정 화학구조와 치환기를 가지는 디아민 계열 모노머를 도입하는 것이 효과적이라 판단하고, 상기 디아민 모노머의 함량을 특정 범위로 조절함으로써, 낮은 YI(Yellow Index), 높은 광투과도, 유리기판과의 높은 접착력, 및 우수한 열 안정성 등을 동시에 구현할 수 있는 투명 폴리아믹산 조성물 및 폴리이미드 필름을 제조하는 것을 목적으로 한다.More specifically, in the present invention, it is determined that it is effective to introduce a diamine-based monomer having a specific chemical structure and substituent in order to obtain a polyimide resin having high transparency, high adhesion, and excellent thermal properties, and the content of the diamine monomer is specified By adjusting the range, it aims to prepare a transparent polyamic acid composition and polyimide film that can simultaneously implement low YI (Yellow Index), high light transmittance, high adhesion to a glass substrate, and excellent thermal stability.

아울러 본 발명은 LCD 및 OLED의 플렉시블(Flexible) 디스플레이용 플라스틱(Plastic) 투명 기판, TFT 기판, 플렉서블 인쇄회로기판, 플렉서블(Flexible) OLED 면조명 기판, 전자 종이용 기판소재 등에 적용 가능한 투명 폴리아믹산 조성물 및 폴리이미드 필름을 제공하는데 있다.In addition, the present invention is a transparent polyamic acid composition applicable to a plastic transparent substrate for a flexible display of LCD and OLED, a TFT substrate, a flexible printed circuit board, a flexible OLED surface lighting substrate, a substrate material for electronic paper, etc. and to provide a polyimide film.

상술한 목적을 달성하기 위해, 본 발명은 (a) 하기 화학식 1로 표시되는 화합물을 함유하는 디아민; (b) 산이무수물; 및 (c) 유기용매를 포함하며, 상기 화학식 1로 표시되는 화합물은 전체 디아민 100 몰%를 기준으로 10 내지 80 몰% 범위로 포함되는 폴리아믹산 조성물을 제공한다.In order to achieve the above object, the present invention is (a) a diamine containing a compound represented by the following formula (1); (b) acid dianhydride; and (c) an organic solvent, wherein the compound represented by Formula 1 provides a polyamic acid composition comprising 10 to 80 mol% based on 100 mol% of the total diamine.

Figure 112015126810738-pat00001
Figure 112015126810738-pat00001

상기 화학식 1에서, In Formula 1,

A는 단일결합이거나, 또는

Figure 112015126810738-pat00002
,
Figure 112015126810738-pat00003
Figure 112015126810738-pat00004
으로 이루어진 군으로부터 선택되며,A is a single bond, or
Figure 112015126810738-pat00002
,
Figure 112015126810738-pat00003
and
Figure 112015126810738-pat00004
is selected from the group consisting of

X1 및 X2은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 할로겐, C1~C6의 알킬기, 및 하나 이상의 수소가 할로겐 원자로 치환된 C1~C6의 알킬기로 이루어진 군에서 선택되며, 다만 X1, 및 X2 중 적어도 하나 이상은 할로겐 또는 할로겐 원자로 치환된 C1~C6의 알킬기이며,X 1 and X 2 are the same as or different from each other, and are each independently selected from the group consisting of hydrogen, halogen, a C 1 ~ C 6 alkyl group, and a C 1 ~ C 6 alkyl group in which at least one hydrogen is substituted with a halogen atom, However, at least one of X 1 and X 2 is a halogen or a halogen atom-substituted C 1 ~ C 6 alkyl group,

복수의 Y는 수소결합성 관능기로서, 각각 독립적으로 히드록시기이며, A plurality of Y is a hydrogen-bonding functional group, each independently a hydroxyl group,

n은 1 또는 2의 정수이다. n is an integer of 1 or 2.

본 발명에서, 상기 X1 및 X2는 각각 독립적으로 F 또는 CF3인 전자흡인성기(EWG)일 수 있다. In the present invention, X 1 and X 2 may each independently be an electron withdrawing group (EWG) that is F or CF 3 .

본 발명에서, 상기 디아민은 불소화 제1디아민; 설폰계 제2디아민, 히드록시계 제3디아민, 에테르계 제4디아민 및 지환족 제5디아민으로 구성된 군으로부터 선택되는 1종 이상을 더 포함할 수 있다. In the present invention, the diamine is a fluorinated first diamine; At least one selected from the group consisting of a sulfone-based second diamine, a hydroxy-based third diamine, an ether-based fourth diamine, and an alicyclic fifth diamine may be further included.

본 발명에서, 상기 불소화 제1디아민, 설폰계 제2디아민, 히드록시계 제3디아민, 에테르계 제4디아민 및 지환족 제5디아민의 함량은 각각 전체 디아민 100 몰%를 기준으로 20 내지 90 몰%일 수 있다. In the present invention, the content of the first fluorinated diamine, the sulfone-based diamine, the hydroxy-based third diamine, the ether-based fourth diamine and the alicyclic fifth diamine is 20 to 90 mol% based on 100 mol% of the total diamine, respectively It can be %.

본 발명에서, 상기 산이무수물은 불소화 방향족 제1산이무수물, 지환족 제2산이무수물 및 비불소화 방향족 제3산이무수물로 구성된 군에서 선택되는 1종 이상을 포함할 수 있다. In the present invention, the acid dianhydride may include at least one selected from the group consisting of a fluorinated aromatic primary acid dianhydride, an alicyclic secondary acid dianhydride, and a non-fluorinated aromatic tertiary acid dianhydride.

본 발명에서, 상기 제1산이무수물, 제2산이무수물 및 제3 산이무수물로 구성된 군에서 선택되는 1종 이상의 화합물의 함량은 전체 산이무수물 100 몰%를 기준으로 10 내지 100 몰%일 수 있다. In the present invention, the content of at least one compound selected from the group consisting of the first acid dianhydride, the second acid dianhydride and the third acid dianhydride may be 10 to 100 mol% based on 100 mol% of the total acid dianhydride.

본 발명에서, 상기 디아민(a)과 상기 산이무수물(b)의 몰수의 비(a/b)는 0.7 내지 1.3 범위일 수 있다. In the present invention, the ratio (a/b) of the number of moles of the diamine (a) and the acid dianhydride (b) may be in the range of 0.7 to 1.3.

또한 본 발명은 전술한 폴리아믹산 조성물을 이미드화하여 제조된 투명 폴리이미드 필름을 제공한다.The present invention also provides a transparent polyimide film prepared by imidizing the above-described polyamic acid composition.

본 발명에서, 상기 투명 폴리이미드 필름은 하기 (i) 내지 (vi)의 물성 조건을 만족하는 것일 수 있으며, 보다 구체적으로 (i) ASTM D 3359 규격에 의한 유리기판에서의 접착력이 2B 이상이며, (ii) ASTM E 313-73 규격에 의한 황색도가 7 이하이며(막 두께 10㎛ 기준), (iii) 파장 550nm에서의 광선 투과율이 89% 이상이며, (iv) 유리전이온도(Tg)가 330 내지 400℃ 범위이며, (v) TMA 측정에 의한 열팽창계수(CTE)가 10~60 ppm/℃ 범위이며, (vi) 하기 식으로 산출되는 두께 방향의 위상차(Rth)가 두께 10㎛ 기준으로 80nm 내지 400nm 일 수 있다. In the present invention, the transparent polyimide film may satisfy the physical property conditions of the following (i) to (vi), more specifically (i) the adhesive force on the glass substrate according to ASTM D 3359 standard is 2B or more, (ii) yellowness according to ASTM E 313-73 standard is 7 or less (based on film thickness of 10 μm), (iii) light transmittance at a wavelength of 550 nm is 89% or more, (iv) glass transition temperature (T g ) is in the range of 330 to 400 ° C, (v) the coefficient of thermal expansion (CTE) by TMA measurement is in the range of 10 to 60 ppm / ° C, (vi) the retardation in the thickness direction calculated by the following formula (R th ) is 10 μm in thickness It may be 80 nm to 400 nm as a reference.

위상차 Rth (nm) = [(nx + ny) / 2 - nz] ×dPhase difference R th (nm) = [(n x + n y ) / 2 - n z ] ×d

(nx는 파장 550nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 가장 큰 굴절율; ny는 파장 550nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 nx와 수직인 굴절율이며; nz는 파장 550nm의 광으로 측정되는 폴리이미드 수지 필름의 두께 방향의 굴절율이고; d는 폴리이미드 필름의 두께이다.)(n x is the largest refractive index among the in-plane refractive indexes of the polyimide resin film measured with light having a wavelength of 550 nm; n y is the refractive index perpendicular to n x among the in-plane refractive indexes of the polyimide resin film measured with light having a wavelength of 550 nm ; n z is the refractive index in the thickness direction of the polyimide resin film measured with light having a wavelength of 550 nm; d is the thickness of the polyimide film.)

본 발명에서, 상기 투명이미드 필름은 플렉서블 디스플레이용 기판 또는 보호막으로 사용될 수 있다.In the present invention, the transparent imide film may be used as a substrate or a protective film for a flexible display.

본 발명에서는 특정 구조와 치환기를 도입한 디아민 모노머를 채택하고 이의 함량을 특정 범위로 조절함으로써, 우수한 광특성, 열 특성 및 유리기판과의 접착력 특성 등을 가지는 폴리아믹산 조성물을 제공할 수 있다.In the present invention, it is possible to provide a polyamic acid composition having excellent optical properties, thermal properties and adhesion properties with a glass substrate by adopting a diamine monomer having a specific structure and a substituent and adjusting its content to a specific range.

또한, 본 발명에서는 우수한 광특성, 열 특성 및 유리기판과의 접착력 특성 등을 갖는 상기 폴리아믹산 조성물을 이미드화하여 투명 기판으로 적용함으로써, 우수한 물성과 제품의 신뢰성을 발휘하는 플렉시블 디스플레이 기판을 제공할 수 있다.In addition, in the present invention, by imidizing the polyamic acid composition having excellent optical properties, thermal properties and adhesion properties with a glass substrate and applying it as a transparent substrate, a flexible display substrate that exhibits excellent physical properties and product reliability. can

도 1은 실시예 1에서 제조된 폴리이미드 필름의 접착력 평가 결과(5B)를 나타내는 사진이다.
도 2는 비교예 1~8에서 제조된 폴리이미드 필름의 접착력 평가(0B)를 나타내는 사진이다.
1 is a photograph showing the adhesive force evaluation result (5B) of the polyimide film prepared in Example 1.
2 is a photograph showing the evaluation (0B) of the adhesive force of the polyimide films prepared in Comparative Examples 1 to 8.

이하, 본 발명을 상세히 설명한다. 다만, 이는 예시로써 제시되는 것으로, 이에 의해 본 발명이 제한되지는 않으며 본 발명은 명세서에 기재된 청구항의 범주에 의해 정의될 뿐이다.Hereinafter, the present invention will be described in detail. However, this is presented as an example, and the present invention is not limited thereto, and the present invention is only defined by the scope of the claims described in the specification.

<투명 폴리아믹산 조성물><Transparent polyamic acid composition>

본 발명의 투명 폴리아믹산 조성물은 투명 폴리이미드 필름을 제조하기 위한 것으로, 상기 화학식 1로 표시되는 화합물을 디아민(diamine) 성분으로 포함하는 것을 특징으로 한다. The transparent polyamic acid composition of the present invention is for preparing a transparent polyimide film, and it is characterized in that it contains the compound represented by Formula 1 as a diamine component.

보다 구체적으로, 상기 폴리아믹산 조성물은 (a) 상기 화학식 1의 화합물을 함유하는 디아민; (b) 산이무수물; 및 (c) 유기용매를 포함한다. More specifically, the polyamic acid composition may include (a) a diamine containing the compound of Formula 1; (b) acid dianhydride; and (c) an organic solvent.

본 발명의 투명 폴리아믹산 제조에 사용되는 디아민(a) 단량체는, 하기 화학식 1로 표시되는 화합물을 포함한다. The diamine (a) monomer used for preparing the transparent polyamic acid of the present invention includes a compound represented by the following formula (1).

[화학식 1][Formula 1]

Figure 112015126810738-pat00005
Figure 112015126810738-pat00005

상기 화학식 1에서, In Formula 1,

A는 단일결합이거나, 또는

Figure 112015126810738-pat00006
,
Figure 112015126810738-pat00007
Figure 112015126810738-pat00008
으로 이루어진 군으로부터 선택되며,A is a single bond, or
Figure 112015126810738-pat00006
,
Figure 112015126810738-pat00007
and
Figure 112015126810738-pat00008
is selected from the group consisting of

X1 및 X2은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 할로겐, C1~C6의 알킬기, 및 하나 이상의 수소가 할로겐 원자로 치환된 C1~C6의 알킬기로 이루어진 군에서 선택되며, 다만 X1 및 X2 중 적어도 하나 이상은 할로겐 또는 할로겐 원자로 치환된 C1~C6의 알킬기이며,X 1 and X 2 are the same as or different from each other, and are each independently selected from the group consisting of hydrogen, halogen, a C 1 ~ C 6 alkyl group, and a C 1 ~ C 6 alkyl group in which at least one hydrogen is substituted with a halogen atom, However, at least one of X 1 and X 2 is a halogen or a halogen atom-substituted C 1 ~ C 6 alkyl group,

복수의 Y는 수소결합성 관능기로서, 각각 독립적으로 히드록시기이며, A plurality of Y is a hydrogen-bonding functional group, each independently a hydroxyl group,

n은 1 또는 2의 정수이다.n is an integer of 1 or 2.

기존 투명 폴리이미드(colorless polyimide)는 화합물 내 불소(Florine)가 치환된 모노머를 사용함에 따라 낮은 황색도를 나타내는 반면, 상기 불소로 인해 유리 기판과의 접착력이 거의 없거나 저조한 상태이다. 따라서 디스플레이 제조 시, Thin Film Transistor(TFT) 공정 중에 필름이 유리기판과 쉽게 분리되는 문제가 발생하게 된다. 이러한 문제를 해결하기 위해 실란 커플링제(silane coupling agent)와 같이 화학결합을 통해 접착력을 향상시키고자 할 경우, 굴절율 부정합(refractive index mismatching)으로 인해 헤이즈(haze)를 발생시켜 광 특성을 저하시키게 된다. Conventional transparent polyimide (colorless polyimide) exhibits low yellowness due to the use of a fluorine-substituted monomer in the compound, but has little or low adhesion to the glass substrate due to the fluorine. Therefore, when manufacturing a display, there is a problem that the film is easily separated from the glass substrate during the Thin Film Transistor (TFT) process. In order to solve this problem, when it is attempted to improve adhesion through chemical bonding such as a silane coupling agent, haze is generated due to refractive index mismatching, thereby reducing optical properties. .

이에, 본 발명에서는 우수한 광특성과 더불어 접착력 특성을 동시에 개선하고자, 유리기판과 수소결합을 형성할 수 있는 관능기, 예컨대 히드록시기(-OH) 등이 적어도 하나 이상 도입된 상기 화학식 1의 화합물을 디아민(diamine) 성분으로 사용하는 것을 특징으로 한다. Therefore, in the present invention, in order to simultaneously improve the adhesive properties as well as excellent optical properties, a functional group capable of forming a hydrogen bond with a glass substrate, for example, at least one hydroxy group (-OH), etc. is introduced into the compound of Formula 1 with diamine ( It is characterized in that it is used as a diamine) component.

이러한 히드록시기 등의 수소결합성 관능기는 폴리이미드가 경화된 이후에도 표면에 다수 존재하기 때문에, 유리 기판과의 수소결합(hydrogen bonding) 형성을 통해 폴리이미드 필름의 접착력 특성을 유의적으로 개선할 수 있다. Since a large number of hydrogen-bonding functional groups such as a hydroxyl group exist on the surface even after the polyimide is cured, it is possible to significantly improve the adhesion properties of the polyimide film through the formation of hydrogen bonding with the glass substrate.

또한 본 발명에서는 전술한 화학식 1에 불소(F)나 CF3 등의 전자흡인성기(EWG)를 적어도 하나 이상 도입함에 따라, 전술한 광학 특성, 열적 특성을 보다 상승시킬 수 있다. 보다 구체적으로, 폴리이미드 필름은 무색이 아닌 짙은 갈색을 띠게 되는데, 이는 이미드(Imide) 사슬 내에 존재하는 π 전자들의 Charge Transfer Complex(CTC) 때문이다. 상기 화학식 1에 도입된 -F, -CF3 등은 강한 전자 끄는 기이므로, π 전자들간의 이동을 통해 상기 CT-Complex가 일어나지 않도록 함으로써 폴리이미드의 높은 투명성을 나타낼 수 있다.In addition, in the present invention, by introducing at least one electron withdrawing group (EWG) such as fluorine (F) or CF 3 in Chemical Formula 1, the optical properties and thermal properties described above can be further improved. More specifically, the polyimide film is not colorless but dark brown, because of the Charge Transfer Complex (CTC) of π electrons present in the imide chain. Since -F, -CF 3 , etc. introduced in Formula 1 are strong electron withdrawing groups, high transparency of polyimide may be exhibited by preventing the CT-Complex from occurring through movement between π electrons.

본 발명의 바람직한 일례에 따르면, 상기 X1 및 X2는 당 업계에 알려진 통상적인 전자흡인성기(electron withdrawing group, EWG) 일 수 있으며, 각각 독립적으로 불소(F) 또는 CF3 인 것이 바람직하다. According to a preferred example of the present invention, X 1 and X 2 may be a conventional electron withdrawing group (EWG) known in the art, and each independently fluorine (F) or CF 3 It is preferable.

또한 상기 Y는 당 업계에 알려진 통상적인 수소결합성 관능기를 제한 없이 사용할 수 있다. 이때, 복수의 Y는 서로 동일하거나 또는 상이하며, 각각 독립적으로 히드록시기(-OH)인 것이 바람직하고, 더욱 바람직하게는 2개의 히드록시기가 도입되는 것이다. In addition, Y may be used without limitation, a conventional hydrogen bonding functional group known in the art. In this case, a plurality of Ys are the same as or different from each other, and it is preferable that they are each independently a hydroxyl group (-OH), and more preferably two hydroxyl groups are introduced.

또한 상기 A는

Figure 112015126810738-pat00009
,
Figure 112015126810738-pat00010
또는
Figure 112015126810738-pat00011
인 것이 바람직하다. Also, A is
Figure 112015126810738-pat00009
,
Figure 112015126810738-pat00010
or
Figure 112015126810738-pat00011
It is preferable to be

본 발명에 따른 화학식 1로 표시되는 화합물은, 하기 compound 1 내지 compound 12으로 구성된 화합물 군 중 어느 하나로 보다 구체화될 수 있으나, 이에 특별히 한정되는 것은 아니다. The compound represented by Formula 1 according to the present invention may be more specific to any one of the compound groups consisting of the following compounds 1 to 12, but is not particularly limited thereto.

Figure 112015126810738-pat00012
Figure 112015126810738-pat00012

본 발명에서, 상기 화학식 1로 표시되는 디아민 모노머의 사용량은 특별히 제한되지 않으며, 일례로 전체 산이무수물 100 몰%를 기준으로 하여 10 내지 80 몰% 범위일 수 있으며, 바람직하게는 20 내지 80 몰% 범위일 수 있다. In the present invention, the amount of the diamine monomer represented by Formula 1 is not particularly limited, and for example, may be in the range of 10 to 80 mol% based on 100 mol% of the total acid dianhydride, preferably 20 to 80 mol% can be a range.

여기에 당 분야에 알려진 통상적인 디아민 화합물을 포함하여 혼용(混用)될 수 있다. Here, it may be used interchangeably, including a conventional diamine compound known in the art.

본 발명에서는 전술한 화학식 1의 화합물 이외에, 당 분야에 알려진 통상적인 디아민 화합물을 포함하여 혼용(混用)할 수 있다. In the present invention, in addition to the compound of Formula 1 described above, it may be used in combination with a conventional diamine compound known in the art.

본 발명에서, 상기 화학식 1의 화합물과 혼용되는 디아민 화합물은 분자 내 디아민 구조를 갖는 화합물이라면 특별한 제한 없이 사용 가능하다. 일례로, 디아민 구조를 가지고 있는 방향족, 지환족, 또는 지방족 화합물 등이 있다. In the present invention, the diamine compound mixed with the compound of Formula 1 may be used without particular limitation as long as it has an intramolecular diamine structure. For example, there is an aromatic, alicyclic, or aliphatic compound having a diamine structure.

본 발명에서 사용할 수 있는 디아민은 높은 투과도(High Transmittance), 낮은 Y.I, 낮은 헤이즈(Haze) 등의 광학 특성; 높은 유리전이온도(High Tg), 낮은 열팽창계수(Low CTE) 등의 열 특성; 높은 모듈러스(High Modulus), 높은 표면 경도(High Surface Hardness) 등의 기계적 특성 등을 고려할 때, 불소화 치환기를 가진 직선형 구조 또는 설폰(Sulfone)계, 히드록시계(Hydroxyl), 에테르(Ether)계 등을 포함하는 구조들의 적절한 조합이 필요하다. 이에 따라, 본 발명에서는 상기 디아민 화합물로서, 불소 치환기가 도입된 불소화 방향족 제1디아민, 설폰계 제2디아민, 히드록시계 제3디아민, 에테르계 제4디아민, 지환족 제5디아민을 각각 단독으로 사용하거나 또는 이들이 2종 이상 혼합된 형태로 사용할 수 있다.The diamine that can be used in the present invention has optical properties such as high transmittance, low Y.I, and low haze; thermal properties such as high glass transition temperature (High Tg) and low coefficient of thermal expansion (Low CTE); Considering mechanical properties such as high modulus and high surface hardness, linear structure with fluorinated substituents or sulfone, hydroxy, ether, etc. An appropriate combination of structures containing Accordingly, in the present invention, as the diamine compound, a fluorinated aromatic first diamine, a sulfone-based diamine, a hydroxy-based third diamine, an ether-based fourth diamine, and an alicyclic fifth diamine are used alone as the diamine compound. or a mixture of two or more thereof.

사용 가능한 디아민 단량체(a)의 비제한적인 예로는, 옥시디아닐린(ODA), 2,2'-비스(트리플루오로메틸)-4,4'-디아미노비페닐(2,2'-TFDB), 2,2'-비스(트리플루오로 메틸)-4,3'- 디아미노비페닐 (2,2'-Bis(trifluoromethyl) -4,3'-Diaminobiphenyl), 2,2'-비스 (트리플루오로 메틸)-5,5'-디아미노비페닐 (2,2'-Bis(trifluoromethyl) -5,5'-Diaminobiphenyl), 2,2'-비스(트리플루오로메틸)-4,4'-다이아미노페닐에테르(2,2'-Bis(trifluoromethyl)-4,4'-diaminodiphenyl ether, 6-FODA), 비스 아미노하이드록시 페닐 헥사플르오로프로판(DBOH), 비스 아미노 페녹시 페닐 헥사플루오로프로판(4BDAF), 비스 아미노 페녹시 페닐프로판(6HMDA), 비스 아미노페녹시 디페닐술폰(DBSDA), 비스(4-아미노페닐)설폰(4,4'-DDS), 비스(3-아미노페닐)설폰(3,3'-DDS), 술포닐디프탈릭안하이드라이드(SO2DPA), 4,4'-옥시디아닐린 (4,4'-ODA), 비스(카르복시페닐) 디메틸실란, 또는 이들의 1종 또는 2종 이상이 혼합된 형태 등이 적용 가능하다. Non-limiting examples of diamine monomers (a) that can be used include oxydianiline (ODA), 2,2'-bis(trifluoromethyl)-4,4'-diaminobiphenyl (2,2'-TFDB) ), 2,2'-bis (trifluoromethyl) -4,3'-diaminobiphenyl (2,2'-Bis (trifluoromethyl) -4,3'-Diaminobiphenyl), 2,2'-bis ( Trifluoromethyl)-5,5'-diaminobiphenyl (2,2'-Bis(trifluoromethyl) -5,5'-Diaminobiphenyl), 2,2'-bis(trifluoromethyl)-4,4 '-diaminophenyl ether (2,2'-Bis(trifluoromethyl)-4,4'-diaminodiphenyl ether, 6-FODA), bisaminohydroxyphenyl hexafluoropropane (DBOH), bisaminophenoxyphenyl hexafluoro Ropropane (4BDAF), bisaminophenoxyphenylpropane (6HMDA), bisaminophenoxydiphenylsulfone (DBSDA), bis(4-aminophenyl)sulfone (4,4'-DDS), bis(3-aminophenyl) ) sulfone (3,3'-DDS), sulfonyldiphthalic anhydride (SO 2 DPA), 4,4'-oxydianiline (4,4'-ODA), bis (carboxyphenyl) dimethylsilane, or A form in which one or two or more thereof is mixed is applicable.

고투명성, 높은 유리전이온도, 및 낮은 황색도를 고려할 때, 상기 불소화 제1디아민은 직선형의 고분자화를 유도할 수 있는 2,2'-비스(트리플루오로 메틸)-4,4'-디아미노비페닐 (2,2'-TFDB)를 사용하는 것이 바람직하다. 또한 상기 설폰계 제2디아민은 비스(4-아미노페닐)설폰(4,4'-DDS)를 사용하는 것이 바람직하다. 또한 상기 히드록시계 제3디아민은 2,2- 비스 (3-아미노-4-메틸페닐)-헥사플루오로프로판 (2,2-Bis (3-amino-4-methylphenyl)-hexafluoropropane, BIS-AT-AF)을 사용하는 것이 바람직하다. 또한 상기 에테르계 제4디아민은 2,2'-비스(트리플루오로메틸)-4,4'-다이아미노페닐에테르 (6-FODA), 또는 옥시디아닐린(ODA)를 사용하는 것이 바람직하다.Considering high transparency, high glass transition temperature, and low yellowness, the fluorinated primary diamine is 2,2'-bis(trifluoromethyl)-4,4'-dia, which can induce linear polymerization. Preference is given to using minobiphenyl (2,2'-TFDB). In addition, it is preferable to use bis(4-aminophenyl)sulfone (4,4'-DDS) as the sulfone-based second diamine. In addition, the hydroxy-based third diamine is 2,2-bis (3-amino-4-methylphenyl)-hexafluoropropane (2,2-Bis (3-amino-4-methylphenyl)-hexafluoropropane, BIS-AT- AF) is preferred. In addition, it is preferable to use 2,2'-bis(trifluoromethyl)-4,4'-diaminophenyl ether (6-FODA) or oxydianiline (ODA) as the ether-based fourth diamine.

본 발명의 디아민 단량체(a)에서, 상기 불소화 제1디아민, 설폰계 제2디아민, 히드록시계 제3디아민, 에테르계 제4디아민, 지환족 제5디아민 등의 함량은 특별히 한정되지 않으나, 각각 전체 디아민 100 몰%를 기준으로 20 내지 90 몰%일 수 있으며, 바람직하게는 20 내지 80 몰% 범위일 수 있다. In the diamine monomer (a) of the present invention, the content of the fluorinated first diamine, sulfone-based second diamine, hydroxy-based diamine, ether-based fourth diamine, alicyclic fifth diamine, etc. is not particularly limited, but each It may be 20 to 90 mol% based on 100 mol% of the total diamine, preferably 20 to 80 mol%.

본 발명의 투명 폴리아믹산 제조에 사용되는 산이무수물(b) 단량체는 분자 내 산이무수물 구조를 갖는 당 분야에 알려진 통상적인 불소화, 비불소화, 지환족 등의 산이무수물 등을 제한 없이 사용할 수 있다. 일례로, 불소화 제1산이무수물, 지환족 제2산이무수물, 비불소화 제3산이무수물을 각각 단독으로 사용하거나 또는 이들이 2종 이상 혼합된 혼합 형태 등이 있다. As the acid dianhydride (b) monomer used for preparing the transparent polyamic acid of the present invention, conventional fluorinated, non-fluorinated, alicyclic, etc. acid dianhydrides known in the art having an intramolecular acid dianhydride structure may be used without limitation. For example, a fluorinated primary acid dianhydride, an alicyclic secondary acid dianhydride, and a non-fluorinated tertiary acid dianhydride may be used alone, or a mixture of two or more thereof may be used.

본 발명에서, 상기 불소화 제1산이무수물 단량체는 불소 치환기가 도입된 방향족 산이무수물이라면, 특별히 한정하지 않는다. In the present invention, the fluorinated first acid dianhydride monomer is not particularly limited as long as it is an aromatic acid dianhydride having a fluorine substituent introduced thereto.

사용 가능한 불소화 제1디안하드라이드의 일례를 들면, 2,2-비스(3,4-디카르복시페닐)헥사플루오로프로판 디안하이드라이드 (2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydrid, 6-FDA), 4-(트리플루오로메틸)피로멜리틱 디안하이드라이드 (4-(trifluoromethyl)pyromellitic dianhydride, 4-TFPMDA) 등이 있다. 이들을 단독으로 사용하거나 또는 2종 이상 혼합하여 사용될 수 있다. 불소화 산이무수물 중 6-FDA는 분자 사슬 간 및 분자 사슬 내 전하이동착물 (CTC: Change transfer complex)의 형성을 제한하는 특성이 매우 커서 투명화하는데 매우 적절한 화합물이다. For an example of the available fluorinated first dianhydride, 2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride (2,2-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydrid, 6-FDA) and 4-(trifluoromethyl)pyromellitic dianhydride (4-(trifluoromethyl)pyromellitic dianhydride, 4-TFPMDA). These may be used alone or in combination of two or more. Among fluorinated acid dianhydrides, 6-FDA is a very suitable compound for transparency because it has a very high property of limiting the formation of a change transfer complex (CTC) between and within molecular chains.

또한, 본 발명에서 사용할 수 있는 지환족(alicyclic) 제2산이무수물은 화합물 내 방향족고리가 아닌 지환족 고리를 가지면서 산이무수물 구조를 갖는 화합물이라면 특별히 제한되지 않는다. In addition, the alicyclic secondary acid dianhydride that can be used in the present invention is not particularly limited as long as it is a compound having an acid dianhydride structure while having an alicyclic ring rather than an aromatic ring in the compound.

본 발명에서 사용 가능한 지환족 제2디안하이드라이의 일례를 들면, 사이클로부탄 테트라카르복실릭 디안하이드라이드(CBDA), 1,2,3,4-사이클로펜탄 테트라카르복실릭 디안하이드라이드(CPDA), 비사이클로[2,2,2]-7-옥텐-2,3,5,6-테트라카르복실산 디안하이드라이드(BCDA), 또는 이들의 1종 이상의 혼합물 등이 있으나, 이에 특별히 제한되지 않는다. For an example of the alicyclic second dianhydride usable in the present invention, cyclobutane tetracarboxylic dianhydride (CBDA), 1,2,3,4-cyclopentane tetracarboxylic dianhydride (CPDA) , bicyclo[2,2,2]-7-octene-2,3,5,6-tetracarboxylic dianhydride (BCDA), or a mixture of one or more thereof, but is not particularly limited thereto. .

상기 비불소화 제3산이무수물 단량체는 불소 치환기가 도입되지 않은 비(非)불소화 방향족 산이무수물이라면, 특별히 한정하지 않는다. The non-fluorinated tertiary acid dianhydride monomer is not particularly limited as long as it is a non-fluorinated aromatic acid dianhydride into which a fluorine substituent is not introduced.

사용 가능한 비불소화 제3산이무수물 단량체의 비제한적인 예로는 피로멜리틱 디안하이드라이드 (Pyromellitic Dianhydride, PMDA), 3,3′,4,4′-비페닐테트라카르복실릭 디안하이드라이드 (3,3′,4,4′-Biphenyl tetracarboxylic acid dianhydride, BPDA), 벤조페논 테트라카르복실릭 디안하이드라이드(BTDA), 옥시디프탈릭 디안하이드라이드(ODPA) 등이 있다. 이들을 단독으로 사용하거나, 또는 이들을 2종 이상 혼합하여 사용될 수 있다.Non-limiting examples of non-fluorinated tertiary acid dianhydride monomers that can be used include Pyromellitic Dianhydride (PMDA), 3,3′,4,4′-biphenyltetracarboxylic dianhydride (3, 3',4,4'-Biphenyl tetracarboxylic acid dianhydride (BPDA), benzophenone tetracarboxylic dianhydride (BTDA), and oxydiphthalic dianhydride (ODPA). These may be used alone, or two or more thereof may be used in combination.

본 발명에서, 상기 제1산이무수물, 제2산이무수물 및 제3 산이무수물로 구성된 군에서 선택되는 1종 이상의 화합물의 함량은 특별히 한정되지 않는다. 일례로, 이들은 각각 전체 산이무수물 100 몰%를 기준으로 10 내지 100 몰%일 수 있으며, 바람직하게는 10 내지 90 몰% 범위이며, 더욱 바람직하게는 20 내지 80 몰%일 수 있다.In the present invention, the content of at least one compound selected from the group consisting of the first acid dianhydride, the second acid dianhydride and the third acid dianhydride is not particularly limited. For example, each of these may be 10 to 100 mol% based on 100 mol% of the total acid dianhydride, preferably 10 to 90 mol%, and more preferably 20 to 80 mol%.

본 발명의 바람직한 일례에 따르면, 상기 산이무수물(b)로서 불소화 제1산이무수물과 비불소화 제3산이무수물을 혼용하는 경우, 이들의 사용 비율은 40~90 : 10~60 몰%비일 수 있다. According to a preferred example of the present invention, when a fluorinated first acid dianhydride and a non-fluorinated tertiary acid dianhydride are mixed as the acid dianhydride (b), their ratio may be 40 to 90: 10 to 60 mol%.

또한 본 발명의 바람직한 다른 일례에 따르면, 상기 산이무수물(b)로서 불소화 제1산이무수물과 지환족 제2산이무수물을 혼용하는 경우, 이들의 사용 비율은 30~80 : 20~70 몰%비일 수 있다. In addition, according to another preferred example of the present invention, when the fluorinated first acid dianhydride and the alicyclic second acid dianhydride are mixed as the acid dianhydride (b), their use ratio is 30-80: 20-70 mol% ratio. have.

또한 본 발명의 바람직한 다른 일례에 따르면, 상기 산이무수물(b)로서 지환족 제2산이무술과 비불소화 제3산이무수물을 혼용하는 경우, 이들의 사용 비율은 30~70 : 30~70 몰%비일 수 있다.In addition, according to another preferred example of the present invention, when an alicyclic secondary acid dianhydride and a non-fluorinated tertiary acid dianhydride are mixed as the acid dianhydride (b), their use ratio is 30-70: 30-70 mol% ratio can

본 발명의 투명 폴리아믹산 조성물에 있어서, 상기 디아민 성분(a)의 몰수와 상기 디안하이드라이드 성분(b)의 몰수의 비(a/b)는 0.7~1.3 일 수 있으며, 바람직하게는 0.8 내지 1.2이며, 더욱 바람직하게는 0.9 내지 1.1 범위일 수 있다.In the transparent polyamic acid composition of the present invention, the ratio (a/b) of the number of moles of the diamine component (a) to the number of moles of the dianhydride component (b) may be 0.7 to 1.3, preferably 0.8 to 1.2 and more preferably in the range of 0.9 to 1.1.

본 발명의 폴리아믹산 조성물에 포함되어 전술한 단량체들의 용액 중합반응을 위한 용매 (c)는 당 분야에 공지된 유기용매를 제한 없이 사용할 수 있다. As the solvent (c) for the solution polymerization of the above-mentioned monomers included in the polyamic acid composition of the present invention, an organic solvent known in the art may be used without limitation.

사용 가능한 용매의 일례를 들면, m-크레졸, N-메틸-2-피롤리돈(NMP), 디메틸포름아미드(DMF), 디메틸아세트아미드(DMAc), 디메틸설폭사이드(DMSO), 아세톤, 디에틸아세테이트, 및 디메틸 프탈레이트(DMP) 중에서 선택된 하나 이상의 극성용매를 사용할 수 있다. 이외에도, 테트라하이드로퓨란(THF), 클로로포름과 같은 저비점 용액 또는 γ-부티로락톤과 같은 용매를 사용할 수 있다. Examples of usable solvents include m-cresol, N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), acetone, diethyl At least one polar solvent selected from acetate and dimethyl phthalate (DMP) may be used. In addition, a low-boiling solution such as tetrahydrofuran (THF), chloroform, or a solvent such as γ-butyrolactone may be used.

상기 용매의 함량에 대해서 특별히 한정되어 있지는 않으나, 적절한 폴리아믹산 용액의 분자량과 점도를 얻기 위하여 중합용 용매(제1 용매)의 함량은 전체 폴리아믹산 조성물 중량을 기준으로 하여 50 ~ 95 중량%가 바람직하고, 더욱 바람직하게는 70 ~ 90 중량% 범위이다.The content of the solvent is not particularly limited, but in order to obtain an appropriate molecular weight and viscosity of the polyamic acid solution, the content of the polymerization solvent (first solvent) is preferably 50 to 95% by weight based on the total weight of the polyamic acid composition. and more preferably in the range of 70 to 90% by weight.

본 발명에서는, 전술한 산이무수물과 디아민을 유기용매에 투입한 후 반응시켜 투명 폴리아믹산 조성물을 제조할 수 있다. 일례로, 화학식 1의 디아민, 상기 제1디아민 내지 제5디아민 중 적어도 하나 이상의 디아민 성분, 및 산이무수물을 포함하되, 유리전이온도 및 황색도 개선을 위해 디아민(a)과 산이무수물(b)을 대략 1:1의 당량비로 하여 투명 폴리아믹산 조성물을 형성할 수 있다.In the present invention, the above-described acid dianhydride and diamine are added to an organic solvent and then reacted to prepare a transparent polyamic acid composition. As an example, including the diamine of Formula 1, at least one diamine component of the first to fifth diamines, and an acid dianhydride, diamine (a) and acid dianhydride (b) to improve glass transition temperature and yellowness A transparent polyamic acid composition may be formed in an equivalent ratio of approximately 1:1.

상기 폴리아믹산 조성물의 조성은 특별히 제한되지 않으며, 일례로 폴리아믹산 조성물 전체 중량 100 중량%을 기준으로, 산이무수물 2.5 내지 25.0 중량%, 디아민 2.5 내지 25.0 중량%, 및 조성물 100 중량%를 만족시키는 잔량의 유기용매를 포함하여 구성될 수 있다. 일례로, 상기 유기용매의 함량은 70 내지 90 중량%일 수 있다. 또한 본 발명에서 고형분 100 중량%을 기준으로 할 때, 산이무수물 30 내지 70 중량%, 디아민 30 내지 70 중량% 범위일 수 있으나, 이에 특별히 제한되지 않는다. The composition of the polyamic acid composition is not particularly limited, and for example, based on 100% by weight of the total weight of the polyamic acid composition, 2.5 to 25.0% by weight of acid dianhydride, 2.5 to 25.0% by weight of diamine, and the remaining amount satisfying 100% by weight of the composition It may be composed of an organic solvent. For example, the content of the organic solvent may be 70 to 90% by weight. In addition, based on the solid content of 100% by weight in the present invention, it may be in the range of 30 to 70% by weight of acid dianhydride and 30 to 70% by weight of diamine, but is not particularly limited thereto.

이러한 본 발명의 투명 폴리아믹산 조성물은 약 1,000 내지 200,000 cps, 바람직하게는 약 5,000 내지 50,000 cps 범위의 점도를 가질 수 있다. 폴리아믹산 용액의 점도가 전술한 범위에 해당되는 경우, 폴리아믹산 용액 코팅 시 두께 조절이 용이하며, 코팅 표면이 균일하게 발휘될 수 있다.The transparent polyamic acid composition of the present invention may have a viscosity in the range of about 1,000 to 200,000 cps, preferably about 5,000 to 50,000 cps. When the viscosity of the polyamic acid solution falls within the above-mentioned range, it is easy to control the thickness when coating the polyamic acid solution, and the coating surface can be uniformly exhibited.

또한, 본 발명의 폴리아믹산 용액은 필요에 따라 본 발명의 목적과 효과를 현저히 손상시키지 않는 범위 내에서 가소제, 산화방지제, 난연화제, 분산제, 점도 조절제, 레벨링제 등의 첨가제를 소량 포함할 수 있다.In addition, the polyamic acid solution of the present invention may contain, if necessary, a small amount of additives such as plasticizers, antioxidants, flame retardants, dispersants, viscosity modifiers, and leveling agents within the range that does not significantly impair the purpose and effect of the present invention. .

<폴리이미드 필름><Polyimide Film>

본 발명은 상기에서 설명한 폴리아믹산 용액을 고온에서 이미드화 및 열처리하여 제조된 폴리이미드 필름을 제공한다.The present invention provides a polyimide film prepared by imidization and heat treatment of the polyamic acid solution described above at a high temperature.

상기 폴리이미드 수지는 이미드(imide) 고리를 함유하는 고분자 물질로서, 내열성, 내화학성, 내마모성 및 전기적 특성이 우수하다. 이때 상기 폴리이미드 수지는 랜덤 공중합체(random copolymer)나 블록 공중합체(block copolymer) 형태일 수 있다. The polyimide resin is a polymer material containing an imide ring, and has excellent heat resistance, chemical resistance, abrasion resistance and electrical properties. In this case, the polyimide resin may be in the form of a random copolymer or a block copolymer.

한편 폴리이미드 수지 필름이 플렉서블 디스플레이 등에 적용하기 위해서는 기본적으로 고투명성, 낮은 열팽창계수, 높은 유리전이온도 등의 특징을 가져야 한다. 보다 구체적으로, 막 두께 10㎛에서 550nm의 광투과율이 89% 이상이며, 550nm의 황색도 값이 7 이하, 유리전이온도(Tg)가 300℃ 이상 등이 요구된다. 또한 TFT 증착 공정 중의 신뢰성을 확보하기 위해, 지지체 상(유리기판)의 폴리이미드가 공정 중 유리기판에서 박리되지 않는 접착력이 요구된다.Meanwhile, in order for the polyimide resin film to be applied to a flexible display, etc., it must have characteristics such as high transparency, low coefficient of thermal expansion, and high glass transition temperature. More specifically, a light transmittance of 89% or more at 550 nm in a film thickness of 10 μm, a yellowness value of 550 nm of 7 or less, and a glass transition temperature (Tg) of 300° C. or more are required. In addition, in order to secure reliability during the TFT deposition process, the polyimide on the support (glass substrate) is required to have an adhesive force that does not peel from the glass substrate during the process.

실제로, 전술한 폴리아믹산 조성물을 이미드화하여 제조된 본 발명의 폴리이미드 필름은 고투명성을 나타내면서도 낮은 황색도, 유리기판과의 높은 접착력, 낮은 열팽창계수, 높은 유리전이온도(Tg)를 가진다. 보다 구체적으로, 상기 폴리이미드 필름은 하기 (i) 내지 (vi)의 물성 조건, 예컨대 (i) ASTM D 3359 규격에 의한 유리기판에서의 접착력이 2B 이상이며, (ii) ASTM E 313-73 규격에 의한 황색도가 7 이하이며(10㎛ 기준), (iii) 파장 550nm에서의 광선 투과율이 89% 이상이며, (iv) 유리전이온도(Tg)가 330 내지 400℃ 범위이며, (v) TMA 측정에 의한 열팽창계수(CTE)가 10~60 ppm/℃ 범위이며, (vi) 하기 식으로 산출되는 두께 방향의 위상차(Rth)가 두께 10㎛ 기준으로 80nm 내지 400nm 일 수 있다. In fact, the polyimide film of the present invention prepared by imidizing the above-described polyamic acid composition has high transparency, low yellowness, high adhesion to a glass substrate, low coefficient of thermal expansion, and high glass transition temperature (Tg). More specifically, the polyimide film has the following physical property conditions of (i) to (vi), such as (i) an adhesive strength of 2B or more on a glass substrate according to ASTM D 3359 standard, (ii) ASTM E 313-73 standard has a yellowness of 7 or less (based on 10 μm), (iii) a light transmittance of 89% or more at a wavelength of 550 nm, (iv) a glass transition temperature (T g ) in the range of 330 to 400 ° C, (v) The coefficient of thermal expansion (CTE) by TMA measurement is in the range of 10 to 60 ppm/℃, and (vi) the retardation (R th ) in the thickness direction calculated by the following formula may be 80 nm to 400 nm based on a thickness of 10 μm.

위상차 Rth (nm) = [(nx + ny) / 2 - nz] ×dPhase difference R th (nm) = [(n x + n y ) / 2 - n z ] ×d

(nx는 파장 550nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 가장 큰 굴절율; ny는 파장 550nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 nx와 수직인 굴절율이며; nz는 파장 550nm의 광으로 측정되는 폴리이미드 수지 필름의 두께 방향의 굴절율이고; d는 폴리이미드 필름의 두께이다.)(n x is the largest refractive index among the in-plane refractive indexes of the polyimide resin film measured with light having a wavelength of 550 nm; n y is the refractive index perpendicular to n x among the in-plane refractive indexes of the polyimide resin film measured with light having a wavelength of 550 nm ; n z is the refractive index in the thickness direction of the polyimide resin film measured with light having a wavelength of 550 nm; d is the thickness of the polyimide film.)

본 발명에 따른 폴리이미드 필름은 당 분야에 알려진 통상적인 방법에 따라 투명 폴리아믹산 용액을 발열 용액중합반응하여 제조될 수 있다. 일례로 상기 투명 폴리아믹산 조성물을 지지체에 코팅(캐스팅)한 후 30~350℃의 범위에서 온도를 서서히 승온시키면서 0.5 ~ 8시간 동안 이미드 폐환반응 (Imidazation)을 유도시켜 제조될 수 있다. 이때 아르곤이나 질소 등의 불활성 분위기 하에서 반응하는 것이 바람직하다. The polyimide film according to the present invention may be prepared by exothermic solution polymerization of a transparent polyamic acid solution according to a conventional method known in the art. For example, after coating (casting) the transparent polyamic acid composition on a support, it can be prepared by inducing an imide ring closure reaction (imidazation) for 0.5 to 8 hours while gradually increasing the temperature in the range of 30 to 350 ° C. At this time, it is preferable to react in an inert atmosphere such as argon or nitrogen.

이때, 상기 코팅방법은 당 업계에 알려진 통상적인 방법을 제한 없이 사용할 수 있으며, 일례로 스핀코팅(Spin coating), 딥 코팅(Dip coating), 용매 캐스팅(Solvent casting), 슬롯다이 코팅(Slot die coating) 및 스프레이 코팅으로 이루어진 군에서 선택되는 적어도 어느 하나의 방법에 의해 이루어질 수 있다. 상기 무색투명한 폴리이미드 층의 두께는 수 백 nm에서 수십 ㎛가 되도록 투명 폴리아믹산 조성물을 1회 이상 코팅할 수 있다. In this case, the coating method may use a conventional method known in the art without limitation, for example, spin coating, dip coating, solvent casting, slot die coating (Slot die coating). ) and may be made by at least one method selected from the group consisting of spray coating. The transparent polyamic acid composition may be coated one or more times so that the colorless and transparent polyimide layer has a thickness of several hundred nm to several tens of μm.

본 발명에 따른 폴리이미드 필름 제조방법에 있어서, 중합된 폴리아믹산을 지지체에 캐스팅하여 이미드화하는 단계에 적용되는 이미드화법으로는 열이미드화법, 화학이미드화법, 또는 열이미드화법과 화학이미드화법을 병용하여 적용할 수 있다.In the polyimide film manufacturing method according to the present invention, the imidization method applied to the imidization step by casting the polymerized polyamic acid to a support is thermal imidization method, chemical imidization method, or thermal imidization method and chemical It can be applied in combination with the imidization method.

상기 열이미드화법은 폴리아믹산 용액을 지지체상에 캐스팅하여 30 ~ 400℃의 온도범위에서 서서히 승온시키면서 1 ~ 10시간 가열하여 폴리이미드 필름을 얻는 방법이다.The thermal imidization method is a method of obtaining a polyimide film by casting a polyamic acid solution on a support and heating it for 1 to 10 hours while gradually raising the temperature in a temperature range of 30 to 400°C.

또한 상기 화학이미드화법은 폴리아믹산 용액에 아세트산무수물 등의 산무수물로 대표되는 탈수제와 이소퀴놀린, β-피콜린, 피리딘 등의 아민류 등으로 대표되는 이미드화 촉매를 투입하는 방법이다. 이러한 화학이미드화법에 열이미드화법 또는 열이미드화법을 병용하는 경우, 폴리아믹산 용액의 가열 조건은 폴리아믹산 용액의 종류, 제조되는 폴리이미드 필름의 두께 등에 의하여 변동될 수 있다.In addition, the chemical imidization method is a method of adding a dehydrating agent represented by an acid anhydride such as acetic anhydride and an imidization catalyst represented by amines such as isoquinoline, β-picoline, and pyridine to a polyamic acid solution. When the thermal imidization method or the thermal imidization method is used in combination with the chemical imidization method, the heating conditions of the polyamic acid solution may vary depending on the type of the polyamic acid solution, the thickness of the polyimide film to be prepared, and the like.

상기 열이미드화법과 화학이미드화법을 병용하는 경우의 폴리이미드 필름 제조예를 보다 구체적으로 설명하면, 폴리아믹산 용액에 탈수제 및 이미드화 촉매를 투입하여 지지체상에 캐스팅한 후 80 ~ 300℃, 바람직하게는 150 ~ 250℃에서 가열하여 탈수제 및 이미드화 촉매를 활성화함으로써 부분적으로 경화 및 건조한 후, 폴리이미드 필름을 얻을 수 있다.More specifically, the polyimide film production example in the case of using the thermal imidization method and the chemical imidization method in combination, the dehydrating agent and the imidization catalyst are added to the polyamic acid solution and cast on the support, then 80 ~ 300 ℃, Preferably, the polyimide film can be obtained after partial curing and drying by heating at 150 to 250° C. to activate the dehydrating agent and imidization catalyst.

이와 같이 형성된 폴리이미드 필름의 두께는 특별히 제한되지 않으며, 적용되는 분야에 따라 적절히 조절될 수 있다. 일례로 10 내지 150㎛ 범위일 수 있으며, 바람직하게는 10 내지 80㎛ 범위일 수 있다.The thickness of the polyimide film thus formed is not particularly limited and may be appropriately adjusted depending on the field to which it is applied. For example, it may be in the range of 10 to 150 μm, preferably in the range of 10 to 80 μm.

본 발명에서, 상기와 같이 제작된 투명 폴리이미드 필름은 다양한 분야에 사용될 수 있으며, 특히 고투명성 및 내열성이 요구되는 유기 EL 소자(OLED)용 디스플레이, 액정 소자용 디스플레이, TFT 기판, 플렉서블 인쇄회로기판, 플렉서블(Flexible) OLED 면조명 기판, 전자 종이용 기판소재와 같은 플렉서블(Flexible) 디스플레이용 기판 및/또는 보호막으로 활용될 수 있다. In the present invention, the transparent polyimide film produced as described above can be used in various fields, and in particular, displays for organic EL devices (OLEDs) requiring high transparency and heat resistance, displays for liquid crystal devices, TFT substrates, and flexible printed circuit boards , a flexible OLED surface lighting substrate, a substrate material for electronic paper, and/or a flexible display substrate and/or protective film.

이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 하기 실시예는 본 발명의 이해를 돕기 위한 예시에 불과하며, 본 발명의 범위가 이에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through specific examples. The following examples are only examples to help the understanding of the present invention, and the scope of the present invention is not limited thereto.

[투명 폴리아믹산 조성물의 합성 및 폴리이미드 필름의 제조][Synthesis of transparent polyamic acid composition and preparation of polyimide film]

[실시예 1][Example 1]

1. 폴리아믹산 용액 제조1. Preparation of polyamic acid solution

반응기로서 500㎖ 3구 둥근바닥 플라스크를 이용하고, 50mL/분의 유량으로 질소를 통과시키면서 N,N -디메틸아세트아미드 (이하 DMAc라 함) 145.9g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2과 4-아미노페닐설폰 (이하 4,4'-DDS라 함)를 각각 20.0g (41.1 wt%), 3.53g (7.3 wt%)을 가하고 1시간 동안 교반하여 화합물 2 및 4,4'-DDS를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 4,4'-(헥사플루오르이소프로필리덴)디파탈릭안하이드라이드 (이하 6FDA라 함)를 18.92g (38.9 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 파이로멜리트 디안하이드라이드 (이하 PMDA라 함) 6.19g (12.7 wt%)을 첨가한 후, 재차 48.6g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 24,000 cP인 폴리아믹산 용액을 얻었다.A 500 mL three-necked round-bottom flask was used as a reactor, and 145.9 g of N,N -dimethylacetamide (hereinafter referred to as DMAc) was charged to the reactor while passing nitrogen at a flow rate of 50 mL/min, and the temperature of the reactor was set to 40°C. After raising the temperature, 20.0 g (41.1 wt %) and 3.53 g (7.3 wt %) of Compound 2 and 4-aminophenylsulfone (hereinafter referred to as 4,4'-DDS) were added, respectively, and stirred for 1 hour to obtain Compound 2 and 4,4'-DDS was completely dissolved. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 18.92 g (38.9 wt %) of 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (hereinafter referred to as 6FDA) was added. After that, the mixture was stirred for 2 hours. Finally, 6.19 g (12.7 wt%) of pyromellite dianhydride (hereinafter referred to as PMDA) was added, and then 48.6 g of DMAc was added thereto, followed by reaction at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 24,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

2. 투명 폴리이미드 필름 제조2. Manufacture of transparent polyimide film

상기 플리아믹산 용액을 LCD용 유리에 스핀 코팅한 후 질소 분위기의 컨벡션 오븐에 80℃에서 30분, 150℃에서 30분, 200℃에서 1시간, 300℃에서 1시간 단계적으로 서서히 승온시키면서 건조 및 이미드 반응(Imidazation)을 진행하여 이미드화율이 85% 이상인 투명 폴리이미드 수지 필름을 제조하였다. 그 후, LCD용 유리에 코팅된 폴리이미드 수지 필름을 증류수가 담긴 배스 타입(Bath Type)의 초음파 장치에 방치하여 LCD용 유리판으로부터 폴리이미드 필름을 박리하여 두께가 9~12㎛인 투명 폴리이미드 필름을 얻었다. 이후 폴리이미드 필름 내 존재하는 수분을 제거하기 위해 100℃의 진공오븐에 필름을 방치한 후 약 1시간 동안 수분을 제거하여 최종 폴리이미드 필름을 얻었다.After spin-coating the pliamic acid solution on glass for LCD, in a nitrogen atmosphere convection oven at 80°C for 30 minutes, at 150°C for 30 minutes, at 200°C for 1 hour, at 300°C for 1 hour while gradually increasing the temperature stepwise, drying and A transparent polyimide resin film having an imidization rate of 85% or more was prepared by performing an imidation reaction. After that, the polyimide resin film coated on the glass for LCD is left in a bath type ultrasonic device containing distilled water to peel the polyimide film from the glass plate for LCD, and a transparent polyimide film with a thickness of 9 to 12 μm. got Thereafter, the film was left in a vacuum oven at 100° C. to remove moisture present in the polyimide film, and then moisture was removed for about 1 hour to obtain a final polyimide film.

[실시예 2][Example 2]

상기 실시예 1에서 DMAc 190.2g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 7와 2,2-비스(3-아미노-4-메틸페닐)헥사플루오르프로판 (이하 BIS-AT-AF라 함)를 각각 20.0g (31.5 wt%), 6.5g (10.2 wt%)을 가하고 1시간 동안 교반하여 화합물 7 및 BIS-AT-AF를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 31.7g (49.9 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 3,3',4,4'-비페닐테트라카르복실산 디안하이드라이드 (이하 BPDA라 함) 5.3g (8.4 wt%)을 첨가한 후, 재차 63.4g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 11,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 190.2 g of DMAc was filled in a reactor, the temperature of the reactor was raised to 40° C., and Compound 7 and 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane (hereinafter, BIS-AT- AF) were added 20.0 g (31.5 wt %) and 6.5 g (10.2 wt %), respectively, and stirred for 1 hour to completely dissolve Compound 7 and BIS-AT-AF. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 31.7 g (49.9 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, 5.3 g (8.4 wt %) of 3,3',4,4'-biphenyltetracarboxylic acid dianhydride (hereinafter referred to as BPDA) was added, and then 63.4 g of DMAc was added thereto and heated at 30°C. The reaction was carried out for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 11,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 3][Example 3]

상기 실시예 1에서 DMAc 127.3g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 11와 2,2'-비스(트리플루오르메틸)벤지딘 (이하 TFDB라 함)를 각각 20.0g (47.1wt%), 4.4g (10.3wt%)을 가하고 1시간 동안 교반하여 화합물 11 및 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 14.1g (33.2wt)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 사이클로부탄-1,2,3,4-테트라카르복실산 디안하이드라이드 (이하 CBDA라 함) 4.0g (9.4 wt%)을 첨가한 후, 재차 42.4g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 10,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 127.3 g of DMAc was filled in a reactor, and the temperature of the reactor was raised to 40° C., and 20.0 g of compound 11 and 2,2'-bis(trifluoromethyl)benzidine (hereinafter referred to as TFDB) were each added ( 47.1 wt %), 4.4 g (10.3 wt %) were added and stirred for 1 hour to completely dissolve Compound 11 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 14.1 g (33.2 wt) of BPDA was added thereto, followed by stirring for 2 hours. Finally, 4.0 g (9.4 wt %) of cyclobutane-1,2,3,4-tetracarboxylic acid dianhydride (hereinafter referred to as CBDA) was added, and then 42.4 g of DMAc was added again, followed by 24 at 30°C. reaction time. After the reaction was completed, a polyamic acid solution having a viscosity of about 10,000 cP at 20% solids was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 4][Example 4]

상기 실시예 1에서 DMAc 147.1g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2와 TFDB를 각각 20.0g (40.7wt%), 4.6g(9.4wt%)을 가하고 1시간 동안 교반하여 화합물 2 및 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 18.9g (38.5wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 5.6g (11.4 wt%)을 첨가한 후, 재차 49.0g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 37,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 147.1 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., and 20.0 g (40.7 wt %) and 4.6 g (9.4 wt %) of Compound 2 and TFDB were added respectively for 1 hour. Stirring to completely dissolve compound 2 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 18.9 g (38.5 wt%) of 6FDA was added thereto, followed by stirring for 2 hours. Finally, 5.6 g (11.4 wt %) of CBDA was added, and then 49.0 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 37,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 5][Example 5]

상기 실시예 1에서 DMAc 169.9g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2와 4,4'-DDS를 각각 18.0g (31.8wt%), 8.5g (15 wt%)을 가하고 1시간 동안 교반하여 화합물 2 및 4,4'-DDS 를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 15.1g (26.7wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 BPDA 15.0g (26.5 wt%)을 첨가한 후, 재차 56.6g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 26,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 169.9 g of DMAc was filled in a reactor, and the temperature of the reactor was raised to 40° C., and then Compound 2 and 4,4'-DDS were respectively 18.0 g (31.8 wt %) and 8.5 g (15 wt %) was added and stirred for 1 hour to completely dissolve Compound 2 and 4,4'-DDS. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 15.1 g (26.7 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, after adding 15.0 g (26.5 wt%) of BPDA, 56.6 g of DMAc was added again, and the reaction was performed at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 26,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 6][Example 6]

상기 실시예 1에서 DMAc 166.8g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 7와 BIS-AT-AF를 각각 16.0g (28.8wt%), 13.8g (24.8wt%)을 가하고 1시간 동안 교반하여 화합물 7 및 BIS-AT-AF 를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 19.6g (35.3wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 6.2g (11.1 wt%)을 첨가한 후, 재차 55.6g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 25,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 166.8 g of DMAc was filled in the reactor, and the temperature of the reactor was raised to 40° C., and then 16.0 g (28.8 wt%) and 13.8 g (24.8 wt%) of Compound 7 and BIS-AT-AF, respectively. Compound 7 and BIS-AT-AF were completely dissolved by stirring for 1 hour. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 19.6 g (35.3 wt%) of BPDA was added thereto, followed by stirring for 2 hours. Finally, 6.2 g (11.1 wt %) of PMDA was added, and then 55.6 g of DMAc was added thereto and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 25,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 7][Example 7]

상기 실시예 1에서 DMAc 159.1g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 11와 TFDB를 각각 21.0g (39.6wt%), 12.2g (23wt%)을 가하고 1시간 동안 교반하여 화합물 11 및 TFDB 를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 PMDA 10.4g (19.6wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 9.4g (17.7 wt%)을 첨가한 후, 재차 53.0g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 31,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 159.1 g of DMAc was filled in a reactor, and the temperature of the reactor was raised to 40° C., 21.0 g (39.6 wt %) and 12.2 g (23 wt %) of compound 11 and TFDB, respectively, were added and stirred for 1 hour. Thus, compound 11 and TFDB were completely dissolved. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 10.4 g (19.6 wt%) of PMDA was added, followed by stirring for 2 hours. Finally, 9.4 g (17.7 wt %) of CBDA was added, and then 53.0 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 31,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 8][Example 8]

상기 실시예 1에서 DMAc 157.2g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2와 TFDB를 각각 15.0g (28.6wt%), 9.1g (17.4wt%)을 가하고 1시간 동안 교반하여 화합물 2 및 TFDB 를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 25.2g (48.1wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 3.1g (5.9wt%)을 첨가한 후, 재차 52.4g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 32,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 157.2 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., and 15.0 g (28.6 wt %) and 9.1 g (17.4 wt %) of Compound 2 and TFDB were added respectively for 1 hour. Compound 2 and TFDB were completely dissolved by stirring. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 25.2 g (48.1 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, after adding 3.1 g (5.9 wt %) of PMDA, 52.4 g of DMAc was added again and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 32,000 cP at 20% solids was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 9][Example 9]

상기 실시예 1에서 DMAc 155.8g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2와 4,4'-DDS를 각각 12.5g (24.1wt%), 13.2g (25.4wt%)을 가하고 1시간 동안 교반하여 화합물 2 및 4,4'-DDS를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 15.8g (30.4wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 10.4g (20wt%)을 첨가한 후, 재차 51.9g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 24,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 155.8 g of DMAc was filled in a reactor, and the temperature of the reactor was raised to 40° C., and then Compound 2 and 4,4'-DDS were respectively 12.5 g (24.1 wt %) and 13.2 g (25.4 wt %) was added and stirred for 1 hour to completely dissolve Compound 2 and 4,4'-DDS. Thereafter, the temperature of the reactor was cooled to 30° C. and then 15.8 g (30.4 wt %) of 6FDA was added thereto, followed by stirring for 2 hours. Finally, after adding 10.4 g (20 wt%) of CBDA, 51.9 g of DMAc was added again and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 24,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 10][Example 10]

상기 실시예 1에서 DMAc 161.5g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 7와 BIS-AT-AF를 각각 10.5g (19.5wt%), 20.4g (37.8wt%)을 가하고 1시간 동안 교반하여 화합물 7 및 BIS-AT-AF를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 13.8g (25.6wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 9.2g (17.1wt%)을 첨가한 후, 재차 53.8g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 12,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 161.5 g of DMAc was filled in the reactor, and the temperature of the reactor was raised to 40° C., and then 10.5 g (19.5 wt %) and 20.4 g (37.8 wt %) of Compound 7 and BIS-AT-AF, respectively. Compound 7 and BIS-AT-AF were completely dissolved by stirring for 1 hour. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 13.8 g (25.6 wt%) of BPDA was added thereto, followed by stirring for 2 hours. Finally, 9.2 g (17.1 wt%) of CBDA was added, and then 53.8 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 12,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 11][Example 11]

상기 실시예 1에서 DMAc 153.7g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 11와 TFDB를 각각 10.5g (20.5wt%), 13.8g (26.9 wt%)을 가하고 1시간 동안 교반하여 화합물 11 및 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 22.3g (43.5wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 4.7g (9.2wt%)을 첨가한 후, 재차 51.2g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 19,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 153.7 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., and 10.5 g (20.5 wt %) and 13.8 g (26.9 wt %) of compound 11 and TFDB were added respectively for 1 hour. Stirring to completely dissolve compound 11 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 22.3 g (43.5 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, 4.7 g (9.2 wt%) of PMDA was added, and then 51.2 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 19,000 cP at 20% solids was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 12][Example 12]

상기 실시예 1에서 DMAc 155.5g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 5와 TFDB를 각각 12.5g (24.1wt%), 16.3g (31.4wt%)을 가하고 1시간 동안 교반하여 화합물 5 및 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 17.5g (33.7wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 5.6g (10.8 wt%)을 첨가한 후, 재차 51.8g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 37,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 155.5 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., and 12.5 g (24.1 wt %) and 16.3 g (31.4 wt %) of Compound 5 and TFDB were added thereto, respectively, for 1 hour. Stirring to completely dissolve compound 5 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 17.5 g (33.7 wt%) of BPDA was added thereto, followed by stirring for 2 hours. Finally, 5.6 g (10.8 wt%) of PMDA was added, and then 51.8 g of DMAc was added thereto and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 37,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 13][Example 13]

상기 실시예 1에서 DMAc 155.9g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2와 TFDB를 각각 10.0g (19.3wt%), 13.6g (26.2wt%)을 가하고 1시간 동안 교반하여 화합물 2 및 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 25.2g (48.6 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 3.1g (6 wt%)을 첨가한 후, 재차 52.0g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 36,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 155.9 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., and 10.0 g (19.3 wt %) and 13.6 g (26.2 wt %) of Compound 2 and TFDB were added thereto, respectively, for 1 hour. Stirring to completely dissolve compound 2 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 25.2 g (48.6 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, after adding 3.1 g (6 wt %) of PMDA, 52.0 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 36,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 14][Example 14]

상기 실시예 1에서 DMAc 160.8g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2와 4,4'-DDS를 각각 15.0g (27.9 wt%), 15.9g (29.6 wt%)을 가하고 1시간 동안 교반하여 화합물 2 및 4,4'-DDS를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 PMDA 18.6g (34.6 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 6FDA 4.2g (7.8 wt%)을 첨가한 후, 재차 53.6g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 11,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 160.8 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., and 15.0 g (27.9 wt%) and 15.9 g (29.6 wt%) of Compound 2 and 4,4′-DDS were respectively added to the reactor. was added and stirred for 1 hour to completely dissolve Compound 2 and 4,4'-DDS. Thereafter, the temperature of the reactor was cooled to 30° C. and then 18.6 g (34.6 wt %) of PMDA was added thereto, followed by stirring for 2 hours. Finally, 4.2 g (7.8 wt %) of 6FDA was added, and then 53.6 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 11,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 15][Example 15]

상기 실시예 1에서 DMAc 161.1g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 7와 BIS-AT-AF를 각각 5.0g (9.3 wt%), 25.9g (48.2 wt%)을 가하고 1시간 동안 교반하여 화합물 7 및 BIS-AT-AF를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 13.1g (24.4 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 9.7g (18.1 wt%)을 첨가한 후, 재차 53.7g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 13,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 161.1 g of DMAc was filled in a reactor, and the temperature of the reactor was raised to 40° C., and 5.0 g (9.3 wt %) and 25.9 g (48.2 wt %) of Compound 7 and BIS-AT-AF, respectively. Compound 7 and BIS-AT-AF were completely dissolved by stirring for 1 hour. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 13.1 g (24.4 wt%) of BPDA was added thereto, followed by stirring for 2 hours. Finally, 9.7 g (18.1 wt%) of PMDA was added, and then 53.7 g of DMAc was added thereto and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 13,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 16][Example 16]

상기 실시예 1에서 DMAc 165.7g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 11와 TFDB를 각각 6.0g (10.9 wt%), 21.0g (38 wt%)을 가하고 1시간 동안 교반하여 화합물 11 및 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 21.8g (39.5 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 6.4g (11.6 wt%)을 첨가한 후, 재차 55.2g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 17,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 165.7 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., and 6.0 g (10.9 wt %) and 21.0 g (38 wt %) of Compound 11 and TFDB, respectively, were added thereto and for 1 hour. Stirring to completely dissolve compound 11 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 21.8 g (39.5 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, 6.4 g (11.6 wt%) of CBDA was added, and then 55.2 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 17,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 17][Example 17]

상기 실시예 1에서 DMAc 153.3g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 5와 TFDB를 각각 5.5g (10.8 wt%), 19.1g (37.4 wt%)을 가하고 1시간 동안 교반하여 화합물 5 및 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 13.3g (26 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 BPDA 13.2g (25.8 wt%)을 첨가한 후, 재차 51.1g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 23,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 153.3 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., and 5.5 g (10.8 wt %) and 19.1 g (37.4 wt %) of Compound 5 and TFDB were added thereto, respectively, for 1 hour. Stirring to completely dissolve compound 5 and TFDB. Thereafter, the temperature of the reactor was cooled to 30° C. and then 13.3 g (26 wt %) of 6FDA was added thereto, followed by stirring for 2 hours. Finally, after adding 13.2 g (25.8 wt%) of BPDA, 51.1 g of DMAc was added again, and the reaction was performed at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 23,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 18][Example 18]

상기 실시예 1에서 DMAc 154.5g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2와 TFDB를 각각 5.0g (9.7 wt%), 18.2g (35.3 wt%)을 가하고 1시간 동안 교반하여 화합물 2 및 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 25.2g (48.9 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 3.1g (6 wt%)을 첨가한 후, 재차 51.5g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 28,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 154.5 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., and 5.0 g (9.7 wt %) and 18.2 g (35.3 wt %) of Compound 2 and TFDB, respectively, were added for 1 hour. Stirring to completely dissolve compound 2 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 25.2 g (48.9 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, after adding 3.1 g (6 wt %) of PMDA, 51.5 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 28,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 19][Example 19]

상기 실시예 1에서 DMAc 157.8g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2, 화합물 11 그리고 4,4'-DDS를 각각 3.4g (6.5 wt%), 3.5g (6.7 wt%), 그리고 19.2g (36.5 wt%)을 가하고 1시간 동안 교반하여 화합물 2, 화합물 11 그리고 4,4'-DDS를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 22.7g (43.2 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 3.8g (7.2 wt%)을 첨가한 후, 재차 52.6g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 9,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 157.8 g of DMAc was filled in a reactor, and the temperature of the reactor was increased to 40° C., and then Compound 2, Compound 11, and 4,4'-DDS were respectively 3.4 g (6.5 wt%), 3.5 g (6.7 wt%), and 19.2 g (36.5 wt%) were added and stirred for 1 hour to completely dissolve Compound 2, Compound 11, and 4,4'-DDS. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 22.7 g (43.2 wt%) of BPDA was added thereto, followed by stirring for 2 hours. Finally, 3.8 g (7.2 wt %) of CBDA was added, and then 52.6 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 9,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 20][Example 20]

상기 실시예 1에서 DMAc 160.9g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2, 화합물 7 그리고 BIS-AT-AF를 각각 3.1g (5.8 wt%), 2.5g (4.7 wt%), 그리고 25.5g (47.6 wt%)을 가하고 1시간 동안 교반하여 화합물 2, 화합물 7 그리고 BIS-AT-AF 를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 12.9g (24.1 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 9.6g (17.9 wt%)을 첨가한 후, 재차 53.6g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 8,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 160.9 g of DMAc was filled in a reactor, and the temperature of the reactor was increased to 40° C., and then Compound 2, Compound 7, and BIS-AT-AF were respectively 3.1g (5.8 wt%), 2.5g (4.7 wt%) %), and 25.5 g (47.6 wt%) were added and stirred for 1 hour to completely dissolve Compound 2, Compound 7 and BIS-AT-AF. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 12.9 g (24.1 wt%) of BPDA was added thereto, followed by stirring for 2 hours. Finally, 9.6 g (17.9 wt%) of PMDA was added, and then 53.6 g of DMAc was added again, followed by reaction at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 8,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 21][Example 21]

상기 실시예 1에서 DMAc 158.3g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 7, 화합물 11 그리고 TFDB를 각각 2.4g (4.6 wt%), 3.1g (5.9 wt%), 그리고 21.9g (41.6 wt%)을 가하고 1시간 동안 교반하여 화합물 7, 화합물 11 그리고 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 15.2g (28.8 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 10.1g (19.2 wt%)을 첨가한 후, 재차 52.8g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 11,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 158.3 g of DMAc was filled in a reactor, and the temperature of the reactor was raised to 40° C., and then Compound 7, Compound 11, and TFDB were respectively 2.4 g (4.6 wt %), 3.1 g (5.9 wt %), and 21.9 g (41.6 wt%) was added and stirred for 1 hour to completely dissolve Compound 7, Compound 11 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 15.2 g (28.8 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, 10.1 g (19.2 wt %) of CBDA was added, and then 52.8 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 11,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 22][Example 22]

상기 실시예 1에서 DMAc 157.2g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2, 화합물 5 그리고 TFDB를 각각 6.5g (12.4 wt%), 6.8g (13 wt%), 그리고 11.8g (22.5 wt%)을 가하고 1시간 동안 교반하여 화합물 2, 화합물 5 그리고 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 23.0g (43.9 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 4.3g (8.2 wt%)을 첨가한 후, 재차 52.4g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 13,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 157.2 g of DMAc was filled in a reactor, and the temperature of the reactor was raised to 40° C., and then Compound 2, Compound 5, and TFDB were each 6.5 g (12.4 wt %), 6.8 g (13 wt %), and 11.8 g (22.5 wt%) was added and stirred for 1 hour to completely dissolve Compound 2, Compound 5 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 23.0 g (43.9 wt%) of 6FDA was added thereto, followed by stirring for 2 hours. Finally, 4.3 g (8.2 wt %) of CBDA was added, and then 52.4 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 13,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

[실시예 23][Example 23]

상기 실시예 1에서 DMAc 160.0g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2, 화합물 7 그리고 TFDB를 각각 2.7g (5.1 wt%), 2.1g (3.9 wt%), 그리고 19.6g (36.8 wt%)을 가하고 1시간 동안 교반하여 화합물 2, 화합물 7 그리고 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 23.8g (44.7 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 5.0g (9.4 wt%)을 첨가한 후, 재차 53.3g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 16,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 160.0 g of DMAc was filled in the reactor, and the temperature of the reactor was increased to 40° C., and then Compound 2, Compound 7 and TFDB were each added to 2.7 g (5.1 wt%), 2.1g (3.9 wt%), and 19.6 g (36.8 wt%) was added and stirred for 1 hour to completely dissolve Compound 2, Compound 7 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 23.8 g (44.7 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, 5.0 g (9.4 wt %) of PMDA was added, and then 53.3 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 16,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 24][Example 24]

상기 실시예 1에서 DMAc 159.9g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2와 4,4'-DDS를 각각 3.8g (7.1 wt%), 24.1g (45.2 wt%)을 가하고 1시간 동안 교반하여 화합물 2 및 4,4'-DDS를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 12.7g (23.8 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 12.7g (23.8 wt%)을 첨가한 후, 재차 53.3g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 14,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 159.9 g of DMAc was filled in a reactor, and the temperature of the reactor was raised to 40° C., and then Compound 2 and 4,4'-DDS were respectively 3.8 g (7.1 wt %) and 24.1 g (45.2 wt %) was added and stirred for 1 hour to completely dissolve Compound 2 and 4,4'-DDS. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 12.7 g (23.8 wt%) of BPDA was added thereto, followed by stirring for 2 hours. Finally, after adding 12.7 g (23.8 wt %) of CBDA, 53.3 g of DMAc was added again and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 14,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 25][Example 25]

상기 실시예 1에서 DMAc 161.5g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 7와 BIS-AT-AF를 각각 2.4g (4.5 wt%), 27.9g (51.8 wt%)을 가하고 1시간 동안 교반하여 화합물 7 및 BIS-AT-AF를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 20.2g (37.5 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 3.4g (6.3 wt%)을 첨가한 후, 재차 53.8g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 9,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 161.5 g of DMAc was filled in a reactor, and the temperature of the reactor was raised to 40° C., and then Compound 7 and BIS-AT-AF were respectively 2.4 g (4.5 wt %) and 27.9 g (51.8 wt %) Compound 7 and BIS-AT-AF were completely dissolved by stirring for 1 hour. Thereafter, the temperature of the reactor was cooled to 30° C. and then 20.2 g (37.5 wt%) of BPDA was added thereto, followed by stirring for 2 hours. Finally, 3.4 g (6.3 wt %) of CBDA was added, and then 53.8 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 9,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 26][Example 26]

상기 실시예 1에서 DMAc 159.3g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 11와 TFDB를 각각 2.8g (5.3 wt%), 22.0g (41.5 wt%)을 가하고 1시간 동안 교반하여 화합물 11 및 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 23.7g (44.7 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 4.5g (8.5 wt%)을 첨가한 후, 재차 53.1g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 17,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 159.3 g of DMAc was filled in the reactor and the temperature of the reactor was raised to 40° C., and then 2.8 g (5.3 wt %) and 22.0 g (41.5 wt %) of Compound 11 and TFDB were added thereto, respectively, for 1 hour. Stirring to completely dissolve compound 11 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 23.7 g (44.7 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, 4.5 g (8.5 wt %) of CBDA was added, and then 53.1 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 17,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 27][Example 27]

상기 실시예 1에서 DMAc 154.3g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 5와 TFDB를 각각 2.7g (5.3 wt%), 21.1g (41.1 wt%)을 가하고 1시간 동안 교반하여 화합물 5 및 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 22.8g (44.4 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 4.8g (9.3 wt%)을 첨가한 후, 재차 51.4g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 15,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 154.3 g of DMAc was filled in a reactor, and the temperature of the reactor was raised to 40° C., and then 2.7 g (5.3 wt %) and 21.1 g (41.1 wt %) of Compound 5 and TFDB were added thereto, respectively, for 1 hour. Stirring to completely dissolve compound 5 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 22.8 g (44.4 wt %) of 6FDA was added, followed by stirring for 2 hours. Finally, 4.8 g (9.3 wt %) of PMDA was added, and then 51.4 g of DMAc was added again, followed by reaction at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 15,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 28][Example 28]

상기 실시예 1에서 DMAc 157.3g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2와 TFDB를 각각 2.5g (4.8 wt%), 20.5g (39.1 wt%)을 가하고 1시간 동안 교반하여 화합물 2 및 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 25.2g (48.1 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 BPDA 4.2g (8 wt%)을 첨가한 후, 재차 52.4g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 31,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 157.3 g of DMAc was filled in a reactor, the temperature of the reactor was raised to 40° C., and 2.5 g (4.8 wt %) and 20.5 g (39.1 wt %) of Compound 2 and TFDB were added thereto, respectively, for 1 hour. Stirring to completely dissolve compound 2 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 25.2 g (48.1 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, 4.2 g (8 wt%) of BPDA was added, and then 52.4 g of DMAc was added thereto and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 31,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 29][Example 29]

상기 실시예 1에서 DMAc 159.6g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2, 화합물 11 그리고 TFDB를 각각 5.1g (9.6 wt%), 5.3g (10.0 wt%), 그리고 13.9g (26.1 wt%)을 가하고 1시간 동안 교반하여 화합물 2, 화합물 11 그리고 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 25.7g (48.3 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 3.2g (6.0 wt%)을 첨가한 후, 재차 53.2g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 15,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 159.6 g of DMAc was filled in the reactor, and the temperature of the reactor was raised to 40° C., and then Compound 2, Compound 11, and TFDB were each added to 5.1 g (9.6 wt%), 5.3g (10.0 wt%), and 13.9 g (26.1 wt%) was added and stirred for 1 hour to completely dissolve Compound 2, Compound 11 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 25.7 g (48.3 wt %) of 6FDA was added, followed by stirring for 2 hours. Finally, 3.2 g (6.0 wt%) of PMDA was added, and then 53.2 g of DMAc was added thereto and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 15,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 30][Example 30]

상기 실시예 1에서 DMAc 157.9g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 7, 화합물 11 그리고 TFDB를 각각 5.3g (10.1 wt%), 6.9g (13.1 wt%), 그리고 18.2g (34.6 wt%)을 가하고 1시간 동안 교반하여 화합물 7, 화합물 11 그리고 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 11.1g (21.1 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 11.1g (21.1 wt%)을 첨가한 후, 재차 52.6g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 16,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 157.9 g of DMAc was filled in the reactor, and the temperature of the reactor was raised to 40° C., and then 5.3 g (10.1 wt %), 6.9 g (13.1 wt %) of compound 7, compound 11 and TFDB, respectively, and 18.2 g (34.6 wt%) was added and stirred for 1 hour to completely dissolve Compound 7, Compound 11 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 11.1 g (21.1 wt%) of BPDA was added thereto, followed by stirring for 2 hours. Finally, after adding 11.1 g (21.1 wt%) of CBDA, 52.6 g of DMAc was added again and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 16,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[실시예 31][Example 31]

상기 실시예 1에서 DMAc 155.7g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 화합물 2, 화합물 5 그리고 TFDB를 각각 5.3g (10.2 wt%), 5.5g (10.6 wt%), 그리고 14.5g (27.9 wt%)을 가하고 1시간 동안 교반하여 화합물 2, 화합물 5 그리고 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 20.1g (38.7 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 6.6g (12.7 wt%)을 첨가한 후, 재차 51.9g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 8,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 155.7 g of DMAc was filled in a reactor, and the temperature of the reactor was raised to 40° C., and then Compound 2, Compound 5 and TFDB were each added to 5.3 g (10.2 wt %), 5.5 g (10.6 wt %), and 14.5 g (27.9 wt%) was added and stirred for 1 hour to completely dissolve Compound 2, Compound 5 and TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 20.1 g (38.7 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, 6.6 g (12.7 wt%) of PMDA was added, and then 51.9 g of DMAc was added and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 8,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[비교예 1][Comparative Example 1]

상기 실시예 1에서 DMAc 158.7g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, TFDB 26.0g (49.1 wt%)을 가하고 1시간 동안 교반하여 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 18.0g (34 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 8.9g (16.8 wt%)을 첨가한 후, 재차 52.9g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 110,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 158.7 g of DMAc was filled in a reactor, the temperature of the reactor was raised to 40° C., 26.0 g (49.1 wt%) of TFDB was added, and the mixture was stirred for 1 hour to completely dissolve TFDB. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 18.0 g (34 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, 8.9 g (16.8 wt %) of PMDA was added, and then 52.9 g of DMAc was added again, followed by reaction at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 110,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[비교예 2][Comparative Example 2]

상기 실시예 1에서 DMAc 158.9g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, TFDB 30.0g (56.6 wt%)을 가하고 1시간 동안 교반하여 TFDB를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 13.8g (26 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 9.2g (17.4 wt%)을 첨가한 후, 재차 53.0g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 190,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 158.9 g of DMAc was filled in a reactor, the temperature of the reactor was raised to 40° C., 30.0 g (56.6 wt%) of TFDB was added, and the mixture was stirred for 1 hour to completely dissolve TFDB. Thereafter, the temperature of the reactor was cooled to 30° C. and then 13.8 g (26 wt %) of BPDA was added thereto, followed by stirring for 2 hours. Finally, 9.2 g (17.4 wt %) of CBDA was added, and then 53.0 g of DMAc was added again and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 190,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[비교예 3][Comparative Example 3]

상기 실시예 1에서 DMAc 161.0g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 4,4'-DDS 23.0g (42.8 wt%)을 가하고 1시간 동안 교반하여 4,4'-DDS 를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 20.6g (38.4 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 10.1g (18.8 wt%)을 첨가한 후, 재차 53.7g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 74,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 161.0 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., 23.0 g (42.8 wt%) of 4,4'-DDS was added, and 4,4'-DDS was stirred for 1 hour. was completely dissolved. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 20.6 g (38.4 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, after adding 10.1 g (18.8 wt%) of PMDA, 53.7 g of DMAc was added again and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 74,000 cP at 20% solids was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[비교예 4][Comparative Example 4]

상기 실시예 1에서 DMAc 158.0g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 4,4'-DDS 26.5g (50.3 wt%)을 가하고 1시간 동안 교반하여 4,4'-DDS를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 15.7g (29.8 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 10.5g (19.9 wt%)을 첨가한 후, 재차 52.7g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 81,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 158.0 g of DMAc was filled in a reactor, the temperature of the reactor was raised to 40° C., 26.5 g (50.3 wt %) of 4,4'-DDS was added, and 4,4'-DDS was stirred for 1 hour. was completely dissolved. Thereafter, the temperature of the reactor was cooled to 30° C. and then 15.7 g (29.8 wt %) of BPDA was added thereto, followed by stirring for 2 hours. Finally, after adding 10.5 g (19.9 wt%) of CBDA, 52.7 g of DMAc was added again and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 81,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[비교예 5][Comparative Example 5]

상기 실시예 1에서 DMAc 157.9g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, BIS-AT-AF 27.5g (52.2 wt%)을 가하고 1시간 동안 교반하여 BIS-AT-AF를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 16.9g (32.1 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 8.3g (15.7 wt%)을 첨가한 후, 재차 52.6g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 45,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 157.9 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., 27.5 g (52.2 wt %) of BIS-AT-AF was added, and the mixture was stirred for 1 hour to completely complete BIS-AT-AF. dissolved. Thereafter, the temperature of the reactor was cooled to 30° C. and then 16.9 g (32.1 wt%) of 6FDA was added thereto, followed by stirring for 2 hours. Finally, 8.3 g (15.7 wt %) of PMDA was added, and then 52.6 g of DMAc was added again, followed by reaction at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 45,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[비교예 6][Comparative Example 6]

상기 실시예 1에서 DMAc 161.0g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, BIS-AT-AF 32.0g (59.6 wt%)을 가하고 1시간 동안 교반하여 BIS-AT-AF를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 13.0g (24.2 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 8.7g (16.2 wt%)을 첨가한 후, 재차 53.7g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 56,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 161.0 g of DMAc was filled in the reactor, the temperature of the reactor was raised to 40° C., 32.0 g (59.6 wt %) of BIS-AT-AF was added, and the mixture was stirred for 1 hour to completely complete BIS-AT-AF. dissolved. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 13.0 g (24.2 wt%) of BPDA was added, followed by stirring for 2 hours. Finally, 8.7 g (16.2 wt%) of CBDA was added, and then 53.7 g of DMAc was added again and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 56,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[비교예 7][Comparative Example 7]

상기 실시예 1에서 DMAc 159.2g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 4,4'-옥시디아닐린 (이하 4,4'-ODA라 함) 20.0g (37.7 wt%)을 가하고 1시간 동안 교반하여 4,4'-ODA를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 6FDA 22.2g (41.8 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 PMDA 10.9g (20.5 wt%)을 첨가한 후, 재차 53.1g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 44,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 159.2 g of DMAc was filled in a reactor, the temperature of the reactor was raised to 40° C., and 20.0 g (37.7 wt%) of 4,4'-oxydianiline (hereinafter referred to as 4,4'-ODA) was added and stirred for 1 hour to completely dissolve 4,4'-ODA. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., after which 22.2 g (41.8 wt%) of 6FDA was added, followed by stirring for 2 hours. Finally, after adding 10.9 g (20.5 wt%) of PMDA, 53.1 g of DMAc was added again, followed by reaction at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 44,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

[비교예 8][Comparative Example 8]

상기 실시예 1에서 DMAc 153.5g을 반응기에 채우고, 반응기의 온도를 40℃로 승온시킨 후, 4,4'-ODA 23.0g (44.9 wt%)을 가하고 1시간 동안 교반하여 4,4'-ODA를 완전히 용해시켰다. 그 후, 반응기의 온도를 30℃로 냉각 및 유지를 하였으며, 이후 BPDA 16.9g (33 wt%)를 첨가한 후, 2시간 동안 교반하였다. 마지막으로 CBDA 11.3g (22.1 wt%)을 첨가한 후, 재차 51.2g의 DMAc를 첨가하고 30℃에서 24시간 동안 반응하였다. 반응이 완료된 후, 감압장치에 pore 크기가 1㎛인 유리필터를 거쳐 고형분 20%에서 점도가 약 53,000 cP인 폴리아믹산 용액을 얻었다.In Example 1, 153.5 g of DMAc was filled in a reactor, the temperature of the reactor was raised to 40° C., 23.0 g (44.9 wt%) of 4,4'-ODA was added, and the mixture was stirred for 1 hour to 4,4'-ODA. was completely dissolved. Thereafter, the temperature of the reactor was cooled and maintained at 30° C., and then 16.9 g (33 wt%) of BPDA was added thereto, followed by stirring for 2 hours. Finally, after adding 11.3 g (22.1 wt%) of CBDA, 51.2 g of DMAc was added again and reacted at 30° C. for 24 hours. After the reaction was completed, a polyamic acid solution having a viscosity of about 53,000 cP at 20% solid content was obtained through a glass filter having a pore size of 1 μm in a pressure reducing device.

제조된 폴리아믹산 용액을 이용하여 상기 실시예 1과 동일한 방법으로 투명 폴리이미드 필름을 제조하였다.A transparent polyimide film was prepared in the same manner as in Example 1 using the prepared polyamic acid solution.

상기 실시예 1~31 및 비교예 1~8에서 제조된 폴리아믹산 조성물의 조성은 하기 표 1 및 2와 같다. The compositions of the polyamic acid compositions prepared in Examples 1 to 31 and Comparative Examples 1 to 8 are shown in Tables 1 and 2 below.

디아민 (몰%)Diamine (mol%) 산이무수물 (몰%)Acid dianhydride (mol%) 제1모노머first monomer 제2모노머second monomer 제3모노머3rd monomer 제1모노머first monomer 제2모노머second monomer 실시예1Example 1 화학식2 (80)Formula 2 (80) -- 4,4'-DDS (20)4,4'-DDS (20) 6-FDA (60)6-FDA (60) PMDA (40)PMDA (40) 실시예2Example 2 화합물7(80)compound 7 (80) -- BIS-AT-AF (20)BIS-AT-AF (20) 6-FDA (80)6-FDA (80) BPDA (20)BPDA (20) 실시예3Example 3 화합물11(80)compound 11 (80) -- TFDB (20)TFDB (20) BPDA (20)BPDA (20) CBDA (30)CBDA (30) 실시예4Example 4 화합물2 (80)compound 2 (80) -- TFDB (20)TFDB (20) 6-FDA (60)6-FDA (60) CBDA (40)CBDA (40) 실시예5Example 5 화합물2 (60)compound 2 (60) -- 4,4'-DDS (40)4,4'-DDS (40) 6-FDA (40)6-FDA (40) BPDA (60)BPDA (60) 실시예6Example 6 화합물7 (60)compound 7 (60) -- BIS-AT-AF (40)BIS-AT-AF (40) BPDA (70)BPDA (70) PMDA (30)PMDA (30) 실시예7Example 7 화합물11 (60)compound 11 (60) -- TFDB (40)TFDB (40) PMDA (50)PMDA (50) CBPA (50)CBPA (50) 실시예8Example 8 화합물2 (60)compound 2 (60) -- TFDB (40)TFDB (40) 6-FDA (80)6-FDA (80) PMDA (20)PMDA (20) 실시예9Example 9 화합물2 (40)compound 2 (40) -- 4,4'-DDS (60)4,4'-DDS (60) 6-FDA (40)6-FDA (40) CBDA (60)CBDA (60) 실시예10Example 10 화합물7 (40)compound 7 (40) -- BIS-AT-AF (60)BIS-AT-AF (60) BPDA (50)BPDA (50) CBDA (50)CBDA (50) 실시예11Example 11 화합물11 (40)compound 11 (40) -- TFDB (60)TFDB (60) 6-FDA (70)6-FDA (70) PMDA (30)PMDA (30) 실시예12Example 12 화합물5 (40)compound 5 (40) -- TFDB (60)TFDB (60) BPDA (70)BPDA (70) PMDA (30)PMDA (30) 실시예13Example 13 화합물2 (40)compound 2 (40) -- TFDB (60)TFDB (60) 6-FDA (80)6-FDA (80) PMDA (20)PMDA (20) 실시예14Example 14 화합물2 (20)compound 2 (20) -- 4,4'-DDS (80)4,4'-DDS (80) PMDA (40)PMDA (40) CBDA (60)CBDA (60) 실시예15Example 15 화합물7 (20)compound 7 (20) -- BIS-AT-AF (80)BIS-AT-AF (80) BPDA (50)BPDA (50) PMDA (50)PMDA (50) 실시예16Example 16 화합물11 (20)compound 11 (20) -- TFDB (80)TFDB (80) 6-FDA (60)6-FDA (60) CBDA (40)CBDA (40) 실시예17Example 17 화합물5 (20)compound 5 (20) -- TFDB (80)TFDB (80) 6-FDA (40)6-FDA (40) BPDA (60)BPDA (60) 실시예18Example 18 화합물2 (20)compound 2 (20) -- TFDB (80)TFDB (80) 6-FDA (80)6-FDA (80) PMDA (20)PMDA (20) 실시예19Example 19 화합물2 (10)compound 2 (10) 화합물11 (10)compound 11 (10) 4,4'-DDS (80)4,4'-DDS (80) BPDA (80)BPDA (80) CBDA (20)CBDA (20) 실시예20Example 20 화합물2 (10)compound 2 (10) 화합물7 (10)compound 7 (10) BIS-AT-AF (80)BIS-AT-AF (80) BPDA (50)BPDA (50) PMDA (50)PMDA (50) 실시예21Example 21 화합물7 (10)compound 7 (10) 화합물11(10) compound 11 (10) TFDB (80)TFDB (80) 6-FDA (40)6-FDA (40) CBDA (60)CBDA (60) 실시예22Example 22 화합물2 (10)compound 2 (10) 화합물5 (10)compound 5 (10) TFDB (80)TFDB (80) 6-FDA (70)6-FDA (70) CBDA (30)CBDA (30) 실시예23Example 23 화합물2 (10)compound 2 (10) 화합물7 (10)compound 7 (10) TFDB (80)TFDB (80) 6-FDA (70)6-FDA (70) PMDA (30)PMDA (30) 실시예24Example 24 화합물2 (10)compound 2 (10) -- 4,4'-DDS (90)4,4'-DDS (90) BPDA (40)BPDA (40) CBDA (60)CBDA (60) 실시예25Example 25 화합물7 (10)compound 7 (10) -- BIS-AT-AF (90)BIS-AT-AF (90) BPDA (80)BPDA (80) CBDA (20)CBDA (20) 실시예26Example 26 화합물11 (10)compound 11 (10) -- TFDB (90)TFDB (90) 6-FDA (70)6-FDA (70) CBDA (30)CBDA (30) 실시예27Example 27 화합물5 (10)compound 5 (10) -- TFDB (90)TFDB (90) 6-FDA (70)6-FDA (70) PMDA (30)PMDA (30) 실시예28Example 28 화합물2 (10)compound 2 (10) -- TFDB (90)TFDB (90) 6-FDA (80)6-FDA (80) BPDA (20)BPDA (20) 실시예29Example 29 화합물2 (20)compound 2 (20) 화합물11 (20)compound 11 (20) TFDB (60)TFDB (60) 6-FDA (80)6-FDA (80) PMDA (20)PMDA (20) 실시예30Example 30 화합물7 (20)compound 7 (20) 화합물11 (20)compound 11 (20) TFDB (60)TFDB (60) BPDA (40)BPDA (40) CBDA (60)CBDA (60) 실시예31Example 31 화합물2 (20)compound 2 (20) 화합물5 (20)compound 5 (20) TFDB (60)TFDB (60) 6-FDA (60)6-FDA (60) PMDA (40)PMDA (40)

디아민 (몰%)Diamine (mol%) 산이무수물 (몰%)Acid dianhydride (mol%) 모노머monomer 제1모노머first monomer 제2모노머second monomer 비교예1Comparative Example 1 TFDB (100)TFDB (100) 6-FDA (5)6-FDA (5) PMDA (50)PMDA (50) 비교예2Comparative Example 2 TFDB (100)TFDB (100) BPDA (50)BPDA (50) CBDA (50)CBDA (50) 비교예3Comparative Example 3 4,4'-DDS (100)4,4'-DDS (100) 6-FDA (50)6-FDA (50) PMDA (50)PMDA (50) 비교예4Comparative Example 4 4,4'-DDS (100)4,4'-DDS (100) BPDA (50)BPDA (50) CBDA (50)CBDA (50) 비교예5Comparative Example 5 BIS-AT-AF (100)BIS-AT-AF (100) 6-FDA (50)6-FDA (50) PMDA (50)PMDA (50) 비교예6Comparative Example 6 BIS-AT-AF (100)BIS-AT-AF (100) BPDA (50)BPDA (50) CBDA (50)CBDA (50) 비교예7Comparative Example 7 4,4'-ODA (100)4,4'-ODA (100) 6-FDA (50)6-FDA (50) PMDA (50)PMDA (50) 비교예8Comparative Example 8 4,4'-ODA (100)4,4'-ODA (100) BPDA (50)BPDA (50) CBDA (50)CBDA (50)

[물성 평가][Evaluation of physical properties]

실시예 1~31과 비교예 1~8에서 제조된 투명 폴리이미드 필름의 물성을 하기와 같은 방법으로 평가하였으며, 그 결과를 하기 표 3에 나타내었다.The physical properties of the transparent polyimide films prepared in Examples 1 to 31 and Comparative Examples 1 to 8 were evaluated in the following manner, and the results are shown in Table 3 below.

<물성평가 방법><Method for evaluating physical properties>

1) 필름 두께 측정: Mitutoyo사의 Micrometer(Model No.293-140)로 두께를 측정하였으며 장치의 편차는 Δ0.5% 이하이다.1) Film thickness measurement: The thickness was measured with a Mitutoyo Micrometer (Model No. 293-140), and the deviation of the device is Δ0.5% or less.

2) 광투과도(Transmittance): UV-Vis-NIR Spectrophotometer을 이용하여 550nm 파장대에서 측정하였다.2) Light transmittance (Transmittance): It was measured at a wavelength of 550 nm using a UV-Vis-NIR Spectrophotometer.

3) Y.I(Yellow Index): UV 분광계(KONICA MINOLTA CM-3700d)를 이용하여 ASTM E313-73 규격으로 황색도를 측정하였다.3) Y.I (Yellow Index): Yellowness was measured according to ASTM E313-73 standard using a UV spectrometer (KONICA MINOLTA CM-3700d).

4) 위상차(Rth): RETS-100(OTSUKA ELECTRONICS)을 이용하여 입사각 45도에서 측정하여 수직방향 위상차를 측정하였다. 보다 구체적으로, 샘플크기는 가로 세로 각각 5㎝ 정사각형 형태로 시편을 샘플홀더에 장착하고 모노크로미터를 이용하여 550nm으로 고정하였으며, 두께방향 위상차(Rth)은 입사각을 45˚에서 측정하였다. 4) Phase difference (R th ): The vertical phase difference was measured by measuring at an incident angle of 45 degrees using RETS-100 (OTSUKA ELECTRONICS). More specifically, the sample size was 5 cm horizontally and vertically, and the specimen was mounted in a sample holder and fixed at 550 nm using a monochromator, and the thickness direction retardation (R th ) was measured at an incident angle of 45°.

Rth = [(nx + ny) / 2 - nz] ×dR th = [(n x + n y ) / 2 - n z ] ×d

여기서, nx는 면 내 굴절율 중 가장 큰 굴절율이고, ny는 면 내 굴절율 중 nx와 수직인 굴절율이며, nz는 수직인 굴절율이고, d는 폴리이미드 필름의 두께를 10㎛로 환산하여 계산한 값이다. Here, n x is the largest refractive index among in-plane refractive indices, n y is a refractive index perpendicular to n x among in-plane refractive indices, n z is a perpendicular refractive index, and d is the thickness of the polyimide film by converting it to 10 μm. is the calculated value.

5) 유리전이온도(Tg): DMA(TA Instrument, 모델명: Q800)를 이용하여 30~400℃ 범위에서 유리전이온도를 측정하였다.5) Glass transition temperature (Tg): DMA (TA Instrument, model name: Q800) was used to measure the glass transition temperature in the range of 30 ~ 400 ℃.

6) 열팽창계수(CTE): TMA(TA Instrument, 모델명: Q400)를 이용하여 50~350℃에서 측정하였다.6) Coefficient of Thermal Expansion (CTE): It was measured at 50-350° C. using TMA (TA Instrument, model name: Q400).

7) 접착력 평가: ASTM D 3359을 이용하여 평가하였다.7) Adhesion evaluation: evaluated using ASTM D 3359.

유리 기판 위에 투명 폴리아믹산 수지를 막 두께 15㎛ 이하로 코팅한 후 건조 및 이미드 폐환 반응을 진행하였으며, 형성된 폴리이미드 박막 표면을 칼로 커팅하고, 커팅된 표면 위에 접착력 측정용 테이프를 붙였다가 떼어낸 후, 폴리이미드 접착면의 박리 상태를 확인하였다. After coating a transparent polyamic acid resin with a film thickness of 15 μm or less on a glass substrate, drying and imide ring closure reaction were performed. Then, the peeling state of the polyimide adhesive surface was confirmed.

이때, 5B는 박리된 폴리이미드의 백분율이 0%, 4B는 박리된 폴리이미드의 백분율이 5% 이하, 3B는 박리된 폴리이미드의 백분율이 5~15%, 2B는 박리된 폴리이미드의 백분율이 15~35%, 1B는 박리된 폴리이미드의 백분율이 35~65%, 0B는 박리된 폴리이미드의 백분율이 65% 초과인 경우를 각각 나타낸다. In this case, 5B indicates that the percentage of peeled polyimide is 0%, 4B indicates that the percentage of peeled polyimide is 5% or less, 3B indicates that the percentage of peeled polyimide is 5 to 15%, and 2B indicates that the percentage of peeled polyimide is 5% or less. 15-35%, 1B shows the case where the percentage of peeled polyimide is 35-65%, and 0B shows the case where the percentage of peeled polyimide is more than 65%, respectively.

참고로, 하기 도 1은 접착력 평가 결과가 5B인 실시예 1의 폴리이미드 필름을 나타내는 사진이며, 도 2는 접착력 평가 결과가 0B인 비교예 1~8의 폴리이미드 필름을 나타내는 사진이다. For reference, FIG. 1 below is a photograph showing the polyimide film of Example 1 having an adhesion evaluation result of 5B, and FIG. 2 is a photograph showing the polyimide films of Comparative Examples 1 to 8 having an adhesion evaluation result of 0B.

Figure 112015126810738-pat00013
Figure 112015126810738-pat00013

상기 표 3의 결과를 살펴본 결과, 본 발명에 따른 화학식 1의 디아민 모노머가 사용된 실시예 1~31의 필름의 경우, 상기 화학식 1의 디아민을 비포함하는 비교예 1~8의 필름과 비교하여 광투과도 상승, 황색도 감소 및 위상차가 감소되는 우수한 광학 특성을 가지며, 유리전이온도 상승에 의한 우수한 내열특성 및 열팽창계수 특성을 가짐을 알 수 있었다. 특히, 화학식 1의 디아민이 포함되어 있는 실시예 1~31의 필름은 비교예 1~8과 대조적으로 높은 접착력 특성을 가진다는 것을 알 수 있었다. As a result of looking at the results of Table 3, in the case of the films of Examples 1 to 31 in which the diamine monomer of Formula 1 according to the present invention was used, compared with the films of Comparative Examples 1 to 8 that do not include the diamine of Formula 1, It was found that it has excellent optical properties such as increased light transmittance, reduced yellowness, and reduced phase difference, and has excellent heat resistance and thermal expansion coefficient properties due to an increase in glass transition temperature. In particular, it was found that the films of Examples 1 to 31 containing the diamine of Formula 1 had high adhesion properties in contrast to Comparative Examples 1 to 8.

따라서, 본 발명의 폴리이미드 필름은 종래 폴리이미드 필름의 광학적, 열적, 접착력 특성이 향상됨을 알 수 있으며, 상기 폴리이미드 필름은 플랫 패널 디스플레이 제조시 LCD 유리기판을 대체할 무색 투명한 플렉시블 디스플레이 플라스틱 기판으로 유용하게 적용할 수 있음을 확인할 수 있었다.Therefore, it can be seen that the polyimide film of the present invention improves the optical, thermal, and adhesive properties of the conventional polyimide film, and the polyimide film is a colorless and transparent flexible display plastic substrate that will replace the LCD glass substrate when manufacturing a flat panel display. It was confirmed that it can be applied usefully.

Claims (11)

(a) 하기 화학식 1로 표시되는 화합물을 함유하는 디아민(A)과, 불소화 제1디아민; 설폰계 제2디아민, 히드록시계 제3디아민, 에테르계 제4디아민 및 지환족 제5디아민으로 구성된 군으로부터 선택되는 1종 이상의 디아민 화합물(B)을 함유하는 디아민;
(b) 산이무수물; 및
(c) 유기용매를 포함하며,
상기 화학식 1로 표시되는 화합물(A)은 전체 디아민 100 몰%를 기준으로 10 내지 80 몰% 범위로 포함되는며,
상기 불소화 제1디아민; 설폰계 제2디아민, 히드록시계 제3디아민, 에테르계 제4디아민 및 지환족 제5디아민으로 구성된 군으로부터 선택되는 1종 이상의 디아민 화합물(B)은 전체 디아민 100 몰%를 기준으로 90 내지 20 몰% 범위로 포함되며,
상기 폴리아믹산 조성물을 이미드화하여 형성된 필름의 ASTM D 3359 규격에 의한 유리기판에서의 접착력이 2B 이상인, 것을 특징으로 하는 폴리아믹산 조성물.
[화학식 1]
Figure 112022066860880-pat00014

상기 화학식 1에서,
A는 단일결합이거나, 또는
Figure 112022066860880-pat00015
,
Figure 112022066860880-pat00016
Figure 112022066860880-pat00017
으로 이루어진 군으로부터 선택되며,
X1 및 X2은 서로 동일하거나 상이하며, 각각 독립적으로 수소, 할로겐, C1~C6의 알킬기, 및 하나 이상의 수소가 할로겐 원자로 치환된 C1~C6의 알킬기로 이루어진 군에서 선택되며,
복수의 Y는 수소결합성 관능기로서, 각각 독립적으로 히드록시기이며,
n은 0 내지 2의 정수이며,
다만 상기 화학식 1의 화합물은 적어도 하나의 히드록시기를 포함한다.
(a) a diamine (A) containing a compound represented by the following formula (1) and a fluorinated primary diamine; a diamine containing at least one diamine compound (B) selected from the group consisting of a sulfone-based second diamine, a hydroxy-based third diamine, an ether-based fourth diamine, and an alicyclic fifth diamine;
(b) an acid dianhydride; and
(c) containing an organic solvent;
The compound (A) represented by Formula 1 is included in the range of 10 to 80 mol% based on 100 mol% of the total diamine,
the fluorinated first diamine; At least one diamine compound (B) selected from the group consisting of a sulfone-based second diamine, a hydroxy-based third diamine, an ether-based fourth diamine, and an alicyclic fifth diamine is 90 to 20 based on 100 mol% of the total diamine included in the mole % range,
The polyamic acid composition, characterized in that the adhesive force of the film formed by imidizing the polyamic acid composition on a glass substrate according to ASTM D 3359 standard is 2B or more.
[Formula 1]
Figure 112022066860880-pat00014

In Formula 1,
A is a single bond, or
Figure 112022066860880-pat00015
,
Figure 112022066860880-pat00016
and
Figure 112022066860880-pat00017
is selected from the group consisting of
X 1 and X 2 are the same as or different from each other, and are each independently selected from the group consisting of hydrogen, halogen, a C 1 ~ C 6 alkyl group, and a C 1 ~ C 6 alkyl group in which at least one hydrogen is substituted with a halogen atom,
A plurality of Y is a hydrogen-bonding functional group, each independently a hydroxyl group,
n is an integer from 0 to 2,
However, the compound of Formula 1 includes at least one hydroxyl group.
제1항에 있어서,
상기 X1 및 X2는 각각 독립적으로 F 또는 CF3인 전자흡인성기(EWG)인 것을 폴리아믹산 조성물.
According to claim 1,
The X 1 and X 2 are each independently F or CF 3 An electron withdrawing group (EWG) of a polyamic acid composition.
제1항에 있어서,
상기 화학식 1로 표시되는 화합물은 하기 화학식으로 표시되는 화합물 군에서 선택되는 것을 특징으로 하는 폴리아믹산 조성물.
Figure 112022066860880-pat00018

According to claim 1,
The compound represented by the formula (1) is a polyamic acid composition, characterized in that selected from the group of compounds represented by the following formula.
Figure 112022066860880-pat00018

삭제delete 삭제delete 제1항에 있어서,
상기 산이무수물은 불소화 방향족 제1산이무수물, 지환족 제2산이무수물 및 비불소화 방향족 제3산이무수물로 구성된 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 폴리아믹산 조성물.
According to claim 1,
The acid dianhydride comprises at least one selected from the group consisting of a fluorinated aromatic primary acid dianhydride, an alicyclic secondary acid dianhydride, and a non-fluorinated aromatic tertiary acid dianhydride.
제6항에 있어서,
상기 제1산이무수물, 제2산이무수물 및 제3 산이무수물로 구성된 군에서 선택되는 1종 이상의 화합물의 함량은 전체 산이무수물 100 몰%를 기준으로 10 내지 100 몰%인 것을 특징으로 하는 폴리아믹산 조성물.
7. The method of claim 6,
The content of at least one compound selected from the group consisting of the first acid dianhydride, the second acid dianhydride and the third acid dianhydride is 10 to 100 mol% based on 100 mol% of the total acid dianhydride. .
제1항에 있어서,
상기 디아민(a)과 상기 산이무수물(b)의 몰수의 비(a/b)는 0.7 내지 1.3 범위인 것을 특징으로 하는 폴리아믹산 조성물.
According to claim 1,
The polyamic acid composition, characterized in that the ratio (a/b) of the number of moles of the diamine (a) and the acid dianhydride (b) is in the range of 0.7 to 1.3.
제1항 내지 제3항, 제6항 내지 제8항 중 어느 한 항에 기재된 폴리아믹산 조성물을 이미드화하여 제조된 투명 폴리이미드 필름. A transparent polyimide film produced by imidizing the polyamic acid composition according to any one of claims 1 to 3 and 6 to 8. 제9항에 있어서,
하기 (i) 내지 (vi)의 물성 조건을 만족하는 것을 특징으로 하는 투명 폴리이미드 필름:
(i) ASTM D 3359 규격에 의한 유리기판에서의 접착력이 2B 이상이며,
(ii) ASTM E313-73 규격에 의한 황색도가 7 이하이며(10㎛ 기준),
(iii) 파장 550nm에서의 광선 투과율이 89% 이상이며,
(iv) 유리전이온도(Tg)가 330 내지 400℃ 범위이며,
(v) TMA 측정에 의한 열팽창계수(CTE)가 10~60 ppm/℃ 범위이며,
(vi) 하기 식으로 산출되는 두께 방향의 위상차(Rth)가 두께 10㎛ 기준으로 80nm 내지 400nm 인 것을 특징으로 하는 투명 폴리이미드 수지 필름.
위상차 Rth (nm) = [(nx + ny) / 2 - nz] ×d
(nx는 파장 550nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 가장 큰 굴절율; ny는 파장 550nm의 광으로 측정되는 폴리이미드 수지 필름의 면 내 굴절율 중 nx와 수직인 굴절율이며; nz는 파장 550nm의 광으로 측정되는 폴리이미드 수지 필름의 두께 방향의 굴절율이고; d는 폴리이미드 필름의 두께이다.)
10. The method of claim 9,
Transparent polyimide film, characterized in that it satisfies the physical property conditions of the following (i) to (vi):
(i) The adhesive strength on the glass substrate according to ASTM D 3359 is 2B or more,
(ii) Yellowness according to ASTM E313-73 standard is 7 or less (based on 10㎛),
(iii) a light transmittance of 89% or more at a wavelength of 550 nm;
(iv) the glass transition temperature (T g ) is in the range of 330 to 400 ℃,
(v) the coefficient of thermal expansion (CTE) by TMA measurement is in the range of 10 to 60 ppm / ℃,
(vi) A transparent polyimide resin film, characterized in that the retardation (R th ) in the thickness direction calculated by the following formula is 80 nm to 400 nm based on a thickness of 10 μm.
Phase difference R th (nm) = [(n x + n y ) / 2 - n z ] ×d
(n x is the largest refractive index among the in-plane refractive indexes of the polyimide resin film measured with light having a wavelength of 550 nm; n y is the refractive index perpendicular to n x among the in-plane refractive indexes of the polyimide resin film measured with light having a wavelength of 550 nm ; n z is the refractive index in the thickness direction of the polyimide resin film measured with light having a wavelength of 550 nm; d is the thickness of the polyimide film.)
제9항에 있어서,
플렉서블 디스플레이용 기판 또는 보호막으로 사용되는 것을 특징으로 하는 투명 폴리이미드 필름.
10. The method of claim 9,
A transparent polyimide film used as a substrate or a protective film for a flexible display.
KR1020150185930A 2015-12-24 2015-12-24 Polyamic acid composition having improved adherent property and trasparent polyimide film using the same KR102463845B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020150185930A KR102463845B1 (en) 2015-12-24 2015-12-24 Polyamic acid composition having improved adherent property and trasparent polyimide film using the same
CN201680075840.1A CN108473677B (en) 2015-12-24 2016-11-09 Polyamide acid composition with improved adhesive strength and polyimide film comprising same
PCT/KR2016/012828 WO2017111299A1 (en) 2015-12-24 2016-11-09 Polyamic acid composition with improved adhesive strength and polyimide film comprising same
JP2018533263A JP2019506478A (en) 2015-12-24 2016-11-09 Polyamic acid composition having improved adhesion and polyimide film containing the same
JP2021036799A JP7163437B2 (en) 2015-12-24 2021-03-09 Polyamic acid composition with improved adhesion and polyimide film containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150185930A KR102463845B1 (en) 2015-12-24 2015-12-24 Polyamic acid composition having improved adherent property and trasparent polyimide film using the same

Publications (2)

Publication Number Publication Date
KR20170076096A KR20170076096A (en) 2017-07-04
KR102463845B1 true KR102463845B1 (en) 2022-11-04

Family

ID=59090743

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150185930A KR102463845B1 (en) 2015-12-24 2015-12-24 Polyamic acid composition having improved adherent property and trasparent polyimide film using the same

Country Status (4)

Country Link
JP (2) JP2019506478A (en)
KR (1) KR102463845B1 (en)
CN (1) CN108473677B (en)
WO (1) WO2017111299A1 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6900152B2 (en) * 2016-04-07 2021-07-07 株式会社カネカ Film for glass replacement material
WO2019073972A1 (en) * 2017-10-11 2019-04-18 株式会社カネカ Polyimide resin and production method therefor, polyimide solution, and polyimide film and production method therefor
JP7039947B2 (en) * 2017-11-17 2022-03-23 大日本印刷株式会社 Polyimide film, polyimide precursor, method for manufacturing polyimide film, and display device members
KR102430152B1 (en) * 2017-12-08 2022-08-08 주식회사 두산 Polyamic acid solution, transparent polyimide film and transparent substrate using the same
WO2019142866A1 (en) * 2018-01-17 2019-07-25 旭化成株式会社 Polyimide precursor resin composition
WO2020040495A1 (en) * 2018-08-20 2020-02-27 주식회사 엘지화학 Polyimide precursor composition, method of preparing same, and polyimide film using same
KR102289812B1 (en) * 2018-08-20 2021-08-13 주식회사 엘지화학 A composition for preparing polyimide, and polyimide film and flexible device prepared by using same
KR102264423B1 (en) * 2018-08-20 2021-06-14 주식회사 엘지화학 A polyimide precursor composition, a process for preparing same and polyimide film prepared using same
KR101999926B1 (en) * 2018-10-11 2019-07-12 에스케이씨코오롱피아이 주식회사 Polyamic acid Composition for Preparing Polyimide Resin with Superior Adhesive Strength and Polyimide Resin Prepared Therefrom
JP7298141B2 (en) * 2018-11-30 2023-06-27 株式会社リコー CUREABLE COMPOSITION, COMPOSITION CONTAINER, TWO-DIMENSIONAL OR THREE-DIMENSIONAL IMAGE FORMING METHOD AND FORMING APPARATUS, CURED PRODUCT, STRUCTURE, AND MOLDED PROCESSED PRODUCT
KR102551047B1 (en) 2019-02-01 2023-07-04 주식회사 엘지화학 Polyimide film, flexible substrate using same and flexible display comprising flexible substrate
KR102262507B1 (en) * 2019-02-14 2021-06-08 주식회사 엘지화학 Compoistion of polyimide precursor and polyimide film prepared using same
KR102097431B1 (en) * 2019-05-13 2020-04-07 에스케이씨코오롱피아이 주식회사 Polyimide and method for preparing the same
CN111363354A (en) * 2020-03-27 2020-07-03 中天电子材料有限公司 Polyimide colorless transparent film, preparation method thereof and optical PI film
KR20230066345A (en) * 2020-09-10 2023-05-15 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Polymer composition, varnish, and polyimide film
KR20220072009A (en) 2020-11-23 2022-06-02 삼성디스플레이 주식회사 Display device
KR102485698B1 (en) * 2021-02-05 2023-01-06 주식회사 두산 Polyimide film having excellent optical property
KR102493648B1 (en) * 2021-03-04 2023-01-31 주식회사 두산 Polyimide film having excellent resilence property
KR20220144510A (en) 2021-04-20 2022-10-27 에스케이이노베이션 주식회사 Novel diazaspiro compound and use thereof
KR20220155722A (en) 2021-05-17 2022-11-24 에스케이이노베이션 주식회사 Novel diamine compound, polyimide precursor comprising the same, polyimide film and use thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073345A (en) * 2001-06-22 2003-03-12 Mitsui Chemicals Inc New fluorine-containing bisaminophenol compounds and method for producing the same
WO2015152178A1 (en) * 2014-03-31 2015-10-08 日産化学工業株式会社 Method for producing resin thin film, and composition for forming resin thin film
WO2016121691A1 (en) 2015-01-27 2016-08-04 東レ株式会社 Resin, photosensitive resin composition, and electronic component and display device each using same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003294967A (en) * 2002-03-28 2003-10-15 Sumitomo Bakelite Co Ltd Method for manufacturing plastic optical waveguide
JP2011202059A (en) * 2010-03-26 2011-10-13 Toray Ind Inc Resin and positive photosensitive resin composition
KR101543478B1 (en) * 2010-12-31 2015-08-10 코오롱인더스트리 주식회사 Transparent Polyimide film and Method for Preparing the Same
US9982103B2 (en) * 2012-06-29 2018-05-29 Kolon Industries, Inc. Polyimide and polyimide film comprising the same
KR101382170B1 (en) * 2012-07-03 2014-04-07 주식회사 엘지화학 Polyamic acid polymer composite and method for producing same
US10557003B2 (en) * 2012-09-27 2020-02-11 Mitsubishi Gas Chemical Company, Inc. Polyimide resin composition
CN104379636B (en) * 2013-05-20 2018-04-17 可隆工业株式会社 Polyimide resin and the polyimide film prepared by the polyimide resin
KR101650223B1 (en) * 2013-06-11 2016-08-30 주식회사 엘지화학 Polyimide precursor composition
TWI637936B (en) * 2013-09-25 2018-10-11 日商東京應化工業股份有限公司 Radiation-sensitive composition and pattern manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003073345A (en) * 2001-06-22 2003-03-12 Mitsui Chemicals Inc New fluorine-containing bisaminophenol compounds and method for producing the same
WO2015152178A1 (en) * 2014-03-31 2015-10-08 日産化学工業株式会社 Method for producing resin thin film, and composition for forming resin thin film
WO2016121691A1 (en) 2015-01-27 2016-08-04 東レ株式会社 Resin, photosensitive resin composition, and electronic component and display device each using same

Also Published As

Publication number Publication date
JP2021102770A (en) 2021-07-15
CN108473677B (en) 2021-05-04
KR20170076096A (en) 2017-07-04
CN108473677A (en) 2018-08-31
JP2019506478A (en) 2019-03-07
WO2017111299A1 (en) 2017-06-29
JP7163437B2 (en) 2022-10-31

Similar Documents

Publication Publication Date Title
KR102463845B1 (en) Polyamic acid composition having improved adherent property and trasparent polyimide film using the same
KR102417428B1 (en) Polyamic acid composition comprising alicyclic monomer and trasparent polyimide film using the same
KR102430647B1 (en) Polyamic acid composition comprising novel diamine monomer and trasparent polyimide film using the same
KR102430152B1 (en) Polyamic acid solution, transparent polyimide film and transparent substrate using the same
CN110099946B (en) Transparent polyimide film
CN113227207B (en) Polyamic acid composition and transparent polyimide film using same
KR102465044B1 (en) Polyamic acid composition comprising novel anhydride monomer and trasparent polyimide film using the same
JP2024028411A (en) Polyamic acid composition and transparent polyimide film using the same
KR101501875B1 (en) Polyimide-based solution and polyimide-based film prepared by using same
KR20210075610A (en) Polyimide film having excellent weather resistance
KR20210075665A (en) Polyimide film having high yield strain
KR102485698B1 (en) Polyimide film having excellent optical property
CN115298248B (en) Polyimide film having moisture absorption resistance and water absorption resistance
KR20210138351A (en) Polyimide film having low reflexibility
JP2024014746A (en) Polyamic acid resin and transparent polyimide film using the same
KR20220125107A (en) Polyimide film having excellent resilence property

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant