KR102427002B1 - 박형 실리콘 기판 및 그 제조방법 - Google Patents

박형 실리콘 기판 및 그 제조방법 Download PDF

Info

Publication number
KR102427002B1
KR102427002B1 KR1020150132034A KR20150132034A KR102427002B1 KR 102427002 B1 KR102427002 B1 KR 102427002B1 KR 1020150132034 A KR1020150132034 A KR 1020150132034A KR 20150132034 A KR20150132034 A KR 20150132034A KR 102427002 B1 KR102427002 B1 KR 102427002B1
Authority
KR
South Korea
Prior art keywords
base material
silicon
nickel
nickel layer
silicon substrate
Prior art date
Application number
KR1020150132034A
Other languages
English (en)
Other versions
KR20170033995A (ko
Inventor
정재학
노지원
김민수
Original Assignee
영남대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 영남대학교 산학협력단 filed Critical 영남대학교 산학협력단
Priority to KR1020150132034A priority Critical patent/KR102427002B1/ko
Publication of KR20170033995A publication Critical patent/KR20170033995A/ko
Application granted granted Critical
Publication of KR102427002B1 publication Critical patent/KR102427002B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Silicon Compounds (AREA)

Abstract

본 발명은 양질의 박형 실리콘 기판을 안정적으로 구현하기 위한 것으로서, 제 1 반응조 내에 실리콘 모재를 배치하는 제 1 단계; 상기 제 1 반응조 내에서 도금 공정에 의하여 상기 실리콘 모재의 상면에 니켈층을 형성하는 제 2 단계; 상기 니켈층 아래의 상기 실리콘 모재 측면의 적어도 일부에 레이저 스크라이빙 공정으로 그루브(groove)를 형성하는 제 3 단계; 니켈과 실리콘의 응력 차이로 인하여 상기 그루브를 기점으로 크랙이 전파되면서 상기 니켈층과 상기 실리콘 모재의 일부인 박형 실리콘이 상기 실리콘 모재의 나머지로부터 박리되어 분리되는 제 4 단계; 및 상기 실리콘 모재의 나머지로부터 박리되어 분리된 상기 니켈층과 상기 박형 실리콘의 복합 구조체를 니켈 에칭제를 수용한 제 2 반응조에 침지하여 니켈층이 제거된 박형 실리콘 기판을 형성하는 제 5 단계;를 포함하는 박형 실리콘 기판의 제조방법을 제공한다.

Description

박형 실리콘 기판 및 그 제조방법{Thin film silicon substrate and method of fabricating the same}
본 발명은 박형 실리콘 기판 및 그 제조방법으로서, 더 상세하게는 실리콘과 금속의 응력 차이로 유발된 박리 공정을 이용하는 박형 실리콘 기판 및 그 제조방법에 관한 것이다.
대부분의 에너지 소비를 화석에너지로 사용함에 따라 이산화탄소, 메탄등과 같은 온실가스 배출량은 늘어 지구온난화를 비롯해 해수면 상승, 스모그현상, 온실효과 등 기후변화를 일으키는 주원인이 되고 있으며 시간이 지날수록 화석에너지 매장량의 한계는 공급위기에 처하고 있다. 이러한 문제에 대응하기 위해 대체에너지의 이용과 보급 확대의 필요성 역시 부각되어 화석연료의 의존도를 줄이고 환경에 영향을 미치지 않으며 고갈될 염료가 없는 자연 에너지를 이용한 대체에너지에 대한 관심은 나날이 커지고 있다. 이러한 관점에서 우리나라 사정상 많은 대체 에너지 중 태양으로부터 무한한 에너지를 받을 수 있는 태양광 에너지에 대한 관심이 가장 높으며 연구 또한 활발히 진행되고 있다.
태양광 발전은 무한정, 무공해 태양에너지를 직접 전기에너지로 변환시키는 기술로서 재료에 따라 실리콘계, 화합물계, 유기물계 등으로 구분할 수 있고 형태에 따라서는 크게 결정형, 박막형, 집중형 등으로 구분 할 수 있다.
이제는 태양광 에너지가 단순히 고효율이라는 목표를 넘어 저가화라는 것을 더해 태양전지의 상용화에 한 걸음 더 나아가고 있다. 태양전지 시장의 90% 이상을 차지하고 있는 실리콘 태양전지의 대부분은 단결정 잉곳을 제조하고 이를 커팅한 웨이퍼 형태로 사용되는데 이 때 커팅에 의한 두께 한계 및 Kerf-less가 발생하게 되어 재료비용이 높아지게 된다. 그러므로 결정질 실리콘 소재를 얇게 박리함으로써 재료비용은 낮추고 태양전지의 고 효율화 및 저가실현을 위하여 박형화 및 결정화의 기술 개발을 해야 한다.
본 발명은 양질의 박형 실리콘 기판을 안정적으로 구현할 수 있는 박형 실리콘 기판의 제조방법을 제공하는 것을 목적으로 한다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
본 발명의 일 관점에 의한 박형 실리콘 기판의 제조방법이 제공된다. 상기 박형 실리콘 기판의 제조방법은 제 1 반응조 내에 실리콘 모재를 배치하는 제 1 단계; 상기 제 1 반응조 내에서 도금 공정에 의하여 상기 실리콘 모재의 상면에 니켈층을 형성하는 제 2 단계; 상기 니켈층 아래의 상기 실리콘 모재 측면의 적어도 일부에 레이저 스크라이빙 공정으로 그루브(groove)를 형성하는 제 3 단계; 니켈과 실리콘의 응력 차이로 인하여 상기 그루브를 기점으로 크랙이 전파되면서 상기 니켈층과 상기 실리콘 모재의 일부인 박형 실리콘이 상기 실리콘 모재의 나머지로부터 박리되어 분리되는 제 4 단계; 및 상기 실리콘 모재의 나머지로부터 박리되어 분리된 상기 니켈층과 상기 박형 실리콘의 복합 구조체를 니켈 에칭제를 수용한 제 2 반응조에 침지하여 니켈층이 제거된 박형 실리콘 기판을 형성하는 제 5 단계;를 포함한다.
상기 박형 실리콘 기판의 제조방법에서, 상기 제 1 단계 내지 제 5 단계로 구성된 단위사이클이 연속하여 반복되며, 상기 제 5 단계에서 회수한 니켈은 후속의 단위사이클에서 상기 제 2 단계의 도금 공정에 재사용될 수 있다.
상기 박형 실리콘 기판의 제조방법에서, 상기 제 3 단계에서 상기 그루브는 상기 니켈층으로부터 10㎛ 내지 30㎛ 아래에 형성될 수 있다.
상기 박형 실리콘 기판의 제조방법에서, 상기 실리콘 모재의 나머지로부터 박리되어 분리된 상기 니켈층과 상기 박형 실리콘의 복합 구조체는 말려진 롤(roll) 형태를 가질 수 있다.
상기 박형 실리콘 기판의 제조방법에서, 상기 제 1 단계 내지 제 4 단계는 상기 제 1 반응조에서 수행되며, 상기 제 5 단계는 상기 제 2 반응조에서 수행될 수 있다.
본 발명의 다른 관점에 의한 박형 실리콘 기판이 제공된다. 상기 박형 실리콘 기판은 상술한 제조방법에 의하여 구현된 기판을 포함한다.
상기한 바와 같이 이루어진 본 발명의 일 실시예에 따르면, 양질의 박형 실리콘 기판을 안정적으로 구현할 수 있다. 그러나 이러한 과제는 예시적인 것으로, 이에 의해 본 발명의 범위가 한정되는 것은 아니다.
도 1 내지 도 7은 본 발명의 일 실시예에 따른 박형 실리콘 기판의 제조방법을 순차적으로 도해하는 도면들이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시예를 상세히 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있는 것으로, 이하의 실시예는 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 또한 설명의 편의를 위하여 도면에서는 적어도 일부의 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 도면에서 동일한 부호는 동일한 요소를 지칭한다.
명세서 전체에 걸쳐서, 층 또는 영역과 같은 하나의 구성요소가 다른 구성요소 "상에" 위치한다고 언급할 때는, 상기 하나의 구성요소가 직접적으로 상기 다른 구성요소 "상에" 접하거나, 그 사이에 개재되는 또 다른 구성요소들이 존재할 수 있다고 해석될 수 있다. 반면에, 하나의 구성요소가 다른 구성요소 "직접적으로 상에" 위치한다고 언급할 때는, 그 사이에 개재되는 다른 구성요소들이 존재하지 않는다고 해석된다.
도 1 내지 도 7은 본 발명의 일 실시예에 따른 박형 실리콘 기판의 제조방법을 순차적으로 도해하는 도면들이다.
도 1을 참조하면, 제 1 반응조(100) 내에 실리콘 모재(10)를 배치한다. 제 1 반응조(100) 내에는 니켈 도금액(150)이 수용될 수 있다. 실리콘 모재(10)는 위치 조절 받침대인 서셉터(110) 상에 위치할 수 있다.
도 2를 참조하면, 제 1 반응조(100) 내에서 도금 공정에 의하여 실리콘 모재(10)의 니켈층(20)을 형성한다. 표 1은 실리콘과 니켈은 열팽창계수(단위:μK-1)를 나타낸 것이다. 니켈과 실리콘의 열팽창계수의 차이는 후속 공정에서 열응력의 차이를 유발하므로 박리 공정을 수행함에 있어서 중요한 특성이라 할 수 있다.
400K 500K 600K 700K 800K
실리콘 3.25 3.61 3.84 4.01 4.15
니켈 0.133 0.139 0.142 0.148 0.153
도 3을 참조하면, 니켈층(20)이 형성된 실리콘 모재(10)의 적어도 일부를 니켈 도금액(150) 수면 위로 서셉터(110) 및 샤프트(120)를 이용하여 이동한다. 즉, 서셉터(110) 및 샤프트(120)는 실리콘 모재(10) 및 니켈층(20)의 위치를 조절하는 장치로 이해할 수 있다. 이동 결과, 니켈 도금액(150) 수면 위로 실리콘 모재(10)의 적어도 일부와 니켈층(20)이 노출된다.
도 4를 참조하면, 실리콘 모재(10) 측면의 적어도 일부에 그루브(70, groove)를 형성한다. 그루브(70)는 오목부를 포함하는 임의의 형상을 가지며, 홀(hole), 트렌치(trench) 또는 캐비티(cavity) 등의 다른 용어로 이해될 수도 있다. 이러한 그루브(70)는 니켈과 실리콘의 응력 차이로 인하여 크랙이 전파되는 시작 영역일 수 있다.
그루브(70)는, 일 실시예에서, 실리콘 모재(10) 측면의 일부에만 형성될 수 있으며, 변형된 실시예에서는 실리콘 모재(10)의 측면을 따라 계속 형성되어 폐루프를 형성할 수도 있다.
그루브(70)는, 예를 들어, 레이저 스크라이빙(laser scribing) 공정으로 구현될 수 있다. 실리콘 박리공정에서 박리된 실리콘의 두께 제어를 위해 레이저를 이용하여 스크라이빙을 하게 되면 두께에 대한 제어가 용이하다.
그루브(70)는 니켈층(20)으로부터 소정의 이격거리를 가지는 영역에 형성되며, 상기 이격거리는 최종적으로 구현되는 박형 실리콘 기판(도 7의 30a)의 두께를 결정할 수 있다. 예를 들어, 그루브(70)는 니켈층(20)으로부터 10㎛ 내지 30㎛ 아래에 형성될 수 있으며 이로부터 구현되는 박형 실리콘 기판의 두께는 약 20㎛일 수 있다.
한편, 그루브(70)를 균일한 위치에 형성하기 위하여, 레이저 장치(130)가 고정된 상태에서, 샤프트(120)의 회전으로 실리콘 모재(10)가 회전하는 동안 레이저가 조사될 수 있다.
본 발명자는, 레이저 스크라이빙(laser scribing) 공정에 의하여 형성된 스크라이빙 깊이(Scribing Depth)를 조절함으로써 유발되는 응력을 연동하여 조절할 수 있음을 확인하였다. 예를 들어, 스크라이빙 깊이가 0.625㎛, 1.25㎛, 2.5㎛ 일 때, 온도 구간과 상관없이, 스크라이빙 깊이가 0.625㎛ 일 때 평균적으로 스트레스가 크게 나타났고, 스크라이빙 깊이가 1.25㎛ 일때랑 2.5㎛에서는 근소하지만 스크라이빙 깊이가 1.25㎛ 일 때 스트레스가 더 작게 나타났다. 나아가, 박리 두께(Peeling Thickness)가 얇을수록, 그리고 레이저 가공 깊이가 얕을수록, 레이저 가공 폭이 고정되어 일정한 열에너지를 받았을 때 단위 면적당 받은 열에너지가 크기 때문에 더 많은 열적 응력을 받는 것으로 확인하였다.
도 5a 내지 도 5c를 참조하면, 니켈과 실리콘의 응력 차이로 인하여 그루브(70)를 기점으로 크랙이 전파되면서 니켈층(20)과 실리콘 모재(10)의 일부인 박형 실리콘(10a)이 실리콘 모재(10)의 나머지(10b)로부터 박리되어 분리될 수 있다.
니켈층(20)과 실리콘 모재(10)의 일부인 박형 실리콘(10a)로 이루어진 복합 구조체(30)는 말려진 롤(roll) 형태를 가질 수 있으며, 니켈과 실리콘의 계면은 접합된 상태일 수 있다.
이러한 박리 공정은 초기의 크랙 기점인 그루브(70)로부터 시작되며, 박리된 실리콘과 니켈의 응력 차이로 말려 올라가며 크랙이 전파될 수 있다. 박리된 실리콘과 니켈의 두께는 얇기 때문에 복합 구조체(30)는 돌돌 말려질 수 있다. 예를 들어, 복합 구조체(30)는 니켈이 도금된 두께 20㎛의 실리콘 박막 기판일 수 있다.
한편, 니켈층(20)과 실리콘 모재(10)의 일부인 박형 실리콘(10a)이 실리콘 모재(10)의 나머지(10b)로부터 박리되어 분리되는 과정을 촉진하기 위하여 별도의 열처리를 수행할 수 있다. 니켈과 실리콘의 열팽창계수의 차이에 기인하는 열응력은 박막의 박리 및 분리 공정에 기여할 수 있다.
도 6 및 도 7을 참조하면, 제 1 반응조(100)에서 생성된 복합 구조체(30)를 니켈 에칭용액(350)을 수용한 제 2 반응조(300)로 이동(A)시킨다. 니켈 에칭용액(350)에 복합 구조체(30)가 침지되면 복합 구조체(30)를 구성하는 니켈층(20)은 니켈 에칭용액(350)에 의하여 복합 구조체(30)로부터 제거된다. 이에 따르면, 복합 구조체(30)는 박형 실리콘 기판(30a)과 니켈 용출부(30b)로 분리될 수 있다. 니켈 용출부(30b)는 복합 구조체(30)를 형성하는 니켈층(20)의 적어도 일부로 이해할 수 있으며, 일체로 형성되거나 또는 이격된 복수개의 덩어리나 박편으로 존재할 수도 있다.
한편, 순차적으로 설명한 상술한 단계들은 단위사이클을 형성하며, 이러한 단위사이클이 연속적으로 반복하여 수행됨으로써 박형 실리콘 기판(30a)을 연속적으로 대량 생산할 수 있다. 이 경우, 복합 구조체(30)에서 분리된 니켈 용출부(30b)는 후속으로 수행되는 단위사이클에서 니켈 도금공정에 재사용되도록 제 2 반응조(300)에서 제 1 반응조(100)로 이동(B)될 수 있다. 제 1 반응조(100)에 투입되는 니켈 용출부(30b)는 재사용되면서 니켈 도금액(150)의 농도를 일정하게 유지하므로 공정의 안정화를 구현하면서 동시에 제조공정의 비용을 절감할 수 있다.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.

Claims (6)

  1. 제 1 반응조 내에 실리콘 모재를 배치하는 제 1 단계;
    상기 제 1 반응조 내에서 도금 공정에 의하여 상기 실리콘 모재의 상면에 니켈층을 형성하는 제 2 단계;
    상기 니켈층 아래의 상기 실리콘 모재 측면의 적어도 일부에 레이저 스크라이빙 공정으로 그루브(groove)를 형성하는 제 3 단계;
    니켈과 실리콘의 응력 차이로 인하여 상기 그루브를 기점으로 크랙이 전파되면서 상기 니켈층과 상기 실리콘 모재의 일부인 박형 실리콘이 상기 실리콘 모재의 나머지로부터 박리되어 분리되는 제 4 단계;
    상기 실리콘 모재의 나머지로부터 박리되어 분리된 상기 니켈층과 상기 박형 실리콘의 복합 구조체를 니켈 에칭제를 수용한 제 2 반응조에 침지하여 니켈층이 제거된 박형 실리콘 기판을 형성하는 제 5 단계;를 포함하되,
    상기 제 4 단계는 니켈과 실리콘의 열팽창계수의 차이에 기인하는 열응력으로 상기 박리 및 상기 분리를 촉진하기 위하여 별도의 열처리를 수행하는 단계를 더 포함하며,
    상기 제 1 단계 내지 제 5 단계로 구성된 단위사이클이 연속하여 반복되며,
    상기 제 5 단계에서 회수한 니켈은 후속의 단위사이클에서 상기 제 2 단계의 도금 공정에 재사용되는,
    박형 실리콘 기판의 제조방법.
  2. 삭제
  3. 제 1 항에 있어서,
    상기 제 3 단계에서 상기 그루브는 상기 니켈층으로부터 10㎛ 내지 30㎛ 아래에 형성되는, 박형 실리콘 기판의 제조방법.
  4. 제 1 항에 있어서,
    상기 실리콘 모재의 나머지로부터 박리되어 분리된 상기 니켈층과 상기 박형 실리콘의 복합 구조체는 말려진 롤(roll) 형태를 가지는, 박형 실리콘 기판의 제조방법.
  5. 제 1 항에 있어서,
    상기 제 1 단계 내지 제 4 단계는 상기 제 1 반응조에서 수행되며,
    상기 제 5 단계는 상기 제 2 반응조에서 수행되는, 박형 실리콘 기판의 제조방법.
  6. 삭제
KR1020150132034A 2015-09-18 2015-09-18 박형 실리콘 기판 및 그 제조방법 KR102427002B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150132034A KR102427002B1 (ko) 2015-09-18 2015-09-18 박형 실리콘 기판 및 그 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150132034A KR102427002B1 (ko) 2015-09-18 2015-09-18 박형 실리콘 기판 및 그 제조방법

Publications (2)

Publication Number Publication Date
KR20170033995A KR20170033995A (ko) 2017-03-28
KR102427002B1 true KR102427002B1 (ko) 2022-07-29

Family

ID=58495880

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150132034A KR102427002B1 (ko) 2015-09-18 2015-09-18 박형 실리콘 기판 및 그 제조방법

Country Status (1)

Country Link
KR (1) KR102427002B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102043059B1 (ko) * 2018-05-09 2019-12-02 한국기계연구원 초박형 실리콘 기판 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277136A (ja) * 2004-03-25 2005-10-06 Sharp Corp 基板製造方法および基板製造装置
JP2010188385A (ja) 2009-02-19 2010-09-02 Shin Etsu Polymer Co Ltd 半導体ウェーハの製造方法
KR101234053B1 (ko) 2012-11-01 2013-02-15 한국기계연구원 마그네슘 스크랩을 이용한 저니켈 재활용 마그네슘 합금의 제조 방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101377707B1 (ko) * 2012-07-06 2014-03-21 한양대학교 에리카산학협력단 실리콘 기판의 표면 박리 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005277136A (ja) * 2004-03-25 2005-10-06 Sharp Corp 基板製造方法および基板製造装置
JP2010188385A (ja) 2009-02-19 2010-09-02 Shin Etsu Polymer Co Ltd 半導体ウェーハの製造方法
KR101234053B1 (ko) 2012-11-01 2013-02-15 한국기계연구원 마그네슘 스크랩을 이용한 저니켈 재활용 마그네슘 합금의 제조 방법

Also Published As

Publication number Publication date
KR20170033995A (ko) 2017-03-28

Similar Documents

Publication Publication Date Title
Gordon et al. Three novel ways of making thin-film crystalline-silicon layers on glass for solar cell applications
CN101877368B (zh) 光电转换装置及其制造方法
Dross et al. Crystalline thin‐foil silicon solar cells: where crystalline quality meets thin‐film processing
Bedell et al. Kerf-less removal of Si, Ge, and III–V layers by controlled spalling to enable low-cost PV technologies
US8129612B2 (en) Method for manufacturing single-crystal silicon solar cell and single-crystal silicon solar cell
JP2008112847A (ja) 単結晶シリコン太陽電池の製造方法及び単結晶シリコン太陽電池
WO2011133975A3 (en) Thin film solar cell with ceramic handling layer
JP2009177145A5 (ko)
JP2011520290A (ja) 分離促進種を用いた電子デバイスの形成方法
CN103370800A (zh) 用于形成薄层板的方法和设备
KR102427002B1 (ko) 박형 실리콘 기판 및 그 제조방법
US9111996B2 (en) Semiconductor-on-insulator structure and method of fabricating the same
Serra et al. Progress and challenges for cost effective kerfless Silicon crystal growth for PV application
KR102389720B1 (ko) 박형 실리콘 기판의 제조장치
KR102389721B1 (ko) 박형 실리콘 기판의 제조장치
EP3111486B1 (en) Photovoltaic cell structure and method of manufacturing a photovoltaic cell
US8003423B2 (en) Method for manufacturing a poly-crystal silicon photovoltaic device using horizontal metal induced crystallization
JP2015512149A (ja) 多層金属支持体
An et al. Fabrication of Crystalline Si Thin Films for Photovoltaics
CN103178149B (zh) 薄膜太阳能电池及其制造方法
KR101863195B1 (ko) 박형 실리콘 기판의 제조 방법 및 장치
CN108892132A (zh) 制备石墨烯的辅助装置、石墨烯及其制备方法
CN113186595A (zh) 一种大尺寸具有层间转角的二维单晶叠层的制备方法
CN103594541A (zh) 用于太阳能电池的多晶硅/单晶硅异质结结构及其制备方法
Henley et al. Beam-induced wafering technology for kerf-free thin PV manufacturing

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant