KR102423685B1 - 렌즈 구동장치 - Google Patents

렌즈 구동장치 Download PDF

Info

Publication number
KR102423685B1
KR102423685B1 KR1020180114636A KR20180114636A KR102423685B1 KR 102423685 B1 KR102423685 B1 KR 102423685B1 KR 1020180114636 A KR1020180114636 A KR 1020180114636A KR 20180114636 A KR20180114636 A KR 20180114636A KR 102423685 B1 KR102423685 B1 KR 102423685B1
Authority
KR
South Korea
Prior art keywords
carrier
carriers
optical axis
magnet
driving device
Prior art date
Application number
KR1020180114636A
Other languages
English (en)
Other versions
KR20200035522A (ko
Inventor
김희승
박상욱
전기훈
정제헌
정지훈
Original Assignee
자화전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자화전자(주) filed Critical 자화전자(주)
Priority to KR1020180114636A priority Critical patent/KR102423685B1/ko
Publication of KR20200035522A publication Critical patent/KR20200035522A/ko
Application granted granted Critical
Publication of KR102423685B1 publication Critical patent/KR102423685B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • H04N5/23287
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0046Movement of one or more optical elements for zooming

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lens Barrels (AREA)

Abstract

본 발명에 의한 렌즈 구동장치는 외부로부터 입사되는 피사체의 빛을 광축 방향으로 반사시키는 광학계 모듈; 광축을 기준으로 상기 광학계 모듈의 하위에 배치되며, 렌즈가 탑재되는 n(n은 1 이상의 자연수)개의 캐리어; 상기 n개의 캐리어를 수용하는 하우징; 상기 n개의 캐리어의 일 측면에 구비되는 마그네트; 및 상기 마그네트와 대면하는 방향에 배치되는 코일을 포함하는 것을 특징으로 한다.

Description

렌즈 구동장치{APPARATUS FOR OPERATING LENS}
본 발명은 렌즈 구동장치에 관한 것으로서, 더욱 구체적으로는 물리적 구조의 개선을 통하여 줌 렌즈 등의 구동 효율성을 향상시키는 렌즈 구동장치에 관한 것이다.
하드웨어 기술의 발전, 사용자 환경 등의 변화에 따라 휴대 단말기(모바일 단말기) 등에는 통신을 위한 기본적인 기능 이외에 다양하고 복합적인 기능이 통합적으로 구현되고 있다.
그 대표적인 예로 오토포커스(AF, Auto Focus), 손떨림 보정(OIS, Optical Image Stabilization) 등의 기능이 구현된 카메라 모듈을 들 수 있으며, 근래에는 인증이나 보안 등을 위한 음성 인식, 지문 인식, 홍채 인식 기능 등도 휴대 단말기에 탑재되고 있다.
또한 최근에는 줌인(Zoom-in) 및 줌아웃(Zoom-out) 기능 등을 통하여 초점 거리를 다양하게 조정하여 피사체의 크기 등을 다양하게 가변시킬 수 있는 줌렌즈의 장착도 시도되고 있다.
줌렌즈를 통과한 피사체의 광(Light)은 다른 렌즈와 같이 CCD(Charged-coupled Device), CMOS(Complementary Metal-oxide Semiconductor)와 같은 촬상소자로 유입된 후 후속 프로세싱을 통하여 이미지 데이터로 생성된다.
줌렌즈의 경우, 통상적으로 광이 유입되는 방향인 광축 방향으로 복수 개 렌즈 또는 렌즈군들이 동축에 배열되는 구조를 가지고 있으므로 일반 렌즈보다 광축 방향으로 그 길이가 연장되는 특성을 가지며 또한, 초점 거리의 다양한 조정을 위하여 광축 방향을 기준으로 이동하는 이동 변위가 상대적으로 크다는 특성을 가진다.
종래 액추에이터 등의 장치에는 줌렌즈(줌렌즈가 장착된 배럴 또는 캐리어)의 광축 방향 이동을 선형적으로 가이딩하는 샤프트(shaft)에 줌렌즈가 끼움 결합되고 그 상태에서 줌렌즈가 샤프트를 따라 이동하는 구조가 주로 적용되어 있다.
그러나 이러한 구조에서는 줌렌즈의 선형 이동이 어느 정도 유도될 수는 있으나, 샤프트와 끼움 결합되는 물리적 구조로 구현되므로 선형 이동 시 불필요한 마찰력이 발생하여 전력 효율성이 낮음은 물론, 줌렌즈의 선형 이동을 정밀하게 제어하는 것이 어려우며, 불필요한 소음이 발생하는 등 전반적인 구동 성능이 높지 않다는 문제점이 있다.
한편, 더욱 확장된 줌인 또는 줌아웃 등의 기능을 구현하기 위하여 액추에이터에는 하나 이상의 AF용 렌즈 및 줌렌즈가 구비되고 이들의 상호 위치 관계를 조합적으로 이용하는 구조가 적용될 수 있다.
이 경우 피사체의 빛이 복수 개 렌즈를 통과하여 촬상소자로 유입되므로 각 렌즈들의 정확한 광축 정렬(alignment)이 상당히 중요하다고 할 수 있고 복수 개 줌렌즈 각각의 광축 방향 정렬이 상호 조금만 일치되지 않아도 영상의 선명도에 지대한 영향을 미치는 문제가 발생한다.
그러나 종래 장치의 경우 샤프트와 줌렌즈 사이의 물리적 유격을 근본적으로 피할 수 없으므로 줌 렌즈의 틸트(tilt) 현상이 발생하기 쉽고, 앞서 언급된 바와 같이 줌렌즈의 광축 방향 이동 거리는 AF 등과 대비하여 상대적으로 크므로 줌렌즈의 틸트 현상은 영상 처리의 정밀성을 더욱 저하시킬 수 있다.
AF와 줌을 구현하는 방법은 여러 가지가 있으나 대표적인 방법으로 특정 크기와 방향의 전류를 코일에 인가시켜 그에 따른 전자기력이 발생하도록 하고 이 전자기력이 캐리어(렌즈 탑재)에 구비된 마그네트에 구동력을 제공하도록 하여 캐리어가 광축 방향으로 이동하는 방법이 적용된다.
광축 정렬에 대한 테스트는 렌즈 구동장치(카메라 액추에이터)를 대상으로 인가된 전류의 크기와 방향에 따라 렌즈 구동장치 내부에 구비된 각각의 캐리어가 광축 방향을 기준으로 의도된 크기와 거리만큼 이동하는지 여부를 정밀하게 확인하는 과정을 포함한다.
종래 렌즈 구동장치에서는 코일에 전류가 인가되지 않는 경우 코일과 마그네트 사이에 힘이 작용하지 않아 캐리어는 특정 힘에 구속되지 않으므로 자유 이동이 가능한 상태에 있다고 할 수 있다.
그러므로 광축 정렬 테스트를 진행하는 경우, 현재 캐리어가 어느 위치에 있는지 여부를 확인하고 해당 위치에서의 이동 코드 값 등을 세팅하는 과정을 반드시 수행하여야 한다. 나아가 렌즈 구동 장치에 복수 개의 캐리어가 구비되어 있는 경우 모든 캐리어마다 이러한 과정을 반복하여야 하므로 이러한 초기 작업에 상당한 시간이 소요된다.
한편, 복수 개의 줌 렌즈가 렌즈 구동장치에 구비되는 경우 종래 일반 렌즈와 같이 휴대 단말의 메인 기판에서 입설(立設)되는 방향 즉, 휴대 단말의 두께 방향으로 설치되면 휴대 단말은 그 만큼 두꺼워지므로 휴대 단말이 지향하는 장치 슬림화의 본질적 특성에 최적화되기 어렵다는 문제가 있다.
그러므로 복수 개의 줌 렌즈가 렌즈 구동장치에 구비되더라도 최종 제품인 휴대 단말을 얇게 구현할 수 있도록 렌즈 구동장치의 물리적 구조와 그에 따른 전자계 배치에 대한 구조를 개선할 필요가 있다고 할 수 있다.
본 발명은 상기와 같은 배경에서 상술된 문제점을 해결하기 위하여 창안된 것으로서, 전류가 코일에 공급되지 않는 휴지기(休止期)에, 렌즈가 탑재된 캐리어가 특정 위치로 이동하도록 유도하는 구조를 구현함으로써 광축 정렬 등에 대한 작업의 효율성을 향상시키고 나아가 줌 렌즈 등이 탑재되더라도 구동 장치 자체의 두께가 커지지 않도록 하는 물리적 구조가 구현된 렌즈 구동장치를 제공하는데 그 목적이 있다.
본 발명의 다른 목적 및 장점들은 아래의 설명에 의하여 이해될 수 있으며, 본 발명의 실시예에 의하여 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 구성과 그 구성의 조합에 의하여 실현될 수 있다.
상기 목적을 달성하기 위한 본 발명의 렌즈 구동장치는 외부로부터 입사되는 피사체의 빛을 광축 방향으로 반사시키는 광학계 모듈; 광축을 기준으로 상기 광학계 모듈의 하위에 배치되며, 렌즈가 탑재되는 n(n은 1이상의 자연수)개의 캐리어; 상기 n개의 캐리어를 수용하는 하우징; 상기 n개의 캐리어의 일 측면에 구비되는 마그네트; 및 상기 마그네트와 대면하는 방향에 배치되는 코일을 포함하여 구성될 수 있다.
여기에서 본 발명의 상기 n(n은 2이상의 자연수)개의 캐리어는 상기 n개의 캐리어에서 상호 인접한 2개의 캐리어 중 광축 방향을 기준으로 상위에 위치하는 상위 캐리어; 및 상기 상위 캐리어보다 광축 방향을 기준으로 하위에 위치하는 하위 캐리어를 포함하고, 이 경우 상기 상위 캐리어에 구비되는 마그네트는 상기 상위 캐리어의 좌측 또는 우측에 구비되며, 상기 하위 캐리어에 구비되는 마그네트는 상기 상위 캐리어에 구비되는 마그네트의 반대 방향에 구비될 수 있다.
또한, 본 발명의 렌즈 구동장치는 상기 하우징과 상기 n개의 캐리어 사이에 배치되는 볼; 및 상기 볼을 사이에 두고 상기 마그네트와 대면하도록 배치되며 상기 마그네트에 인력을 발생시키는 요크를 더 포함할 수 있다.
여기에서 본 발명의 상기 요크는 상기 마그네트와 대면하는 방향의 너비인 대면너비가 광축의 상하 방향을 기준으로 차등적으로 이루어지며, 이 경우 상기 대면너비는 광축 방향을 기준으로 상부보다 하부가 더 크도록 구성하는 것이 바람직하다.
더욱 바람직하게 본 발명의 렌즈 구동장치는 상기 하우징의 측면에 형성된 결합공간에 결합되며, 상기 n개의 캐리어 중 광축을 기준으로 상기 결합공간 하위에 위치하는 캐리어인 대상 캐리어가 광축 방향을 기준으로 상부로 이동하는 것을 제한하는 스토퍼를 더 포함할 수 있다.
이 경우 본 발명의 상기 결합공간은 상기 대상캐리어가 상기 결합공간을 통하여 상기 하우징 내부에 설치될 수 있도록 상기 대상캐리어의 크기보다 큰 공간으로 형성되는 것이 바람직하며, 상기 결합공간에 결합되는 스토퍼는 그 크기가 상기 결합공간에 대응되도록 구성하는 것이 바람직하다.
본 발명의 바람직한 일 실시예에 의할 때, 빛의 경로를 굴절(반사)시키는 광학계 모듈과 그 하위에 하나 이상의 캐리어를 위치시키는 구조를 통하여 줌 렌즈와 같이 광축 방향 이동 거리가 상대적으로 큰 렌즈가 복수 개 설치되어도 장치의 두께를 커지지 않도록 할 수 있다.
또한, 본 발명의 다른 일 실시예에 의할 때, 캐리어에 구비된 마그네트에 인력을 발생시키는 요크의 너비를 광축의 상하 방향을 기준으로 차등적으로 구성하거나 또는 하부의 너비가 상부의 너비보다 상대적으로 크도록 구성함으로써 코일에 전류가 인가되지 않는 경우 캐리어의 위치를 특정 위치로 유도할 수 있어 광축 정렬 등의 과정을 더욱 효율적으로 구현할 수 있다.
나아가 본 발명은 캐리어의 이동을 구동하는 마그네트 및 코일 등의 구조가 장치의 두께 방향이 아닌 측면 방향에 구비되며, 나아가 캐리어마다 서로 다른 측면 방향으로 교번되도록 구비됨으로써 코일 상호 간에 미치는 자기력 영향을 최소화하여 각 캐리어마다 독립된 구동을 더욱 효과적으로 구현할 수 있으며 장치의 두께를 더욱 슬림화할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술 사상을 더욱 효과적으로 이해시키는 역할을 하는 것이므로, 본 발명은 이러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명에 의한 렌즈 구동장치의 전체적인 구성을 도시한 도면,
도 2는 본 발명에 의한 렌즈 구동장치의 내부 구성을 도시한 도면,
도 3은 본 발명에 의한 캐리어의 구동과 관련된 상세 구성을 도시한 도면,
도 4 및 5는 본 발명에 의한 복수 개 캐리어 및 구동부의 배치 관계를 도시한 도면,
도 6은 본 발명의 바람직한 일 실시예에 의한 렌즈 구동장치의 후면과 요크에 대한 구성을 도시한 도면,
도 7은 본 발명의 바람직한 일 실시예에 의한 스토퍼의 결합 관계를 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 바람직한 일 실시예에 의한 모듈 렌즈 구동장치(이하 ‘구동장치’라 지칭한다)(1000)의 전체적인 구성을 도시한 도면이며, 도 2는 본 발명의 구동장치(1000)를 구성하는 내부 유닛과 구조를 도시한 도면이다.
도 1에 도시된 바와 같이 본 발명의 구동장치(1000)는 렌즈(미도시)가 탑재되는 n개(n은 1이상의 자연수)의 캐리어(100)(100-1, 100-2, 100-3)를 포함할 수 있으며, 이 n개의 캐리어(100)는 구동력이 전달되는 경우 광축(Z축)방향으로 선형 이동하는 구성에 해당한다.
n개의 캐리어(100)를 광축 방향으로 이동시키는 구동력을 제공하는 구동부는 압전 소자, 모터 등 다양한 구성을 통하여 구현할 수 있으나 소비전력, 저소음, 공간 활용, 반응 속도 내지 정밀성 등을 향상시키기 위하여 코일과 마그네트 사이에 발생되는 전자기력을 이용하여 구현되는 것이 바람직하다.
본 발명의 구동장치(1000)는 내부에 구비된 렌즈 또는 캐리어(렌즈 탑재)를 광축 방향(Z축 방향)으로 선형 이동시키는 하나 이상의 캐리어(100)만으로 이루어질 수 있으나, 실시형태에 따라서 피사체의 빛을 n개의 캐리어(100)방향 즉, n개의 캐리어(100)에 구비된 각각의 렌즈 방향으로 변경 내지 굴절시키는 광학계 모듈(400)이 함께 구비되는 형태로 구현될 수도 있음은 물론이다.
광학계 모듈(400)이 함께 구비되는 경우, 피사체의 빛(LIGHT)은 Z1 경로를 거쳐 케이스(50)에 형성된 개방구(51)를 통하여 본 발명의 구동장치(1000) 내부로 유입되며, 내부로 유입된 빛은 본 발명의 광학계 모듈(400)에 의하여 그 경로가 Z축으로 변경(굴절 내지 반사 등)되어 캐리어(100)에 구비된 각 렌즈를 거쳐 CCD 등과 같은 촬상소자(미도시)로 유입된다.
빛의 경로를 변경시키는 광학계 모듈(400)은 미러(mirror) 또는 프리즘(prism) 중 선택된 하나 또는 이들의 조합으로 이루어질 수 있는 광학계(401)를 포함한다. 이 광학계(401)는 외계에서 유입되는 빛을 광축 방향으로 변경시킬 수 있는 다양한 부재에 의하여 구현될 수 있으나, 광학적 성능을 향상시키기 위하여 유리(glass) 재질로 구현하는 것이 바람직하다.
광학계 모듈(400)이 함께 포함되는 본 발명의 구동장치(1000)는 빛의 경로를 굴절시켜 빛이 렌즈 방향으로 유입되도록 구성되므로 렌즈 자체를 휴대 단말의 두께 방향으로 설치하지 않고 길이 방향으로 설치할 수 있어 휴대 단말의 두께를 증가시키지 않아 휴대 단말의 소형화 내지 슬림화 등에 최적화될 수 있다.
광학계 모듈(400)의 광학계(401)는 도 1에 도시된 예를 기준으로 구동장치(1000)로 빛이 유입되는 케이스(50)의 개방구(51) 방향 즉, Y축을 향하는 방향에 설치된다.
실시형태에 따라서, 광학계 모듈(400)은 광학계(401)를 물리적으로 지지하면서 광학계(401) 또는 광학계(401)가 탑재되는 객체에 구비된 마그네트에, 코일에 의한 자기력을 인가하는 방법 등을 통하여 광학계(401)를 회전 이동시키도록 구성될 수도 있다.
이와 같이 광학계(401)가 YZ 평면을 기준으로 시계 방향 또는 반시계 방향으로 이동 또는 회전 이동하면, 광학계(401)를 통하여 반사(굴절)되는 피사체의 빛이 +Y 방향 또는 -Y 방향으로 이동하여 촬상소자 또는 렌즈로 입사하게 되므로 이러한 메커니즘 구동을 통하여 손떨림에 대한 Y축 방향 보정이 구현될 수 있다.
도면에는 캐리어(100)가 3개(100-1, 100-2, 100-3)로 도시되어 있으나 이는 하나의 예시일 뿐, 실시형태에 따라서 더 많은 개수의 캐리어(100)가 구비될 수 있음은 물론이며, 경우에 따라서는 단일 개수로 구비될 수도 있음은 물론이다.
한편, 렌즈가 탑재된 캐리어(100)를 광축 방향으로 이동시키는 대표적인 구성은 AF와 ZOOM을 들 수 있는데, 설명의 효율성을 높이기 위하여 본 발명의 도면 등에서는 광축 방향의 상하를 기준으로 광학계 모듈(400) 하위에 위치하는 캐리어(100) 중 최상위에 위치한 캐리어(100-1)를 AF를 구현하기 위한 AF 캐리어로, 그 아래에 위치한 2개의 캐리어(100-2, 100-3)를 줌을 구현하기 위한 줌 캐리어로 예시하여 설명하도록 한다.
그러나 이 또한 하나의 예시일 뿐, AF를 구현하기 위한 캐리어가 구동장치(1000)에 존재하지 않을 수도 있으며, AF를 구현하기 위한 캐리어가 복수 개 캐리어(100-1, 100-2, 100-3) 중 가운데 또는 최하위에 위치하는 형태로 구현하거나 줌 기능과 통합된 형태로 AF가 구현되도록 구성할 수도 있음은 물론이다.
이러한 점에서 캐리어(100)는 실시형태에 따라서 다양한 개수로 구비될 수 있으므로 AF 기능과 Zoom 기능이 복합된 구동장치(1000)를 예시하기 위하여 이하 설명에서 본 발명의 구동장치(1000)에 구비되는 캐리어(100)의 개수인 n은 2이상의 자연수로 예시한다.
또한, 이하 설명에서 캐리어(100)에 탑재되는 렌즈의 수직 방향 즉, 렌즈로 빛이 유입되는 경로에 대응되는 축을 광축(Z축)으로 정의하며, 이 광축(Z축)과 수직한 평면상의 두 축을 X축과 Y축으로 정의한다.
본 발명의 하우징(200)은 이들 캐리어(100)가 광축 방향으로 이동하는 물리적 공간을 제공하는 구성으로서, 캐리어(100)가 이동하는 이동객체라면 이에 상응하는 관점에서 하우징(200)은 고정체에 해당한다.
도 1에 예시된 바와 같이 본 발명의 하우징(200)은 n(n은 2이상의 자연수)개의 캐리어(100-1, 100-2, 100-3) 모두를 수용하는 하나의 객체로 구현될 수 있다.
또한, 조립 공정 등의 효율성을 높이기 위하여 각각의 캐리어(100-1, 100-2, 100-3)마다 개별화된 하우징으로도 구현되어 각 캐리어와 하우징이 상호 결합하여 하나의 독립된 모듈로 구현될 수 있으며 이 경우 본 발명의 구동장치(1000)는 이들 독립된 모듈들이 광축 방향을 기준으로 상하에서 상호 결합되는 형태로 구현될 수도 있다.
도 2에 도시된 바와 같이 본 발명의 캐리어(100)는 광학계 모듈(400) 하위에서 광축 상하 방향을 기준으로 복수 개로 나란히 배열되며 가운데 부분에 렌즈가 장착되는 렌즈 장착공간(110)이 형성된다.
이동체에 해당하는 캐리어(100)에는 도 2 등에 도시된 바와 같이 마그네트(300)가 구비되며, 고정체에 해당하는 하우징(200)에는 이 마그네트(300)와 대면하는 방향에 배치되는 코일(500)이 구비된다.
앞서 기술된 바와 같이 적절한 크기와 방향의 전원이 외부 제어 신호 또는 내부의 위치 검출 신호 등의 제어를 통하여 코일(500)에 인가되면 그에 상응하는 자기력이 마그네트(300)에 발생되어 마그네트(300)가 구비된 캐리어(100)가 광축 방향을 기준으로 상하 진퇴 이동하게 된다.
본 발명에 의한 n(n은 2이상의 자연수)개의 캐리어(100)는 n개의 캐리어(100)에서 상호 인접한 2개의 캐리어 중 광축 방향을 기준으로 상위에 위치하는 상위 캐리어 및 상기 n개의 캐리어에서 상호 인접한 2개의 캐리어 중 광축 방향을 기준으로 상기 상위 캐리어보다 하위에 위치하는 하위캐리어로 구분될 수 있다.
도 2를 기준으로 한 일 예로, 참조부호 100-1의 캐리어가 상위 캐리어라면, 참조부호 100-2의 캐리어가 하위 캐리어가 되며, 참조부호 100-2의 캐리어가 상위 캐리어라면 참조부호 100-3의 캐리어가 하위 캐리어가 된다.
이와 같이 광축의 상하를 기준으로 상호 인접한 캐리어 중 상위에 위치하는 캐리어를 상위 캐리어로 지칭하고 상호 인접한 캐리어 중 하위에 위치한 캐리어를 하위 캐리어로 지칭할 수 있다. 이하 설명에서 캐리어(100-2)를 상위 캐리어로, 캐리어(100-3)를 하위 캐리어로 예시한다.
본 발명은 이와 같이 복수 개의 캐리어(100)가 구동장치(1000)에 포함되는 형태일 수 있는데, 이 경우 각각의 캐리어(100)가 자신의 마그네트(300)와 자신의 마그네트(300)에 해당하는 코일(500)에 의한 자기력에 의하여 독립적으로 구동되는 것이 더욱 안정적으로 보장되도록 하기 위하여 캐리어(100)별 해당 마그네트(300)와 코일(500)은 다른 캐리어에 해당하는 마그네트와 코일과 상호 최대한 거리를 두고 배치되는 것이 바람직하다.
즉, 상위 캐리어(100-2)의 마그네트(300)는 상위 캐리어(100-2)의 광축을 기준으로 한 가운데 부분에서 좌측 또는 우측 중 하나의 측면에 구비되도록 하고, 하위 캐리어(100-3)의 마그네트(300)는 상기 상위 캐리어(100-2)에 구비되는 마그네트(300)와 반대 방향에 구비되도록 구성한다.
앞서 설명된 바와 같이 각 캐리어(100-2, 100-3)에 구동력을 발생시키는 코일(500)은 해당 캐리어(100-2, 100-3)의 마그네트(300)와 대면하는 방향에 배치되므로 상위 캐리어(100-2)의 마그네트(300)에 대면하는 코일(500) 및 하위 캐리어(100-3)의 마그네트(300)에 대면하는 코일(500) 또한, 서로 다른 방향에 배치된다.
이와 같이 각 캐리어(100)를 이동시키는 해당 마그네트(300)와 코일(500)의 조합이 이 다른 캐리어의 마그네트와 코일의 조합과 서로 다른 반대 방향에 배치되도록 하여, 마그네트 vs. 코일, 마그네트 vs. 마그네트, 코일 vs. 코일 간의 상호 작용이 캐리어(100)별로 최소화되도록 함으로써 해당 캐리어(100)의 독립된 구동이 더욱 안정적으로 이루어지도록 유도할 수 있다.
나아가 도면 등에 도시된 바와 같이 본 발명의 마그네트(300) 및 코일(500)은 캐리어(100)의 광축 방향 가운데 부분을 기준으로 전후(Y축 방향)가 아닌 좌우측(X축 방향) 측면에 배치되도록 하여 본 발명의 구동장치(1000)의 두께(Y축 방향)를 최소화할 수 있어 휴대 단말 등에 장착되는 경우 휴대 단말의 슬림화를 구현할 수 있다.
도 3은 본 발명에 의한 캐리어(100)의 구동과 관련된 상세 구성을 도시한 도면으로서 본 발명의 구동장치(1000)를 광축(Z축)과 수직한 XY평면으로 절단한 단면도에 해당한다. 도 3에 도시된 캐리어(100)는 도 1 및 도 2에 도시된 n개의 캐리어(100) 중 3번째 위치하는 캐리어(100-3)를 예시한다.
n개의 캐리어(100-1, 100-2, 100-3)는 그 결합 위치와 기능, 탑재되는 렌즈의 스펙 등에 따라 전체적인 형상이나 물리적 구조만 서로 조금씩 다를 뿐, 모두 광축(Z축) 방향을 기준으로 선형 이동하는 구성으로서 이를 구현하기 위한 내부 구성은 상호 대응되므로 첫 번째 및 두 번째 위치하는 캐리어(100-1, 100-2)의 내부 구성에 대한 설명은 생략하도록 한다.
도 3에 도시된 바와 같이 캐리어(100, 100-3)는 하우징(200)의 내부 공간에서 고정체에 해당하는 하우징(200)을 기준으로 광축 방향(Z축 방향)으로 선형 이동한다.
캐리어(100, 100-3)의 일 측면에는 마그네트(300)가 구비되며, 하우징(200)에는 이 마그네트(300)와 대면하는 코일(500)이 구비되는데, 외부 제어 신호 등에 따른 적절한 크기와 방향의 전원이 FPCB(회로기판)(600)에 탑재되는 코일(500)에 인가되면 그에 해당하는 자기력이 코일(500)에서 발생하고 발생된 자기력에 의하여 마그네트(300)가 구비된 캐리어(100, 100-3)가 광축 방향으로 선형이동하게 된다.
캐리어(100, 100-3)의 광축 방향 이동이 더욱 정밀하게 구현될 수 있도록 캐리어(100, 100-3)의 위치, 구체적으로 캐리어(100, 100-3)에 구비된 마그네트(300)의 위치를 홀효과(hall effect)를 이용하여 감지하는 홀센서 또는 홀센서가 내장된 구동 드라이버(510, 도 4 참조)가 더 구비될 수 있다.
구동 드라이버(510)는 홀센서가 출력하는 신호와 코일(500)에 인가되는 전원의 특성(크기 및 방향)을 함께 피드백 제어로 활용하여 더욱 정밀하게 캐리어(100, 100-3) 즉, 캐리어(100, 100-3)에 탑재된 렌즈의 위치를 제어할 수 있다.
도 3에 도시된 바와 같이 하우징(200)과 캐리어(100, 100-3) 사이에는 볼(800)이 배치될 수 있는데, 이 볼(800)을 통하여 하우징(200)과 캐리어(100, 100-3)는 일정 간격 이격된 상태를 유지할 수 있다.
또한, 본 발명의 캐리어(100, 100-3)는 볼(800)의 구름 운동(rolling), 이동(moving) 및 점접촉(point-contact) 등에 의한 최소화된 마찰력으로 하우징(200)을 기준으로 광축 방향으로 이동하게 되므로 소음의 감소는 물론, 구동력을 최소화시키고 구동 정밀성이 향상될 수 있다.
하우징(200)과 캐리어(100, 100-3) 사이의 이격을 적절한 거리만큼 유지시키고 캐리어(100, 100-3)의 선형 이동이 더욱 효과적으로 가이딩되도록 하기 위하여 도 3에 도시된 바와 같이 볼(800)은 캐리어(100, 100-3) 또는 하우징(200) 중 하나 이상에 형성되는 가이드레일(120, 210)에 일정 부분이 수용되는 형태로 구비되는 것이 바람직하다.
도면에는 가이드레일(120, 210)이 Z축 방향으로 홈부가 연장된 형태로 도시되어 있으나 실시형태에 따라서 이들 중 일부는 볼(800)이 수용되는 홈부 형상 또는 볼(800)를 가이딩하기 위한 다양한 형상으로 구현될 수도 있음은 물론이다.
또한, 구동력과 선형 이동의 효율성을 높이기 위하여 캐리어(100, 100-3)에 구비된 가이드레일인 제1가이드레일(120)과 하우징(200)에 구비된 가이드레일인 제2 가이드레일(210) 중 하나는 그 단면이 V자 형태의 레일로 구성되고, 다른 가이드레일은 그 단면이 U자 형태의 레일로 구성될 수 있다.
본 발명의 요크(700)는 볼(800)을 사이에 두고 상기 마그네트(300)와 대면하도록 배치되는 구성으로서, 캐리어(100, 100-3)에 구비된 마그네트(300)에 인력을 발생시켜 마그네트(300)가 구비된 캐리어(100, 100-3)가 하우징(200)으로부터 이탈되지 않도록 하고 캐리어(100, 100-3)와 볼(800)과의 점접촉 등은 물론, 하우징(200)과 볼(800)와의 점접촉 등이 효과적으로 유지될 수 있도록 한다.
도 4 및 5는 본 발명에 의한 복수 개 캐리어(100-1, 100-2, 100-3) 및 캐리어(100-1, 100-2, 100-3)를 구동시키는 구동부인 마그네트(300)와 코일(500)의 배치 관계를 도시한 도면이다.
도 4 및 도 5에 도시된 바와 같이 본 발명에 의한 복수 개 캐리어(100)는 각각의 구동부(마그네트와 코일 등)에 의하여 각각의 개별적인 제어를 통하여 독립적으로 구동되어 광축 방향으로 선형 이동한다.
앞서 기술된 바와 같이 본 발명의 구동장치(1000)에 포함되는 복수 개 캐리어(100-1, 100-2, 100-3)는 광축을 기준으로 상위부터 하위로 정렬되어 배치되며, 각각의 캐리어(100-1, 100-2, 100-3)를 이동시키는 각 마그네트(300)와 코일(500)은 도 4 및 도 5에 도시된 바와 같이 X축 방향을 기준으로 좌우를 교번하는 위치에 구비되도록 구성하는 것이 바람직하다.
이와 같은 구성을 통하여 복수 개 코일들과 마그네트들 사이의 자기력이 다른 구성에 미치는 영향을 최소화시킬 수 있어 캐리어(100) 각각의 독립된 구동이 더욱 안정적으로 구현될 수 있다.
나아가 각각의 마그네트(300)와 코일(500)은 광축(Z축)을 기준으로 한, 캐리어(100)의 가운데 부분을 기준으로 캐리어(100)의 좌측 또는 우측(X축 방향)에 배치되도록 구성하여 구동장치(1000)의 두께 방향(Y축)이 증대되도록 하지 않을 수 있어 구동장치(1000)는 물론, 구동장치(1000)가 탑재되는 휴대 단말의 두께를 더욱 얇게 구현할 수 있다.
도 6은 본 발명의 바람직한 일 실시예에 의한 구동장치(1000)의 후면과 요크(700)에 대한 구성을 도시한 도면이다.
앞서 설명된 바와 같이 각 캐리어(100-1, 100-2, 100-3)에 구비되는 마그네트(300)와 대면하며 각각의 마그네트(300)에 인력을 발생시키는 요크(700)는 도 6에 도시된 바와 같이 광축 방향을 기준으로 상하 부분의 크기가 차등적으로 이루어지도록 구성하는 것이 바람직하다.
즉, 본 발명에 의한 요크(700)는 마그네트(300)와 대면하는 방향의 너비인 대면 너비가 광축(Z축)의 상하 방향을 기준으로 차등적으로 이루어지도록 구성할 수 있다.
이와 같이 상하 부분의 크기가 차등적으로 이루어지는 경우 각 캐리어(100-1, 100-2, 100-3)에 구비된 마그네트(300)와의 관계에서 광축의 상하 방향으로 기준으로 상대적으로 다른 크기의 인력이 발생될 수 있다.
그러므로 각 캐리어(100-1, 100-2, 100-3)의 코일(500)에 전원 인가가 종료되는 경우 요크(700) 중 상대적으로 인력의 크기가 큰 부위에 대응되는 위치로 마그네트(300) 즉, 마그네트(300)가 구비된 각 캐리어(100-1, 100-2, 100-3)가 이동하도록 유도할 수 있어 각 캐리어(100-1, 100-2, 100-3)의 초기 위치설정과 광축 방향 정렬을 더욱 효율적으로 구현할 수 있으며, 광축 정렬 등을 테스트하는 과정에서 캐리어(100)의 초기 위치를 확인하고 이에 해당하는 코드 값 등을 세팅하는 과정을 생략할 수 있게 된다.
도 6에는 광축 방향을 기준으로 아래 방향으로 갈수록 요크의 크기 또는 너비가 커지는 예를 도시하고 있으나 이는 하나의 예시일 뿐, 각 캐리어(100-1, 100-2, 100-3)의 기본 위치(코일에 전류가 인가되지 않을 때의 위치)의 설정에 따라 크기 또는 너비가 상대적으로 큰 요크(140, 240, 340)영역이 가변될 수 있음은 물론이다.
실시형태에 따라서 캐리어(100)의 자체 무게에 의한 하중 방향에 부합되도록 상기 요크(700)의 대면 너비(마그네트와 대면하는 방향의 너비)는 광축 방향을 기준으로 상부보다 하부가 더 크도록 구성하는 것이 더욱 바람직하다.
도 6에 도시된 참조부호 600은 FPCB 등으로 구현되는 회로 기판으로서 도 6에 도시된 바와 같이 회로기판(600)은 단일의 형태로 구현하되, 외부와의 인터페이싱이 효과적으로 구현되도록 각 코일(500)이 구비되는 특정 방향으로 절곡되거나 연장된 형태가 되도록 구성하는 것이 바람직하다.
도 7은 본 발명의 바람직한 일 실시예에 의한 스토퍼(900)의 결합 관계를 도시한 도면이다.
도 7에 도시된 바와 같이 본 발명의 하우징(200)은 일 측면에 결합공간(230)이 형성되며, 본 발명의 스토퍼(900)는 이 결합공간(230)에 끼움 결합되는 형태 등으로 하우징(200)에 구비된다.
이 스토퍼(900)는 하우징(200)에 결합된 후 캐리어(100)의 이동을 유도하기 위한 물리적 가이드로 기능함은 물론, n개의 캐리어 중 광축을 기준으로 상기 결합공간(230) 하위 즉, 스토퍼(900)가 장착되는 위치보다 하위에 위치하는 캐리어(100)(도 7 기준 100-3)인 대상 캐리어(100-3)가 광축 방향을 기준으로 적정 범위 이상 상부로 이동하는 것을 물리적으로 제한하는 기능을 함께 수행하도록 구성된다.
이와 같이 스토퍼(900) 구조를 종래와 달리 하우징(200)의 측면에서 하우징(200)에 형성된 결합공간(230)에 끼움 결합되는 구조로 구현함으로써, 대상 캐리어(100-3)의 상부 이동을 제한하는 stopper를 용이하게 구현할 수 있음은 물론, 스토퍼(900)가 결합되기 전, 이 결합공간(230)을 통하여 캐리어(100)를 하우징(200) 내부로 더욱 쉽게 장착시킬 수 있다.
이와 같이 하우징(200) 내부에 구비되는 캐리어(100)가 이 결합공간(230)을 통하여 하우징(200) 내부로 설치될 수 있도록 상기 결합공간(230)은 이 공간을 통하여 하우징(200) 내부에 설치되는 대상 캐리어의 부피 내지 크기 이상의 공간으로 형성되는 것이 바람직하다.
또한, 캐리어(100) 중 최상위 캐리어(100-1)의 상부에는 최상위 캐리어(100-1)의 상부 이동을 정해진 범위 내에서 제한함은 물론, 광학계 모듈(400)이 하우징(200) 구조에 쉽게 결합되도록 하고, 광학계 모듈(400)과 하우징(200)과의 광축을 용이하고 정확하게 정렬시킬 수 있도록 유도하는 결합부가 형성된 정렬 가이드(850)가 구비될 수 있다.
도 7에는 이러한 결합부가 돌출된 형태로 예시되어 있으며, 이 경우 광학계 모듈(400) 하면에는 이 돌출된 형태의 결합부와 상응하는 물리적 구조가 형성된다. 실시형태에 따라서 오목과 볼록 등에 의한 결합 구조는 다양한 형태로 구현될 수 있음은 물론이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
상술된 본 발명의 설명에 있어 제1, 제2 등과 같은 수식어는 상호 간의 구성요소를 상대적으로 구분하기 위하여 사용되는 도구적 개념의 용어일 뿐이므로, 특정의 순서, 우선순위 등을 나타내기 위하여 사용되는 용어가 아니라고 해석되어야 한다.
본 발명의 설명과 그에 대한 실시예의 도시를 위하여 첨부된 도면 등은 본 발명에 의한 기술 내용을 강조 내지 부각하기 위하여 다소 과장된 형태로 도시될 수 있으나, 앞서 기술된 내용과 도면에 도시된 사항 등을 고려하여 본 기술분야의 통상의 기술자 수준에서 다양한 형태의 변형 적용 예가 가능할 수 있음은 자명하다고 해석되어야 한다.
1000 : 본 발명의 렌즈 구동장치
50 : 케이스 51 : 개방구
100(100-1, 100-2, 100-3) : 캐리어
110 : 렌즈 장착공간 120 : 제1가이드레일
200 : 하우징 210 : 제2가이드레일
230 : 결합공간 300 : 마그네트
400 : 광학계 모듈 500 : 코일
510 : 홀센서(구동드라이버) 600 : 회로기판(FPCB)
700 : 요크 800 : 볼
850 : 정렬 가이드 900 : 스토퍼

Claims (7)

  1. 외부로부터 입사되는 피사체의 빛을 광축 방향으로 반사시키는 광학계 모듈;
    광축을 기준으로 상기 광학계 모듈의 하위에 배치되며, 렌즈가 탑재되는 n(n은 2 이상의 자연수)개의 캐리어;
    상기 n개의 캐리어를 수용하는 하우징;
    상기 n개의 캐리어의 일 측면에 구비되는 마그네트; 및
    상기 마그네트와 대면하는 방향에 배치되는 코일을 포함하고,
    상기 n(n은 2이상의 자연수)개의 캐리어는,
    상기 n개의 캐리어에서 상호 인접한 2개의 캐리어 중 광축 방향을 기준으로 상위에 위치하는 상위 캐리어; 및
    상기 상위 캐리어보다 광축 방향을 기준으로 하위에 위치하는 하위 캐리어를 포함하고,
    상기 상위 캐리어에 구비되는 마그네트는 상기 상위 캐리어의 좌측 또는 우측에 구비되며,
    상기 하위 캐리어에 구비되는 마그네트는 상기 상위 캐리어에 구비되는 마그네트의 반대 방향에 구비되는 것을 특징으로 하는 렌즈 구동장치.
  2. 삭제
  3. 제 1항에 있어서,
    상기 하우징과 상기 n개의 캐리어 사이에 배치되는 볼; 및
    상기 볼을 사이에 두고 상기 마그네트와 대면하도록 배치되며 상기 마그네트에 인력을 발생시키는 요크를 더 포함하는 것을 특징으로 하는 렌즈 구동장치.
  4. 제 3항에 있어서, 상기 요크는,
    상기 마그네트와 대면하는 방향의 너비인 대면 너비가 광축의 상하 방향을 기준으로 차등적으로 이루어지는 것을 특징으로 하는 렌즈 구동장치.
  5. 제 4항에 있어서, 상기 대면 너비는,
    광축 방향을 기준으로 상부보다 하부가 더 큰 것을 특징으로 하는 렌즈 구동장치.
  6. 제 1항에 있어서,
    상기 하우징의 측면에 형성된 결합공간에 결합되며, 상기 n개의 캐리어 중 광축을 기준으로 상기 결합공간 하위에 위치하는 캐리어인 대상 캐리어가 광축 방향을 기준으로 상부로 이동하는 것을 제한하는 스토퍼를 더 포함하는 것을 특징으로 하는 렌즈 구동장치.
  7. 제 6항에 있어서, 상기 결합공간은,
    상기 대상캐리어가 상기 결합공간을 통하여 상기 하우징 내부에 설치될 수 있도록 상기 대상캐리어의 크기보다 큰 공간으로 형성되는 것을 특징으로 하는 렌즈 구동장치.
KR1020180114636A 2018-09-27 2018-09-27 렌즈 구동장치 KR102423685B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180114636A KR102423685B1 (ko) 2018-09-27 2018-09-27 렌즈 구동장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180114636A KR102423685B1 (ko) 2018-09-27 2018-09-27 렌즈 구동장치

Publications (2)

Publication Number Publication Date
KR20200035522A KR20200035522A (ko) 2020-04-06
KR102423685B1 true KR102423685B1 (ko) 2022-07-21

Family

ID=70282172

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180114636A KR102423685B1 (ko) 2018-09-27 2018-09-27 렌즈 구동장치

Country Status (1)

Country Link
KR (1) KR102423685B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102303499B1 (ko) * 2020-06-18 2021-09-23 자화전자(주) 광학용 액추에이터
KR102565566B1 (ko) * 2021-03-31 2023-08-11 자화전자(주) 이원구조의 줌 구동 액추에이터

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704498B1 (ko) 2016-03-10 2017-02-09 자화전자(주) 3위치 지지구조의 자동초점 조절장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102367554B1 (ko) * 2016-07-26 2022-02-25 자화전자(주) 줌렌즈용 구동장치
KR101973434B1 (ko) * 2017-02-17 2019-04-29 삼성전기주식회사 손떨림 보정 반사모듈 및 이를 포함하는 카메라 모듈
KR102350710B1 (ko) * 2017-02-25 2022-01-14 자화전자(주) 줌렌즈용 자동초점 조절장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101704498B1 (ko) 2016-03-10 2017-02-09 자화전자(주) 3위치 지지구조의 자동초점 조절장치

Also Published As

Publication number Publication date
KR20200035522A (ko) 2020-04-06

Similar Documents

Publication Publication Date Title
US10564442B2 (en) Apparatus for driving optical-reflector for OIS with multi-axial structure
KR102423363B1 (ko) 줌 카메라용 액추에이터
KR102400386B1 (ko) 줌렌즈용 구동장치
KR102090625B1 (ko) 자동초점 조절장치 및 이를 포함하는 카메라 모듈
US10261337B2 (en) Apparatus for driving optical-reflector
KR102350710B1 (ko) 줌렌즈용 자동초점 조절장치
KR102433193B1 (ko) 모듈 결합형 카메라용 액추에이터
KR101751132B1 (ko) 카메라 모듈
KR101862228B1 (ko) Ois를 위한 반사계 구동장치
US11824417B2 (en) Actuator with multipolar magnet structure
EP3584624B1 (en) Reflection system driving device having multi-axis structure
US10571093B2 (en) Apparatus for supporting optical reflector
KR102423685B1 (ko) 렌즈 구동장치
CN114730122B (zh) 反射器致动器和包括该反射器致动器的相机模块
KR20180015966A (ko) 줌렌즈용 액추에이터
KR102384219B1 (ko) 다극 마그네트 구조가 장착된 액추에이터
US11860445B2 (en) Actuator for driving reflector
KR101945710B1 (ko) Ois를 위한 반사계 구동장치
KR20220105759A (ko) 반사계 액추에이터
KR20220135960A (ko) 줌 구동 액추에이터

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant