KR102424348B1 - 이소퀴놀리닐술포닐 유도체 및 이의 용도 - Google Patents

이소퀴놀리닐술포닐 유도체 및 이의 용도 Download PDF

Info

Publication number
KR102424348B1
KR102424348B1 KR1020207004711A KR20207004711A KR102424348B1 KR 102424348 B1 KR102424348 B1 KR 102424348B1 KR 1020207004711 A KR1020207004711 A KR 1020207004711A KR 20207004711 A KR20207004711 A KR 20207004711A KR 102424348 B1 KR102424348 B1 KR 102424348B1
Authority
KR
South Korea
Prior art keywords
group
compound
mmol
ethyl acetate
reaction
Prior art date
Application number
KR1020207004711A
Other languages
English (en)
Other versions
KR20200031669A (ko
Inventor
유안쉔 야오
리 장
쟈오구오 첸
렐리 쟈오
링윤 우
슈후이 첸
Original Assignee
차이나 리소시즈 파마수티컬 홀딩스 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 차이나 리소시즈 파마수티컬 홀딩스 컴퍼니 리미티드 filed Critical 차이나 리소시즈 파마수티컬 홀딩스 컴퍼니 리미티드
Publication of KR20200031669A publication Critical patent/KR20200031669A/ko
Application granted granted Critical
Publication of KR102424348B1 publication Critical patent/KR102424348B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/10Spiro-condensed systems

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명은 Rho 단백질 키나제 억제제인 이소퀴놀린계 화합물, 및 Rho 단백질 키나제 관련 질환을 치료하는 약물을 제조함에 있어서의 이의 용도를 개시하고, 구체적으로 식(I)으로 표시되는 화합물 및 이의 약학적으로 허용가능한 염을 개시한다.
Figure 112020017113267-pct00071

Description

이소퀴놀리닐술포닐 유도체 및 이의 용도
관련 출원의 참조
본 출원은 하기 우선권을 주장한다:
CN201710590957.X, 출원일2017-07-19.
기술분야
본 발명은 RHO 단백질 키나제 억제제인 이소퀴놀리닐술포닐 유도체 및 이의 약학 조성물에 관한 것이다. 구체적으로, 본 발명은 식(I)으로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염에 관한 것이다.
파수딜(Fasudil)은 광범위한 약리효과가 있는 신형약물이며, RHO 키나제 억제제로서, 미오신 경사슬 인산분해효소의 활성을 증가시켜 혈관을 확장하고, 내피세포의 장력을 줄이며, 뇌조직의 미세순환을 개선하고, 뇌의 도혈을 일으키거나 악화시키지 않으며, 동시에 염증성인자를 길항하고, 세포자멸사로부터 신경을 보호하며, 신경재생을 촉진할 수 있다. 본 결과는 파수딜 히드로클로라이드가 신경기능의 회복을 촉진하고, 임상증상을 감소시키고, 장애발생빈도를 감소시키는데 특정효과가 있음을 보여준다. 따라서 기층에서는 경제조건의 제약 및 질병에 대한 인식정도로 인해, 조기 혈전용해 요법을 달성할 수는 없지만, 질병의 진행을 줄이기 위해서는 치료시간 내에 국소혈액순환을 재구성하는 것이 아주 중요하다. 파수딜 히드로클로라이드는 허혈성뇌혈관 질환에 상당한 신경보호 및 치료효과를 가지며, 임상적으로, 특히 기층에서 사용되어, 장애를 줄이고 삶의 질을 향상시킬 수 있다. 닌테다닙(Nintedanib) 및 피르페니돈(pirfenidone)의 임상적용은 폐섬유증에 더 나은 개선효과가 있다.
개시된 특허 WO2015/165341에서, 하기 화학식(실시예 38)으로 표시되는 화합물이 보고되었다. ROCK 키나제 억제제로서 이 화합물은 비교적 우수한 효소활성을 갖지만, 그의 약동학적 특성 및 hERG 활성은 이상적이지 않다. 현재의 특허는 이러한 특성을 크게 개선시키는 구조적으로 변형된 유사화합물 부류를 보고하고 있다.
Figure 112020017113267-pct00001
본 발명의 목적은 식(I)으로 표시되는 화합물 또는 이의 약학적으로 허용가능한 염 또는 이의 호변이성질체를 제공한다.
Figure 112020017113267-pct00002
식 중,
T1 및 T2는 각각 독립적으로 NH 또는 CH2에서 선택되고;
R1 및 R3은 각각 독립적으로H, F, Cl, Br, I, OH, NH2에서 선택되거나, 또는 각각 독립적으로 1, 2 또는 3개의 R에 의해 임의로 치환된:C1-3알킬기에서 선택되며;
R2는 H, F, Cl, Br, I, OH, NH2에서 선택되고;
R4는 1, 2 또는 3개의 R에 의해 임의로 치환된:C1-3알킬기에서 선택되거나;
또는 R3 및 R4는 서로 연결되어, 1, 2 또는 3개의 R에 의해 임의로 치환된 3 내지 6원 고리를 형성하며;
R은 F, Cl, Br, I, OH, NH2에서 선택된다.
본 발명의 일부 실시형태에서, 상기 R1 및 R3은 각각 독립적으로 H, F, Cl, Br, I, OH, NH2 또는 CH3에서 선택된다.
본 발명의 일부 실시형태에서, 상기 R4는 CH3에서 선택된다.
본 발명의 일부 실시형태에서, 상기 구조단위
Figure 112020017113267-pct00003
Figure 112020017113267-pct00004
,
Figure 112020017113267-pct00005
에서 선택되며, R3 및 R4는 본 발명에서 정의된 바와 같다.
본 발명의 일부 실시형태에서, 상기 구조단위
Figure 112020017113267-pct00006
Figure 112020017113267-pct00007
,
Figure 112020017113267-pct00008
,
Figure 112020017113267-pct00009
에서 선택된다.
본 발명의 일부 실시형태에서, 상기 R3과 R4는 서로 연결되어, 1, 2 또는 3개의 R에 의해 임의로 치환된 3원고리를 형성하며, R은 본 발명에서 정의된 바와 같다.
본 발명의 일부 실시형태에서, 상기 구조단위
Figure 112020017113267-pct00010
Figure 112020017113267-pct00011
에서 선택된다.
본 발명의 일부 실시형태에서, 상기 R1 및 R3은 각각 독립적으로 H, F, Cl, Br, I, OH, NH2 또는 CH3에서 선택되고, 기타 변량은 상기에서 정의된 바와 같다.
본 발명의 일부 실시형태에서, 상기 R4는 CH3에서 선택되며, 기타 변량은 상기에서 정의된 바와 같다.
본 발명의 일부 실시형태에서, 상기 구조단위
Figure 112020017113267-pct00012
Figure 112020017113267-pct00013
,
Figure 112020017113267-pct00014
에서 선택되고, 기타 변량은 상기에서 정의된 바와 같다.
본 발명의 일부 실시형태에서, 상기 구조단위
Figure 112020017113267-pct00015
Figure 112020017113267-pct00016
,
Figure 112020017113267-pct00017
,
Figure 112020017113267-pct00018
에서 선택되며, 기타 변량은 상기에서 정의된 바와 같다.
본 발명의 일부 실시형태에서, 상기 R3과 R4는 서로 연결되어, 1, 2 또는 3개의 R에 의해 임의로 치환된 3원고리를 형성하며, 기타 변량은 상기에서 정의된 바와 같다.
본 발명의 일부 실시형태에서, 상기 구조단위
Figure 112020017113267-pct00019
Figure 112020017113267-pct00020
에서 선택되며, 기타 변량은 상기에서 정의된 바와 같다.
본 발명의 일부 실시형태에서, 상기 화합물 또는 이의 약학적으로 허용가능한 염 및 이성질체는:
Figure 112020017113267-pct00021
,
Figure 112020017113267-pct00022
에서 선택되며,
그중, R1 내지 R4는 상기에 정의된 바와 같다.
또한 본 발명의 일부 실시형태는 상기 변량의 임의의 조합으로부터 이루어진다.
본 발명은 하기 식으로 표시되는 화합물, 이의 이성질체 또는 약학적으로 허용가능한 염을 더 제공하며, 이는 하기에서 선택된다:
Figure 112020017113267-pct00023
Figure 112020017113267-pct00024
Figure 112020017113267-pct00025
Figure 112020017113267-pct00026
본 발명은 치료유효량의 활성성분인 상기 화합물, 이의 이성질체 또는 약학적으로 허용가능한 염과 약학적으로 허용가능한 담체를 포함하는 일종의 약학조성물을 더 제공한다.
본 발명은 혈관수축에 의해 야기되는 관련 질환을 치료하는 약물의 제조에 있어서의 상기 화합물, 이의 이성질체 또는 약학적으로 허용가능한 염 또는 상기 조성물의 용도를 제공한다.
정의 및 설명
다른 설명이 없으면, 본문에서 사용된 하기 용어와 문구는 하기와 같은 함의를 갖는다. 하나의 특정된 용어 또는 문구는 특별히 정의되지 않는 상황에서 확정되지 않거나 명확하지 않은 것으로 간주되어서는 아니되며, 통상적인 함의로 이해되어야 한다. 본문에서 상품 명칭이 나타나면 이는 대응되는 상품 또는 이의 활성 성분을 나타낸다. 여기에서 사용되는 용어 “약학적으로 허용 가능한”은 신뢰 가능한 의학 판단 범위 내에서 그러한 화합물, 재료, 조성물 및/또는 제형은 인간과 동물의 조직과 접촉에 사용하기에 적합하되, 과도한 독성, 자극성, 과민성 반응 또는 기타 문제 또는 합병증이 없으며 합리적인 이익/위험 비율을 의미한다.
용어 “약학적으로 허용 가능한 염”은 본 발명 화합물의 염으로, 본 발명에서 발견된 특정 치환기를 지닌 화합물과 상대적으로 무독의 산 또는 염기로 제조된다. 본 발명의 화합물에 상대적으로 산성인 관능기가 함유될 경우, 순수한 용액 또는 적합한 불활성 용매에서 충족한 양의 염기와 이러한 화합물의 중성 형식으로 접촉시키는 방식으로 염기 부가염을 얻을 수 있다. 약학적으로 허용 가능한 염기 부가염은 나트륨, 칼륨, 칼슘, 암모늄, 유기 암모늄 또는 마그네슘염 또는 유사한 염을 포함한다. 본 발명의 화합물에 상대적인 염기성의 관능기가 함유될 경우, 순수한 용액 또는 적합한 불활성 용매에서 충족한 양의 산과 이러한 화합물의 중성 형식으로 접촉시키는 방식으로 산 부가염을 얻을 수 있다. 약학적으로 허용 가능한 산 부가염의 구현예로, 예를 들어 염산, 브롬화수소산(Hydrobromic acid), 질산(Nitric acid), 탄산(Carbonic acid), 중탄산기(bicarbonate group), 인산(Phosphoric acid), 인산일수소기(Monohydrogen phosphate), 인산이수소기(Dihydrogen phosphate group), 황산(Sulfuric acid), 황산수소기(Hydrogen sulfate group), 요오드화수소산(Hydroiodic acid), 아인산염(phosphoric acid) 등을 포함하는 무기산염; 및 아세트산(Acetic acid), 프로피온산(Propionic acid), 이소부티르산(Isobutyric acid), 말레산(Maleic acid), 말론산(malonic acid), 벤조산(benzoic acid), 숙신산(Succinic acid), 수베린산(Suberic acid), 푸마르산(fumaric acid), 락트산(Lactic acid), 만델린산(Mandelic acid), 프탈산(phthalic acid), 벤젠술폰산(Benzenesulfonic acid), p-톨루엔술폰산(p-Toluenesulfonic acid), 구연산(Citric acid), 타르타르산(tartaric acid) 및 메탄술폰산(Methanesulfonic acid)과 같은 유사한 산을 포함하는 유기산염을 포함하고, 아미노산(예를 들어 아르기닌 등)의 염, 및 글루쿠론산(Glucuronic acid)과 같은 유기산의 염을 더 포함한다. 본 발명의 일부 특정 화합물은 염기성과 산성 관능기를 포함하여 임의의 염기 또는 산 부가염으로 전환될 수 있다.
본 발명의 약학적으로 허용 가능한 염은 산기 또는 염기를 함유한 모체 화합물로 통상적인 화학적 방법으로 합성할 수 있다. 일반적인 경우, 이러한 염의 제조 방법은, 물 또는 유기 용매 또는 양자의 혼합물에서 유리산 또는 염기 형식의 이러한 화합물을 화학적으로 칭량된 적절한 염기 또는 산과 반응시켜 제조한다. 본 발명의 일부 화합물은 수화물 형식을 포함하는 비용매화 형식 또는 용매화 형식으로 존재할 수 있다. 일반적으로, 용매화 형식과 비용매화의 형식은 동등하며, 모두 본 발명의 범위 내에 포함된다.
본 발명의 일부 화합물은 키랄성 탄소 원자(광학중심) 또는 이중결합을 구비할 수 있다. 라세미체, 부분입체 이성질체, 기하하적 이성질체 및 단일 이성질체는 모두 본 발명의 범위내에 포함된다.
다른 설명이 없으면, 쐐기형결합과 점선결합(
Figure 112020017113267-pct00027
)으로 하나의 입체중심의 절대적배열을 나타내고, 물결모양선
Figure 112020017113267-pct00028
으로 쐐기형결합 또는 점선결합(
Figure 112020017113267-pct00029
또는
Figure 112020017113267-pct00030
),
Figure 112020017113267-pct00031
으로 입체중심의 상대적배열을 나타낸다. 본문에서 서술된 화합물은 올레핀계이중결합 또는 기타 기하적비대칭중심을 포함하고, 달리 규정되지 않는 한, 이들은 E, Z기하적이성질체를 포함한다. 마찬가지로, 모든 호변 이성질체형식은 모두 본 발명의 범위내에 속한다.
본 발명의 화합물은 특정된 기하적 또는 입체 이성질체 형식으로 존재할 수 있다. 본 발명은 이러한 화합물은 거울상이성질체 또는 부분입체이성질체로 농축된 혼합물과 같은 시스(Cis) 및 트랜스(trans)이성질체, (-)- 및 (+)-거울상이성질체, (R)- 및 (S)-거울상이성질체, 부분입체이성질체, (D)-이성질체, (L)-이성질체, 및 라세미체 혼합물 및 기타 혼합물을 포함하는 것으로 구성되고, 모든 이러한 혼합물은 전부 본 발명의 범위에 속한다. 알킬기 등 치환기에는 다른 비대칭 탄소 원자가 존재할 수 있다. 이들 모든 이성질체 및 이들의 혼합물은 모두 본 발명의 범위 내에 속한다.
카이랄(Chiral) 합성 또는 카이랄 시약 또는 기타 통상적인 기술을 통해 광학 활성의 (R)- 및 (S)- 이성질체 및 DL 이성질체를 제조할 수 있다. 본 발명 화합물의 거울상이성질체를 얻으려면, 비대칭 합성 또는 카이랄 보조제를 구비한 유도 작용으로 제조할 수 있으며, 여기서 얻은 부분입체이성질체 혼합물을 분리하고, 보조 라디칼을 절단하여 순수한 필요 되는 거울상이성질체를 제공한다. 또는, 분자에 염기성 관능기(예를 들어 아미노기) 또는 산성 관능기(예를 들어 카르복실기(Carboxyl group))가 함유될 경우, 적합한 광학 활성의 산 또는 염기와 부분입체이성질체의 염을 형성한 후, 본 분야에 공지된 통상적인 방법으로 부분입체이성질체를 분해한 후, 회수하여 순수한 거울상이성질체를 얻는다. 이 외에, 일반적으로 거울상이성질체와 부분입체이성질체의 분리는 크로마토그래피방법(Chromatography)으로 완성되고, 상기 크로마토그래피방법은 카이랄 고정상을 사용하며 선택적으로 화학적 유도법과 결합한다(예를 들어 아민(amine)으로 카바메이트(carbamate)를 생성한다).
본 발명의 화합물은 상기 화합물을 구성하는 하나 또는 다수의 원자 상에 비천연적 비율의 원자 동위원소를 함유할 수 있다. 예를 들어, 트리튬(tritium)(3H), 요오드-125(125I) 또는 C-14(14C)와 같은 방사성 동위원소로 화합물을 표기할 수 있다. 본 발명의 화합물의 모든 동위원소로 조성된 변환은 방사성이든 아니든 모두 본 발명의 범위 내에 속한다.
용어 “약학적으로 허용 가능한 담체”는 본 발명의 유효량의 활성 물질을 전달할 수 있고, 활성 물질의 생물 활성을 간섭하지 않으며 숙주 또는 환자에 독성이 없고 부작용이 없는 임의의 제제 또는 대표적인 담체로 물, 오일, 야채 및 미네랄, 크림기제, 세제기제, 연고기제 등을 포함하는 담체 매질을 지칭한다. 이러한 기제로 현탁제, 접착제, 경피 촉진제 등을 포함한다. 이들의 제제는 화장품분야 또는 국소 약물분야의 기술자들에게 주지된 바와 같다.
“선택적” 또는 “선택적으로”는 후술되는 상기 서술에는 상기 사건 또는 상황이 발생된 경우 및 상기 사건 또는 상황이 발생되지 않는 경우를 포함하는 사건 또는 상황이 나타날 수 있지만 무조건 나타나는 것은 아님을 지칭한다.
용어 “치환된”은 특정 원자에서의 임의의 하나 또는 다수의 수소 원자가 치환기에 의해 치환되는 것을 의미하며, 단지 특정 원자의 원자가가 정상적이고 치환된 후의 화합물이 안정적이면 중수소 및 수소의 변이체를 포함할 수 있다. 치환기가 케톤기(즉=O)일 경우, 두 개의 수소 원자가 치환된 것을 의미한다. 케톤 치환은 아릴기에서 발생되지 않는다. 용어 “선택적으로 치환된”은 치환되거나 치환되지 않을 수도 있는 것을 의미하고, 다른 설명이 없으면, 치환기의 종류와 개수는 화학적으로 실현 가능한 기초 상에서 임의적일 수 있다.
화합물의 조성 또는 구조에서 임의의 변량(예를 들어 R)이 한번 이상 나타날 경우, 이의 각각의 경우에서의 정의는 모두 독립적이다. 따라서, 예를 들어, 만약 하나의 라디칼이 0 내지 2 개의 R에 의해 치환되면, 상기 라디칼은 선택적으로 두 개 이하의 R에 의해 치환 될 수 있고, 각각의 경우에서의 R은 모두 독립적인 선택항이다. 이 외에, 치환기 및/또는 이의 변이체의 조합은 이러한 조합이 안정적인 화합물을 생성하는 경우에서만 허용된다.
-(CRR)0-와 같이 하나의 연결기의 개수가 0일 경우, 상기 연결기는 단일 결합을 나타낸다.
그 중에서의 하나의 변량이 단일 결합으로부터 선택될 경우, 연결된 두 개의 라디칼이 직접적으로 연결된 것을 나타내며, 예를 들어 A-L-Z에서 L이 단일 결합을 나타낼 경우 상기 구조는 실제적으로 A-Z임을 나타낸다.
하나의 치환기가 비어 있을 경우, 상기 치환기는 존재하지 않는 것을 나타내며, 예를 들어 A-X에서 X가 비어 있을 경우 상기 구조는 실제적으로 A임을 나타낸다. 하나의 치환기가 하나의 고리의 하나 이상의 원자에 연결될 수 있을 경우, 이러한 치환기는 그 고리의 임의의 원자 결합될 수 있다. 예하면, 구조단위
Figure 112020017113267-pct00032
또는
Figure 112020017113267-pct00033
은 치환기 R가 사이클로헥실기(Cyclohexyl group) 또는 클로헥사디엔(Cyclohexadiene)의 임의의 하나의 위치에서 치환될 수 있는 것을 나타낸다. 상기 열거한 치환기가 어느 원자를 통해 치환되는 기에 연결되는지를 명시하지 않을 경우, 이러한 치환기는 임의의 원자를 통해 결합될 수 있으며, 예하면, 피리디닐기는 치환기로서 피리딘 고리의 임의의 하나의 탄소원자를 통해 치환되는 기에 연결될 수 있다. 상기 나열된 연결 라디칼은 결합 방향을 명시하지 않았으며 결합방향은 임의적이다. 예를 들어
Figure 112020017113267-pct00034
에서 연결된 라디칼 L은-M-W-이고, 이 때, -M-W-는 고리 A와 고리 B를 왼쪽에서 오른쪽으로 읽기 순서와 같은 방향으로 연결하여
Figure 112020017113267-pct00035
를 형성할 수 있고, 고리 A와 고리 B를 왼쪽에서 오른쪽으로 읽기 순서와 반대 방향으로 연결하여
Figure 112020017113267-pct00036
를 형성할 수 있다. 상기 연결기, 치환기 및/또는 이의 변이체는 조합은 이러한 조합이 안정적인 화합물을 생성할 경우에만 허용된다.
다른 설명이 없으면, “사이클로”는 치환 또는 비치환 된 사이클로알킬기, 헤테로사이클로알킬기, 사이클로알케닐기(cycloalkenyl group), 헤테로사이클로알케닐기(heterocycloalkenyl group), 사이클로알키닐기(cycloalkynyl group), 헤테로사이클로알키닐기(heterocycloalkynyl group), 아릴기 또는 헤테로아릴기를 나타낸다. 이른바 고리는 단일 고리, 병합 고리(Bicyclo), 스피로 고리, 앤드 고리 또는 브릿지 고리이다. 고리 상의 원자의 개수는 통상적으로 고리의 원수로 정의되고, 예를 들어, “5 내지 7 원 고리”는 5 내지 7 개의 원자가 에둘러 배열된 것을 의미한다. 다른 설명이 없으면, 상기 고리는 선택적으로1 내지 3 개의 헤테로 원자를 포함한다. 따라서, “5 내지 7 원 고리”는 예를 들어 페닐기, 피리딘과 피페리디닐기(Piperidinyl group)를 포함하고; 한편, 용어 “5 내지 7 원 헤테로사이클로알킬기 고리”는 피리디닐기와 피페리디닐기를 포함하지만 페닐기를 포함하지 않는다. 용어 “고리”는 적어도 하나의 고리를 함유하는 고리계를 더 포함하고, 여기서의 각각의 “고리”는 모두 독립적으로 상기 정의에 부합된다.
다른 설명이 없으면, 용어 “탄화수소기(hydrocarbon group)”또는 이의 하위 개념(예를 들어 알킬기, 알케닐기(alkenyl group), 알키닐기(alkynyl group), 아릴기 등) 자체 또는 다른 하나의 치환기의 일부분으로서 직쇄, 분지 쇄 또는 고리형의 탄화수소 원자단 또는 이들의 조합을 나타내고, 완전 포화된(예를 들어 알킬기), 일가 또는 다가 불포화된 것일 수 있으며(예를 들어 알케닐기, 알키닐기, 아릴기), 일 치환, 이 치환 또는 다중 치환될 수 있고, 1가(예를 들어 메틸기), 2가(예를 들어 메틸렌기) 또는 다가(예를 들어 메틴기(methine group))일 수 있으며, 2가 또는 다가 원자단을 포함할 수 있고, 지정된 개수의 탄소 원자(예를 들어 C1 내지 C12는 1 개 내지 12 개의 탄소를 나타내고, C1-12는 C1, C2, C3, C4, C5, C6, C7, C8, C9, C10, C11 및 C12으로부터 선택되며; C3-12는 C3, C4, C5, C6, C7, C8, C9, C10, C11 및 C12로부터 선택된다)를 구비한다. “탄화수소기”는 지방족 탄화수소기와 방향족 탄화수소기를 포함하지만 이에 한정되지 않고, 상기 지방족 탄화수소기는 사슬형과 고리형을 포함하며, 구체적으로 알킬기, 알케닐기, 알키닐기를 포함하지만 이에 한정되지 않고, 상기 방향족 탄화수소기는 벤젠, 나프탈렌과 같은 6 내지 12 원의 방향족 탄화수소기를 포함하지만 이에 한정되지 않는다. 일부 실시예에서, 용어 “탄화수소기”는 직쇄 또는 분지쇄의 원자단 또는 이들의 조합을 나타내고, 완전 포화된, 일가 또는 다가 불포화된 것일 수 있으며, 2가 및 다가 원자단을 포함할 수 있다. 포화 탄화수소 원자단의 구현예로 메틸기, 에틸기, n-프로필기(n-propyl group), 이소프로필기(isopropyl group), n-부틸기(n-butyl group), tert-부틸기(tert-butyl group), 이소부틸기(isobutyl group), sec-부틸기(sec-butyl group), 이소부틸기, 사이클로헥실기,(사이클로헥실)메틸기, 사이클로프로필메틸기(cyclopropylmethyl group), 및 n-펜틸기(n-pentyl group), n-헥실기(n-hexyl group), n-헵틸기(n-heptyl group), n-옥틸기(n-octyl group) 등 원자단의 동족체 또는 이성질체를 포함하지만 이에 한정되지 않는다. 불포화 탄화수소기는 하나 또는 다수의 이중 결합 또는 삼중 결합을 구비하고, 이의 구현예로 비닐기(vinyl group), 2-프로페닐기(2-propenyl group), 부테닐기(butenyl group), 크로틸기(crotyl group), 2-이소펜테닐기(2-isopentenyl group), 2-(부타디에닐기)(2-(butadienyl group)), 2,4-펜타디에닐기(2,4-pentadienyl group), 3-(1,4-펜타디에닐기)(3-(1,4-pentadienyl group)), 에티닐기(ethynyl group), 1-프로피닐기(1-propinyl group) 및 3-프로피닐기(3-propinyl group), 3-부티닐기(3-butynyl group), 및 더욱 높은 동족체 및 이성질체를 포함하지만 이에 한정되지 않는다.
다른 설명이 없으면, 용어 “사이클로탄화수소기(cyclohydrocarbon group)”“헤테로사이클로탄화수소기(heterocyclohydrocarbon group)”또는 이의 하위 개념(예를 들어 아릴기, 헤테로아릴기, 사이클로알킬기, 헤테로사이클로알킬기, 사이클로알케닐기, 헤테로사이클로알케닐기, 사이클로알키닐기, 헤테로사이클로알키닐기 등) 자체 또는 기타 용어와 함께 사이클로화된 “탄화수소기”, “헤테로탄화수소기”를 각각 나타낸다. 이 외에, 헤테로탄화수소기 또는 헤테로사이클로탄화수소기(예를 들어 헤테로알킬기, 헤테로사이클로알킬기)에 대하여, 헤테로 원자는 상기 헤테로사이클로에 부착된 분자의 나머지 부분의 위치를 차지할 수 있다. 사이클로탄화수소기의 구현예로 사이클로펜틸기(Cyclopentyl group), 사이클로헥실기, 1-사이클로헥세닐기(1-Cyclohexenyl group), 3-사이클로헥세닐기(3-Cyclohexenyl group), 사이클로헵틸기(Cycloheptyl group) 등을 포함하지만 이에 한정되지 않는다. 헤테로사이클로기의 비제한적인 구현예로 1-(1,2,5,6-테트라히드로피리디닐기)(1-(1,2,5,6-tetrahydropyridyl group)), 1-피페리디닐기, 2-피페리디닐기, 3-피페리디닐기, 4-모르폴리닐기, 3-모르폴리닐기, 테트라히드로푸란-2-일(tetrahydrofuran-2-yl), 테트라히드로푸릴인돌-3-일(tetrahydrofuryl indol-3-yl), 테트라히드로티오펜-2-일(tetrahydrothiophen-2-yl), 테트라히드로티오펜-3-일(tetrahydrothiophen-3-yl), 1-피페라지닐기 및 2-피페라지닐기를 포함한다.
다른 설명이 없으면, 용어 “알킬기”는 직쇄 또는 분지쇄의 포화 탄화수소기를 나타내고, 단일 치환(예를 들어 -CH2F) 또는 다중 치환된 것일 수 있으며(예를 들어 -CF3), 1가(예를 들어 메틸기), 2가(예를 들어 메틸렌기) 또는 다가(예를 들어 메틴기)일 수 있다. 알킬기의 예로 메틸기(Me), 에틸기(Et), 프로필기(예를 들어, n-프로필기 및 이소프로필기), 부틸기(예를 들어, n-부틸기, 이소부틸기, s-부틸기, t-부틸기), 펜틸기(예를 들어, n-펜틸기, 이소펜틸기(isopentyl group), 네오펜틸기(neopentyl group)) 등을 포함한다.
다른 설명이 없으면, 사이클로알킬기는 임의의 안정적인 고리형 또는 다환 탄화수소기를 포함하고, 임의의 탄소 원자는 전부 포화된 것이며, 단일 치환 또는 다중 치환될 수 있고, 1가, 2가 또는 다가일 수 있다. 이러한 사이클로알킬기의 구현예로 사이클로프로필기(cyclopropyl group), 노르보닐기(norbornyl group), [2.2.2]디사이클로옥탄([2.2.2] dicyclooctane), [4.4.0]비사이클로데칸([4.4.0] bicyclodecane) 등을 포함하지만 이에 한정되지 않는다.
다른 설명이 없으면, 용어 “할로겐화” 또는 “할로겐”은 자체 또는 다른 치환기의 일부분으로서 불소, 염소, 브롬 또는 요오드 원자를 나타낸다. 이 외에, 용어 “할로겐화 알킬기”는 모노할로겐화 알킬기와 폴리할로겐화 알킬기를 포함한다. 예를 들어, 용어 “할로겐화 (C1-C4)알킬기”는 트리플루오로메틸기(trifluoromethyl group), 2,2,2-트리플루오로에틸기(2,2,2-trifluoroethyl group), 4-클로로부틸기(4-chlorobutyl group) 및 3-브로모프로필기(3-bromopropyl group) 등을 포함하지만 이에 한정되지 않는다. 다른 설명이 없으면, 할로겐화 알킬기의 구현예로 트리플루오로메틸기(trifluoromethyl group), 트리클로로메틸기(trichloromethyl group), 펜타플루오로에틸기(pentafluoroethyl group), 및 펜타클로로에틸기(pentachloroethyl group)를 포함하지만 이에 한정되지 않는다.
용어 “이탈기”는 다른 관능기 또는 원자에 의해 치환 반응(예를 들어 친핵성 치환 반응)을 통해 치환된 관능기 또는 원자를 지칭한다. 예를 들어, 대표적인 이탈기로 트리플루오로메탄설포네이트(trifluoromethanesulfonate); 염소, 브롬, 요오드; 메탄술포네이트(methane sulfonate), 토실레이트(tosylate), p-브로모벤젠술포네이트(p-bromobenzenesulfonate), p-톨루엔술포네이트(p-toluenesulfonate)과 같은 술포네이트기(sulfonate group); 아세톡시기(acetoxy group), 트리플루오로아세톡시기(trifluoroacetoxy group)와 같은 아실옥시기(acyloxy group) 등을 포함한다.
용어 “보호기”는 “아미노기 보호기”, “히드록실기 보호기” 또는 “메르캅토기(Mercapto group) 보호기”를 포함하지만 이에 제한되지 않는다. 용어 “아미노기 보호기”는 아미노기 질소 위치에서 부반응을 방지하는데 적합한 보호기를 지칭한다. 대표적인 아미노기 보호기로 포르밀기(formyl group); 알카노일기(alkanoyl group), 예하면 알카노일기(alkanoyl group)(예를 들어 아세틸기(acetyl group), 트리클로로아세틸기(trichloroacetyl group) 또는 트리플푸오로아세틸기(triple fluoroacetyl group))와 같은 아실기(acyl group); tert-부톡시카르보닐기(tert-butoxycarbonyl group)(boc)와 같은 알콕시카보닐기(alkoxycarbonyl group); 벤질옥시카보닐기(benzyloxycarbonyl group)(Cbz) 및 9-플루오레닐메톡시카보닐기(9-fluorenylmethoxycarbonyl group)(Fmoc)와 같은 아릴메톡시카보닐기(aryl methoxycarbonyl group); 벤질기(bn), 트리페닐메틸기(triphenylmethyl group)(Tr), 1,1-비스-(4'-메톡시페닐)메틸기(1,1-bis-(4'-methoxyphenyl) methyl group)와 같은 아릴기메틸기; 트리메틸실릴기(trimethylsilyl group)(TMS) 및 tert-부틸디메틸실릴기(tert-butyldimethylsilyl group)(TBS)와 같은 실릴기(silyl group) 등을 포함하지만 이에 한정되지 않는다. 용어 “히드록실기 보호기”는 히드록실기 부반응을 억제하는데 적합한 보호기를 지칭한다. 대표적인 히드록실기 보호기로 메틸기, 에틸기 및 tert-부틸기와 같은 알킬기; 알카노일기(예를 들어 아세틸기)와 같은 아실기; 벤질기(Bn), p-메톡시벤질기(p-methoxybenzyl group)(PMB), 9-플루오레닐메틸기(9-fluorenylmethyl group)(Fm) 및 디페닐메틸기(diphenylmethyl group)(디페닐메틸기, DPM)와 같은 아릴기메틸기; 트리메틸실릴기(TMS) 및 tert-부틸디메틸실릴기(TBS)와 같은 실릴기 등을 포함하지만 이에 한정되지 않는다.
본 발명의 화합물은 본 기술분야의 기술자들에게 공지된 다양한 합성 방법으로 제조될 수 있고, 하기에서 예를 든 구체적인 실시형태, 이를 기타 화학 합성 방법과 결합하여 형성한 실시형태 및 본 기술분야의 기술자들에게 공지된 등가 교체 방식을 포함하며, 바람직한 실시형태로 본 발명의 실시예를 포함하지만 이에 한정되지 않는다.
본 발명에서 사용하는 용매는 시판되는 것이다. 본 발명은 하기와 같은 약칭을 사용한다. aq는 물을 나타내며; HATU는O-(7-아자벤조트리아졸)-N,N,N',N'-테트라메틸우로늄 헥사플로오로포스페이트(O-(7-Azabenzotriazol)-N,N,N',N'-tetramethyluronium hexafluorophosphate) (79.9 mg, 0.210 mmol)를 나타내며;EDC는 N-(3-디메틸아미노프로필)-N'-에틸카보디이미드 염산염을 나타내며; m-CPBA는 3-클로로과산화벤조산을 나타내며; eq는 당량, 등량을 나타내며; CDI는 카르보닐디이미다졸을 나타내며; DCM은 디클로로메탄을 나타내며; PE는 석유에테르를 나타내며; DIAD는 디이소프로필 아조디카르복실레이트를 나타내며; DMF는 N,N-디메틸포름아미드를 나타내며; DMSO는 디메틸술폭시드를 나타내며;EtOAc는 아세트산에틸을 나타내며; EtOH는 에탄올을 나타내며; MeOH는 메탄올을 나타내며; CBz는 벤질옥시카보닐기(Benzyloxycarbonyl group)를 대표하고, 아민의 보호기이며; BOC는 tert-부틸카르보닐기(tert-butylcarbonyl group)를 대표하고 아민의 보호기이며; HOAc는 아세트산(Acetic acid)을 대표하고;NaCNBH3은 소듐 시아노보로히드라이드(Sodium cyanoborohydride)를 대표하며; r.t.는 실온을 대표하고; O/N는 하룻밤을 대표하며; THF는 테트라히드로푸란(Tetrahydrofuran)을 대표하고; Boc2O는 디-tert-부틸디카보네이트(Di-tert-butyl dicarbonate)를 대표하며; TFA는 트리풀루오로아세트산(Trifluoroacetic acid)을 대표하고; DIPEA는 디이소프로필에틸아민(Diisopropylethylamine)을 대표하며; SOCl2는 염화티오닐(Thionyl chloride)을 대표하고; CS2는 이황화탄소(Carbon disulfide)를대표하며; TsOH는 p-톨루엔술폰산(p-Toluenesulfonic acid)을 대표하고; NFSI는 N-플루오로-N-(페닐술포닐)벤젠술폰아미드(N-fluoro-N-(phenylsulfonyl)benzenesulfonamide)를 대표하며; NCS는 1-클로로피롤리딘-2,5-디온(1-chloropyrrolidine-2,5-dione)을 대표하고;n-Bu4NF는 불화테트라부틸암모늄(Tetrabutylammonium fluoride)을 대표하며; iPrOH는 2-프로판올(2-propanol)을 대표하고; mp는 용점을 대표하며; LDA는 리튬 디이소프로필아마이드(lithium diisopropylamide)을 대표하고; DIBAL-H는 디이소부틸알루미늄 하이드라이드(Diisobutylaluminium hydride)를 대표한다.
화합물은 수공 또는 ChemDraw®소프트웨어로 명명되고, 시판되는 화합물은 공급업체 목록명칭을 사용한다.
본 발명의 화합물은 유의하거나 예상치 못한 프로테아제 억제활성을 가지며; PK의 관점에서, 본 발명의 화합물의 반감기는 약 3배 증가하고, 클리어런스율은 유의하게 감소하여, 본 발명이 종래기술보다 더 우수한 특성을 가짐을 증명하고; 동시에, 본 발명화합물 은 종래기술에 비해, 더 낮은 hERG의 잠재적위험성을 갖는다.
도1:폐섬유증 점수
One-way ANOVA(일원분산분석): ###p<0.001 vs. 모의수술군;*p<0.05 vs. 모델군;**p<0.01 vs. 모델군;***p<0.001 vs. 모델군;T-test:$p<0.05 vs. 모델군.
도2:폐섬유증 점수 백분율
Two-way ANOVA(이원분산분석): ###p<0.001 vs.모의수술군;*p<0.05 vs. 모델군;**p<0.01 vs. 모델군;***p<0.001 vs. 모델군.
아래, 실시예를 통하여 본 발명을 상세하게 설명하지만, 본 발명은 어떠한 불리한 제한도 받지 않는다. 본문에서 본 발명을 상세히 설명하였고, 이의 구체적인 실시형태도 개시하였으며, 당업자라면 본 발명의 요지와 범위를 벗어나지 않는 범위에서 본 발명의 구체적인 실시형태를 다양하게 변화 및 개선하는 것은 명백할 것이다.
실시예 1
Figure 112020017113267-pct00037
1단계
화합물 1a(30.00 g, 173.24 mmol), 트리에틸아민(43.83 g, 433.00 mmol)의 N,N디메틸포름아미드(500 mL)용액을 0℃로 냉각시킨 후 O-(7-아자벤조트리아졸-1-일)-N,N,N',N'-테트라메틸우로늄헥사플루오로포스페이트(79.05 g, 208.00 mmol)를 첨가하였다. 수득한 반응액을 0℃에서 10분 동안 교반하였다. 이어서 N-메톡시메틸아민히드로클로라이드(18.59 g, 191.00 mmol)를 넣고 20℃ 하에 16시간 동안 교반하였다. 반응액을 물(1.00 L)에 부어넣고, 에틸아세테이트(2.00 L x 2)로 추출하며, 유기층을 합병하고 무수 황산나트륨으로 건조하고 여과하고 증발건조하며, 조질의 생성물은 실리카겔 컬럼으로 분리정제(석유에테르/에틸아세테이트 = 100 내지 0%)하여, 화합물 1b를 얻었다.
1H NMR(400 MHz, CD3OD) δ 4.13-4.07(m, 2H), 3.74(s, 3H), 3.37(s, 1H), 3.21(s, 3H), 1.37-1.35(m, 2H), 1.26-1.22(m, 3H), 1.03-1.00(m, 2H).
2단계
0℃에서 화합물 1b(34.00 g, 157.24 mmol)의 N,N-디메틸포름아미드(300 mL)용액에 수소화나트륨(7.55 g, 189.00 mmol,60%)을 첨가하였다. 수득한 반응액은 0℃에서 10분 동안 교반한 후, 아릴 브로마이드(28.53 g, 235.86 mmol)를 드롭하였다. 이 반응액은 20℃에서 5시간 동안 교반하였다. 반응액을 물(1.00 L)에 부어넣고 에틸아세테이트(300 mL x 3)로 추출하였다. 유기층을 합병하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물은 실리카겔 컬럼으로 분리정제(석유에테르/에틸 아세테이트 = 100 내지 0%)하여 화합물 1c를 얻었다.
1H NMR(400 MHz, CDCl3) δ 5.85-5.77(m, 1H), 5.06-5.03(m, 2H), 4.17-4.08(m, 2H), 3.98-3.94(m, 2H), 3.63(s, 3H), 3.15(s, 3H), 1.53(brs, 2H), 1.26-1.21(m, 5H).
3단계
0℃에서 수소화알루미늄리튬(3.63 g, 95.71 mmol)의 테트라하이드로푸란(440 mL)용액에 화합물 1c(22.30 g, 87.01 mmol)의 테트라하이드로푸란(220 mL)용액을 첨가하고, 0℃에서 한시간 동안 교반하였다. 반응은 포화 염화암모늄 수용액(300 mL)으로 천천히 켄칭시키고, 에틸 아세테이트(300 mL x 3)로 추출하며, 유기층을 합병하고 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물은 실리카겔 컬럼으로 분리정제(석유에테르/에틸아세테이트 = 100 내지 0%)하여, 화합물 1d를 얻었다.
1H NMR(400 MHz, CDCl3) δ 9.15(brs, 1H), 5.89-5.81(m, 1H), 5.14-5.11(m, 2H), 4.19-4.11(m, 2H), 3.81(brs, 2H), 1.53(brs, 2H), 1.42(brs, 2H), 1.24(brs, 3H).
4단계
화합물 1d(4.50 g, 22.82 mmol)의 톨루엔(45 mL)용액에 화합물 1e(4.50 g, 25.10 mmol)를 첨가하고, 130℃까지 가열하고 72시간 동안 교반하였다. 반응은 1N 희염산(150 mL)으로 켄칭시키고, 에틸 아세테이트(50 mL x 2)로 세척하였다. 잔여 수용액층은 수산화나트륨으로 PH값이 12가 되게끔 조정한 후, 디클로로메탄/메탄=10:1의 혼합용매(100 mL x 3)로 추출하여, 유기층을 합병하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물은 실리카겔 컬럼으로 분리정제(석유에테르/에틸아세테이트 = 100 내지 0%)하여 화합물 1f를 얻었다.
5단계
화합물 1f(4.30 g, 13.68 mmol) 및 BOC2O(4.48 g, 20.52 mmol)의 메탄올(100 mL) 용액에 젖은 팔라듐카본(1.20 g, 10%)을 첨가하였다. 수득한 반응액은 50℃에서 50 psi의 수소가스 분위기 하에 20시간 동안 교반한 후 반응액을 여과하고, 농축하여, 조질의 생성물은 실리카겔 컬럼으로 분리정제(석유에테르/에틸 아세테이트 = 100 내지 0%)하여 화합물 1g를 얻었다.
6단계
화합물 1g(4.10 g, 13.21 mmol)의 에탄올(120 mL) 및 물(30 mL)혼합용액에 수산화칼륨(22.24 g, 396.30 mmol)을 첨가하고, 이 반응액은 95℃에서 40시간 동안 교반하였다. 반응액을 농축하여 에탄올을 제거한 후, 디클로로메탄(150 mL x 5)으로 추출하고, 유기층은 무수 황산나트륨으로 건조하고, 여과하고, 농축하였으며, 조질의 생성물을 실리카겔 컬럼으로 분리정제(석유에테르/에틸아세테이트 = 100 내지 0%)하여, 화합물 1h를 얻었다.
1H NMR(400 MHz, CDCl3) δ 4.13-4.08(m, 1H), 3.75-3.58(m, 1H), 3.34-3.29(m, 1H), 3.11-3.06(m, 2H), 2.73-2.69(m, 1H), 2.00-1.95(m, 2H), 1.70 -1.67(m, 1H), 1.49-1.44(m, 10H), 0.66-0.59(m, 2H).
7단계
화합물 1h(200 mg, 0.84 mmol) 및 화합물 1i(287 mg, 1.26 mmol)의 디클로로메탄(10 mL)용액에 트리에틸아민(170 mg, 1.68 mmol)을 드롭하였다. 수득한 반응액은 15℃에서 5시간 동안 반응시켰다. 반응 완료 후, 직접 디클로로메탄을 제거하여, 수득한 조질의 생성물은 분취용 박층플레이트로 정제(에틸 아세테이트)하여 하여 화합물 1j를 얻었다.
1H NMR(400 MHz, CDCl3) δ 9.36-9.34(m, 1H), 8.71-8.69(m, 1H), 8.48-8.47(m, 2H), 8.25-8.20(m, 1H), 7.74-7.70(m, 1H), 4.15-3.96(m, 2H), 3.73-3.25(m, 4H), 1.84-1.62(m, 1H), 1.60(brs, 3H), 1.38(s, 9H), 1.26-0.68(m, 2H).
8단계
20℃에서, 화합물 1j(130 mg, 0.30 mmol)의 에틸 아세테이트(1 mL)용액에 HCl/EtOAc(4 mL, 4M)를 첨가하였다. 수득한 반응액은 이 온도 하에 계속하여 2시간 동안 교반하였다. 반응 완료 후, 여과하고, 건조하여 화합물 1을 얻었다.
MS-ESI 계산값 [M+H]+ 330, 측정값 330.
1H NMR(400 MHz, D2O) δ 9.75(s, 1H), 8.81-8.65(m, 4H), 8.08(t, J = 8.0 Hz, 1H), 4.10-4.07(m, 1H), 3.93-3.91(m, 1H), 3.79-3.74(m, 1H), 3.51-3.48(m, 1H), 3.42-3.25(m, 2H), 2.41-2.39(m, 1H), 2.03-2.02(m, 1H), 1.39-1.36(m, 1H), 1.14-1.12(m, 1H), 0.81-0.78(m, 1H), 0.54-0.53(m, 1H).
실시예 2
Figure 112020017113267-pct00038
1단계
화합물 1h 및 화합물 2a는 화합물 1의 합성방법에 따라 화합물 2를 얻었다.
MS-ESI 계산값 [M+H]+ 364, 측정값 364.
1H NMR(400 MHz, D2O) δ 9.30(s, 1H), 8.67(s, 1H), 8.62(d, J = 7.6 Hz, 1H), 8.46(d, J = 8.4 Hz, 1H), 7.86(t, J = 8.0 Hz, 1H), 4.05-3.94(m, 2H), 3.82-3.77(m, 1H), 3.57-3.55(m, 1H), 3.38-3.22(m, 2H), 2.42-2.39(m, 1H), 2.08-2.04(m, 1H), 1.06-0.79(m, 4H).
실시예 3
Figure 112020017113267-pct00039
1단계
화합물 1h 및 화합물 3a는 화합물 1의 합성방법에 따라 화합물 3을 얻었다.
MS-ESI 계산값 [M+H]+ 348, 측정값 348.
1H NMR(400 MHz, CD3OD) δ 9.25(s, 1H), 8.67(d, J = 8.0 Hz 1H), 8.53(d, J = 8.0 Hz, 1H), 8.45(d, J = 8.0 Hz, 1H), 7.86(t, J = 8.0 Hz, 1H), 3.85-3.73(m, 2H), 3.43(s, 1H), 3.06-2.98(m, 1H), 2.72-2.65(m, 1H), 2.15-2.05(m, 1H), 1.73-1.71(m, 1H), 0.97-0.87(m, 1H), 0.82-0.79(m, 2H), 0.69-0.60(m, 2H).
실시예 4
Figure 112020017113267-pct00040
Figure 112020017113267-pct00041
1단계
200 mL의 밀봉탱크에 벤질글리신 4a(7.06 g, 42.74 mmol), 아세톤(6.21 g, 106.85 mmol), 1-벤질-2,5-디하이드로피롤-2,5디온 4b(4.00 g, 21.37 mmol) 및 톨루엔(40 mL)을 넣었다. 수득한 반응액은 140℃에서 48시간 동안 교반하였다. 반응 완료 후 반응혼합물을 농축하고, 조질의 생성물은 실리카겔 컬럼으로 정제(석유에테르/에틸아세테이트 = 100 내지 0%)하여, 화합물 4c를 얻었다.
1H NMR(400 MHz, CDCl3) δ 7.40-7.32(m, 10H), 4.77-4.72(t, J = 5.2, 2H), 3.96-3.74(m, 3H), 2.90-2.66(m, 3H), 2.31(s, 3H), 1.60(s, 3H).
2단계
1000 mL의 수소화병에 화합물 4c(5.28 g, 15.15 mmol) 및 350 mL 메탄올을 넣은 후, 질소가스 보호 하에 젖은 팔라듐카본(2.00 g, 순도 10%) 및 Boc2O(6.61 g, 30.30 mmol)를 첨가하며, 현탁액은 수소가스로 3회 치환하였다. 수득한 혼합물은 수소가스(50 psi)하에 50℃에서 16시간 동안 교반하였다. 반응 완료 후 반응혼합액을 여과하고, 농축하며, 조질의 생성물은 실리카겔 컬럼으로 정제(석유에테르/에틸 아세테이트 = 100 내지 0%)하여, 화합물 4d를 얻었다.
1H NMR(400 MHz, CDCl3) δ 7.23-7.20(m, 5H), 4.57(s, 2H), 2.93-2.83(m, 4H), 1.41-1.36(m, 15H).
3단계
50 mL의 3구 둥근바닥 플라스크에 화합물 4d(300 mg, 0.84 mmol) 및 7 mL 테트라하이드로푸란을 넣은 후, 질소가스 보호 하에 0℃일 때 천천히 보란-테트라하이드로푸란(1M, 3.4 mL)을 드롭하여, 수득한 반응액은 50℃까지 승온시켜 2.5시간 동안 교반하였다. 반응 완료 후 0℃로 냉각시키고, 천천히 메탄올(10 mL)을 드롭하여 켄칭시키고, 이어서 혼합물을 농축시켰다. 분취용 박층 크로마토그래피로 정제(석유에테르/에틸 아세테이트 = 2:1)하여, 화합물 4e를 얻었다.
MS-ESI 계산값 [M+H]+ 331, 측정값 331.
1H NMR(400 MHz, CDCl3) δ 7.32-7.26(m, 5H), 3.62(s, 2H), 3.25(s, 1H), 2.98-2.95(m, 1H), 2.72-2.66(m, 2H), 2.51-2.44(m, 2H), 2.32-2.29(m, 1H), 2.11(m, 1H), 1.46-1.34(m, 15H).
4단계
50 mL의 수소화병에 화합물 4e(100 mg, 0.30 mmol) 및 5 mL 메탄올을 넣은 후, 질소가스 보호 하에 젖은 팔라듐카본(100 mg, 순도10%)를 첨가하고, 현탁액은 순차적으로 질소가스 및 수소가스로 3회 치환하였다. 혼합용액은 수소가스(50 psi)하에 50℃에서 12시간 동안 교반하였다. 반응 완료 후 반응혼합물을 여과하고, 농축하여, 화합물 4f를 얻었으며, 직접 다음 단계에 사용하였다.
MS-ESI 계산값 [M+H]+ 241, 측정값 241.
5단계
50 mL의 둥근바닥 플라스크에 화합물 4f(72 mg, 이전 단계의 조질의 생성물)를 넣고, N,N-디이소프로필에틸아민(77 mg, 0.60 mmol) 및 1 mL 디클로로메탄을 넣고, 0℃ 및 질소가스 보호 하에 천천히 벤질클로로포름산(77 mg, 0.45 mmol)을 드롭하였다. 반응액을 25℃까지 승온시키고, 이 온도에서 3시간 동안 교반하였다. 반응 완료 후 반응혼합물은 N,N,N-트리메틸에틸렌디아민(2 mL, 10%)으로 세척하고, 다시 디클로로메탄(5 mL x 3)으로 추출하였으며, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물은 분취용 박층 크로마토그래피로 정제(석유에테르/에틸아세테이트 = 2:1)하여, 화합물 4g를 얻었다.
MS-ESI 계산값 [M-56+H]+ 319, 측정값 319.
1H NMR(400 MHz, CDCl3) δ 7.37-7.36(m, 5H), 5.18-5.09(m, 2H), 3.68-3.59(m, 2H), 3.48-3.39(m, 2H), 3.67-3.35(m, 1H), 2.84-2.80(m, 1H), 1.99-1.95(m, 2H), 1.47-1.29(m, 15H).
6단계
25 mL의 둥근바닥 플라스크에 화합물 4g(62 mg, 0.17 mmol) 및 1 mL 디클로로메탄을 넣은 후, 질소가스 보호 하에 트리플루오로 아세트산(190 mg, 1.67 mmol)을 드롭하고, 25℃에서 1시간 동안 교반하였다. 반응 완료 후 반응혼합물을 직접 농축하여, 화합물 4h(46 mg, 조질의 생성물)를 얻었다.
MS-ESI 계산값 [M+H]+ 275, 측정값 275.
7단계
25 mL의 둥근바닥 플라스크에 화합물 4h(46 mg, 0.17 mmol), N,N-디이소프로필에틸아민(65 mg, 0.5 mmol) 및 1.5 mL 디클로로메탄을 넣고, 0℃ 및 질소가스 보호 하에 천천히 이소퀴놀린설포닐클로라이드 1i(49 mg, 0.22 mmol)를 드롭하였으며, 25℃에서 2시간 동안 교반하였다. 반응 완료 후 반응혼합물은 직접 농축하고, 조질의 생성물은 분취용 박층 크로마토그래피로 정제(석유에테르/에틸아세테이트 = 1:1)하여, 화합물 4i을 얻었다.
MS-ESI 계산값 [M+H]+ 466, 측정값 466.
1H NMR(400 MHz, CDCl3) δ 9.34-9.33(m, 1H), 8.68-8.66(m, 1H), 8.49-8.39(m, 2H), 8.21-8.19(m, 1H), 7.71-7.66(m, 1H), 7.34-7.28(m, 5H), 5.09-5.05(m, 2H), 3.64-3.49(m, 2H), 3.33-3.28(m, 1H), 3.08-2.97(m, 3H), 2.81-2.80(m, 1H), 2.54-2.52(m, 1H), 1.32-1.27(m, 6H).
8단계
5 mL의 마이크로파관에 화합물 4i(32 mg, 0.07 mmol) 및 1 mL의 트리플루오로 아세트산을 넣고, 밀봉하고, 100℃에서 마이크로파 반응기에서 1시간 동안 교반하였다. 반응 완료 후 반응혼합물을 직접 농축하여, 조질의 생성물을 분취용 액상크로마토그래피 HPLC로 정제하여, 화합물 4를 얻었다.
MS-ESI 계산값 [M+H]+ 332, 측정값 332.
1H NMR(400 MHz, CDCl3) δ 9.42(s, 1H), 8.69-8.68(m, 1H), 8.60-8.59(m, 1H), 8.56-8.54(m, 1H), 8.45(d, J = 8.0 Hz, 1H), 7.86(t, J = 8.0 Hz, 1H), 3.82-3.77(m, 1H), 3.26-3.20(m, 2H), 2.98(m, 1H), 2.97(m, 1H), 2.54-2.44(m, 3H), 1.41(s, 6H).
실시예 5
Figure 112020017113267-pct00042
1단계
화합물 5a(4.00 g, 18.33 mmol)를 20 mL N,N-디메틸포름아미드에 용해시키고, 수소화나트륨(0.88 g, 21.99 mmol, 60%)을 질소가스 보호하에 천천히 첨가하였으며, 온도는 0℃로 조절하였다. 혼합물은 25℃에서, 10분 동안 교반한 후, 브로모프로펜(4.43 g, 36.66 mmol)을 반응액에 첨가하였다. 혼합물은 25℃에서 계속하여 3시간 동안 교반하였다. 반응 완료 후 반응액을 포화 염화암모늄 수용액 20 mL로 0℃에서 켄칭시키고, 물(40 mL), 에틸 아세테이트(40 mL x 3)를 넣고, 유기층을 합병하고 포화식염수(50 mL x 1)로 세척하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물을 컬럼 크로마토그래피(석유에테르/에틸아세테이트 = 100 내지 0%)로 정제하여 화합물 5b를 얻었다.
2단계
화합물 5b(2.50 g, 9.68 mmol)를 테트라하이드로푸란(40 mL)에 용해시키고, -78℃ 및 질소가스 보호 하에 천천히 디이소부틸알루미늄하이드라이드(1M, 17.4 mL)를 드롭하였다. 수득한 반응액을 -78℃에서 계속하여 6시간 동안 교반하였다. 반응 완료 후 반응액은 포화염화암모늄 수용액(20 mL) 및 HCl(1N, 10 mL)로 25℃에서 켄칭시키고, 물(20 mL), 에틸아세테이트(40 mL x 3)를 첨가하고, 유기층을 합병하고 포화식염수(40 mL x 1)로 세척하며, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물은 컬럼 크로마토그래피(석유에테르/에틸아세테이트 = 100 내지 0%)로 정제하여 화합물 5c를 얻었다.
1H NMR(400 MHz, CDCl3) δ 9.32(s, 1H), 5.90-5.78(m, 1H), 5.23-5.11(m, 2H), 4.14(q, J = 8.0 Hz, 2H), 3.95(d, J = 4.0 Hz, 2H), 1.27(s, 6H), 1.23(t, J = 8.0 Hz, 3H).
3단계
화합물 5c(1.50 g, 7.53 mmol) 및 벤질글리신 4a(2.49 g, 15.06 mmol)을 20 mL 톨루엔에 용해시키고. 수득한 반응혼합물을 130℃에서 16시간 동안 교반하였다. 반응 완료 후 반응액에 물(10 mL)을 넣고, 에틸아세테이트(15 mL x 3)로 추출하며, 유기층을 합병하고 포화식염수(20 mL x 1)로 세척하며, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물을 컬럼 크로마토그래피(석유에테르/에틸아세테이트 = 100 내지 0%)로 정제하여 화합물 5d를 얻었다.
1H NMR(400 MHz, CDCl3) δ 7.38-7.34(m, 2H), 7.30(t, J = 8.0 Hz, 2H), 7.26-7.20(m, 1H), 4.16(d, J = 8.0 Hz, 2H), 3.97(d, J = 4.0 Hz, 2H), 3.64-3.55(m, 1H), 3.48-3.40(m, 1H), 3.29(d, J = 4.0 Hz, 1H), 3.11-2.98(m, 2H), 2.84-2.73(m, 1H), 2.45-2.36(m, 1H), 1.87-1.93(m, 1H), 1.30(s, 6H), 1.25(s, 3H).
4단계
화합물 5d(400 mg, 1.32 mmol)를 20 mL의 아세토니트릴에 용해시킨 후, 트리메틸 요오도실란(2.65 g, 13.23 mmol)을 드롭하였다. 수득한 반응액을 25℃에서 계속하여 6시간 동안 교반하였다. 반응 완료 후 반응액에 20 mL의 물을 넣어 켄칭시키고, 에틸 아세테이트(20 mL x 3)로 추출하고, 유기층을 합병하고 포화식염수(30 mL x 1)로 세척하며, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물 5e를 얻었으며. 직접 다음 단계에 사용하였다.
5단계
화합물 5e(250 mg, 1.09 mmol)를 10 mL의 디클로로메탄에 용해시킨 후, 순차적으로 디-tert-부틸디카보네이트(474 mg, 2.17 mmol) 및 디이소프로필에틸아민(281 mg, 2.17 mmol)을 드롭하였다. 수득한 혼합물을 25℃에서 계속하여 16시간 동안 교반하였다. 반응 완료 후 반응액에 물(10 mL)을 넣어 켄칭시키고, 디클로로메탄(20 mL x 2)으로 추출하고, 유기층을 합병하고 포화식염수(20 mL x 1)로 세척하며, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 수득한 조질의 생성물을 분취용 박층 크로마토그래피플레이트(에틸 아세테이트/석유에테르 = 5/1)로 정제하여 화합물 5f를 얻었다.
6단계
화합물 5f(300 mg, 0.91 mmol) 및 아세트산무수물(185 mg, 1.82 mmol)을 에틸아세테이트(30 mL)에 용해시킨 후, 질소가스 보호하에 팔라듐카본(60 mg, 10%)을 첨가하였다. 수득한 반응액은 수소가스로 3회 치환한 후 질소가스 분위기(50 PSI) 및 50℃ 하에 계속하여 3시간 동안 교반하였다. 반응 완료 후 반응액을 여과하고, 농축하여, 조질의 생성물 5g를 얻었다.
MS-ESI 계산값 [M+H]+ 283, 측정값 283.
7단계
25℃ 하에 에틸아세테이트히드로클로라이드(20 mL, 4M)를 화합물 5g(250 mg, 0.89 mmol)의 5 mL 에틸 아세테이트 용액에 드롭하였다. 수득한 반응액을 이 온도에서 계속하여 0.5시간 동안 교반하였다. 반응 완료 후 용매를 직접 제거하여 조질의 생성물 5h를 얻었다. 직접 다음 단계에 사용하였다.
8단계
화합물1i(150 mg, 0.66 mmol) 및 화합물 5h(200 mg, 염산염)를 5 mL 디클로로메탄에 용해시킨 후, 디이소프로필에틸아민(142 mg, 1.10 mmol)을 드롭하였다. 수득한 반응액을 25℃에서 계속하여 16시간 동안 교반하였다. 반응 완료 후 직접 농축하여 용매를 제거하고, 물(5 mL)을 넣고, 에틸아세테이트(10 mL x 2)로 추출하며, 유기층을 합병하고 포화식염수(15 mL x 1)로 세척하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 수득한 조질의 생성물을 분취용 박층 크로마토그래피플레이트(에틸아세테이트)로 정제하여 화합물 5i를 얻었다.
MS-ESI 계산값 [M+H]+ 374, 측정값 374.
9단계
화합물 5i(100 mg, 0.66 mmol)를 에탄올(0.5 mL)과 물(1 mL)의 혼합용매에 용해시키고, 수산화나트륨(321 mg, 8.03 mmol)을 첨가하였다. 수득한 반응액을 100℃에서 계속하여 16시간 동안 교반하였다. 반응 완료 후 희염산(1N)으로 pH가 중성이 되게끔 조정하고, 고성능 액체크로마토그래피로 정제하여 화합물 5를 얻었다.
MS-ESI 계산값 [M+H]+ 332, 측정값332.
1H NMR(400MHz, CD3OD) δ 9.38(s, 1H), 8.66-8.54(m, 3H), 8.43-8.37(m, 1H), 7.82(t, J = 8.0 Hz, 1H), 3.75-3.80(m, 1H), 3.29-3.20(m, 2H), 3.13-3.07(m, 1H), 2.89-2.68(m, 3H), 1.97-1.88(m, 1H), 1.49(s, 3H), 1.36(s, 3H).
실시예 6
Figure 112020017113267-pct00043
Figure 112020017113267-pct00044
1단계
0℃에서 화합물 6a(15.58 g, 82.34 mmol), HATU(32.87 g, 86.46 mmol) 및 디이소프로필에틸아민(22.35 g, 172.91 mmol)의 200 mL디클로로메탄용액에 N-메톡시메틸아민히드로클로라이드(8.83 g, 90.57 mmol)를 첨가하였다. 수득한 반응액을 25℃로 승온시키고 계속하여 16시간 동안 교반하였다. 반응 완료 후 반응액에 200 mL의 물을 넣고, 1N의 수산화나트륨 수용액으로 pH가 14가 되게끔 조정하고, 디클로로메탄(200 mL x 2)으로 추출하며, 유기층은 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물을 실리카겔 컬럼(석유에테르/에틸아세테이트 = 100 내지 0%)으로 정제하여 화합물 6b를 얻었다.
1H NMR(400MHz, CDCl3) δ 5.25(s, 1H), 4.69(s, 1H), 3.78(s, 3H), 3.22(s, 3H), 1.45(s, 9H), 1.32(d, J = 8.0 Hz,3H).
2단계
0℃ 및 질소가스 보호 하에, 화합물 6b(14.69 g, 63.24 mmol)의 200 mL N,N-디메틸포름아미드의 용액에 수소화나트륨(4.30 g, 107.51 mmol, 60%)를 분할하여 첨가한 후, 계속하여 10분 동안 교반한 후 0℃에서 계속하여 3-브로모프로펜(19.13 g, 158.10 mmol)을 드롭하였다. 수득한 반응액을 15℃에서 22시간 동안 반응시켰다. 반응 완료 후, 반응액에 200 mL의 포화염화암모늄 수용액, 200 mL의 물을 넣고, 에틸아세테이트(200 mL x 2)로 추출하였다. 유기층은 포화식염수(300 mL x 3)로 세척하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 수득한 조질의 생성물을 실리카겔 컬럼(석유에테르/에틸아세테이트 = 100 내지 0%)으로 정제하여 화합물 6c를 얻었다.
1H NMR(400MHz, CDCl3) δ 5.86-5.81(m, 1H), 5.30-5.25(m, 1H), 5.14-5.04(m, 2H), 3.95-3.83(m, 2H), 3.74(s, 3H), 3.16(s, 3H), 1.44(s, 9H) 1.31(d, J = 8.0 Hz,3H).
3단계
-78℃ 및 질소가스 보호 하에, 화합물 6c(13.33 g, 48.95 mmol)의 200 mL 테트라하이드로푸란 용액에 DIBAL-H(97.90 mmol, 97.9 mL, 1M)를 첨가하였다. 수득한 반응액을 20℃로 승온시키고 계속하여 2시간 동안 교반하였다. 반응 완료 후 반응액에 400 mL의 포화 타르타르산칼륨, 200 mL의 물, 300 mL의 에틸아세테이트를 첨가하고, 에틸아세테이트(300 mL x 2)추출하여, 유기층은 포화식염수로 세척하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여 직접 조질의 생성물의 화합물 6d를 얻었다.
1H NMR(400MHz, CDCl3) δ 9.56(s, 1H), 5.87-5.81(m, 1H), 5.30-5.10(m, 3H), 3.85-3.76(m, 1H), 3.56-3.49(m, 1H), 1.46(s, 9H) 1.34(d, J = 8.0 Hz,3H).
4단계
화합물 6d(12.96 g, 60.77 mmol) 및 화합물 4a(25.10 g, 151.93 mmol)의 307 mL의 톨루엔 용액을 135℃까지 가열하고 24시간 동안 반응시켰다. 반응 완료 후 반응계에 300 mL의 물을 넣고, 에틸아세테이트(300 mL x 4)로 추출하여, 유기층은 포화식염수(300 mL x 3)로 세척하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 수득한 조질의 생성물을 실리카겔 컬럼(석유에테르/에틸아세테이트 = 100 내지 0%)으로 정제하여 화합물 6e를 얻었다.
1H NMR(400 MHz, CDCl3) δ 7.26-7.16(m, 5H), 3.96-3.61(m, 2H), 3.45-3.20(m, 3H), 2.98-2.84(m, 1H), 2.73-2.59(m, 2H), 2.20-2.13(m, 1H) 1.97-1.84(m, 1H), 1.58-1.46(m, 1H), 1.38(s, 9H), 1.01-0.85(m, 3H).
5단계
질소가스 보호 하에, 화합물 6e(7.00 g, 22.12 mmol) 및 Ac2O(4.52 g, 4.1 mL, 44.24 mmol)의 100 mL 에틸아세테이트 용액에 건조한 팔라듐카본(1.00 g, 10%)을 첨가하였다. 반응액은 수소가스로 3회 치환하였다. 수득한 반응액은 수소가스분위기(50 PSI) 및 50℃에서 계속하여 10 시간 동안 반응시켰다. 반응 완료 후 반응액을 여과하고, 농축하여, 조질의 생성물은 컬럼 크로마토그래피(석유에테르/에틸아세테이트 = 100 내지 0%)로 정제하여 화합물 6f를 얻었다.
MS-ESI 계산값 [M+H-100]+ 269, 측정값 269.
1H NMR(400MHz, CDCl3) δ 4.03-4.01(m, 2H), 3.59-3.50(m, 2H), 3.48-3.35(m, 2H), 2.94-2.93(m, 1H), 2.09-2.02(m, 4H), 1.80-1.70(m, 1H), 1.45(s, 9H), 1.28-1.12(m, 3H).
6단계
0℃ 및 질소가스 보호 하에, 화합물 6f(4.34 g, 16.17 mmol)의 20 mL의 디클로로메탄용액에 트리플루오로아세트산(36.87 g, 323.40 mmol)을 드롭하였다. 수득한 반응액은 25℃에서 계속하여 12시간 동안 교반하였다. 반응 완료 후 직접 농축하여, 수득한 조질의 생성물은 0℃에서 천천히 포화탄산나트륨 수용액 20 mL을 첨가하고, 에틸아세테이트(50 mL x 3)로 추출하여, 포화식염수(20 mL x 3)로 세척하고, 유기층은 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물 화합물 6g를 얻었다.
MS-ESI 계산값 [M+H]+ 169, 측정값 169.
1H NMR(400 MHz, CD3OD) δ 4.00-3.91(m, 2H), 3.69-3.52(m, 2H), 3.41-3.04(m, 3H), 2.71-2.61(m, 3H), 2.09-2.02(m, 4H), 1.83-1.76(m, 1H).
7단계
실시예 1 7단계의 합성방법에 따라 화합물 6g(2.08 g, 12.37 mmol) 및 화합물 3a(3.04 g, 12.37 mmol)를 합성하여 화합물 6h를 얻었다.
MS-ESI 계산값 [M+H]+ 378, 측정값 378.
1H NMR(400 MHz, CDCl3) δ 9.17(s, 1H), 8.62-8.55(m, 2H), 8.23(d, J = 8.0 Hz, 1H), 7.73(t, J = 8.0 Hz, 1H), 4.33-4.22(m, 1H), 4.12-4.02(m, 1H) 3.81-3.71(m, 1H), 3.70-3.60(m, 1H), 3.58-3.42(m, 1H), 3.07-2.96(m, 1H), 2.05(s, 3H), 1.95-1.83(m, 1H), 1.55-1.45(m, 1H), 1.44-1.35(m, 1H), 1.07(d, J = 8.0 Hz, 3H).
8단계
화합물 6h(2.26 g, 5.99 mmol)의 12.5 mL의 에탄올 및 25 mL의 물 혼합용액에 농염산 25 mL(12M)을 첨가하였다. 수득한 반응액을 100℃에서 24시간 동안 반응시켰다. 반응 완료 후 농축하여 에탄올을 제거한 후, 포화중탄산나트륨 수용액으로 pH가 7이 되게끔 조정하고, 고체가 석출되면, 여과하여 조질의 생성물을 수득하고, 고성능 액체크로마토그래피로 정제하여 화합물 6을 얻었다.
MS-ESI 계산값 [M+H]+ 336, 측정값 336.
1H NMR(400 MHz, CDCl3) δ 9.15(s, 1H), 8.82(d, J = 8.0 Hz, 1H), 8.58(d, J = 8.0 Hz, 1H), 8.22(d, J = 8.0 Hz, 1H), 7.72(t, J = 8.0 Hz, 1H), 4.04-3.92(m, 1H), 3.81-3.76(m, 1H), 3.47(d, J = 8.0 Hz, 1H), 3.34-3.30(m, 1H), 3.15-3.05(m, 1H), 2.95-2.85(m, 2H), 2.03-1.96(m, 1H), 1.60-1.54(m, 1H), 1.20(d, J = 8.0 Hz, 3H).
화합물 6-1 화합물 6-2
Figure 112020017113267-pct00045
SFC 분석조건:
컬럼: Chiralpak AD-3 100×4.6mm I.D., 3μm
이동상: A: CO2 B: 메탄올(0.05% DEA)
경사도: B는 4.5분 내에 5% 에서 40%에 이르며, 또한 40%에서 2.5분 동안 유지한 후, B는 5% 에서 1 min을 유지, 유속:2.8 mL/min
컬럼온도: 40℃
화합물 6-1 체류시간 t = 3.818 분간
1H NMR(400 MHz, CDCl3) δ 9.13(s, 1H), 8.81-8.80(m, 1H), 8.56(brs, 1H), 8.21-8.19(m, 1H), 7.70(brs, 1H), 4.01-4.00(m, 1H), 3.77-3.75(m, 1H), 3.46-3.45(m, 1H), 3.31(brs, 1H), 3.06(brs, 1H), 2.86(brs, 2H), 2.07(brs, 1H), 1.57(brs, 1H), 1.20-1.19(m, 3H).
MS-ESI 계산값 [M+H]+ 336, 측정값 336.
화합물 6-2 체류시간 t = 4.111 분간
1H NMR(400 MHz, CDCl3) δ 9.13(s, 1H), 8.81-8.80(m, 1H), 8.55(brs, 1H), 8.20-8.19(m, 1H), 7.70(brs, 1H), 4.01(brs, 1H), 3.77(brs, 1H), 3.46(brs, 1H), 3.31(brs, 1H), 3.06(brs, 1H), 2.87(brs, 2H), 2.07(brs, 1H), 1.56(brs, 1H), 1.19(brs, 3H).
MS-ESI 계산값 [M+H]+ 336, 측정값 336.
실시예 7
Figure 112020017113267-pct00046
1단계
실시예 6의 합성방법에 따라 화합물 6g(1.00 g, 5.94 mmol) 및 화합물 1i(1.73 g, 6.53 mmol)는 2단계의 반응 후 화합물 7을 얻었다.
MS-ESI 계산값 [M+H]+ 360, 측정값 360.
1H NMR(400 MHz, CDCl3) δ 9.35(s, 1H), 8.71-8.69(m, 1H), 8.56-8.50(m, 2H), 8.20(d, J = 8.4 Hz, 1H), 7.70(d, J = 8.0 Hz, 1H), 3.88-3.87(m, 1H), 3.68-3.64(m, 1H), 3.42-3.40(m, 1H), 3.18-3.17(m, 1H), 2.82-2.73(m, 3H), 1.90-1.86(m, 1H), 1.43-1.41(m, 1H), 1.22-1.21(m, 3H).
화합물 7-1 및 화합물 7-2
Figure 112020017113267-pct00047
SFC 분석조건:
컬럼: Chiralpak AD-3 100×4.6mm I.D., 3um
이동상: A: CO2 B: 메탄올(0.05% DEA)
경사도: B는 5분 내에 5%에서 40%에 이르며 또한 40%에서 2.5분 동안 유지한 후, B는 5% 에서 1 min을 유지.
유속: 2.5 mL/min
컬럼온도: 35℃
화합물 7-1 체류시간 t = 4.062분 동안
1H NMR(400 MHz, CDCl3) δ 9.27(s, 1H), 8.63-8.61(m, 1H), 8.49-8.42(m, 2H), 8.13(d, J = 8.0 Hz, 1H), 7.62(t, J = 8.0 Hz, 1H), 3.78-3.77(m, 1H), 3.61-3.56(m, 1H), 3.32-3.31(m, 1H), 3.10-3.06(m, 1H), 2.67-2.64(m, 3H), 1.81-1.76(m, 1H), 1.33-1.32(m, 1H), 1.15-1.14(m, 3H).
MS-ESI 계산값 [M+H]+ 318, 측정값 318.
화합물 7-2 체류시간 t = 4.303 분 동안
1H NMR(400 MHz, CDCl3) δ 9.27(s, 1H), 8.63-8.61(m, 1H), 8.49-8.42(m, 2H), 8.12(d, J = 8.4 Hz, 1H), 7.62(t, J = 8.0 Hz, 1H), 3.78-3.76(m, 1H), 3.61-3.56(m, 1H), 3.32-3.30(m, 1H), 3.09-3.05(m, 1H), 2.67-2.64(m, 3H), 1.81-1.75(m, 1H), 1.33-1.32(m, 1H), 1.15-1.14(m, 3H).
MS-ESI 계산값 [M+H]+ 318, 측정값 318.
실시예8
Figure 112020017113267-pct00048
Figure 112020017113267-pct00049
1단계
25℃에서, 화합물 8a(50.00 g, 561.23 mmol) 및 중탄산나트륨(141.45 g, 1.68 mol)의 250 mL의 테트라하이드로푸란 및 250 mL 물의 혼합용액에 클로로포름산에틸에스터(84.9 g, 782.34 mmol)를 드롭하였다. 수득한 반응액을 25℃에서 48 시간 동안 교반하였다. 반응 완료 후, 여과하고, 농축하여 테트라하이드로푸란을 제거한 후 물(50 mL)을 넣고, 메틸 tert-부틸에테르(200 mL x 1)로 추출하였다. 수용액층의 pH를 1이 되게끔 조정하고, 에틸 아세테이트(200 mL x 2)로 추출하여, 유기층을 합병하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물의 화합물 8b를 얻었다.
1H NMR(400 MHz, CDCl3) δ 5.19(s, 1H), 4.43-4.38(m, 1H), 4.16-4.12(m, 2H), 1.47(d, J = 7.6 Hz, 3H), 1.27(t, J = 7.2 Hz, 3H).
2단계
0℃ 및 질소가스 보호 하에, 화합물 8b(40.00 g, 248.20 mmol)의 500 mL의 에틸 아세테이트 용액에 순차적으로 프로필인산무수물(473.83 g, 744.6 mmol, 50%) 및 디이소프로필에틸아민(128.31 g, 992.80 mmol)을 첨가하였다. 수득한 반응액을 25℃에서 10분 동안 교반하면서 반응시켰다. N-메톡시메틸아민히드로클로라이드(26.63 g, 273.02 mmol)를 더 첨가하였다. 반응액은 25℃에서 계속하여 16시간 동안 교반하였다. 반응 완료 후 반응액에 물(300 mL)을 넣고, 에틸아세테이트(200 mL x 2)로 추출하여, 유기층을 합병하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하며, 조질의 생성물은 컬럼 크로마토그래피(석유에테르/에틸아세테이트 = 100 내지 0%)로 정제하여 화합물 8c를 얻었다.
1H NMR(400 MHz, CDCl3) δ 5.43-5.42(m, 1H), 4.73-4.69(m,1H), 4.08(t, J = 6.8 Hz, 2H), 3.76(s, 3H), 3.20(s, 3H), 1.32(d, J = 6.8 Hz, 3H), 1.22(d, J = 7.2 Hz, 3H).
3단계
0℃ 및 질소가스 보호 하에, 3-브로모프로펜(31.99 g, 264.42 mmol)의 N,N-디메틸포름아미드(400 mL) 용액에 수소화나트륨(8.46 g, 211.54 mmol, 60%)를 분할하여 첨가하였다. 반응액을 10분 동안 교반한 후 화합물 8c(36.00 g, 176.28 mmol)를 더 첨가하였다. 수득한 반응액을 20℃로 승온시킨 후 5시간 동안 교반하면서 반응시켰다. 반응이 완료되면 반응액에 포화염화암모늄용액(300 mL) 및 물(200 mL)을 넣고, 에틸아세테이트(400 mL x 3)로 추출하며, 유기층을 합병하고 포화식염수(400 mL x 3)로 세척하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물을 컬럼 크로마토그래피(석유에테르/에틸 아세테이트 = 100 내지 0%)로 정제하여 화합물 8d를 얻었다.
1H NMR(400 MHz, CDCl3) δ 5.83-5.77(m, 1H), 5.26-5.01(m, 3H), 4.11-4.07(m, 2H), 3.97-3.90(m, 2H), 3.73-3.66(m, 3H), 3.17-2.95(m, 3H), 1.36-1.29(m, 3H), 1.24-1.19(m, 3H).
4단계
-78℃ 및 질소가스 보호 하에, 화합물 8d(10.00 g, 40.93 mmol)의 150 mL의 테트라하이드로푸란용액에 디이소부틸알루미늄하이드라이드(81.9 mL, 1M)를 드롭하였다. 드롭완료 후 혼합물을 천천히 20℃로 승온시키고 이 온도에서 3 시간 동안 교반하였다. 반응 완료 후, 반응액에 천천히 포화타르타르산칼륨용액(500 mL) 및 물(200 mL)을 넣고, 에틸 아세테이트(300 mL x 3)로 추출하며, 유기층을 합병하고 포화식염수로 세척하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물을 컬럼 크로마토그래피(석유에테르/에틸아세테이트 = 100 내지 0%)로 정제하여 화합물 8e를 얻었다.
1H NMR(400 MHz, CDCl3) δ 9.51(s, 1H), 5.81-5.74(m, 1H), 5.18-5.09(m, 2H), 4.12-4.04(m, 3H), 3.95-3.74(m, 2H), 1.34-1.28(m, 3H), 1.22-1.13(m, 3H).
5단계
실시예 5의 3단계 합성방법에 따라 화합물 8e(4.65 g, 25.11 mmol) 및 화합물 4a(8.29 g, 50.21 mmol)를 합성하여 화합물 8f를 얻었다.
MS-ESI 계산값 [M+H]+ 289, 측정값 289.
1H NMR(400 MHz, CDCl3) δ 7.21-7.13(m, 5H), 4.06-4.01(m, 2H), 3.81(brs, 2H), 3.49-3.46(m, 1H), 3.44-3.38(m, 2H), 2.88(s, 1H), 2.69(brs, 2H), 2.17-2.11(m, 1H), 1.95-1.85(m, 1H), 1.55-1.43(m, 1H), 1.19-1.15(m, 3H), 1.02-0.95(m, 3H).
6단계
질소가스 보호 하에, 화합물 8f(2.00 g, 6.94 mmol) 및 디-tert-부틸디카보네이트(3.03 g, 13.88 mmol)의 150 mL의 메탄올 용액에 젖은 팔라듐카본(200 mg, 10%)을 첨가하였다. 수득한 반응액을 수소가스로 3회 치환한 후 수소가스 분위기(50 PSI) 및 50℃에서 24시간 동안 교반반응시켰다. 반응 완료 후 여과하고, 농축하여, 조질의 생성물을 실리카겔 컬럼 크로마토그래피(석유에테르/에틸아세테이트 = 100 내지 0%)로 정제하여 화합물 8g를 얻었다.
1H NMR(400 MHz, CDCl3) δ 4.15-4.09(m, 3H), 3.86-5.75(m, 1H), 3.60-3.55(m, 2H), 3.36-3.34(m, 2H), 3.02-2.91(m, 1H), 1.98-1.93(m, 1H), 1.73(s, 1H), 1.48(s, 9H), 1.28-1.23(m, 3H).
7단계
화합물 8g(250 mg, 0.84 mmol)를 에탄올(4 mL) 및 물(3 mL)의 혼합용매에 용해시키고, 수산화칼륨(1.50 g, 26.81 mmol)을 첨가하였다. 수득한 반응액을 120℃에서 40시간 동안 교반하였다. 반응 완료 후 반응액을 농축하여 에탄올을 제거하고, 물(5 mL)을 넣고, 디클로로메탄(5 mL x 2)으로 추출하며, 유기층을 합병하고, 포화식염수로 세척하며, 무수 황산나트륨으로 건조하고, 여과하고, 농축하여, 조질의 생성물은 컬럼 크로마토그래피(디클로로메탄/메탄올 = 100 내지 0%)로 정제하여 화합물 8h를 얻었다.
1H NMR(400 MHz, CDCl3) δ 3.86-3.57(m, 2H), 3.28-3.23(m, 1H), 3.07-3.10(m, 2H), 2.77(s, 1H), 2.60-2.55(m, 1H), 1.83-2.75(m, 2H), 1.65-1.53(m, 1H), 1.41(s, 9H), 1.20-1.13(m, 3H).
8단계
실시예1의 7단계의 합성방법에 따라 화합물 8h(81 mg, 0.36 mmol) 및 화합물 8i(200 mg, 0.72 mmol)를 합성하여 화합물 8j를 얻었다.
MS-ESI 계산값 [M+H]+ 432, 측정값 432.
9단계
20℃에서, 트리플루오로아세트산(2 mL)을 화합물 8j(109 mg, 0.25 mmol)의 6 mL디클로로메탄용액에 넣고, 반응액을 계속하여 2시간 동안 교반하였다. 반응 완료 후 반응액을 직접 농축하고, 조질의 생성물을 고성능 액체크로마토그래피로 정제하여 화합물 8를 얻었다.
MS-ESI 계산값 [M+H]+ 332, 측정값 332.
1H NMR(400 MHz, CD3OD) δ 9.20(s, 1H), 8.80(d, J = 7.2 Hz, 1H), 8.48(s, 1H), 8.37(d, J = 8.4 Hz, 1H), 7.77(t, J = 8.0 Hz, 1H), 4.12-4.10(m, 1H), 3.82-3.78(m, 1H), 3.62-3.60(m, 1H), 3.41-3.37(m, 1H), 3.62-3.60(m, 1H), 3.18(brs, 1H), 3.08-3.05(m, 5H), 2.09-2.04(m, 1H), 1.80-1.79(m, 1H), 1.34-1.32(m, 3H).
실시예 9
Figure 112020017113267-pct00050
Figure 112020017113267-pct00051
1단계
화합물 7a(80 mg, 0.22 mmol)를 1 mL의 디클로로메탄에 녹이고, m-클로로퍼옥시벤조산(68 mg, 0.33 mmol, 85%)을 0℃ 및 질소가스 보호 하에 반응액에 첨가하였다. 수득한 반응액은 25℃에서 4시간 동안 교반하였다. 반응 완료 후 0℃에서 포화탄산나트륨 수용액(20 mL) 및 포화티오 황산나트륨 수용액(20 mL)으로 켄칭시키고, 에틸아세테이트(50 mL x 3)로 추출하며, 유기층을 합병한 후, 포화식염수로 세척(20 mL x 3)하여, 무수 황산나트륨으로 건조하고, 여과하고, 농축한 후 분취용 박층 크로마토그래피(메탄올/디클로로메탄=1:10)로 정제하여 화합물 9a를 얻었다.
MS-ESI 계산값 [M+H]+ 376, 측정값 376.
1H NMR(400 MHz, CDCl3) δ 8.82(s, 1H), 8.61(d, J = 7.6 Hz, 1H), 8.25(d, J = 7.6 Hz, 2H), 7.91(d, J = 8.4 Hz, 1H), 7.71(t, J = 8.0 Hz, 1H), 4.31-4.29(m, 1H), 3.97(d, J = 7.2 Hz, 1H), 3.71-3.66(m, 1H), 3.35-3.33(m, 1H), 3.30-3.26(m, 1H), 3.04-3.03(m, 2H), 2.04-1.93(m, 1H), 1.86(s, 3H), 1.76-1.70(m, 1H), 1.21(d, J = 6.8 Hz, 3H).
2단계
화합물 9a(66 mg, 0.18 mmol)를 1 mL의 아세트산무수물에 용해시키고, 질소가스 보호하에 반응혼합물을 120℃에서 4시간 동안 교반하였다. 반응 완료 후 반응액을 농축하고, 0℃에서 포화탄산나트륨수용액(20 mL)으로 켄칭시키고, 에틸아세테이트(50 mL x 3)로 추출하여, 유기층을 합병한 후 포화식염수(20 mL x 3)로 세척하고, 무수 황산나트륨으로 건조하고, 여과하고, 농축하였으며. 잔여물은 분취용 박층 크로마토그래피법(메탄올/디클로로메탄 = 1:10)으로 정제하여, 화합물 9b를 얻었다.
MS-ESI 계산값 [M+H]+ 376, 측정값 376.
1H NMR(400 MHz, CDCl3) δ 8.68(d, J = 7.2 Hz, 1H), 8.37(d, J = 7.6 Hz, 1H), 7.61-7.57(m, 1H), 7.53-7.48(m, 1H), 7.25-7.23(m, 1H), 4.32-4.31(m, 1H), 3.97-3.95(m, 1H), 3.71-3.67(m, 1H), 3.36-3.28(m, 1H), 3.20-3.16(m, 1H), 3.02-2.98(m, 2H), 1.93-1.92(m, 1H), 1.84(s, 3H), 1.74-1.70(m, 1H), 1.26(d, J = 6.8 Hz, 3H).
3단계
실시예 6의 8단계의 합성방법에 따라 화합물 9b (53 mg, 0.14 mmol)로부터 화합물 9를 얻었다.
MS-ESI 계산값 [M+H]+ 334, 측정값 334.
1H NMR(400 MHz, CD3OD) δ 8.61(d, J = 8.0 Hz, 1H), 8.41(d, J = 6.4 Hz, 1H), 7.66(t, J = 8.0 Hz, 1H), 7.45(d, J = 7.6 Hz, 1H), 7.35(d, J = 7.2 Hz, 1H), 3.81-3.79(m, 1H), 3.64-3.59(m, 1H), 3.50-3.39(m, 1H), 3.11-3.07(m, 1H), 2.88-2.86(m, 1H), 2.81-2.68(m, 2H), 1.90-1.83(m, 1H), 1.45(brs, 1H), 1.22(d, J = 6.4 Hz, 3H).
실시예 10
Figure 112020017113267-pct00052
1단계
실시예 9의 합성방법에 따라 화합물 6h는 3단계 반응을 거쳐 화합물 10을 얻었다.
MS-ESI 계산값 [M+H]+ 352, 측정값 352.
1H NMR(400 MHz, CD3OD) δ 8.66-8.63(m, 2H), 7.74(t, J = 8.0 Hz, 1H), 7.45(d, J = 8.0 Hz, 1H), 4.08-4.06(m, 1H), 3.72-3.64(m, 2H), 3.37-3.34(m, 1H), 3.18-3.10(m, 1H), 3.04-3.02(m, 2H), 2.09-2.04(m, 1H), 1.75-1.72(m, 1H), 1.21(d, J = 6.4 Hz, 3H).
실시예 11
Figure 112020017113267-pct00053
Figure 112020017113267-pct00054
1단계
실시예 9의 1단계의 합성방법에 따라 화합물 1j는 화합물 11a를 얻었다.
2단계
화합물 11a(40 mg, 0.09 mmol), 테트라부틸암모늄브로마이드(6 mg, 0.02 mmol) 및 아세트산 나트륨(22 mg, 0.27 mmol)의 3 mL의 물 및 3 mL의 디클로로메탄의 혼합용액에 벤조일클로라이드(25 mg, 0.18 mmol)를 첨가하였다. 수득한 반응액은 20℃에서 1시간 동안 반응시켰다. 반응 완료 후, 액체를 분리하고, 수용액층은 디클로로메탄(5 mL x 2)으로 추출하고, 유기층은 무수 황산나트륨으로 건조하며, 여과하고, 농축하여, 조질의 생성물은 분취용 박층 크로마토그래피법(에틸 아세테이트)으로 정제하여 화합물 11b를 얻었다.
3단계
실시예 1의 8단계의 합성방법에 따라 화합물 11b(15 mg, 0.03 mmol)는 화합물 11을 얻었다.
MS-ESI 계산값 [M+H]+ 346, 측정값 346.
1H NMR(400 MHz, D2O) δ 8.54(brd, J = 8.0 Hz, 1H), 8.38(brd, J = 7.6 Hz, 1H), 7.65(t, J = 8.0 Hz, 1H), 7.39(d, J = 7.6 Hz, 1H), 7.14(d, J = 7.6 Hz, 1H), 4.00-3.83(m, 2H), 3.75-3.65(m, 1H), 3.54-3.39(m, 1H), 3.35-3.14(m, 2H), 2.41-2.28(m, 1H), 2.08-1.93(m, 1H), 1.36-1.24(m, 1H), 1.13-0.99(m, 1H), 0.84-0.72(m, 1H), 0.65-0.53(m, 1H).
시험관 내 ROCK 단백질 키나제 억제활성의 평가
실험목적:ROCK 단백질 키나제 억제에 의한 화합물의 IC50값의 검출.
실험재료:
완충용액 측정: 20 mM Hepes(pH 7.5), 10 mM MgCl2, 1 mM EGTA, 0.02% Brij35, 0.02 mg/ml BSA, 0.1 mM Na3VO4, 2 mM DTT, 1% DMSO
실험조작:
새로 준비한 완충용액에 농도가 20 μM인 ROCK 단백질 키나제 기질 Long S6 Kinase substrate peptide를 첨가하였다. 이어서 1nM ROCK 단백질 키나제를 넣고, 균등하게 교반하였다. Echo550을 사용하여 시험화합물 또는 양성기준물질을 포함하는 일련의 DMSO 희석액(10 μM에서 시작하여, 3배 연속 희석)을 첨가하였다. 실온에서 20분 동안 사전배양하고, 33P-ATP(방사선강도 10μCi/μL)를 첨가하여 반응을 개시하고, 실온에서 두시간 동안 반응시킨 후 P81이온교환용지(Whatman # 3698-915)로 여과하고, 0.75% 인산으로 세척하였다. Filter-Binding 방법으로 방사강도를 검출하였다.
화합물의 단백질 키나제 억제활성은 상대적 블랭크기질(순수DMSO)의 잔류단백질 키나제의 활성으로 표현된다. Prism소프트웨어 패키지(GraphPad Software, San Diego California, USA)를 사용하여 IC50의 값 및 곡선을 계산하였다. 결과는 표 1에 나타내었다.
본 실험은 Fasudil(파수딜)을 양성기준물질로 사용하였다.
실험결과:
표 1 단백질키나제 억제활성의 시험결과
시료(각 실시예에서 수득한 화합물) 단백질키나제 억제활성(nM)
실시예 1 20
실시예 2 32
실시예 3 93
실시예 6 12
실시예 6-1/6-2 65/8
실시예 7 28
실시예 7-1/7-2 63/15
실시예 8 18
실시예 10 783
Fasudil 116
결과는: 본 발명의 화합물이 유의하고 예상치 못한 프로테아제 억제활성을 갖는다는 것을 보여주었다.
랫트 생체내 약동학 평가
실험목적
수컷 SD 랫트를 시험동물로 사용하고, 단일투여 후 화합물의 혈장 농도를 측정하고 약동학 적 거동을 평가하였다.
실험조작
6마리의 건강한 성체 수컷 SD랫트(7 내지 10주령, Shanghai SLAC Laboratory Animal Co.,Ltd에서 구입)를 선택하여, 무작위로 2개 군, 군당 3마리씩 나누고, 한 군에는 시험화합물 2mg/kg을 정맥 내 투여하고, 다른 군에는 시험화합물 10mg/kg을 경구투여하였다. 정맥내 투여군 및 경구투여군에서의 용매는 모두 10%DMSO+18%HP-β-CD+72%생리식염수이다. 정맥투여군 동물은 투여 후 0.0833, 0.25, 0.5, 1, 2, 4, 8 및 24시간일 때 혈액샘플을 채혈하였고, 경구투여 군 동물은 투여 후 0.25, 0.5, 1, 2, 4, 6, 8, 및 24시간 후 혈액샘플을 수집하였다. LCMSMS법으로 혈장 약물농도를 측정하였으며, WinNonlinTM version 6.3(Pharsight Mountain View, CA)약동학적 소프트웨어를 사용하여, 비구획모델 대수사다리꼴방법으로 관련 약동학적 파라미터를 계산하였다.
실험결과
시험 결과는 표 2와 같다.
표 2 랫트 생체내 약동학적 평가
실시예 6 실시예 38(WO2015/165341)
클리어런스율(Cl, mL/min/kg) 43.8 153
반감기(T1/2, hr) 1.12 0.48
결과는 본 발명의 화합물의 반감기가 약 3배 증가되고 클리어런스율이 유의하게 감소됨을 나타내며, 이는 본 발명이 종래기술보다 더 우수한 특성을 갖는다는 것을 입증하였다.
랫트 생체내 약력학연구
실험목적
유사한 작용메커니즘의 파수딜 및 임상치료약물인 피르페니돈(Pirfenidone) 및 닌테다닙(nintedanib)을 참조로 하여 SD랫트의 좌측 폐에서 일측 폐섬유에 대한 시험화합물(실시예 6)의 효과를 조사하였다.
실험조작
수컷 SD랫트는 체중에 따라 무작위로 11개 군, 즉 모의수술군, 모델군, 닌테다닙(nintedanib) 100 및 30mg/kg/d-qd군, 피르페니돈(Pirfenidone) 50 및 15mg/kg/d-bid군, 파수딜 25mg/kg/d-qd군, 시험화합물(실시예 6) 1, 3, 10 mg/kg/d-bid군 및 시험화합물(실시예6) 3mg/kg/d-qd군으로 나누었다. 각 군의 동물은 모델링 8일째부터 경구투여하였으며 총 14일간 투여하였다. 마지막 투여 후 다음 날 모든 동물을 안락사시켰으며, 좌측 폐를 채취하여, 폐내에 같은 양의 포르말린용액을 주입하고, 무게를 측정하고 폐섬유증 점수를 평가하기 위해 폐병리학 분석을 수행하였다.
실험결과
Masson Trichrome 염색으로 좌측 폐의 폐섬유증 병변의 면적, 폐섬유증 병리학 점수 및 섬유증 등급 파라미터를 병리학적으로 평가하였다. 폐섬유증 ashcraft 점수결과는 양성 약물 닌테다닙(nintedanib) 및 피르페니돈(Pirfenidone)이 모델군과 비교하여 폐섬유증의 정도를 유의하게 개선시켰음을 보여주었고(p<0.05)(도 1); 시험화합물(실시예 6)을 3개의 부동한 용량으로 14일 동안 매일 2 회 경구 투여시 폐섬유증의 유의한 억제를 나타내었으며, 이는 모델군과 비교 시 유의한 차이를 나타내었지만(p<0.001)(도 1), 명확한 용량의존적 치료효과를 보이지 않았다. 시험화합물(실시예 6)을 3mg/kg으로 매일 1 회 경구투여하였고, 이는 마찬가지로 폐섬유증의 억제에 유의한 치료효과를 보였으며, 또한 동일한 용량의 매일 2 회 경구투여의 치료효과와 같았으며, 유의한 차이를 보이지 않았다(도 1). 시험화합물 파수딜을 연속 14일 동안 매일 1회 25mg/kg으로 경구투여하여 폐섬유증 억제에 있어서 양성 약물과 동일한 효과를 얻었다(p<0.001)(도 1). ashcraft평점 3점을 기준으로 하여 3점미만(3점 포함) 또는 4점이상(4점 포함)의 폐섬유증의 백분율을 계산하였으며, 결과적으로 모델군에서는 병변구역의 65%이상이 4점 또는 4점 이상을 나타냈으며, 약물치료 후 각 약물치료군 동물의 병변 구역이 3점미만의 점수를 갖는 것이 70%이상이였다. 통계 결과는 양성약물인 닌테다닙(nintedanib) 및 피르페니돈(Pirfenidone)은 모델군과 비교하여 유의한 차이를 보였으며(p<0.001); 각 시험화합물(실시예6)의 부동한 용량 치료군은 모델군과 비교하여 유의한 통계학 차이를 가지고 있으나, 용량의존적 치료효과는 보이지 않았다(도2).
실험결론:블레오마이신에 의해 유도된 랫트 폐섬유화 모델에서, 시험화합물(실시예6)을 2주 연속 투여시 폐섬유증 억제에 대한 용량의존적 효과를 나타내었고, 또한 그 효과는 1 mg/kg BID의 낮은 용량에서도 효과를 보였다. 시험화합물(실시예6)은 더 낮은 용량에서 닌테다닙(nintedanib), 피르페니돈(Pirfenidone) 및 파수딜과 비슷한 폐섬유증 개선효과에 도달할 수 있다.
hERG 실험
실험에 사용된 hERG 칼륨이온 채널을 안정적으로 발현하는 세포는 Aviva Biosciences의 CHO-hERE이며, CHO-hERG는 5% CO2, 37℃에 환경에서 배양되었다. hERGQPatchHTX 실험은 실온에서 수행하였다. QPatch AssaySoftware 5.2(Sophion Bioscience)의 소프트웨어를 사용하여 전체 세포 프로토콜, 전압자극 프로토콜 및 화합물 검출 프로토콜을 확립하였다. 우선 30회 반복 전압자극을 수행하였고, 이 부분을 후속분석의 기준 영역으로 하고, 이어서 5 μl의 세포외액을 첨가하여, 3회 반복하였다. 각 화합물의 작용농도를 차례로 추가하였고, 여전히 5 μl 부피로 첨가하여 3회 반복하였다. 시험농도당 적어도 5mins이상 세포를 배양하였다. 전체 기록과정에서, 각 지표는 모두 데이터분석 승인기준에 도달하여야 하며, 기준에 미달하면, 이 세포는 분석범위에 넣지 않고, 화합물은 다시 측정하며, 위의 기록과정은 모두 Qpatch 분석 소프트웨어에 의해 자동으로 작동되었다. 각각의 화합물의 시험농도는 순차적으로 0.24μM, 1.20μM, 6.00μM, 30.00μM이며, 각 농도에서 적어도 두개의 세포를 반복하였다. 각각의 완전한 전류기록에서, 음성대조군에서의 피크전류의 백분율에 기초하여, 각 화합물의 효과농도의 억제백분율을 계산할 수 있다. 표준 그리스방정식 피팅으로 용량-효과 관계곡선을 얻었으며, 구체적인 방정식은 아래와 같다:
I(C) = Ib+(Ifr-Ib)*cn/(IC50 n+cn)
C는 화합물의 시험농도, n은 경사도이다.
곡선피팅 및 억제율 계산은 모두 Qpatch분석 소프트웨어를 사용하여 완료하였으며, 최저농도에서의 억제율이 억제의 절반을 초과하거나 또는 최고농도에서의 억제율이 억제의 절반에 도달하지 못했을 때, 이 화합물의 상응하는 IC50값은 최저농도보다 낮거나 IC50값이 최고농도보다 크다.
실험결과
실시예화합물의 hERG의 억제활성 결과는 표 3과 같다.
표 3 hERG 억제활성 평가
실시예 6 실시예 38(WO2015/165341)
hERG(μM) > 30 4.6
결과적으로 본 발명의 화합물이 종래기술과 비교하여, hERG의 잠재적 위험이 더 낮다는 것을 보여주었다.

Claims (12)

  1. 식(I)으로 표시되는 화합물, 이의 약학적으로 허용가능한 염, 이의 (S)-이성질체 또는 이의 (R)-이성질체:
    Figure 112021111845771-pct00055

    식 중,
    T1 및 T2는 각각 독립적으로 NH 또는CH2에서 선택되고;
    R1 및 R3은 각각 독립적으로 H, F, Cl, Br, I, OH, NH2에서 선택되거나, 또는 각각 독립적으로 1, 2 또는 3개의 R에 의해 임의로 치환된:C1-3알킬기에서 선택되며;
    R2는 H, F, Cl, Br, I, OH 또는 NH2에서 선택되고;
    R4는 1, 2 또는 3개의 R에 의해 임의로 치환된:C1-3알킬기에서 선택되거나;
    또는 R3 및 R4는 서로 연결되어, 1, 2 또는 3개의 R에 의해 임의로 치환된 3 내지 6원 고리를 형성하며;
    R은 F, Cl, Br, I, OH 또는 NH2에서 선택된다.
  2. 제1항에 있어서,
    R1 및 R3은 각각 독립적으로 H, F, Cl, Br, I, OH, NH2 또는CH3에서 선택되는 화합물, 이의 약학적으로 허용가능한 염, 이의 (S)-이성질체 또는 이의 (R)-이성질체.
  3. 제1항에 있어서,
    R4는 CH3에서 선택되는 화합물, 이의 약학적으로 허용가능한 염, 이의 (S)-이성질체 또는 이의 (R)-이성질체.
  4. 제1항에 있어서,
    구조단위
    Figure 112021111845771-pct00056
    Figure 112021111845771-pct00057
    또는
    Figure 112021111845771-pct00058
    에서 선택되는 화합물, 이의 약학적으로 허용가능한 염, 이의 (S)-이성질체 또는 이의 (R)-이성질체.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    구조단위
    Figure 112021111845771-pct00059
    Figure 112021111845771-pct00060
    ,
    Figure 112021111845771-pct00061
    또는
    Figure 112021111845771-pct00062
    에서 선택되는 화합물, 이의 약학적으로 허용가능한 염, 이의 (S)-이성질체 또는 이의 (R)-이성질체.
  6. 제1항에 있어서,
    R3 및 R4 는 서로 연결되어, 1, 2 또는 3개의 R에 의해 임의로 치환된 3원 고리를 형성하는 화합물, 이의 약학적으로 허용가능한 염, 이의 (S)-이성질체 또는 이의 (R)-이성질체.
  7. 제4항 또는 제6항에 있어서,
    구조단위
    Figure 112021111845771-pct00063
    Figure 112021111845771-pct00064
    에서 선택되는 화합물, 이의 약학적으로 허용가능한 염, 이의 (S)-이성질체 또는 이의 (R)-이성질체.
  8. 제1항 내지 제3항 중 어느 한 항에 있어서,
    하기에서 선택되는 화합물, 이의 약학적으로 허용가능한 염, 이의 (S)-이성질체 또는 이의 (R)-이성질체:
    Figure 112021111845771-pct00065
    Figure 112021111845771-pct00066

  9. 하기에서 선택되는 화합물, 이의 약학적으로 허용가능한 염, 이의 (S)-이성질체 또는 이의 (R)-이성질체:
    Figure 112021111845771-pct00067

    Figure 112021111845771-pct00068

    Figure 112021111845771-pct00069

    Figure 112021111845771-pct00070
  10. 삭제
  11. 삭제
  12. 삭제
KR1020207004711A 2017-07-19 2018-07-18 이소퀴놀리닐술포닐 유도체 및 이의 용도 KR102424348B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201710590957.X 2017-07-19
CN201710590957 2017-07-19
PCT/CN2018/096134 WO2019015608A1 (zh) 2017-07-19 2018-07-18 异喹啉磺酰衍生物及其应用

Publications (2)

Publication Number Publication Date
KR20200031669A KR20200031669A (ko) 2020-03-24
KR102424348B1 true KR102424348B1 (ko) 2022-07-22

Family

ID=65015676

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020207004711A KR102424348B1 (ko) 2017-07-19 2018-07-18 이소퀴놀리닐술포닐 유도체 및 이의 용도

Country Status (9)

Country Link
US (1) US11155559B2 (ko)
EP (1) EP3656772B1 (ko)
JP (1) JP6970295B2 (ko)
KR (1) KR102424348B1 (ko)
CN (1) CN111065637B (ko)
AU (1) AU2018303069B2 (ko)
CA (1) CA3070098C (ko)
ES (1) ES2927542T3 (ko)
WO (1) WO2019015608A1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004792A1 (ja) 2007-07-02 2009-01-08 Asahi Kasei Pharma Corporation スルホンアミド化合物及びその結晶

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3583287D1 (de) * 1984-12-27 1991-07-25 Asahi Chemical Ind Substituierte isochinolinsulfonyl-verbindungen.
KR19990082174A (ko) * 1996-02-02 1999-11-25 니뽄 신야쿠 가부시키가이샤 이소퀴놀린 유도체 및 의약
GB9620390D0 (en) * 1996-09-30 1996-11-13 Eisai London Res Lab Ltd Substances and their uses
JP4212149B2 (ja) * 1998-06-11 2009-01-21 株式会社デ・ウエスタン・セラピテクス研究所 医薬
US20040266755A1 (en) * 2003-05-29 2004-12-30 Schering Aktiengesellschaft Prodrugs of 1-(1-hydroxy-5-isoquinolinesulfonyl) homopiperazine
MX2010012103A (es) * 2008-05-12 2011-04-04 Amnestix Inc Compuestos para la inhibicion de la cinasa rho y para mejorar el aprendizaje y la memoria.
WO2010010702A1 (ja) * 2008-07-24 2010-01-28 国立大学法人大阪大学 軸性近視の予防または治療剤
CN105085525B (zh) * 2014-04-28 2019-01-04 南京明德新药研发股份有限公司 作为rho激酶抑制剂的异喹啉磺酰衍生物
ES2774923T3 (es) * 2014-04-28 2020-07-23 China Resources Pharmaceutical Holdings Company Ltd Derivados de isoquinolinsulfonilo como inhibidores de RHO quinasa

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004792A1 (ja) 2007-07-02 2009-01-08 Asahi Kasei Pharma Corporation スルホンアミド化合物及びその結晶

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
US 2017/0037050 A1.*

Also Published As

Publication number Publication date
CA3070098A1 (en) 2019-01-24
EP3656772A4 (en) 2021-03-17
ES2927542T3 (es) 2022-11-08
CA3070098C (en) 2022-01-11
EP3656772A1 (en) 2020-05-27
CN111065637B (zh) 2022-02-01
AU2018303069A1 (en) 2020-03-05
EP3656772B1 (en) 2022-08-31
WO2019015608A1 (zh) 2019-01-24
JP6970295B2 (ja) 2021-11-24
JP2020527605A (ja) 2020-09-10
KR20200031669A (ko) 2020-03-24
CN111065637A (zh) 2020-04-24
AU2018303069B2 (en) 2020-10-22
US20200207772A1 (en) 2020-07-02
US11155559B2 (en) 2021-10-26

Similar Documents

Publication Publication Date Title
US11459327B1 (en) Cycloalkyl and hetero-cycloalkyl inhibitors, preparation methods therefor, and use thereof
CN113286794B (zh) Kras突变蛋白抑制剂
AU2014400628B2 (en) Aminopyridazinone compounds as protein kinase inhibitors
EP2499129B1 (en) Quinoline and quinoxaline derivatives as kinase inhibitors
AU2003214503B2 (en) Tropane derivatives as CCR5 modulators
US9856264B2 (en) Isoquinolinesulfonyl derivative as RHO kinase inhibitor
JP2023525748A (ja) Bcl-2阻害剤としての化合物
US11192886B2 (en) S1P1 agonist and application thereof
JP2023512116A (ja) トランスサイレチンの安定化及びトランスサイレチンの誤った折り畳みの阻害のための化合物、組成物、及び方法
KR102424348B1 (ko) 이소퀴놀리닐술포닐 유도체 및 이의 용도
US20210403485A1 (en) Pyrazolopyrimidine derivative as selective trk inhibitor
WO2023173014A1 (en) Kras inhibitors and their use
KR101683061B1 (ko) JAK-3 저해제로 유용한 7H-피롤로[2,3-d]피리미딘-4-싸이올 유도체
US20040014742A1 (en) Tropane derivatives useful in therapy
US11427581B2 (en) JAK inhibitor and use thereof
CA3232178A1 (en) Pyridazinyl amino derivatives as alk5 inhibitors
US20230158010A1 (en) Luminally-acting n-(piperidin-4-yl)benzamide derivatives
CN117203202A (zh) 喹喔啉衍生物及其用途

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant