KR102454020B1 - 개선된 광 변환 효율을 갖는 이미지 센서 - Google Patents

개선된 광 변환 효율을 갖는 이미지 센서 Download PDF

Info

Publication number
KR102454020B1
KR102454020B1 KR1020200088151A KR20200088151A KR102454020B1 KR 102454020 B1 KR102454020 B1 KR 102454020B1 KR 1020200088151 A KR1020200088151 A KR 1020200088151A KR 20200088151 A KR20200088151 A KR 20200088151A KR 102454020 B1 KR102454020 B1 KR 102454020B1
Authority
KR
South Korea
Prior art keywords
layer
refractive index
radiation
substrate
index material
Prior art date
Application number
KR1020200088151A
Other languages
English (en)
Other versions
KR20210122006A (ko
Inventor
시-유 리아오
차이-하오 훙
잉-슌 첸
잉-šœ 첸
Original Assignee
타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 filed Critical 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드
Publication of KR20210122006A publication Critical patent/KR20210122006A/ko
Application granted granted Critical
Publication of KR102454020B1 publication Critical patent/KR102454020B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • G01J1/44Electric circuits
    • G01J2001/4446Type of detector
    • G01J2001/448Array [CCD]

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

본 개시는 이미지 센서 디바이스의 방사선 감지(radiation-sensing) 영역 상의 미러(mirror) 마이크로 구조물의 형성을 위한 방법에 대해 기재한다. 방법은, 기판의 전면 표면 내에 개구를 형성하는 단계; 상기 개구의 하부 및 측벽 표면 상에 컨포멀 임플란트 층을 형성하는 단계; 상기 개구의 하부 및 측벽 표면 상에 제1 에피텍셜 층을 성장시키는 단계; 및 상기 개구를 채우도록 상기 제1 에피텍셜 층 상에 제2 에피텍셜 층을 퇴적하는 단계를 포함하며, 상기 제2 에피텍셜 층은 방사선 감지 영역을 형성한다. 방법은, 상기 제2 에피텍셜 층의 노출된 표면 상에 스택을 퇴적하는 단계를 더 포함하고, 상기 스택은, 고굴절률 재료 층 및 저굴절률 재료 층의 교대 쌍들을 포함한다.

Description

개선된 광 변환 효율을 갖는 이미지 센서 {IMAGE SENSOR WITH IMPROVED LIGHT CONVERSION EFFICIENCY}
반도체 이미지 센서는 가시광, 적외선광 등과 같은 인커밍 가시광선 또는 비가시광선을 감지하도록 사용된다. 상보형 금속 산화물 반도체(CMOS; Complementary metal-oxide-semiconductor) 이미지 센서(CIS; CMOS image sensor) 및 CCD(charge-coupled device) 센서가 컴퓨터, 디지털 카메라, 이동 전화, 태블릿, 고글, 과학 장비 등과 같은 다양한 응용제품에 사용된다. 이들 이미지 센서는 입사 방사선을 흡수(예컨대, 감지)하여 전기 신호로 변환하는 픽셀 어레이를 이용한다. 이미지 센서의 예로는, 기판의 “배면”으로부터의 방사선을 감지하는 배면 조명(BSI; back side illuminated) 이미지 센서 디바이스가 있다.
본 개시는 이미지 센서 디바이스의 방사선 감지(radiation-sensing) 영역 상의 미러(mirror) 마이크로 구조물의 형성을 위한 방법에 대해 기재한다. 방법은, 기판의 전면 표면 내에 개구를 형성하는 단계; 상기 개구의 하부 및 측벽 표면 상에 컨포멀 임플란트 층을 형성하는 단계; 상기 개구의 하부 및 측벽 표면 상에 제1 에피텍셜 층을 성장시키는 단계; 및 상기 개구를 채우도록 상기 제1 에피텍셜 층 상에 제2 에피텍셜 층을 퇴적하는 단계를 포함하며, 상기 제2 에피텍셜 층은 방사선 감지 영역을 형성한다. 방법은, 상기 제2 에피텍셜 층의 노출된 표면 상에 스택을 퇴적하는 단계를 더 포함하고, 상기 스택은, 고굴절률 재료 층 및 저굴절률 재료 층의 교대 쌍들을 포함한다.
본 개시의 양상은 다음의 상세한 설명으로부터 첨부 도면과 함께 볼 때 가장 잘 이해된다. 산업계에서의 일반 실시에 따라 다양한 특징부들이 실축척대로 도시되지 않은 것을 유의하여야 한다. 사실상, 다양한 특징부들의 치수는 예시 및 설명을 명확하게 하기 위해 임의로 증가되거나 감소되었을 수 있다.
도 1은 일부 실시예에 따라 배면 조명(BSI) 이미지 센서 디바이스가 ASIC(application specific integrated circuit)에 부착되어 있는 스택의 단면도이다.
도 2는 일부 실시예에 따라 브래그(Bragg) 미러를 갖는 방사선 감지 영역의 확대된 단면도이다.
도 3은 일부 실시예에 따라 배면 조명(BSI) 이미지 센서 디바이스의 방사선 감지 영역 상의 브래그 미러의 형성 프로세스를 기재하는 제조 방법의 흐름도이다.
도 4 내지 도 11은 일부 실시예에 따라 배면 조명(BSI) 이미지 센서 디바이스의 방사선 감지 영역 상의 브래그 미러의 제조 동안의 중간 구조물의 단면도들이다.
도 12a는 일부 실시예에 따라 배면 조명(BSI) 이미지 센서 디바이스의 방사선 감지 영역의 복수의 표면 상에 형성된 브래그 미러의 단면도이다.
도 12b 내지 도 12e는 일부 실시예에 따라 배면 조명(BSI) 이미지 센서 디바이스에서의 복수의 노출된 표면을 갖는 방사선 감지 영역의 제조 동안의 중간 구조물의 단면도들이다.
도 13은 일부 실시예에 따라 배면 조명(BSI) 이미지 센서 디바이스에서의 팔면체 형상의 방사선 감지 영역 상에 형성된 브래그 미러의 단면도이다.
도 14는 일부 실시예에 따라 배면 조명(BSI) 이미지 센서 디바이스에서의 다이아몬드 형상의 방사선 감지 영역 상에 형성된 브래그 미러의 단면도이다.
다음의 개시는 제공되는 주제의 상이한 특징들을 구현하기 위한 많은 다양한 실시예 또는 예를 제공한다. 컴포넌트 및 구성의 구체적 예가 본 개시를 단순화하도록 아래에 기재된다. 이들은 물론 단지 예일 뿐이며 한정하고자 하는 것이 아니다. 예를 들어, 이어지는 다음 기재에 있어서 제2 특징부 상에 제1 특징부를 형성하는 것은, 제1 및 제2 특징부가 직접 접촉하여 형성되는 실시예를 포함할 수 있고, 제1 및 제2 특징부가 직접 접촉하지 않도록 제1 특징부와 제2 특징부 사이에 추가의 특징부가 배치되는 실시예도 또한 포함할 수 있다. 또한, 본 개시는 다양한 예에서 참조 번호 및/또는 문자를 반복할 수 있다. 이 반복은 그 자체가 설명되는 다양한 실시예 및/또는 구성 간의 관계를 지시하는 것은 아니다.
또한, “밑에”, “아래에”, “하부”, “위에”, “상부” 등과 같은 공간적으로 상대적인 용어는 도면에 예시된 바와 같이 하나의 구성요소 또는 특징부의 또다른 구성요소(들) 또는 특징부(들)에 대한 관계를 기재하고자 설명을 쉽게 하기 위해 여기에서 사용될 수 있다. 공간적으로 상대적인 용어는 도면에 도시된 배향에 더하여 사용중이거나 동작중인 디바이스의 상이한 배향들을 망라하도록 의도된다. 장치는 달리 배향될 수 있고(90도 회전되거나 또는 다른 배향으로), 여기에서 사용된 공간적으로 상대적인 기술자는 마찬가지로 그에 따라 해석될 수 있다.
여기에서 사용될 때 용어 “공칭(nominal)”은, 제품의 설계 단계 또는 프로세스 동안 설정되는, 컴포넌트 또는 프로세스 동작에 대한 특성 또는 파라미터의 원하는 값 또는 타겟 값을, 원하는 값 이상 및/또는 이하의 값 범위와 함께, 지칭한다. 값의 범위는 제조 프로세스에서의 약간의 변동 및/또는 허용오차로 인한 것일 수 있다.
일부 실시예에서, 용어 “약” 및 "실질적으로”는, 값의 5 % 내에서 달라지는 주어진 양의 값을 나타낼 수 있다(예컨대, 값의 ±1 %, ±2 %, ±3 %, ±4 %, ±5 %). 이들 값은 단지 예일 뿐이며 한정하고자 하는 것이 아니다. 용어 “약” 및 “실질적으로”는 여기에서의 교시에 비추어 관련 기술분야(들)에서의 숙련자가 해석하는 값의 퍼센티지를 지칭할 수 있음을 이해하여야 할 것이다.
배면 조명(BSI) 이미지 센서 디바이스는 픽셀들 또는 방사선 감지 영역들의 어레이가 안에 형성되어 있는 반도체 기판(예컨대, 실리콘 기판)을 포함한다. 여기에서 개시될 때, 용어 “방사선 감지 영역” 및 “픽셀”은 전반에 걸쳐 상호 교환가능하게 사용될 수 있다. 방사선 감지 영역(픽셀)은 입사 방사선으로부터의 광자를 전기 신호로 변환하도록 구성된다. 전기 신호는 그 후에 BSI 이미지 센서 디바이스에 부착된 프로세싱 컴포넌트에 분산된다. 이러한 이유로, 픽셀 어레이는, 방사선 감지 영역 내에서 생성된 전기 신호를 적합한 프로세싱 컴포넌트에 분산시키도록 구성된 멀티레벨 금속화 층 위에 있다. 멀티레벨 금속화 층은, 여기에서 반도체 기판의 “전면(front side)” 표면으로 지칭되는 반도체 기판의 제1 표면 상에 형성된다. 또한, 픽셀 어레이는 반도체 기판 안으로 연장하며, 반도체 기판의 전면 표면의 반대편인 반도체 기판의 제2 표면으로부터 방사선을 수신하도록 구성된다. 방사선을 수신하는(그리고 반도체 기판의 전면 표면의 반대편인) 반도체 기판의 이 제2 표면은 여기에서 반도체 기판의 “배면” 표면으로 지칭된다.
반도체 기판에서의 이웃하는 방사선 감지 영역들(픽셀들)은, 방사선 감지 영역들 사이의 크로스 토크 및 신호 손실을 최소화하도록 딥 트렌치 아이솔레이션(DTI; deep trench isolation) 구조물과 같은 아이솔레이션 구조물로써 전기적으로 격리된다. 전술한 아이솔레이션 구조물에 정렬된(그리고 반도체 기판의 배면 표면 상에 형성된) 것은, 이웃하는 픽셀들 또는 방사선 감지 영역들 사이의 광학 격리를 제공하는 각자의 그리드 구조물이다. 인접한 그리드 구조물들이 집합적으로 셀들을 형성하며, 이는 집합적으로 컬러 필터링 재료를 수용하도록 구성된 복합 그리드 구조물을 형성한다.
컬러 필터링 재료는, 원하는 파장을 갖는 광이 컬러 필터링 재료를 통과하는 반면에 다른 파장을 갖는 광은 컬러 필터링 재료에 의해 흡수되도록 선택될 수 있다. 예를 들어, 필터링되지 않은 자연광을 수신하는 녹색광 컬러 필터링 재료는 녹색광 부분(약 495 nm와 약 570 nm 사이의 파장)이 컬러 필터를 통과할 수 있게 해줄 것이지만, 다른 모든 파장을 흡수할 것이다. 컬러 필터는 필터링된 광을 대응하는 방사선 감지 영역에 제공하도록 각자의 픽셀 또는 방사선 감지 영역에 정렬된다.
예로써 비한정적으로, 방사선 감지 영역(픽셀), 멀티레벨 금속화 층, 및 그리드 구조물이 위에 형성되어 있는 기판은, 상이한 기판 상에 형성된 ASIC에 웨이퍼 본딩 구조물을 통해 부착될 수 있다. ASIC는 예를 들어, 상기에 설명된 신호 프로세싱 동작을 수행하도록 구성된 - BSI 이미지 센서 디바이스와 별개로 제조된 - 상보형 금속 산화물 반도체(CMOS; complementary metal oxide semiconductor) 웨이퍼일 수 있다.
BSI 이미지 센서 디바이스에 관련한 난제는 광자의 전기 신호로의 변환 효율이다. 이는 입사 방사선으로부터의 충돌 광자가 전부 전기 신호로 변환되는 것은 아니며 방사선 감지 영역을 빠져나가는 광자가 "재포획(recaptured)”될 수 없기 때문이다. 따라서, BSI 이미지 센서 디바이스는 낮은 방사선 조건 하에 동작하도록 긴 방사선 노출 시간, 큰 풋프린트, 상당한 신호 증폭, 또는 이들의 조합을 요구할 수 있다.
전술한 단점에 대처하기 위해, 여기에 기재된 실시예는 입사 방사선의 출구 경로에서의 방사선 감지 영역 상에 미러 마이크로 구조물(mirror micro-structure)을 형성하기 위한 방법에 관한 것이다. 일부 실시예에서, 미러 마이크로 구조물은, 방사선 감지 영역 내의 입사 방사선의 광학 경로를 증가시키고 따라서 광자 재포획을 개선하는 브래그(Bragg) 미러이다. 일부 실시예에서, 미러 마이크로 구조물은 방사선 감지 영역 내의 입사 방사선의 광학 경로를 증가시키고 광학 재포획을 개선한다. 일부 실시예에 따르면, 각각의 미러 마이크로 구조물은, 고굴절률(high-index) 및 저굴절률(low-index) 재료의 교대(alternating) 층 쌍들에 고굴절률 재료의 하나의 층을 더한 스택(2m+1)을 포함하는 브래그 미러(또는 브래그 반사기)이며, 여기에서 2m은 고굴절률 및 저굴절률 쌍들의 수이다. 여기에서 사용되는 용어 “고굴절률” 및 “저굴절률”은 상대적인 것이며 스택 내의 층들의 굴절률 간의 관계를 반영한다. 예를 들어, “고굴절률” 재료는 “저굴절률” 재료보다 더 높은 굴절률을 갖는다. 예로써 비한정적으로, 스택은 방사선 감지 영역의 제조 동안 또는 그 후에 형성된 고굴절률 및 저굴절률 재료의 3 내지 21 층들을 포함할 수 있다. 일부 실시예에서, 브래그 미러에서의 층들의 두께 및 수는 입사 방사선의 타겟 파장 및 원하는 반사율에 기초하여 맞춤화될 수 있다.
도 1은 일부 실시예에 따라 ASIC(110)에 부착된 BSI 이미지 센서 디바이스(105)를 포함하는 스택(100)의 단면도이다. 예로써 비한정적으로, ASIC(110)는 BSI 이미지 센서 디바이스(105)에 의해 생성된 전기 신호를 처리하도록 구성될 수 있다. 스택(100)에서, 입사 방사선 빔(115)은 BSI 이미지 센서 디바이스(105)에 마이크로 렌즈(120) 및 컬러 필터(125)를 통해 방사선 감지 영역 또는 픽셀(130) 안으로 들어간다. 상기에 설명된 바와 같이, 방사선 감지 영역(130)은 아이솔레이션 구조물(135)에 의해 분리된다. 일부 실시예에서, 방사선 감지 영역(130)은 관심있는 방사선 파장에 따라 실리콘(Si), 게르마늄(Ge) 또는 실리콘 게르마늄(SiGe)과 같은 반도체 재료를 포함한다. 예를 들어, Si는 가시광 응용에 사용될 수 있고(예컨대, 약 380 nm 내지 740 nm), Ge는 적외선 응용에, 예컨대 약 940 nm 내지 약 1550 nm 사이 파장에 사용될 수 있다. SiGe는 가시광과 적외선 사이의 파장에 사용될 수 있다. 본 개시의 사상 및 범위에서 벗어나지 않고서, 방사선 감지 영역(130)은 Ge에 관련하여 기재될 것이다.
방사선 감지 영역(130) 내에서, 입사 방사선 빔(115)은 전기 신호로 변환되며, 이는 이어서 멀티레벨 금속화 층(140) 및 본딩 구조물(145)에 의해 ASIC(110)에 분산된다. 일부 실시예에서, ASIC(110)는 BSI 이미지 센서 디바이스(105)와는 별개로 제조된 CMOS 웨이퍼이다. 예로써 비한정적으로, ASIC(110)는 반도체(예컨대, 실리콘) 기판(160)의 도핑된 영역(155) 상에 형성된 능동 소자(예컨대, 트랜지스터 구조물(150))를 포함할 수 있다. 또한, 능동 소자(150)는 아이솔레이션 구조물(예컨대, 쉘로우 트렌치 아이솔레이션 구조물)(165)에 의해 물리적으로 그리고 전기적으로 분리된다. 예로써 비한정적으로, 능동 소자 어레이(150)가 ASIC(110)에서 로직 및 메모리 회로를 형성하는 데에 사용될 수 있다. 도 1에 도시된 바와 같이, 능동 소자(150)와 BSI 이미지 센서 디바이스(105) 사이의 전기적 접속은 능동 소자(150) 위에 형성된 멀티레벨 금속화 층(170)에 의해 제공된다. 예로써 비한정적으로, ASIC(110)의 멀티레벨 금속화 층(170)은 BSI 이미지 센서 디바이스(105)의 멀티레벨 금속화 층(140)과 유사할 수 있다. 그러나, 이는 한정하는 것이 아니며, 멀티레벨 금속화 층(170)은 멀티레벨 금속화 층(140)과 상이할 수 있다. 예를 들어, 멀티레벨 금속화 층(170)은 추가의 배선 층 및 더 타이트한 피치(예컨대, 배선 사이의 더 짧은 간격)를 가지며 멀티레벨 금속화 층(140)보다 더 복잡할 수 있다. 멀티레벨 금속화 층(140 및 170)은, 구리, 알루미늄-구리, 알루미늄-게르마늄 또는 구리-주석과 같은 금속 또는 금속성 합금으로 제조된 본딩 구조물(145)을 통해 커플링된다.
스택(100)은 패드 구조물(175) 및 솔더 범프(180)를 통해 외부 디바이스 또는 회로에 물리적으로 그리고 전기적으로 접속될 수 있다. 예로써 비한정적으로, 패드 구조물(175)은 방사선 감지 영역(130) 주위의 BSI 이미지 센서 디바이스(105)의 주변부에 배치될 수 있다.
본 개시의 사상 및 범위에서 벗어나지 않고서, 스택(100)은 도 1에 도시되지 않은 추가의 컴포넌트를 포함할 수 있다. 이들 추가의 컴포넌트는 예시를 용이하게 하기 위해 도 1에 도시되지 않으며, 금속 배선, 능동 및/또는 수동 소자, 절연 층, 에칭 정지 층, 도핑 영역, 및 기타 특징부를 포함할 수 있다. 또한, 스택(100)은 도 1에 도시된 방식과는 상이하게 배열될 수 있고, 추가의 또는 ASIC(110)와는 상이한 ASIC를 포함할 수 있다.
도 1에 도시된 바와 같이, BSI 이미지 센서 디바이스(105)의 모든 요소들은 기판(185)에 또는 기판(185) 주위에 형성된다. 예를 들어, 방사선 감지 영역(130) 및 아이솔레이션 구조물(135)은 기판(185)에 형성되며, 마이크로 렌즈(120)는 멀티레벨 금속화 층(140)과는 기판(185)의 반대측 상에 형성된다. 여기에서 지칭될 때에, 마이크로 렌즈(120)가 형성되는 기판(185)의 측은 “배면”으로도 지칭될 것이고, 멀티레벨 금속화 층이 형성되는 기판(185)의 측은 “전면”으로도 지칭될 것이다.
일부 실시예에 따르면, BSI 이미지 센서 디바이스(105)의 각각의 방사선 감지 영역(130)은, 투과된 방사선 빔(115)을 방사선 감지 영역(130)으로 다시 재포획되도록 반사시키는 브래그 미러(190)를 특징으로 한다. 일부 실시예에서, 브래그 미러는 고굴절률 및 저굴절률 재료의 짝수(2m+1)의 교대 층들을 갖는 스택을 포함한다. 여기에서 “m”은 고굴절률 층이나 저굴절률 층의 원하는 수이고, 2m은 고굴절률 및 저굴절률 쌍의 수이다. 예를 들어, 고굴절률 재료 층의 원하는 수가 3인 경우, 브래그 미러 스택은 총 7개의 층을 가질 것이다. 보다 구체적으로, 브래그 미러 스택은 6개의 고굴절률 및 저굴절률 층들에 더하여 하나의 추가적인 고굴절률 층을 가질 것이며, 그리하여 브래그 미러 스택의 상부 및 하부 층은 고굴절률 재료 층이다. 일부 실시예에서, 브래그 미러 스택의 처음(예컨대, 하부) 및 마지막(예컨대, 상부) 층은 고굴절률 재료 층이다.
일부 실시예에 따르면, 도 2는 도 1에 도시된 방사선 감지 영역(130) 및 브래그 미러(190)의 확대도이다. 도 2에 도시된 바와 같이, 브래그 미러(190)는 고굴절률 재료(200) 및 저굴절률 재료(205)의 교대 층들을 포함한다. 브래그 미러(190)의 구성의 결과로서, 입사 광 빔(115)은 스택을 통해 이동할 때에 각각의 고굴절률 재료(200) 및 저굴절률 재료(205)의 계면으로부터 부분적으로 반사되어 반사된 방사선 빔(115')을 형성한다. 반사된 방사선 빔(115')은 광자 재포획을 위해 방사선 감지 영역(130)으로 들어간다. 반사된 방사선 빔(115')의 일부분은 광자 재포획 프로세스로 인해 방사선 감지 영역(130) 내에서 전기 신호로 변환될 것이고, 방사선 빔(115')의 임의의 포획되지 않은 부분은 방사선 감지 영역(130)을 빠져나갈 것이다. 인커밍 방사선 빔(115)의 제2 부분이 스택(도시되지 않음)에 의해 흡수될 수 있고, 화살표(115'')로 표시된 바와 같이 입사 방사선 빔(115)의 제3 부분이 기판(185)으로 투과될 수 있다.
일부 실시예에서, 고굴절률 재료(200) 및 저굴절률 재료(205)의 수 및 그 각자의 두께는, 스택을 통해 이동할 때에 인커밍 방사선 빔(115)의 강도가 감소하도록 선택된다. 동시에, 반사된 방사선 빔(115')의 강도는, 스택에 의한 흡광도가 무시할만하다면 증가한다. 전술한 조건은, 건설적 간섭(constructive interference)을 조장하도록, 반사된 방사선 빔(115')이 위상 내에 있는 경우(또는 360°(2π)의 배수인 위상차를 가짐) 가능하다. 이는 고굴절률 재료(200) 및 저굴절률 재료(205)의 두께(200t 및 205t)가 각각 λ/(4nH) 및 λ/(4nL)인 경우 달성될 수 있으며, 여기에서 nH는 고굴절률 재료(200)의 굴절률이고, nL은 저굴절률 재료(205)의 굴절률이고, λ는 입사 방사선 빔(115)의 파장이다. 이러한 이유로, 브래그 미러 스택은 “쿼터 웨이브(quarter-wave)” 스택으로 지칭될 수 있다. 상기에 기초하여, 고굴절률 재료(200)는 저굴절률 재료(205)보다 더 얇게 형성된다(예컨대, 200t < 205t).
일부 실시예에서, 브래그 미러(190)에서 달성되는 반사율은, 고굴절률 재료(200) 및 저굴절률 재료(205)의 층 쌍들의 수(2m)와 그의 비굴절률차(refractive index contrast), 예컨대 고굴절률 재료(200)와 저굴절률 재료(205) 간의 굴절률 차이에 의해 결정된다. 예를 들어, 실질적으로 유사한 비굴절률차를 갖는 층들 및 상이한 수의 층 쌍들을 갖는 2개의 브래그 미러 사이에, 더 큰 수의 층 쌍들을 갖는 브래그 미러가 가장 높은 반사율 값을 달성할 수 있다. 또한, 동일한 수의 층 쌍들 및 상이한 비굴절률차를 갖는 2개의 브래그 미러 사이에, 가장 높은 비굴절률차 층들을 갖는 브래그 미러가 가장 높은 반사율 값을 달성할 수 있다. 결과적으로, 고굴절률 재료(200) 및 저굴절률 재료(205)가 높은 비굴절률차를 갖도록 선택되는 경우 더 얇은 브래그 미러(예컨대, 더 적은 층을 가짐)가 제조될 수 있다. 또한, 고굴절률 재료(200)와 저굴절률 재료(205) 간의 비굴절률차가 더 클 때에 반사 대역폭(예컨대, 입사 방사선 빔(115)의 평균 파장 값(λ) 주위에 반사될 수 있는 파장의 수)이 증가한다.
예로써 비한정적으로, 브래그 미러(190)는, (i) 고굴절률 재료(200)로서 티타늄 산화물(TiO2) 및 저굴절률 재료(205)로서 실리콘 산화물(SiO2) 또는 마그네슘 불화물(MgF2), (ii) 고굴절률 재료(200)로서 갈륨 비소화물(GaAs) 및 저굴절률 재료(205)로서 알루미늄 비소화물(AlAs), 또는 (iii) 고굴절률 재료(200)로서 갈륨 질화물(GaN) 및 저굴절률 재료(205)로서 알루미늄 질화물(AlN)을 포함할 수 있다. 이 리스트는 철저한 것이 아니며, 브래그 미러(190)의 원하는 반사 특성 및 원하는 동작 파장 또는 파장 범위에 기초하여 다른 적합한 재료 조합이 사용될 수 있다.
일부 실시예에서, 짝수(2m+1)의 층들을 갖는 브래그 미러(190)의 반사율 비(R)은 아래에 보이는 식 (1)에 의해 제공된다:
Figure 112020074146479-pat00001
1),
n0는 방사선 감지 영역(130)의 굴절률이고, Y는 아래에 보이는 식 (2)에 의해 제공된 광학 어드미턴스(optical admittance)이다:
Figure 112020074146479-pat00002
(2),
nH는 고굴절률 재료(200)의 굴절률이고, nL는 저굴절률 재료(205)의 굴절률이고, nS는 스택 바로 상에 형성된 층의 굴절률이고, 2m은 브래그 미러(190)의 층 쌍들의 수이다.
예를 들어, 방사선 감지 영역(130)이 n0=4인 Ge를 포함하고 브래그 미러(190)가 7 층(예컨대, m=3)을 포함하되 고굴절률 재료(200)가 nH=2.45인 TiO2이고 저굴절률 재료(205)가 nL=1.45인 SiO2이며 ns은 nS=1.46인 SiOx(210)(예컨대, 브래그 미러(190) 상의 커버 층)인 경우, 반사율(R)은 약 84.6%이고 어드미턴스(Y)는 약 97.7이다.
도 3은 도 1 및 도 2에 도시된 브래그 미러(190)의 형성 프로세스를 기재한 제조 방법(300)의 흐름도이다. 방법(300)의 다양한 동작들 사이에 다른 제조 동작이 수행될 수 있으며 단지 설명을 쉽게 하고 명확하게 하기 위해 생략될 수 있다. 이들 다양한 동작은 본 개시의 사상 및 범위 내에 속한다. 또한, 여기에 제공된 개시를 수행하는 데에 모든 동작들이 요구되는 것은 아닐 수 있다. 또한, 동작들의 일부는 동시에 수행될 수 있거나, 또는 도 3에 도시된 바와는 상이한 순서로 수행될 수 있다. 일부 실시예에서, 하나 이상의 다른 동작이 앞서 기재된 동작에 추가적으로 또는 이를 대신하여 수행될 수 있다.
예시를 위한 목적으로 그리고 기재를 용이하게 하기 위해, 방법(300)은 단일 브래그 미러의 형성에 관련하여 기재될 것이지만, 방법(300)을 사용하여 브래그 미러 스택의 어레이가 동시에 형성될 수 있다는 것을 이해하여야 한다. 또한, 방법(300)은 도 4 내지 도 11을 사용하여 기재될 것이다. 방법(300)을 기재하도록 제공되는 도면은 단지 설명을 위한 것이며 축척대로 도시된 것은 아니다. 또한, 도면은 실제 구조물, 특징부 또는 막의 실제 기하학을 반영하지 않을 수 있다. 일부 구조물, 막, 또는 기하학은 예시를 위한 목적으로 의도적으로 증대되거나 생략되었을 수 있다.
도 3을 참조하면, 방법(300)은 동작(305) 및 반도체 기판의 전면 표면 내에 트렌치 개구를 형성하는 프로세스로 시작된다. 예로써 비한정적으로, 도 4는 방법(300)의 동작(305)에 따라 트렌치 개구(400)의 형성 후의 기판(185)의 부분 단면도이다. 일부 실시예에서, 아이솔레이션 구조물(135)(트렌치 개구(400)의 형성 전에 형성됨)은 트렌치 개구(400)를 포지셔닝하기 위한 정렬 마크로서 사용된다. 상기에 설명된 바와 같이, 트렌치 개구(400)와 같은 트렌치 개구 어레이가 기판(185)의 전면 표면 내에 동작(305) 동안 형성될 수 있다. 방법(300)의 후속 동작에서, 방사선 감지 영역 및 브래그 미러가 트렌치 개구(400)와 같은 각자의 트렌치 개구에 형성될 것이다. 일부 실시예에서, 트렌치 개구(400)의 형성은 포토리소그래피 및 에칭 동작의 사용을 필요로 한다. 예를 들어, 하드 마스크 또는 포토레지스트(도시되지 않음)가 기판(185)의 전면 표면 상에 퇴적 및 패터닝될 수 있다. 패터닝된 하드 마스크 또는 포토레지스트는 그 후에 기판(185)의 전면 표면 내에 트렌치 개구(400)를 형성하기 위한 에칭 마스크로서 사용된다.
일부 실시예에서, 기판(185)은 광자 웨이퍼, 예컨대, 광자 응용에 적합한 재료로 제조된 웨이퍼이다. 예로써 비한정적으로, 기판(185)은, Si 또는 예를 들어 (i) Ge와 같은 또다른 원소 반도체; (ii) SiGe, 실리콘 탄화물(SiC), GaAs, 갈륨 인화물(GaP), 인듐 인화물(InP), 인듐 비소화물(InAs), 및/또는 인듐 안티몬화물(InSb)을 포함하는 화합물 반도체; (iii) 갈륨 비소 인화물(GaAsP), 알루미늄 인듐 비소화물(AlInAs), 알루미늄 갈륨 비소화물(AlGaAs), 갈륨 인듐 비소화물(GaInAs), 갈륨 인듐 인화물(GaInP), 및/또는 갈륨 인듐 비소 인화물(GaInAsP)를 포함하는 합금 반도체, 또는 (iv) 이들의 조합을 포함할 수 있다.
예를 위한 목적으로, 기판(185)은 Si(예컨대, 단결정질)에 관련하여 기재될 것이다. 여기에서의 개시에 기초하여, 상기 설명된 바와 같이 다른 재료가 사용될 수 있다. 이들 재료는 본 개시의 사상 및 범위 내에 속한다.
상기에 설명된 바와 같이, 아이솔레이션 구조물(135)은 방사선 감지 영역들 사이의 크로스 토크 및 신호 손실을 최소화하도록 구성되고, 예를 들어, 나중에 실리콘 산화물과 같은 유전체 재료로 채워질 수 있는 트렌치 개구를 형성하도록 기판(185)을 에칭함으로써 형성될 수 있다. 일부 실시예에서, 아이솔레이션 구조물(135)은 z 방향을 따라 트렌치 개구(400)의 높이(H)보다 더 크고 x 방향을 따라 트렌치 개구(400)의 폭(W)보다 더 좁다. 에로써 비한정적으로, 트렌치 개구(400)의 높이(H)는 약 50 nm 내지 약 700 μm 사이 범위일 수 있고, 폭(W)은 약 50 nm 내지 약 700 μm 사이 범위일 수 있다. 더 크고 더 작은 트렌치 개구(400)도 가능하다. 예로써 비한정적으로, y 방향을 따라 트렌치 개구(400)의 깊이는 약 5 μm일 수 있다.
도 4에 도시된 기판(185)은 도 1에 도시된 기판(185)의 배향에 관련하여 180° 회전된 것을 유의하여야 한다. 다르게 말하자면, 도 1의 기판(185)은 “거꾸로” 뒤집혀있다. 일부 실시예에서, 여기에 기재된 바와 같은 방사선 감지 영역의 형성은 기판(185)의 전면 표면으로부터 수행된다.
도 3을 참조하면, 방법(300)은 동작(310) 및 트렌치 개구(400)의 하부 및 측벽 표면 상에 컨포멀(conformal) 임플란트(implant) 층을 형성하기 위한 프로세스로 이어진다. 일부 실시예에서, 이는 약 75 nm의 두께로 미도핑 실리콘 유리(USG; undoped silicon glass)를 퇴적 및 패터닝함으로써 달성될 수 있다. USG는 실리콘 산화물과 유사한 특성 및 저온에서의 높은 퇴적 속도를 갖는다. 예로써 비한정적으로, USG는 플라즈마 강화 화학적 기상 증착(PECVD; plasma enhanced chemical vapor deposition), 고밀도 플라즈마 CVD(HDP-CVD; high density plasma CVD), 또는 SACVD(sub-atmospheric CVD)를 통해 퇴적될 수 있다. 그 다음, USG는 후속 주입 프로세스에서 주입 마스크로서 패터닝 및 사용된다. 도 5는 기판(185)의 전면 표면 상에 배치된 패터닝된 USG 층(500) 및 트렌치 개구(400)의 측벽 및 하부 표면 상에 형성된 임플란트 층(505)을 갖는, 동작(310) 후의 결과적인 구조물을 도시한다. 일부 실시예에서, 급속 열 어닐링(RTA; rapid thermal anneal) 프로세스가 임플란트 층(505) 내의 도펀트를 활성화하도록 사용된다. RTA 프로세스 동안, 임플란트 층(505)의 두께(505t)는 도펀트 이동도로 인해 증가할 수 있다.
패터닝된 USG 층(500)이 주입 마스크로서 사용되기 때문에, 패터닝된 USG 층(500)의 측벽은 트렌치 개구(400)의 측벽에 정렬되지 않는다. 보다 구체적으로, 폭(500w)(패터닝 프로세스에 의해 USG 층에 형성된 개구의 폭)은 트렌치 개구(400)의 폭(W)보다, 약 임플란트 층(505)의 두께와 동일한 양 만큼 더 크다. 다르게 말하자면,
Figure 112020074146479-pat00003
이다. 일부 실시예에서, 임플란트 층(505)의 두께는 약 100 nm이고, 임플란트 층(505)을 형성하는데 사용된 도펀트는 붕소이다. 일부 실시예에서, 임플란트 층(505)은 방사선 감지 영역을 기판(185)으로부터 격리하고 기판(185)에의 누설을 통한 신호 손실을 막는다. 따라서, 두께(505t) 및 도펀트 농도는 충분한 전기적 절연을 달성하도록 맞춤화될 수 있다.
도 3을 참조하면, 방법(300)은 동작(315) 및 트렌치 개구(400)의 하부 및 측벽 표면 상에 결정질 Si(c-Si) 층을 에피텍셜 성장시키는 프로세스로 이어진다. 일부 실시예에서, c-Si 에피텍셜 층은, 방사선 감지 영역의 형성을 용이하게 하고 결함 형성을 막는 “버퍼 층”이다. 예로써 비한정적으로, c-Si 에피텍셜 층은 실란(SiH4)을 사용하는 CVD 에피텍셜 프로세스로 성장될 수 있다. 도 6은 방법(300)의 동작(315)에 따라 임플란트 층(505) 상에 성장된 c-Si 에피텍셜 층(600)을 도시한다. 일부 실시예에서, c-Si 에피텍셜 층(600)은, 상기에 설명된 바와 같이 또한 결정질인 기판(185)의 노출된 표면 상에 선택적으로 성장한다. 다르게 말하자면, c-Si 에피텍셜 층(600)은 패터닝된 USG 층(500) 상에는 성장하지 않는다. 일부 실시예에서, c-Si 에피텍셜 층의 두께는 약 45 nm이다. 더 얇은 c-Si 에피텍셜 층(예컨대, 약 45 nm보다 더 얇음)은 그 위에 성장된 방사선 감지 영역에서의 결함의 출현을 막지 못할 수 있고, 더 두꺼운 c-Si 에피텍셜 층(예컨대, 약 45 nm보다 더 두꺼움)은 방사선 감지 영역에 추가의 이점을 제공하는 일 없이 트렌치(400) 내의 추가 공간을 점유한다.
도 3을 참조하면, 방법(300)은 동작(320) 및 방사선 감지 영역(130)을 형성하도록 에피텍셜 층으로 트렌치(400)를 채우는 프로세스로 이어진다. 예로써 비한정적으로, 방사선 감지 영역(130)은 에피텍셜 성장된 Ge를 포함한다. 상기에 설명된 바와 같이, 방사선 감지 영역(130)을 위한 재료는, BSI 이미지 센서 디바이스가 검출하도록 구성되는 파장 범위에 기초하여 선택될 수 있다. 예로써 비한정적으로, 방사선 감지 영역(130)에 사용될 수 있는 추가의 재료는 GaAs, InP, GaP, 및 GaN과 같은 III-V 족의 반도체 재료를 포함한다. 일부 실시예에서, Ge와는 상이한 재료가 방사선 감지 영역(130)에 사용되는 경우, c-Si 에피텍셜 층(600)은 또다른 보다 적합한 에피텍셜 층으로 대체될 수 있다. 따라서, 동작 315 및 320에서 실질적으로 결함이 없는 방사선 감지 영역(130)을 달성하도록 에피텍셜 층들의 상이한 조합이 사용될 수 있다. 일부 실시예에서, 방사선 감지 영역(130)에서의 결함은 방사선 감지 영역(130)의 광자 변환 성능에 영향을 미칠 수 있다.
일부 실시예에서, 방사선 감지 영역(130)은 적합한 전구체 가스(예컨대, 게르만(GeH4))를 사용하는 CVD 프로세스를 이용해 성장될 수 있다. 방사선 감지 영역(130)의 재료 성장 후에, 방사선 감지 영역(130)의 표면을 평탄화하도록 화학 기계적 연마(CMP; chemical mechanical polishing) 프로세스가 사용되며, 그리하여 방사선 감지 영역(130) 및 패터닝된 USG 층(500)의 상부 표면은 도 7에 도시된 바와 같이 실질적으로 공면이 된다(co-planar). 전술한 CMP 프로세스 동안, 패터닝된 USG 층(500)은 연마 제거되지만(예컨대, 박형화) 기판(185)의 전면 표면으로부터는 제거되지 않는다.
도 3을 참조하면, 방법(300)은 동작 325 및 도 1 및 도 2에 도시된 브래그 미러(190)와 같은 브래그 미러 스택을 형성하도록 고굴절률 및 저굴절률 층의 교대 층들을 퇴적하는 프로세스로 이어진다. 상기에 설명된 바와 같이, 고굴절률 및 저굴절률 층은, TiO2, SiO2, GaAs, AlAs, AlN 등과 같은 재료로부터 선택될 수 있다. 일부 실시예에서, 이들 층의 두께는 약 λ/(4n)로 조정되며, n은 각각의 층의 각자의 굴절률이고 λ은 검출될 원하는 파장(예컨대, 입사 방사선 빔(115)의 파장)이다. 상기에 설명된 바와 같이, 브래그 미러에 의해 달성되는 반사율은, 고굴절률 및 저굴절률 재료의 층 쌍들의 수(2m) 및 그의 비굴절률차에 의해 결정된다. 결과적으로, 고굴절률 재료 및 저굴절률 재료가 높은 비굴절률차를 갖도록 선택되는 경우(예컨대, 가능한 가장 큰 굴절률 차이), 더 얇은 브래그 미러가 제조될 수 있다. 또한, 고굴절률 재료와 저굴절률 재료 간의 비굴절률차가 더 클 때에 반사 대역폭(예컨대, 입사 방사선 빔의 평균 파장 값(λ) 주위에 반사될 수 있는 파장의 수)이 증가한다. 따라서, 비굴절률차가 더 높을수록, 반사 대역폭 및 브래그 미러 구조물에 의해 반사될 수 있는 평균 파장 값 주위의 파장 수가 더 넓어진다.
결과적으로, 상이한 재료로 제조되며 상이한 파장에 응답하도록 구성되는 방사선 감지 영역은, 상이한 유형의 층, 상이한 수의 층, 상이한 층 두께, 또는 이들의 조합을 가진 브래그 미러를 요구한다. 일부 실시예에서, BSI 이미지 센서 디바이스는, BSI 이미지 센서가 더 큰 스펙트럼의 파장을 검출하는 것이 가능하도록 각각의 영역에 대하여 방사선 감지 재료가 상이한 영역들로 나누어질 수 있다. 따라서, 적합한 층 특성(예컨대, 층의 수, 층의 유형, 층의 두께, 또는 이들의 조합)을 갖는 각자의 브래그 미러가 포토리소그래피, 에칭 및 퇴적 동작의 조합을 사용하여 각각의 방사선 감지 영역에 대하여 형성될 수 있다.
일부 실시예에서, 고굴절률 및 저굴절률 재료는 CVD 기반의 방법, 원자층 퇴적(ALD; atomic layer deposition) 기반의 방법, 또는 적합한 층 두께 제어 및 두께 균일도를 달성할 수 있는 임의의 적합한 방법으로 퇴적될 수 있다. 두께 제어(예컨대, sub-nm 레벨), 두께 균일도(예컨대, sub-nm 레벨)는, 표면 거칠기 제어(예컨대, Å 레벨)와 함께, 반사된 방사선 빔이 위상을 벗어나지 않음을 보장한다.
일부 실시예에서, 스택의 퇴적 후에, 고굴절률 재료 및 저굴절률 재료의 층들은, 도 1 및 도 8에 도시된 바와 같이 각자의 방사선 감지 영역(130) 상에 개별 브래그 미러(190)를 형성하도록 패터닝된다. 또한, 상기에 설명된 바와 같이, 브래그 미러(190)의 상부 및 하부 층은 고굴절률 재료이다.
그 후에, 보호 캡핑 층(800)(예컨대, 실리콘 에피텍셜 층)이 약 40 nm의 두께로 브래그 미러(190) 상에 선택적으로 퇴적되고, 그 다음에 도 8에 도시된 바와 같이 유전체 층(805) 퇴적 및 유전체 층(805)을 평탄화하는 CMP 프로세스가 이어지며, 그리하여 보호 캡핑 층(800) 상의 유전체 층(805)의 남은 두께는 약 15 nm이다. 예로써 비한정적으로, 유전체 층(805)은 USG, 실리콘 산화물, 또는 입사 방사선의 파장에 투과적인 임의의 다른 적합한 유전체 재료일 수 있다. 일부 실시예에서, 보호 캡핑 층(800)은 브래그 미러(190)를 둘러싸고 패터닝된 USG 층(500) 상에는 성장하지 않는다.
도 3을 참조하면, 방법(300)은 동작(330) 및 도 9에 도시된 바와 같이 방사선 감지 영역(130)에 커플링되는 기판(184)의 전면 표면 상에 멀티레벨 금속화 층(140)을 형성하는 프로세스로 이어진다. 일부 실시예에서, 멀티레벨 금속화 층(140)은 방사선 감지 영역(130)으로부터 ASIC로의 효과적인 신호 전파를 위해 임의의 수의 금속화 층(예컨대, 약 1개와 약 9개 사이)을 포함할 수 있다. 일부 실시예에서, 멀티레벨 금속화 층(140)의 각각의 층은 비아 및 라인 형태의 금속 배선망을 포함한다. 비아(도 9에 도시되지 않음)는, 입사 방사선이 기판(185)의 배면 표면으로부터 BSI 이미지 센서 디바이스로 들어갈 때, 광자 변환 프로세스 동안 생성된 전기 신호를 전파하도록 방사선 감지 영역(130)에 전기적으로 커플링된다.
멀티레벨 금속화 층(140)의 상부 층 상에 형성되는 유전체 층(900)에 본딩 구조물(145)이 형성된다. 본딩 구조물(145)은, 2개의 디바이스가 도 1에 도시된 스택(100)을 형성하도록 함께 물리적으로 그리고 전기적으로 본딩될 때 ASIC의 각자의 본딩 구조물에 정렬된다. 일부 실시예에서, 본딩 구조물(145)은 도 9에 도시된 바와 같이 멀티레벨 금속화 층(140)의 상부 층에 전기적으로 커플링된다.
일부 실시예에서, 도 1에 도시된 BSI 이미지 센서 디바이스(105)의 추가의 컴포넌트의 형성을 위해(예컨대, 컬러 필터(125), 마이크로 렌즈(120), 및 패드 구조물(175)의 형성), 도 9의 부분 제조된 BSI 이미지 센서 디바이스는 도 10에 도시된 바와 같이 기판(185)의 배면 표면이 위를 향하도록 180° 회전된다. 이들 컴포넌트가 형성되면, BSI 이미지 센서 디바이스(105) 및 ASIC(110)의 본딩 구조물은 도 11에 도시된 바와 같이 함께 정렬되어 본딩된다. 예로써 비한정적으로, 본딩 프로세스 후에 도 1에 도시된 솔더 범프(180)가 형성될 수 있다.
일부 실시예에서, 브래그 미러(190)의 형성은 방사선 감지 영역(130)의 단일 표면(예컨대, 도 8에 도시된 바와 같은 상부 표면)에 한정되지 않을 수 있다. 예를 들어, 도 12a에 도시된 바와 같이, 방사선 감지 영역(130)은 패싯(facet)을 갖도록 성장될 수 있으며, 이는 그 후에 브래그 미러(190)의 층들로 덮인다. 이러한 구조물의 이점은, 투과된 입사 방사선 빔을 방사선 감지 영역(130)으로 다시 반사시키도록 방사선 감지 영역(130)의 추가의 표면 영역이 브래그 미러(190)에 의해 이용될 수 있다는 것이다. 일부 실시예에서, 방사선 감지 영역(130)의 형성 전에 트렌치 개구의 측벽 상에 형성된 스페이서(1200)의 형성에 의해 패싯의 성장이 조장된다.
도 12b 내지 도 12e를 참조하면, 스페이서(1200)는 예를 들어 다음과 같이 형성될 수 있다. 트렌치 개구(400) 및 패터닝된 USG 층(500)의 형성 후에, 열 산화물 프로세스는 도 12b에 도시된 바와 같이 트렌치 개구(400)의 노출된 표면 상에 실리콘 산화물 층(1200')을 성장시킨다. 기판(185)의 전면 표면이 패터닝된 USG 층(500)에 의해 덮여 있으므로, 트렌치 개구(400) 밖의 표면 상의 실리콘 산화물의 형성은 없다. 그 후에, 스페이서(1200)를 형성하도록 이방성 에칭 프로세스가 트렌치 개구(400)의 하부로부터 실리콘 산화물 층(1200')의 일부를 제거한다. 전술한 에칭 동작 후에, 스페이서(1200)의 남은 두께는 약 10 nm보다 더 작다. 일부 실시예에서, 더 두꺼운 스페이서도 가능하지만, 더 두꺼운 스페이서는 방사선 감지 영역(130)으로부터 유용한 공간을 빼앗는다. 그 후에, 임플란트 층(505) 및 c-Si 에피텍셜 층이 방법(300)(도 12c에 도시됨)에 기재된 바와 같이 형성될 수 있으며, 그 다음에 도 12e에 도시된 방사선 감지 영역(130)의 성장이 이어질 수 있다. 일부 실시예에서, 스페이서(1200)의 존재는 도 12e 및 도 12e의 삽입도에 도시된 방사선 감지 영역(130)의 등각도에 도시된 바와 같이 방사선 감지 영역(130)에서의 패싯의 형성을 용이하게 한다.
패싯 형성된 방사선 감지 영역(130)의 전술한 형성 프로세스는 한정하는 것이 아니며, 상이한 순서 또는 대안의 제조 동작으로 수행되는 유사한 동작들이 가능하고 본 개시의 사상 및 범위 내에 속한다. 예를 들어, 스페이서(1200)는 패터닝된 USG 층(500)의 형성 전에 또는 임플란트 층(505) 및 c-Si 에피텍셜 층(600)의 형성 후에 형성될 수 있다.
일부 실시예에서, 스페이서(1200) 및 트렌치 개구(400)의 형상의 조합은 상이한 수의 패싯을 갖는 다양한 방사선 감지 영역 형상을 생성할 수 있다(예컨대, 도 13 및 도 14에 각각 도시된 바와 같이 팔면체에서 다이아몬드까지 망라함). 결과적으로, 그 위에 형성되는 브래그 미러(190)는 아래의 방사선 감지 영역(130)의 에지 윤곽을 따를 것이다. 일부 실시예에서, 트렌치 개구(400)의 측벽 각도(θ) 및 하부 폭(Wb)을 제어함으로써 도 13 및 도 14에 도시된 방사선 감지 영역(130)의 형상을 생성한다. 일부 실시예에서, 측벽 각도(θ)는 약 30° 내지 약 60° 범위이고, 하부 폭(Wb)은 상부 폭(Wt)보다 더 짧다. 예로써 비한정적으로, 큰 측벽 각도(예컨대, 60°에 가까움) 및 넓은 하부 폭(Wb)(상부 폭(Wt)에 가까움)은, 도 13에 도시된 팔면체 형상의 방사선 감지 영역(130)(이의 등각도가 도 13의 삽입도에 도시되어 있음)과 같이, 더 많은 패싯을 갖는 방사선 감지 영역을 생성한다. 반면에, 작은 측벽 각도(예컨대, 30°에 가까움) 및 좁은 하부 폭(Wb)(예컨대, 약 상부 폭(Wt)의 절반 이하임)은, 도 14에 도시된 다이아몬드 형상의 방사선 감지 영역(130)(이의 등각도가 도 14의 삽입도에 도시되어 있음)과 같이, 더 적은 패싯을 갖는 방사선 감지 영역을 생성한다. 방사선 감지 영역(130)에 들어가는 방사선의 양이 감소되며, 이는 바람직하지 못하기 때문에, 하부 폭(Wb)은 약 100 nm보다 작을 수는 없음을 유의하여야 한다.
여기에 기재된 방사선 감지 디바이스 및 각자의 브래그 미러의 임의의 조합이 단일 BSI 이미지 센서 디바이스 내에 사용될 수 있다는 것을 유의하여야 한다.
본 개시에 따른 다양한 실시예는, 입사 방사선의 출구 경로에서의 방사선 감지 영역 상의 미러 마이크로 구조물의 형성에 대해 기재한다. 일부 실시예에서, 미러 마이크로 구조물은, 방사선 감지 영역 내의 입사 방사선의 광학 경로를 증가시키고 따라서 광자 재포획을 개선하는 브래그 미러이다. 일부 실시예에 따르면, 각각의 브래그 미러는, 고굴절률 및 저굴절률 재료의 교대 층 쌍들에 고굴절률 재료의 하나의 추가 층을 더한 스택을 포함하며(2m+1), 여기에서 2m은 고굴절률 및 저굴절률 층 쌍들의 수이다. 일부 실시예에서, 이들 층의 두께는 약 λ/(4n)로 조정되며, 여기에서 n은 각각의 층의 각자의 굴절률이고 λ는 검출될 원하는 파장(예컨대, 입사 방사선의 파장)이다. 브래그 미러에 의해 달성되는 반사율은, 고굴절률 및 저굴절률 재료의 층 쌍들의 수(2m) 및 그의 비굴절률차에 의해 결정된다. 결과적으로, 고굴절률 재료 및 저굴절률 재료가 높은 비굴절률차를 갖도록 선택되는 경우, 더 얇은 브래그 미러가 제조될 수 있다. 또한, 고굴절률 재료와 저굴절률 재료 간의 비굴절률차가 더 클 때에 반사 대역폭(예컨대, 입사 방사선 빔의 평균 파장 값(λ) 주위에 반사될 수 있는 파장의 수)이 증가한다. 예로써 비한정적으로, 스택은 방사선 감지 영역의 제조 동안 또는 그 후에 형성되는 고굴절률 재료 및 저굴절률 재료의 3 내지 21 층을 포함할 수 있다. 일부 실시예에서, 고굴절률 및 저굴절률 층의 쌍은 각각 TiO2 및 SiO2, GaAs 및 AlAs, 또는 GaN 및 AlN을 포함한다. 일부 실시예에서, 84.6% 이상의 반사율이 달성될 수 있다. 일부 실시예에서, 브래그 미러는 방사선 감지 영역의 하나보다 많은 표면(예컨대, 패싯)을 덮는다. 일부 실시예에서, 방사선 감지 영역은 Si, Ge, SiGe, 또는 III-V을 포함한다. 일부 실시예에서, 패싯을 갖는 Ge 방사선 감지 영역은 실리콘 산화물 스페이서의 구현으로 형성될 수 있다.
일부 실시예에서, 방법은, 기판의 전면 표면 내에 개구를 형성하는 단계; 상기 개구의 하부 및 측벽 표면 상에 컨포멀 임플란트 층을 형성하는 단계; 상기 개구의 하부 및 측벽 표면 상에 제1 에피텍셜 층을 성장시키는 단계; 및 상기 개구를 채우도록 상기 제1 에피텍셜 층 상에 제2 에피텍셜 층을 퇴적하는 단계를 포함하며, 상기 제2 에피텍셜 층은 방사선 감지 영역을 형성한다. 상기 방법은, 상기 제2 에피텍셜 층의 노출된 표면 상에 스택을 퇴적하는 단계를 더 포함하고, 상기 스택은, 고굴절률 재료 층 및 저굴절률 재료 층의 교대 쌍들을 포함한다.
일부 실시예에서, 이미지 센서는, 전면 표면 및 반대편인 배면 표면을 갖는 기판; 상기 기판의 배면 표면 상에 형성된 마이크로 렌즈; 상기 마이크로 렌즈와 상기 기판의 배면 표면 사이에 배치된 컬러 필터; 및 상기 기판의 전면 표면에 형성된 트렌치 내의 방사선 감지 영역을 포함하며, 상기 방사선 감지 영역은 에피텍셜 반도체 재료를 포함한다. 상기 이미지 센서는, 상기 에피텍셜 반도체 재료의 표면 상에 배치되며, 제1 굴절률 값의 제1 재료 층 및 상기 제1 굴절률 값과는 상이한 제2 굴절률 값의 제2 재료 층의 교대 층들을 포함하는 미러 구조물; 및 상기 방사선 감지 영역 및 상기 미러 구조물 위의 상기 기판의 전면 표면 상에 형성된 금속화 층을 더 포함한다.
일부 실시예에서, 이미지 센서는, 전면 표면 및 반대편인 배면 표면을 갖는 기판; 및 상기 기판의 전면 표면에 형성된 트렌치를 포함하며, 상기 트렌치의 하부 부분은 테이퍼드(tapered) 프로파일을 갖는다. 상기 이미지 센서는 상기 트렌치 내의 방사선 감지 영역을 더 포함하며, 상기 방사선 감지 영역은 패싯을 갖는 에피텍셜 반도체 재료 층을 포함한다. 또한, 상기 이미지 센서는, 상기 트렌치의 표면과 상기 에피텍셜 반도체 재료 층의 패싯 사이에 배치된 산화물 층; 및 상기 에피텍셜 반도체 재료 층의 패싯 상에 배치된 교대 층들의 스택을 포함하고, 상기 교대 층들은, 제1 굴절률의 제1 재료 층 및 제2 굴절률의 제2 재료 층을 포함한다.
본 개시의 요약 부분이 아니라 상세한 설명 부분이 청구항을 해석하는데 사용되고자 함을 알아야 할 것이다. 본 개시의 요약 부분은 고려되는 모든 예시적인 실시예가 아니라 하나 이상을 서술한 것일 수 있으며, 따라서 첨부된 청구항을 한정하도록 의도되지 않는다.
전술한 개시는 당해 기술 분야에서의 숙련자들이 본 개시의 양상을 보다 잘 이해할 수 있도록 여러 실시예들의 특징을 나타낸 것이다. 당해 기술 분야에서의 숙련자라면, 여기에서 소개된 실시예와 동일한 목적을 수행하고/하거나 동일한 이점을 달성하기 위해 다른 프로세스 및 구조를 설계 또는 수정하기 위한 기반으로서 본 개시를 용이하게 사용할 수 있다는 것을 알 것이다. 당해 기술 분야에서의 숙련자는 또한, 이러한 등가의 구성이 본 개시의 진정한 의미 및 범위로부터 벗어나지 않으며, 첨부된 청구항의 진정한 의미 및 범위에서 벗어나지 않고서 다양한 변경, 치환 및 대안을 행할 수 있다는 것을 알아야 할 것이다.
실시예
실시예 1. 방법에 있어서,
기판의 전면(front side) 표면 내에 개구를 형성하는 단계;
상기 개구의 하부 및 측벽 표면 상에 컨포멀(conformal) 임플란트(implant) 층을 형성하는 단계;
상기 개구의 하부 및 측벽 표면 상에 제1 에피텍셜 층을 성장시키는 단계;
상기 개구를 채우도록 상기 제1 에피텍셜 층 상에 제2 에피텍셜 층을 퇴적하는 단계 - 상기 제2 에피텍셜 층은 방사선 감지(radiation-sensing) 영역을 형성함 - ; 및
상기 제2 에피텍셜 층의 노출된 표면 상에 스택을 퇴적하는 단계를 포함하고,
상기 스택은, 고굴절률 재료 층 및 저굴절률 재료 층의 교대(alternating) 쌍들을 포함하는 것인, 방법.
실시예 2. 실시예 1에 있어서,
상기 스택 상에 캡핑 층을 퇴적하는 단계; 및
상기 캡핑 층 상에 금속화 층을 형성하는 단계를 더 포함하고, 상기 금속화 층은, 상기 방사선 감지 영역에 전기적으로 커플링되며, 상기 방사선 감지 영역으로부터 신호 프로세싱 디바이스로 전기 신호를 전파하도록 구성되는 것인, 방법.
실시예 3. 실시예 1에 있어서, 상기 전면 표면의 반대편인, 상기 기판의 배면 표면 상에 마이크로 렌즈를 형성하는 단계를 더 포함하고, 상기 마이크로 렌즈는 상기 기판의 배면 표면에 입사하는 방사선을 상기 방사선 감지 영역을 향해 지향시키도록 구성되는 것인, 방법.
실시예 4. 실시예 1에 있어서, 상기 스택을 퇴적하는 단계는,
입사 방사선의 파장을 상기 고굴절률 재료 층의 굴절률 값의 4배로 나눈 값과 실질적으로 동일한 두께로 상기 고굴절률 재료 층을 퇴적하는 단계; 및
입사 방사선의 파장을 상기 저굴절률 재료 층의 굴절률 값의 4배로 나눈 값과 실질적으로 동일한 두께로 상기 저굴절률 재료 층을 퇴적하는 단계
를 포함하는 것인, 방법.
실시예 5. 실시예 1에 있어서, 상기 고굴절률 재료 층은 티타늄 산화물(TiO2), 갈륨 비소화물(GaAs), 또는 갈륨 질화물(GaN)을 포함하고, 상기 저굴절률 재료 층은 실리콘 산화물(SiO2), 알루미늄 비소화물(AlAs), 또는 알루미늄 질화물(AlN)을 포함하는 것인, 방법.
실시예 6. 실시예 1에 있어서, 상기 제2 에피텍셜 층을 퇴적하는 단계는 게르마늄 에피텍셜 층을 퇴적하는 단계를 포함하는 것인, 방법.
실시예 7. 실시예 1에 있어서, 상기 스택을 퇴적하는 단계는, 상기 고굴절률 재료 층 및 저굴절률 재료 층의 교대 쌍들 상에 추가의 고굴절률 재료 층을 형성하는 단계를 포함하는 것인, 방법.
실시예 8. 실시예 1에 있어서, 상기 스택을 퇴적하는 단계는, 상기 스택의 상부 층 및 하부 층의 각각을 상기 고굴절률 재료 층으로 형성하는 단계를 포함하는 것인, 방법.
실시예 9. 이미지 센서에 있어서,
전면 표면 및 반대편인 배면 표면을 갖는 기판;
상기 기판의 배면 표면 상에 형성된 마이크로 렌즈;
상기 마이크로 렌즈와 상기 기판의 배면 표면 사이에 배치된 컬러 필터;
상기 기판의 전면 표면에 형성된 트렌치 내의 방사선 감지 영역 - 상기 방사선 감지 영역은 에피텍셜 반도체 재료를 포함함 - ;
상기 에피텍셜 반도체 재료의 표면 상에 배치되며, 제1 굴절률 값의 제1 재료 층 및 상기 제1 굴절률 값과는 상이한 제2 굴절률 값의 제2 재료 층의 교대 층들을 포함하는 미러 구조물; 및
상기 방사선 감지 영역 및 상기 미러 구조물 위의 상기 기판의 전면 표면 상에 형성된 금속화 층
을 포함하는, 이미지 센서.
실시예 10. 실시예 9에 있어서, 상기 에피텍셜 반도체 재료는 3개 이상의 패싯(facet)을 갖는 게르마늄을 포함하고, 상기 에피텍셜 반도체 재료와 상기 트렌치의 표면 사이에 산화물 층이 개재되는 것인, 이미지 센서.
실시예 11. 실시예 9에 있어서, 상기 제1 재료 층은, 상기 방사선 감지 영역에 입사하는 방사선의 파장을 상기 제1 굴절률 값의 4배로 나눈 값에 의해 제공된 비와 실질적으로 동일한 두께를 갖는 것인, 이미지 센서.
실시예 12. 실시예 9에 있어서, 상기 제2 재료 층은, 상기 방사선 감지 영역에 입사하는 방사선의 파장을 상기 제2 굴절률 값의 4배로 나눈 값에 의해 제공된 비와 실질적으로 동일한 두께를 갖는 것인, 이미지 센서.
실시예 13. 실시예 9에 있어서, 상기 제1 굴절률 값은 상기 제2 굴절률 값보다 더 큰 것인, 이미지 센서.
실시예 14. 실시예 9에 있어서, 상기 미러 구조물의 상부 및 측벽 표면을 덮는 캡핑 층을 더 포함하는, 이미지 센서.
실시예 15. 이미지 센서에 있어서,
전면 표면 및 반대편인 배면 표면을 갖는 기판;
상기 기판의 전면 표면에 형성된 트렌치 - 상기 트렌치의 하부 부분은 테이퍼드(tapered) 프로파일을 가짐 - ;
상기 트렌치 내의, 패싯을 갖는 에피텍셜 반도체 재료 층을 포함하는 방사선 감지 영역;
상기 트렌치의 표면과 상기 에피텍셜 반도체 재료 층의 패싯 사이에 배치된 산화물 층; 및
상기 에피텍셜 반도체 재료 층의 패싯 상에 배치된 교대 층들의 스택 - 상기 교대 층들은, 제1 굴절률의 제1 재료 층 및 제2 굴절률의 제2 재료 층을 포함함 -
을 포함하는, 이미지 센서.
실시예 16. 실시예 15에 있어서, 상기 제1 재료 층은 상기 제2 재료 층보다 더 얇은 것인, 이미지 센서.
실시예 17. 실시예 15에 있어서, 상기 테이퍼드 프로파일은, 상기 전면 및 배면 표면에 평행한 축으로부터 측정된 약 30°와 약 60°사이의 측벽 각도를 포함하는 것인, 이미지 센서.
실시예 18. 실시예 15에 있어서, 상기 제1 재료 층은 티타늄 산화물(TiO2), 갈륨 비소화물(GaAs), 또는 갈륨 질화물(GaN)을 포함하는 것인, 이미지 센서.
실시예 19. 실시예 15에 있어서, 상기 제2 재료 층은 실리콘 산화물(SiO2), 알루미늄 비소화물(AlAs), 또는 알루미늄 질화물(AlN)을 포함하는 것인, 이미지 센서.
실시예 20. 실시예 15에 있어서, 상기 에피텍셜 반도체 재료 층은 실리콘, 게르마늄, 실리콘-게르마늄, 또는 III-V 재료를 포함하는 것인, 이미지 센서.

Claims (10)

  1. 방법에 있어서,
    기판의 전면(front side) 표면 내에 개구를 형성하는 단계 - 상기 개구의 하부 부분은 테이퍼드(tapered) 프로파일을 가짐 - ;
    상기 개구의 하부 및 측벽 표면 상에 컨포멀(conformal) 임플란트(implant) 층을 형성하는 단계;
    상기 개구의 하부 및 측벽 표면 상에 제1 에피텍셜 층을 성장시키는 단계;
    상기 개구를 채우도록 상기 제1 에피텍셜 층 상에 제2 에피텍셜 층을 퇴적하는 단계 - 상기 제2 에피텍셜 층은 방사선 감지(radiation-sensing) 영역을 형성함 - ; 및
    상기 제2 에피텍셜 층의 노출된 표면 상에 스택을 퇴적하는 단계를 포함하고,
    상기 스택은, 고굴절률 재료 층 및 저굴절률 재료 층의 교대(alternating) 쌍들을 포함하는 것인, 방법.
  2. 청구항 1에 있어서,
    상기 스택 상에 캡핑 층을 퇴적하는 단계; 및
    상기 캡핑 층 상에 금속화 층을 형성하는 단계를 더 포함하고, 상기 금속화 층은, 상기 방사선 감지 영역에 전기적으로 커플링되며, 상기 방사선 감지 영역으로부터 신호 프로세싱 디바이스로 전기 신호를 전파하도록 구성되는 것인, 방법.
  3. 청구항 1에 있어서, 상기 전면 표면의 반대편인, 상기 기판의 배면 표면 상에 마이크로 렌즈를 형성하는 단계를 더 포함하고, 상기 마이크로 렌즈는 상기 기판의 배면 표면에 입사하는 방사선을 상기 방사선 감지 영역을 향해 지향시키도록 구성되는 것인, 방법.
  4. 청구항 1에 있어서, 상기 스택을 퇴적하는 단계는,
    입사 방사선의 파장을 상기 고굴절률 재료 층의 굴절률 값의 4배로 나눈 값과 동일한 두께로 상기 고굴절률 재료 층을 퇴적하는 단계; 및
    입사 방사선의 파장을 상기 저굴절률 재료 층의 굴절률 값의 4배로 나눈 값과 동일한 두께로 상기 저굴절률 재료 층을 퇴적하는 단계
    를 포함하는 것인, 방법.
  5. 청구항 1에 있어서, 상기 고굴절률 재료 층은 티타늄 산화물(TiO2), 갈륨 비소화물(GaAs), 또는 갈륨 질화물(GaN)을 포함하고, 상기 저굴절률 재료 층은 실리콘 산화물(SiO2), 알루미늄 비소화물(AlAs), 또는 알루미늄 질화물(AlN)을 포함하는 것인, 방법.
  6. 청구항 1에 있어서, 상기 제2 에피텍셜 층을 퇴적하는 단계는 게르마늄 에피텍셜 층을 퇴적하는 단계를 포함하는 것인, 방법.
  7. 청구항 1에 있어서, 상기 스택을 퇴적하는 단계는, 상기 고굴절률 재료 층 및 저굴절률 재료 층의 교대 쌍들 상에 추가의 고굴절률 재료 층을 형성하는 단계를 포함하는 것인, 방법.
  8. 청구항 1에 있어서, 상기 스택을 퇴적하는 단계는, 상기 스택의 상부 층 및 하부 층의 각각을 상기 고굴절률 재료 층으로 형성하는 단계를 포함하는 것인, 방법.
  9. 이미지 센서에 있어서,
    전면 표면 및 반대편인 배면 표면을 갖는 기판;
    상기 기판의 배면 표면 상에 형성된 마이크로 렌즈;
    상기 마이크로 렌즈와 상기 기판의 배면 표면 사이에 배치된 컬러 필터;
    상기 기판의 전면 표면에 형성된 트렌치 내의 방사선 감지 영역 - 상기 트렌치의 하부 부분은 테이퍼드(tapered) 프로파일을 갖고, 상기 방사선 감지 영역은 에피텍셜 반도체 재료를 포함함 - ;
    상기 에피텍셜 반도체 재료의 표면 상에 배치되며, 제1 굴절률 값의 제1 재료 층 및 상기 제1 굴절률 값과는 상이한 제2 굴절률 값의 제2 재료 층의 교대 층들을 포함하는 미러 구조물; 및
    상기 방사선 감지 영역 및 상기 미러 구조물 위의 상기 기판의 전면 표면 상에 형성된 금속화 층
    을 포함하는, 이미지 센서.
  10. 이미지 센서에 있어서,
    전면 표면 및 반대편인 배면 표면을 갖는 기판;
    상기 기판의 전면 표면에 형성된 트렌치 - 상기 트렌치의 하부 부분은 테이퍼드(tapered) 프로파일을 가짐 - ;
    상기 트렌치 내의, 패싯을 갖는 에피텍셜 반도체 재료 층을 포함하는 방사선 감지 영역;
    상기 트렌치의 표면과 상기 에피텍셜 반도체 재료 층의 패싯 사이에 배치된 산화물 층; 및
    상기 에피텍셜 반도체 재료 층의 패싯 상에 배치된 교대 층들의 스택 - 상기 교대 층들은, 제1 굴절률의 제1 재료 층 및 제2 굴절률의 제2 재료 층을 포함함 -
    을 포함하는, 이미지 센서.
KR1020200088151A 2020-03-26 2020-07-16 개선된 광 변환 효율을 갖는 이미지 센서 KR102454020B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/830,966 US11355544B2 (en) 2020-03-26 2020-03-26 Image sensor with improved light conversion efficiency
US16/830,966 2020-03-26

Publications (2)

Publication Number Publication Date
KR20210122006A KR20210122006A (ko) 2021-10-08
KR102454020B1 true KR102454020B1 (ko) 2022-10-12

Family

ID=76509843

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200088151A KR102454020B1 (ko) 2020-03-26 2020-07-16 개선된 광 변환 효율을 갖는 이미지 센서

Country Status (5)

Country Link
US (3) US11355544B2 (ko)
KR (1) KR102454020B1 (ko)
CN (1) CN113053936A (ko)
DE (1) DE102020111618A1 (ko)
TW (1) TWI747589B (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11355544B2 (en) 2020-03-26 2022-06-07 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with improved light conversion efficiency
US11688754B2 (en) * 2020-05-06 2023-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Photonic device and method having increased quantum effect length
US11996428B2 (en) * 2021-03-03 2024-05-28 Taiwan Semiconductor Manufacturing Company Limited Optical blocking structures for black level correction pixels in an image sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179836A (ja) * 2014-02-27 2015-10-08 株式会社東芝 固体撮像装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011652A (en) * 1997-12-23 2000-01-04 Cushing; David Henry Multilayer thin film dielectric bandpass filter
KR100578644B1 (ko) * 2004-05-06 2006-05-11 매그나칩 반도체 유한회사 프리즘을 구비한 시모스 이미지센서 및 그 제조방법
US20050274988A1 (en) * 2004-06-01 2005-12-15 Hong Sungkwon C Imager with reflector mirrors
US8134169B2 (en) * 2008-07-01 2012-03-13 Taiwan Semiconductor Manufacturing Co., Ltd. Patterned substrate for hetero-epitaxial growth of group-III nitride film
US8604405B2 (en) * 2009-03-31 2013-12-10 Taiwan Semiconductor Manufacturing Company, Ltd. Backside illuminated image sensor device with refractive index dependent layer thicknesses and method of forming the same
CN102693995B (zh) * 2012-06-20 2015-06-03 中国科学院上海高等研究院 图像传感器
WO2016085880A1 (en) * 2014-11-24 2016-06-02 Artilux, Inc. Monolithic integration techniques for fabricating photodetectors with transistors on same substrate
TWI767411B (zh) * 2015-07-24 2022-06-11 光程研創股份有限公司 半導體結構
US10886309B2 (en) 2015-11-06 2021-01-05 Artilux, Inc. High-speed light sensing apparatus II
US10643893B2 (en) * 2016-06-29 2020-05-05 International Business Machines Corporation Surface area and Schottky barrier height engineering for contact trench epitaxy
TWI774545B (zh) * 2017-02-28 2022-08-11 美商光程研創股份有限公司 高速光偵測裝置
US10121805B2 (en) * 2017-03-09 2018-11-06 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and method for manufacturing the same
US10483722B2 (en) * 2017-04-12 2019-11-19 Sense Photonics, Inc. Devices with ultra-small vertical cavity surface emitting laser emitters incorporating beam steering
US10373999B2 (en) * 2017-09-29 2019-08-06 Taiwan Semiconductor Manufacturing Company Ltd. Image sensor and associated fabricating method
US20210243858A1 (en) * 2018-05-25 2021-08-05 National Institute For Materials Science Multi-layered radiation light source
US11355544B2 (en) 2020-03-26 2022-06-07 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with improved light conversion efficiency
US11688754B2 (en) * 2020-05-06 2023-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Photonic device and method having increased quantum effect length

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015179836A (ja) * 2014-02-27 2015-10-08 株式会社東芝 固体撮像装置

Also Published As

Publication number Publication date
KR20210122006A (ko) 2021-10-08
US11955501B2 (en) 2024-04-09
DE102020111618A1 (de) 2021-09-30
US20210305291A1 (en) 2021-09-30
TW202137526A (zh) 2021-10-01
US20240204032A1 (en) 2024-06-20
US20220310679A1 (en) 2022-09-29
CN113053936A (zh) 2021-06-29
US11355544B2 (en) 2022-06-07
TWI747589B (zh) 2021-11-21

Similar Documents

Publication Publication Date Title
KR102454020B1 (ko) 개선된 광 변환 효율을 갖는 이미지 센서
US9570503B2 (en) Ridge structure for back side illuminated image sensor
KR101438268B1 (ko) 후면 조명 이미지 센서 칩 내의 그리드 및 이러한 그리드를 형성하기 위한 방법
TWI559516B (zh) 光偵測裝置、複合光偵測器及波導
US8604405B2 (en) Backside illuminated image sensor device with refractive index dependent layer thicknesses and method of forming the same
US8889455B2 (en) Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US11670662B2 (en) Semiconductor substrate with passivated full deep-trench isolation and associated methods of manufacture
US9691809B2 (en) Backside illuminated image sensor device having an oxide film and method of forming an oxide film of a backside illuminated image sensor device
CN113314554B (zh) 半导体器件和图像传感器以及制造图像传感器的方法
TW202329499A (zh) 抑制串擾的像素陣列基板及製造方法
TWI847079B (zh) 減少串擾的像素陣列基板及製造方法
EP3707755B1 (en) Germanium on insulator for cmos imagers in the short wave infrared
JP2024106980A (ja) イメージセンサ及びその製造方法
US20200075662A1 (en) Image sensors, forming methods of the same, and imaging devices
TWI753754B (zh) 影像感測器與其製造方法
US9721983B2 (en) Semiconductor device and manufacturing method thereof
TW202229937A (zh) 半導體影像感測器
JP2017107951A (ja) 固体撮像装置及びその製造方法ならびにカメラ
JP7185732B2 (ja) イメージセンサ
US20240113149A1 (en) Backside illuminated image sensor and manufacturing method thereof
US11715753B2 (en) Methods for integration of light emitting diodes and image sensors
CN117810235A (zh) 影像传感器
CN118412362A (zh) 图像传感器及其制造方法
KR20240139499A (ko) 이미지 센서 및 그 제조방법

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant