KR102408688B1 - Tunable ultra-broad band near-infrared light-emitting device - Google Patents

Tunable ultra-broad band near-infrared light-emitting device Download PDF

Info

Publication number
KR102408688B1
KR102408688B1 KR1020200117845A KR20200117845A KR102408688B1 KR 102408688 B1 KR102408688 B1 KR 102408688B1 KR 1020200117845 A KR1020200117845 A KR 1020200117845A KR 20200117845 A KR20200117845 A KR 20200117845A KR 102408688 B1 KR102408688 B1 KR 102408688B1
Authority
KR
South Korea
Prior art keywords
phosphor
light emitting
emitting device
emission
infrared
Prior art date
Application number
KR1020200117845A
Other languages
Korean (ko)
Other versions
KR20220036409A (en
Inventor
안종욱
심재곤
배정빈
Original Assignee
(주)올릭스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)올릭스 filed Critical (주)올릭스
Priority to KR1020200117845A priority Critical patent/KR102408688B1/en
Priority to JP2020558475A priority patent/JP2022553459A/en
Priority to PCT/KR2020/012421 priority patent/WO2022055009A1/en
Publication of KR20220036409A publication Critical patent/KR20220036409A/en
Application granted granted Critical
Publication of KR102408688B1 publication Critical patent/KR102408688B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

본 발명은 색온도가 높은 백색 LED로 여기된 근적외 형광체의 발광을 내는 2종류의 발광 소자의 조합에 의해 근자외에서 근적외 파장 영역(380nm~1000nm)에 걸쳐 매끈한 발광 스펙트럼 분포를 나타내는 고출력 초광대역 발광 소자 및 발광 장치에 관한 것이다.The present invention is a high-power ultra-broadband light emission that exhibits a smooth emission spectrum distribution over the near-ultraviolet to near-infrared wavelength region (380 nm to 1000 nm) by a combination of two types of light emitting devices that emit light of near-infrared phosphor excited by a white LED having a high color temperature. It relates to a device and a light emitting device.

Description

파장 가변 초광대역 근적외 발광 장치 {Tunable ultra-broad band near-infrared light-emitting device}Tunable ultra-broad band near-infrared light-emitting device

본 발명은 파장 가변 초광대역 근적외 발광 장치에 관한 것이다. The present invention relates to a wavelength tunable ultra-wideband near-infrared light emitting device.

최근 들어, 700nm에서 2500nm 영역의 근적외선은 의료, 식품 관리, 건강 유지 등의 분야에서 사용되고 있다. 기존의 일반 조명용 백색 LED에는 이러한 파장 영역들은 포함되어 있지 않다. 특히, 근적외선 분광은 식품 관리에 중요하다. 특히 센싱 기술에는 없어서는 안되는 Si 포토 다이오드는 400~1100nm의 파장 영역에 대응하여 최대 감도는 900nm 부근이다.Recently, near-infrared rays in the 700 nm to 2500 nm region have been used in fields such as medical care, food management, and health maintenance. Existing white LEDs for general lighting do not include these wavelength ranges. In particular, near-infrared spectroscopy is important for food management. In particular, the Si photodiode, which is indispensable for sensing technology, corresponds to a wavelength range of 400 to 1100 nm, and its maximum sensitivity is around 900 nm.

근적외선의 발광은 지금까지 단품 반도체 LED를 사용했다. 이 때문에 발광 스펙트럼의 선 폭이 좁아 분광 스펙트럼 광원으로써는 적합하지 않다. 또한, 오늘날 할로겐 전구의 제조가 중지되어 세계 각국에서 소형 대체 전구로 새로운 브로드밴드 고체 광원 실용화가 절실한 상황이다.For near-infrared light emission, single-unit semiconductor LEDs have been used so far. For this reason, the line width of an emission spectrum is narrow, and it is not suitable as a spectral-spectrum light source. In addition, manufacturing of halogen bulbs has been stopped today, and there is an urgent need to put a new broadband solid-state light source into practical use as a small replacement bulb in countries around the world.

최근 700nm에서 1150nm에 발광대를 가지는 근적외 형광체가 개발되었다. 2016년, Osram Opto Semiconductors사에서 세계 최초로 청색 LED와 근적외 형광체를 이용한 광대역 근적외 LED(SFH4735)를 실용화하였다.Recently, a near-infrared phosphor having an emission band from 700 nm to 1150 nm has been developed. In 2016, Osram Opto Semiconductors commercialized the world's first broadband near-infrared LED (SFH4735) using blue LED and near-infrared phosphor.

그러나, 이 타입의 근적외 LED는 청색 파장에 비해 근적외 발광 강도가 약 천배 약하고, 게다가 발광 스펙트럼 분포는 가시광에서 근적외 영역에서 불연속적이다. 또한, 본 발명자들은 지금까지 복수의 근적외 형광체를 혼합하여 폭 넓은 근적외 LED 실용화를 목표로 개발을 진행하고 있으나, 810nm의 형광체 발광이 소광되어 평탄한 발광대를 얻지 못했다.However, this type of near-infrared LED is about a thousand times weaker in intensity of near-infrared emission compared to the blue wavelength, and furthermore, the emission spectrum distribution is discontinuous in the near-infrared region in the visible light. In addition, the present inventors have been mixing a plurality of near-infrared phosphors so far to develop a wide range of near-infrared LEDs for practical use. However, 810 nm phosphor emission was quenched and a flat light-emitting band was not obtained.

본 발명은, 810nm의 발광 기구를 해명하고, 그리고 700~1000nm의 파장 영역에 요철이 없는 평탄한 발광 분포를 가지는 발광 소자의 실용화를 목적으로 400~410nm에 발광 피크를 가지는 근자외 반도체 LED 칩으로 여기한 색온도가 높은 백색 LED와 복수의 고효율 근적외 형광체를 조합하여 근자외, 가시광, 및 근적외 영역에 걸쳐 연속적인 빛을 방사하는 것이 가능한 초광대역 발광 소자 및 발광 모듈에 관한 것이다.The present invention is a near-ultraviolet semiconductor LED chip having an emission peak at 400 to 410 nm for the purpose of elucidating the light emitting mechanism of 810 nm and practical use of a light emitting device having a flat light emission distribution without irregularities in a wavelength region of 700 to 1000 nm. A white LED having a high color temperature and a plurality of high-efficiency near-infrared phosphors are combined to provide an ultra-wideband light-emitting device and a light-emitting module capable of emitting continuous light over the near-ultraviolet, visible, and near-infrared regions.

본 발명은 색온도가 높은 백색을 여기 광원으로 이용하여 각각 별도의 근적외 형광체를 발광시켜 각각의 스펙트럼 파장 분포를 제어한 형광체 변환 방식에 의해 연속적으로 요철이 없는 폭 넓은 발광 스펙트럼을 발생시키는 것이 가능한 초광대역 근적외 발광 소자 상기 소자를 포함하는 근적외 발광 장치를 제공하는 것을 목적으로 한다.The present invention uses white with a high color temperature as an excitation light source and emits separate near-infrared phosphors to emit a wide range of emission spectra without irregularities continuously by a phosphor conversion method in which each spectral wavelength distribution is controlled. Broadband near-infrared light-emitting device An object of the present invention is to provide a near-infrared light-emitting device including the above-mentioned device.

그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problems, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.

본 발명은 색온도 3000~4000K의 백색 LED칩;The present invention is a white LED chip of a color temperature of 3000 ~ 4000K;

상기 백색 LED칩의 발광 파장에 의해 여기되어 발광하는 3종 이상의 근적외 형광체가 분산되어 있는 형광체 층을 포함하는 제1발광소자; 및a first light emitting device including a phosphor layer in which three or more kinds of near-infrared phosphors that emit light by being excited by the emission wavelength of the white LED chip are dispersed; and

상기 백색 LED칩의 발광 파장에 의해 여기되어 발광하는 2종 이상의 근적외 형광체가 분산되어 있는 형광체 층을 포함하는 제2발광소자를 포함하고, and a second light emitting device including a phosphor layer in which two or more kinds of near-infrared phosphors that emit light by being excited by the emission wavelength of the white LED chip are dispersed,

상기 근적외 형광체는, 450nm 내지 630nm의 파장 영역에서 여기되어, 710nm에 발광 피크를 가지는 제1형광체, 470nm 내지 630nm의 파장 영역에서 여기되어, 810nm에 발광 피크를 가지는 제2형광체, 및 630nm의 파장 영역에서 여기되어, 910nm에 발광 피크를 가지는 제3형광체로 이루어지는 조합으로부터 선택되는 것인, 근적외 발광 장치를 제공한다.The near-infrared phosphor is excited in a wavelength range of 450 nm to 630 nm and has an emission peak at 710 nm, a second phosphor excited in a wavelength range of 470 nm to 630 nm and having an emission peak at 810 nm, and a wavelength of 630 nm Provided is a near-infrared light-emitting device, which is selected from a combination consisting of a third phosphor excited in the region and having an emission peak at 910 nm.

본 발명의 일구현예로, 상기 제1발광소자는, 제1형광체, 제2형광체 및 제3형광체가 분산된 형광체 층을 포함하는 것이고,In an embodiment of the present invention, the first light emitting device includes a phosphor layer in which a first phosphor, a second phosphor, and a third phosphor are dispersed,

상기 제2발광소자는, 제1형광체 및 제2형광체가 분산된 형광체 층을 포함하는 것을 특징으로 한다.The second light emitting device may include a phosphor layer in which the first phosphor and the second phosphor are dispersed.

본 발명의 다른 구현예로, 상기 제1형광체는 710nm에 중심 발광 피크를 가지는 Gd3Ga5O12:Cr이고, 상기 제2형광체는 810nm에 발광 피크를 가지는 ScBO3:Cr이며, 상기 제3형광체는 910nm에 발광 피크를 가지는 CaCuSi4O10인 것을 특징으로 한다.In another embodiment of the present invention, the first phosphor is Gd3Ga5O12:Cr having a central emission peak at 710 nm, the second phosphor is ScBO3:Cr having an emission peak at 810 nm, and the third phosphor has an emission peak at 910 nm It is characterized in that it is CaCuSi4O10 having

본 발명의 또다른 구현예로, 상기 제1발광소자의 형광체 층은, In another embodiment of the present invention, the phosphor layer of the first light emitting device,

제1형광체, 제2형광체 및 제3형광체를, 16~24 : 5~24 : 4~7의 중량비로 포함하는 것을 특징으로 한다.The first phosphor, the second phosphor and the third phosphor are included in a weight ratio of 16-24: 5-24: 4-7.

본 발명의 또다른 구현예로, 상기 백색 LED칩은, 600nm 내지 700nm의 발광 파장 중심 피크를 가지는 것을 특징으로 한다.In another embodiment of the present invention, the white LED chip is characterized in that it has an emission wavelength center peak of 600 nm to 700 nm.

본 발명의 또다른 구현예로, 상기 백색 LED칩은,In another embodiment of the present invention, the white LED chip,

청록색 형광체로써 (Sr,Br)10(PO4)6Cl:Eu,As a cyan phosphor (Sr,Br)10(PO4)6Cl:Eu,

녹색 형광체로써 SiAlON:Eu,SiAlON:Eu as a green phosphor,

황색 형광체로써 (Ba,Sr)Si2(O,Cl))2N2:Eu, 및(Ba,Sr)Si2(O,Cl))2N2:Eu as a yellow phosphor, and

적색 형광체로써 CaAlSi(ON)2:Eu를 포함하는 것을 특징으로 한다.It is characterized in that it contains CaAlSi(ON)2:Eu as a red phosphor.

본 발명의 또다른 구현예로, 상기 청록색 형광체, 녹색 형광체, 황색 형광체 및 적색 형광체는, 8~10 : 1 : 0.1~0.9 : 4~8의 중량비로 포함되는 것을 특징으로 한다.In another embodiment of the present invention, the cyan phosphor, the green phosphor, the yellow phosphor and the red phosphor are included in a weight ratio of 8-10: 1:0.1-0.9: 4-8.

본 발명의 또다른 구현예로, 상기 근적외 발광 장치는 380~1200nm에서 광범위한 발광 스펙트럼 분포를 갖는 것을 특징으로 한다.In another embodiment of the present invention, the near-infrared light emitting device is characterized in that it has a broad emission spectrum distribution at 380 to 1200 nm.

본 발명에 의한 초광대역 발광 소자는, 380~1200nm의 파장 영역을 커버 가능하므로 백열 전구, 할로겐 전구, 제논 전구 등의 소형 광원을 대체할 수 있다. 또한, 태양광 스펙트럼 분포(AM1.5)와 유사한 분포를 가진다.Since the ultra-broadband light emitting device according to the present invention can cover a wavelength range of 380 to 1200 nm, it can replace small light sources such as incandescent bulbs, halogen bulbs, and xenon bulbs. In addition, it has a distribution similar to the solar spectrum distribution (AM1.5).

본 발명의 발광 소자는 발광 스펙트럼이 브로드하기 때문에 단품 근적외 LED와 상이하며, 순방향 전류와 온도에 영향을 받지 않는다. 또한, LED 빛으로 형광체를 발광시키는 방식을 채용하고 있기 때문에 펄스 구동이 가능하다. 2종류의 발광 분포가 서로 다른 LED 조합으로 구성되므로 임의로 발광 스펙트럼 및 그 강도를 조정 가능하다. 아울러, 순방향 전류가 증가해도 발광 강도는 거의 비례하여 증가하므로 계측용 광원으로써도 발광 강도 제어가 용이하다.Since the light emitting device of the present invention has a broad emission spectrum, it is different from a single product near-infrared LED, and is not affected by forward current and temperature. In addition, since a method of emitting a phosphor with LED light is adopted, pulse driving is possible. Since the two types of light emission distributions are composed of different LED combinations, the light emission spectrum and its intensity can be adjusted arbitrarily. In addition, even when the forward current increases, the light emission intensity increases almost in proportion, so that it is easy to control the light emission intensity even as a light source for measurement.

도 1은 제 2 형광체가 포함되지 않은 비교 예로써 나타낸 샘플의 발광 스펙트럼 순방향 전류 의존성(커브 1: 65mA, 커브 2: 100mA, 커브 3: 150mA)을 예시적으로 나타낸 도면이다(α: 710nm의 발광 강도, β: 810nm의 발광 강도, γ: 910nm의 발광 강도).
도 2는 제 2 형광체가 24% 함유된 실시 예 1 샘플 A의 발광 스펙트럼 순방향 전류 의존성(커브 1: 65mA, 커브 2: 100mA, 커브 3: 150mA)을 예시하는 도면이다.
도 3은 제 3 형광체가 함유되지 않은 실시 예 2 샘플 B의 발광 스펙트럼 순방향 전류 의존성(커브 1: 65mA, 커브 2: 100mA, 커브 3: 150mA)을 예시하는 도면이다.
도 4는 발광 스펙트럼이 상이한 2종류의 발광 소자 조합으로 구성되는 발광 모듈 구조를 모식적으로 나타낸 도면이다.
도 5는 실시 예 1 샘플 A에 150mA, 동시에 실시 예 2 샘플 B에 65mA를 통전했을 때의 발광 스펙트럼을 예시적으로 나타낸 도면이다.
도 6은 실시 예 1 샘플 A와 실시 예 2 샘플 B를 병렬 접속한 발광 모듈 샘플 C의 발광 스펙트럼 순방향 의존성(커브 1: 65mA, 커브 2: 100mA, 커브 3: 150mA)을 예시하는 도면이다.
1 is a diagram exemplarily showing the emission spectrum forward current dependence (curve 1: 65 mA, curve 2: 100 mA, curve 3: 150 mA) of a sample shown as a comparative example in which a second phosphor is not included (α: emission at 710 nm) intensity, β: emission intensity of 810 nm, γ: emission intensity of 910 nm).
2 is a diagram illustrating the emission spectrum forward current dependence (curve 1: 65 mA, curve 2: 100 mA, curve 3: 150 mA) of Example 1 Sample A containing 24% of the second phosphor.
3 is a diagram illustrating the luminescence spectrum forward current dependence (curve 1: 65 mA, curve 2: 100 mA, curve 3: 150 mA) of Example 2 Sample B not containing the third phosphor.
4 is a diagram schematically showing the structure of a light emitting module composed of a combination of two types of light emitting devices having different emission spectra.
5 is a diagram illustrating an emission spectrum when 150 mA is applied to Sample A of Example 1 and 65 mA is applied to Sample B of Example 2 at the same time.
6 is a diagram illustrating the forward dependence of the emission spectrum (curve 1: 65 mA, curve 2: 100 mA, curve 3: 150 mA) of a light emitting module sample C in which Example 1 Sample A and Example 2 Sample B are connected in parallel.

본 발명은, 630nm에 발광 피크를 가지는 백색 LED에 의해 여기되는 3종류의 근적외 형광체를 포함하는 발광 소자에 관한 것이다. 보다 상세하게 본 발명은 상기 소자를 포함하는 근적외 발광 장치로서, 색온도 3000~4000K의 백색 LED칩; 상기 백색 LED칩의 발광 파장에 의해 여기되어 발광하는 3종 이상의 근적외 형광체가 분산되어 있는 형광체 층을 포함하는 제1발광소자; 및 상기 백색 LED칩의 발광 파장에 의해 여기되어 발광하는 2종 이상의 근적외 형광체가 분산되어 있는 형광체 층을 포함하는 제2발광소자를 포함하고, 상기 근적외 형광체는, 450nm 내지 630nm의 파장 영역에서 여기되어, 710nm에 발광 피크를 가지는 제1형광체, 470nm 내지 630nm의 파장 영역에서 여기되어, 810nm에 발광 피크를 가지는 제2형광체, 및 630nm의 파장 영역에서 여기되어, 910nm에 발광 피크를 가지는 제3형광체로 이루어지는 군으로부터 선택되는 것인, 근적외 발광 장치를 제공한다.The present invention relates to a light-emitting element comprising three types of near-infrared phosphor excited by a white LED having an emission peak at 630 nm. In more detail, the present invention provides a near-infrared light emitting device including the above device, comprising: a white LED chip having a color temperature of 3000 to 4000K; a first light emitting device including a phosphor layer in which three or more kinds of near-infrared phosphors that emit light by being excited by the emission wavelength of the white LED chip are dispersed; and a second light emitting device including a phosphor layer in which two or more kinds of near-infrared phosphors that are excited by the emission wavelength of the white LED chip and emit light are dispersed, wherein the near-infrared phosphor is in a wavelength range of 450 nm to 630 nm. A first phosphor excited and having an emission peak at 710 nm, a second phosphor excited in a wavelength region of 470 nm to 630 nm and an emission peak at 810 nm, and a third phosphor excited in a wavelength region of 630 nm and having an emission peak at 910 nm It provides a near-infrared light emitting device, which is selected from the group consisting of phosphors.

전술한 백색 LED칩은, 380nm 이상 410nm 이하에 발광 피크를 가지는 반도체 LED 칩에 의해 여기되고, 투명 수지층에 분산된 형광체층을 포함하는 색온도가 3000~4000K인 발광 소자이다. 전술한 형광체층에는, 이하와 같은 4종류의 형광체가 포함된다.The above-described white LED chip is a light emitting device having a color temperature of 3000 to 4000K, which is excited by a semiconductor LED chip having an emission peak at 380 nm or more and 410 nm or less, and includes a phosphor layer dispersed in a transparent resin layer. The phosphor layer described above includes the following four types of phosphors.

청록색 형광체로써 (Sr,Br)10(PO4)6Cl:Eu(Sr,Br)10(PO4)6Cl:Eu as a cyan phosphor

녹색 형광체로써 SiAlON:EuSiAlON:Eu as green phosphor

황색 형광체로써 (Ba,Sr)Si2(O,Cl))2N2:Eu(Ba,Sr)Si2(O,Cl))2N2:Eu as yellow phosphor

적색 형광체로써 CaAlSi(ON)2:Eu를 포함한다.CaAlSi(ON)2:Eu is included as a red phosphor.

상기 형광체는, 색온도 3000~4000K의 백색 LED를 제조하기 위해, 8~10 : 1 : 0.1~0.9 : 4~8의 중량비로 포함될 수 있고, 보다 바람직하게는 9.23 : 1 : 0.46 : 5.77의 중량비로 포함된다. 상기 백색 LED칩의 발광 효율은 53lm/W 이상, 평균 연색 평가수(Ra)는 94 이상이다. The phosphor may be included in a weight ratio of 8-10: 1:0.1-0.9: 4-8, more preferably 9.23: 1:0.46: 5.77, in order to manufacture a white LED having a color temperature of 3000-4000K. Included. The luminous efficiency of the white LED chip is 53lm/W or more, and the average color rendering index (Ra) is 94 or more.

전술한 백색 LED에 실장된 반도체 LED 칩은, 405nm에 중심 파장을 가지는 InGaN계 화합물 반도체로 구성되며, 발광 반치폭 15nm, 외부 양자 효율이 50% 이상인 것을 사용할 수 있다. 전술한 칩은 칩을 반전시켜 기판에 솔더 범프, 골드 범프, 도전성 페이스트 등을 이용하여 플립칩 실장된다. 또한, 이 칩은 기판에 설계된 배선 도체에 와이어 본딩으로 접속되어도 좋다.The semiconductor LED chip mounted on the above-described white LED may be made of an InGaN-based compound semiconductor having a central wavelength of 405 nm, a light emission half maximum width of 15 nm, and an external quantum efficiency of 50% or more. The aforementioned chip is flip-chip mounted on a substrate by inverting the chip using solder bumps, gold bumps, conductive paste, or the like. Further, this chip may be connected to a wiring conductor designed on the board by wire bonding.

본 발명의 초광대역 발광 소자는, 전술한 백색 LED 소자로부터의 발광 에너지에 의해 3종류의 근적외 형광체를 포함하는 투명 수지층이 여기된다. 따라서, 청록색, 녹색, 황색, 적색 및 근적외 형광체의 7종류가 함께 포함되어 있는 것일 수 있다. 또는, 4종류의 형광체층과 3종류의 형광체층이 2중 구조로 되어 있을 수 있다.In the ultra-wideband light-emitting device of the present invention, the transparent resin layer containing three kinds of near-infrared phosphors is excited by the light emission energy from the above-described white LED device. Accordingly, seven types of cyan, green, yellow, red, and near-infrared phosphors may be included. Alternatively, four types of phosphor layers and three types of phosphor layers may have a double structure.

3종류의 근적외 형광체는,Three types of near-infrared phosphors,

제 1 형광체로서, 450nm와 630nm의 파장 영역에서 여기되어, 바람직하게는 710nm에 발광 피크를 가지는 근적외 형광체로써 Gd3Ga5O12:Cr이 바람직하다.As the first phosphor, Gd3Ga5O12:Cr is preferable as the near-infrared phosphor that is excited in a wavelength region of 450 nm and 630 nm, and preferably has an emission peak at 710 nm.

제 2 형광체로서, 470nm와 630nm의 파장 영역에서 여기되어, 바람직하게는 810nm에 발광 피크를 가지는 근적외 형광체로써 ScBO3:Cr이 바람직하다.As the second phosphor, ScBO3:Cr is preferable as a near-infrared phosphor that is excited in a wavelength region of 470 nm and 630 nm and preferably has an emission peak at 810 nm.

제 3 형광체로서, 630nm의 파장 영역에서 여기되어, 바람직하게는 910nm에 발광 피크를 가지는 근적외 형광체로써 CaCuSi4O10이 바람직하다.As the third phosphor, CaCuSi4O10 is preferable as the near-infrared phosphor that is excited in a wavelength region of 630 nm and preferably has an emission peak at 910 nm.

또한, 본 발명의 초광대역 발광 소자에 사용되는 형광체의 중량비(wt%)는 제 1 형광체 : 제 2 형광체 : 제 3 형광체 = 16~24 : 5~24 : 4~7인 것이 바람직하다.In addition, the weight ratio (wt%) of the phosphor used in the ultra-wideband light emitting device of the present invention is preferably the first phosphor: the second phosphor: the third phosphor = 16-24: 5-24: 4-7.

본 발명의 광대역 발광 소자의 발광부는 전술한 형광체와 봉지재인 실리콘 투명 수지가 포함되는 것이다. 따라서, 상기 7종류의 형광체는 실리콘 수지 중에 균일하게 확산되어 있는 것이 바람직하다.The light emitting part of the broadband light emitting device of the present invention includes the aforementioned phosphor and the transparent silicone resin as an encapsulant. Therefore, it is preferable that the seven types of phosphors are uniformly diffused in the silicone resin.

전술한 근적외 형광체만은 별도로 실리콘 수지에 확산되어 박막 상으로 도포될 수 있다.Only the above-described near-infrared phosphor may be separately diffused into the silicone resin and applied as a thin film.

전술한 광대역 발광 소자는, 일반 조명용 광원으로 사용하는 경우에 평균 연색 평가수 Ra가 80 이상 100 미만이 바람직하다. 배광각은, 110도 이상 120도 미만인 것이 바람직하다.The above-described broadband light emitting device preferably has an average color rendering index Ra of 80 or more and less than 100 when used as a light source for general lighting. It is preferable that a light distribution angle is 110 degrees or more and less than 120 degrees.

본 발명은 또한, 전술한 초광대역 발광 소자를 포함하는 발광 모듈을 제공하는 것으로, 전술한 발광 모듈은, 각각의 색온도가 상이한 초광대역 발광 장치의 조합으로 만들어진다.The present invention also provides a light emitting module including the above-described ultra-wideband light-emitting device, wherein the above-described light-emitting module is made of a combination of ultra-wideband light-emitting devices having different color temperatures.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention in more detail, and it will be apparent to those of ordinary skill in the art to which the present invention pertains that the scope of the present invention is not limited by these examples.

[실시예][Example]

발광 모듈의 제조Manufacturing of light emitting modules

반도체 LED 칩, 봉지재, 형광체 재료로써 하기 재료를 이용하여 백색 LED 및 초광대역 발광 소자 및 발광 모듈 제작과 평가를 실시하였다.The following materials were used as semiconductor LED chips, encapsulants, and phosphor materials to manufacture and evaluate white LEDs and ultra-wideband light emitting devices and light emitting modules.

(1) 반도체 LED 칩(1) semiconductor LED chip

반도체 LED 칩으로 발광 피크 파장 405nm, 발광 반치폭 15nm의 InGaN/GaN 다중 양자 우물 구조를 발광층으로 하는 것을 사용하였다. 외부 양자 효율은 50% 이상이었다.A semiconductor LED chip having an InGaN/GaN multi-quantum well structure having an emission peak wavelength of 405 nm and an emission half maximum width of 15 nm was used as the light emitting layer. The external quantum efficiency was more than 50%.

(2) 봉지재(2) encapsulant

실리콘 수지와, 더불어 침강재로써 실리카 파우더(SiO2)를 사용하였다.In addition to the silicone resin, silica powder (SiO2) was used as a precipitation material.

(3) 형광체(3) phosphor

형광체로써, 하기 형광체 재료를 사용하였다.As the phosphor, the following phosphor material was used.

1. 청록색 형광체: (Sr,Br)10(PO4)6Cl2:Eu1. Cyan phosphor: (Sr,Br)10(PO4)6Cl2:Eu

2. 녹색 형광체: SiAlON:Eu2. Green Phosphor: SiAlON:Eu

3. 황색 형광체: (Ba,Sr)Si2(O,Cl)2N2:Eu3. Yellow phosphor: (Ba,Sr)Si2(O,Cl)2N2:Eu

4. 적색 형광체: CaAlSi(ON)2:Eu4. Red phosphor: CaAlSi(ON)2:Eu

5. 근적외 제1형광체: Gd3Ga5O12:Cr5. Near-infrared first phosphor: Gd3Ga5O12:Cr

6. 근적외 제2형광체: ScBO3:Cr6. Near-infrared second phosphor: ScBO3:Cr

7. 근적외 제3형광체: CaCuSi4O107. Near-infrared tertiary phosphor: CaCuSi4O10

(4) 백색 LED 제작(4) White LED production

전술한 InGaN/GaN 다중 양자 우물 구조를 가지는 반도체 LED 칩을 전극 배선한 세라믹 패키지(PKG)에 플립칩 실장하여, 전술한 1. ~4의 4종류 형광체를 각각의 배합비대로, 전술한 실리콘 수지에 분산시킨 형광체 함유 조성물을 이용하여 봉지하였다. 형광체 혼합액은 디스펜서를 이용하여 반도체 LED 칩 상에 직접 빈틈없이 도포하였다.The semiconductor LED chip having the above-described InGaN/GaN multi-quantum well structure is flip-chip mounted on a ceramic package (PKG) with electrode wiring, and the above-mentioned four types of phosphors 1. It was sealed using the dispersed phosphor-containing composition. The phosphor mixture was directly and seamlessly applied on the semiconductor LED chip using a dispenser.

(5) 초광대역 발광 소자 및 모듈 제작(5) Ultra-wideband light emitting device and module manufacturing

마찬가지로, 3종류의 근적외 형광체와 실리콘 수지 혼합액을 디스펜서를 이용하여 도포하였다. 발광 모듈은 도 4에 나타낸 바와 같이, 2종류의 발광 스펙트럼이 상이한 발광 소자를 하나의 PKG에 조립하여 발광 모듈을 제작하였다.Similarly, three types of near-infrared phosphors and a silicone resin mixture were applied using a dispenser. As for the light emitting module, as shown in FIG. 4 , a light emitting module was manufactured by assembling two types of light emitting devices having different emission spectra into one PKG.

발광모듈의 특성 확인Check the characteristics of the light emitting module

발광 스펙트럼 측정은 65~150mA의 순방향 전류, 3.19~3.48 V의 순방향 전류 인가 하에 실온에서 진행하였다. 단일 발광 소자는 세라믹 PKG에 실장하고 방열 기판에 탑재하여 실온에서 전기적 광학적 특성 측정을 진행하였다. 2종류의 별도 발광 소자는 하나의 PKG 구조로 제작(2 in 1 PKG)하여 마찬가지로 발광 스펙트럼 측정은 파장 영역 350nm에서 1000nm에 걸쳐 광 전자 정밀제 WHITELIGHT 분광기(한국제 OPI-100)을 이용하여 실온에서 진행하였다.The emission spectrum measurement was carried out at room temperature under the application of a forward current of 65 to 150 mA and a forward current of 3.19 to 3.48 V. A single light emitting device was mounted on a ceramic PKG and mounted on a heat dissipation substrate to measure electrical and optical properties at room temperature. Two types of separate light emitting devices are manufactured in a single PKG structure (2 in 1 PKG), and in the same way, the emission spectrum measurement is performed at room temperature using an optoelectronic precision WHITELIGHT spectrometer (OPI-100 made in Korea) over a wavelength range of 350 nm to 1000 nm. proceeded.

표 1은 참조 샘플(비교예 1), 샘플 A(실시예 1), 샘플 B(실시예 2)의 710nm(제1형광체), 810nm(제2형광체), 910nm(제3형광체) 근적외 형광체 함유량을 나타낸다. 405nm의 반도체 LED 칩(발광 반치폭: 15nm)를 여기원으로 사용한 백색 LED는 색온도가 3300K, 평균 연색 평가수 Ra는 94 이상, 발광 효율은 53lm/W 이상이며, 사용한 형광체는 전술한 청록색 형광체, 녹색 형광체, 황색 형광체, 적색 형광체의 4종류이다. 각각의 형광체 중량비는 녹색 형광체의 중량에 대해 9.23 : 1 : 0.46 : 5.77이었다.Table 1 shows the reference samples (Comparative Example 1), Sample A (Example 1), and Sample B (Example 2) of 710 nm (first phosphor), 810 nm (second phosphor), 910 nm (third phosphor) near-infrared phosphors. content is indicated. The white LED using a 405 nm semiconductor LED chip (light emission half maximum width: 15 nm) as an excitation source has a color temperature of 3300 K, an average color rendering index Ra of 94 or more, and a luminous efficiency of 53 lm/W or more. There are four types of phosphor, yellow phosphor, and red phosphor. The weight ratio of each phosphor was 9.23 : 1 : 0.46 : 5.77 with respect to the weight of the green phosphor.

[표 1][Table 1]

Figure 112020097365095-pat00001
Figure 112020097365095-pat00001

<형광체의 여기/발광 특성><Excitation/Emission Characteristics of Phosphor>

본 발명에서 사용한 상기 표 1의 3종류 근적외 형광체의 최대 여기 피크 및 발광 파장의 피크 위치를 표 2에 나타내었다. 특히 CaCuSi4O10 형광체는 500~700nm의 여기대에서 여기되어 최대 여기 파장은 630nm이다. 표 2에서 알 수 있듯이, 3종류의 근적외 형광체는 630nm의 여기에서도 발광하는 것이 특징이다. Table 2 shows the peak positions of the maximum excitation peaks and emission wavelengths of the three types of near-infrared phosphors in Table 1 used in the present invention. In particular, CaCuSi4O10 phosphor is excited in the excitation band of 500-700 nm, and the maximum excitation wavelength is 630 nm. As can be seen from Table 2, the three types of near-infrared phosphors are characterized in that they emit light even at 630 nm excitation.

제 1 형광체와 제 2 형광체는 발광 중심으로써 Cr3+를 포함하므로, 여기 과정은 Cr 이온의 d 전자 궤도가 결정장의 영향을 받아 여기 상태가 둘로 분열되어 4A2 준위 -> 4T1 준위 및 4T2 준위 -> 4T2 준위의 천이에 기인한다. 한편, 제 3 형광체에는 구체적인 발광 센서가 포함되어 있지 않으므로, 결함 준위 또는 전도대와 가전자대 간에 의한 광 흡수에 따른 여기 과정이 기여하고 있을 것으로 생각된다. Since the first phosphor and the second phosphor contain Cr3+ as a luminescence center, the excitation process is caused by the d electron orbital of Cr ion being affected by the crystal field and splitting the excited state into two, 4A2 level -> 4T1 level and 4T2 level -> 4T2 level is due to the transition of On the other hand, since the third phosphor does not include a specific light emitting sensor, it is thought that an excitation process according to light absorption by a defect level or a conduction band and a valence band is contributing.

[표 2][Table 2]

Figure 112020097365095-pat00002
Figure 112020097365095-pat00002

<비교예 1><Comparative Example 1>

도 1은 표 1에 나타낸 참조 샘플(비교예 1)의 발광 스펙트럼 순방향 전류(If) 의존성을 나타낸다. 발광 소자의 상관 색온도 Tcc는 3286K이며, 제 1 형광체(710nm)와 제 3 형광체(910nm)의 근적외 형광체를 포함한다. 제 2 형광체(810nm)는 포함되어 있지 않으므로 810nm의 파장 영역에서는 발광의 골이 생긴다. 1 shows the emission spectrum forward current (If) dependence of the reference sample shown in Table 1 (Comparative Example 1). The correlated color temperature Tcc of the light emitting device is 3286K, and includes near-infrared phosphors of the first phosphor (710 nm) and the third phosphor (910 nm). Since the second phosphor (810 nm) is not included, light emission valleys occur in the 810 nm wavelength region.

그러나, 도 1에서 알 수 있듯이 미세하지만 810nm에 발광이 관찰된다. 이 원인은, 710nm의 장파장측 발광 꼬리와 910nm의 저파장측 발광 꼬리가 겹쳐져서 만들어진 외관 상의 발광대이다. If=65ma에서 810nm와 910nm의 발광 강도 높이 비율(H=γ/β)은 0.2로, 전류를 증가시켜도 이 비는 거의 변화가 없다. 65mA에서 Ra는 86, 광출력은 21.4mW였다. However, as can be seen from FIG. 1 , light emission is observed at 810 nm, although fine. The cause is an apparent light emission band formed by overlapping the long wavelength side emission tail of 710 nm and the low wavelength side emission tail of 910 nm. At If=65ma, the luminous intensity height ratio (H=γ/β) of 810 nm and 910 nm is 0.2, and this ratio hardly changes even if the current is increased. At 65mA, Ra was 86 and the light output was 21.4mW.

<실시예 1><Example 1>

도 2는 표 1에 나타낸 중량비로 제작한 실시예 1(샘플 A)에서 810nm의 형광체를 24% 함유시켰을 때의 발광 소자 If 의존성이다. 도에서 알 수 있듯이, 810nm의 형광체를 첨가해도 810nm에 피크를 가지는 새로운 발광대는 출현하지 않았다. 전류를 증가시켜도 비교 예 1의 참조 샘플과 큰 차이가 없이 H=0.4로 일정했다. 도 1의 스펙트럼과 비교하여 810nm 부근은 약간 증가하기는 했으나, 810nm에 중심 파장을 가지는 새로운 발광대의 출현에까지 미치지는 못했다. 이 원인에 대해서는, 후술할 “발광 메커니즘”에서 설명하겠다. 광출력은 65mA에서 22.8mW, 150mA에서 42.9mW였다. 배광각은 110도였다. Fig. 2 shows the dependence of the light emitting element If when 24% of the phosphor of 810 nm is contained in Example 1 (Sample A) prepared at the weight ratio shown in Table 1. As can be seen from the figure, even when a phosphor of 810 nm was added, a new light emitting band having a peak at 810 nm did not appear. Even when the current was increased, there was no significant difference from the reference sample of Comparative Example 1, and H=0.4 was constant. Compared with the spectrum of FIG. 1, the vicinity of 810 nm increased slightly, but did not reach the appearance of a new light emitting band having a central wavelength at 810 nm. The cause of this will be explained in “Light Emission Mechanism” which will be described later. The optical output was 22.8mW at 65mA and 42.9mW at 150mA. The light distribution angle was 110 degrees.

<실시예 2><Example 2>

도 3은 표 1에 나타낸 중량비로 제작한 실시 예(샘플 B)에서 710nm와 810nm의 2종류 형광체를 함유하고 910nm 형광체가 포함되지 않은 경우의 발광 스펙트럼의 If 의존성이다. 이 도에서 명백히 810nm에 피크를 가지는 발광대가 출현한다. 전류 증가와 더불어 발광 피크는 명확하게 분리되어 나타난다. 광출력은 65mA에서 31.9mW, 150mA에서 61.8mW였다. 배광각은 115도였다. 3 is the If dependence of the emission spectrum in the case of containing two types of phosphors of 710 nm and 810 nm and not including the 910 nm phosphor in Example (Sample B) prepared at the weight ratio shown in Table 1. In this figure, an emission band having a peak at 810 nm appears clearly. With the increase of the current, the emission peaks appear clearly separated. The optical output was 31.9mW at 65mA and 61.8mW at 150mA. The light distribution angle was 115 degrees.

이상, 본 발명의 비교예 1과 실시예 1 및 실시예 2에서 910nm의 형광체를 함유한 발광 소자에서는 810nm의 형광체가 포함되어 있음에도 불구하고 810nm의 발광이 나타나지 않는 것이 명백해졌으므로, 실시예 1의 샘플과 실시예 2의 샘플을 하나의 PKG에 실장(2 in 1 PKG)하여 도 4와 같은 발광 모듈 구조의 샘플을 제작하여 발광 스펙트럼 측정을 진행하였다. As described above, in Comparative Example 1 and Examples 1 and 2 of the present invention, it became clear that 810 nm light emission did not appear in the light emitting device containing the 910 nm phosphor even though the 810 nm phosphor was included. And the sample of Example 2 was mounted on one PKG (2 in 1 PKG) to prepare a sample having a light emitting module structure as shown in FIG. 4 and measurement of the emission spectrum was carried out.

<실시예 3><Example 3>

도 4는, 표 1의 샘플 A와 샘플 B를 하나의 PKG(2 in 1 PKG)에 실장하여 발광 스펙트럼 측정을 진행하였다. 이 발광 모듈(샘플 C)의 PKG 구조를 모식적으로 나타내었다.FIG. 4 shows that sample A and sample B of Table 1 were mounted on one PKG (2 in 1 PKG), and emission spectrum measurements were performed. The PKG structure of this light emitting module (Sample C) is schematically shown.

<실시예 4><Example 4>

도 5는, 샘플 A에 If=65mA, 샘플 B에 If=150mA를 흘렸을 때의 발광 스펙트럼이다. 810nm의 발광 강도는 상당히 증가하지만 피크는 되지 않는다. H는 0.7까지 증가했으나, 발광 피크까지는 미치지 못했다. 광출력은 63mW, Ra는 86이었다. Fig. 5 is an emission spectrum when If = 65 mA and If = 150 mA are applied to sample A. The luminescence intensity at 810 nm increases significantly but does not peak. H increased to 0.7, but did not reach the emission peak. The light output was 63mW and Ra was 86.

<실시예 5><Example 5>

도 6은, 샘플 A와 샘플 B를 병렬로 접속하여 If=65mA, 100mA, 150mA 통전했을 때의 발광 스펙트럼이다. 도 6에서 알 수 있듯이, 700nm에서 950nm의 파장 영역은 완전히 이어져서 810nm와 910nm 양쪽 피크가 나타나 있다. 전류 증가와 더불어 이 피크들은 명료해진다. 발광 전폭은 약 450nm에까지 이르며, 매우 폭 넓은 분포를 가지는 것을 알 수 있다. H 값은 거의 1에 가깝다. Ra는 87, 광출력은 63mW(0.5W)였다. 광출력은 단품 발광 소자(실시예 1과 실시예 2)보다 높다. 배광각은 115도였다.Fig. 6 is an emission spectrum when Sample A and Sample B are connected in parallel and energized at If = 65 mA, 100 mA, and 150 mA. As can be seen from FIG. 6 , the wavelength region of 700 nm to 950 nm is completely continuous, so that both peaks of 810 nm and 910 nm are shown. With increasing current, these peaks become distinct. It can be seen that the emission width reaches up to about 450 nm, and has a very wide distribution. The H value is almost close to 1. Ra was 87, and the light output was 63mW (0.5W). The light output is higher than that of the single light emitting devices (Examples 1 and 2). The light distribution angle was 115 degrees.

이 구조는, 각각의 발광 소자 조합으로 구성된 모듈로, 2종류의 발광 스펙트럼은 각각 서로 다른 색온도를 가진다. 그러나, 동시 점등함에 따라 발광 스펙트럼은 혼색되었다. 이러한 현상을 이용한 발광 모듈은 파장 가변 발광 소자((tunable light-emitting element)라고 부른다.This structure is a module composed of each combination of light emitting elements, and the two types of emission spectra have different color temperatures. However, with simultaneous lighting, the emission spectrum was mixed. A light emitting module using this phenomenon is called a tunable light-emitting element.

도 6에서 알 수 있듯이, 발광 스펙트럼은 태양광인 AM1.5의 스펙트럼 분포와 극히 유사하다. 또한, 혈액 속의 환원 헤모글로빈 흡수 곡선과 극히 유사하였다.As can be seen from FIG. 6 , the emission spectrum is very similar to the spectrum distribution of AM1.5, which is sunlight. Also, it was very similar to the reduced hemoglobin absorption curve in blood.

표 3에 샘플 A, 샘플 B 및 실시예 5의 샘플 C의 색온도와 광학적 특성을 나타내었다. 샘플 C의 색온도는 양쪽 샘플의 중간값을 가진다. 또한, 샘플 C는 샘플 A 및 샘플 B와 비교하여 Ra/R9 및 광출력이 증가하였다.Table 3 shows the color temperature and optical properties of Sample A, Sample B, and Sample C of Example 5. The color temperature of sample C has an intermediate value of both samples. In addition, sample C had increased Ra/R9 and light output compared to samples A and B.

본 발명에서 양쪽의 발광 스펙트럼을 합성함에 따라 광학적 특성은 명백히 개선되는 것을 알게 되었다.It has been found that the optical properties are clearly improved by synthesizing both emission spectra in the present invention.

[표 3][Table 3]

Figure 112020097365095-pat00003
Figure 112020097365095-pat00003

<발광 메커니즘에 관해><About the light-emitting mechanism>

표 2 및 발광 스펙트럼(비교예 1과 실시예 1 및 실시예 2)에서 나타낸 바와 같이, 근적외 형광체의 여기/발광 과정은 제 1 형광체와 제 2 형광체에서는 발광 중심으로서 Cr3+ 이온을 포함하기 때문에 거의 같은 특성을 보이고 있으나, 제 3 형광체의 여기 과정은 전혀 상이하다. 그렇기 때문에 제 3 형광체를 유효하게 여기시키기 위해서는 백색 LED의 발광 분포를 가능한 한 제 3 형광체의 여기 특성(흡수 곡선)과 유사하게 하는 것이 본 발명의 중요한 포인트이다.As shown in Table 2 and emission spectra (Comparative Example 1 and Examples 1 and 2), the excitation/emission process of the near-infrared phosphor is almost identical to that of the first phosphor and the second phosphor because Cr3+ ions are included as luminescence centers. Although the same characteristics are shown, the excitation process of the third phosphor is completely different. Therefore, in order to effectively excite the third phosphor, it is an important point of the present invention to make the emission distribution of the white LED as similar to the excitation characteristic (absorption curve) of the third phosphor as much as possible.

(1) 제1형광체: 이 형광체는 발광 센서로서 CR3+를 포함한다. 405nm에서 미세하게 여기되지만, 450nm의 가시광에서 가장 강하게 여기된다. 또한, 630nm에서도 여기된다. 그 결과, 710nm에 피크를 가지는 발광을 만든다. 발광 전폭은 약 110nm이다.(1) First phosphor: This phosphor contains CR3+ as a light emitting sensor. It is slightly excited at 405 nm, but it is most strongly excited at visible light at 450 nm. It is also excited at 630 nm. As a result, light emission having a peak at 710 nm is produced. The emission width is about 110 nm.

(2) 제2형광체: 이 형광체는 제1형광체와 마찬가지로 발광 중심에 CR3+ 이온이 포함된다. 405nm에서는 거의 여기되지 않는다. 470nm의 가시광에서 가장 강하게 여기된다. 또한, 630nm에서도 여기된다. 그 결과, 810nm에 발광 피크를 가진다. 발광 전폭은 약 120nm이다.(2) Second phosphor: Like the first phosphor, CR3+ ions are included in the luminescence center of this phosphor. At 405 nm, there is almost no excitation. It is most strongly excited in visible light at 470 nm. It is also excited at 630 nm. As a result, it has an emission peak at 810 nm. The emission width is about 120 nm.

(3) 제3형광체: 이 형광체는 특별한 발광 센서를 포함하지 않는다. 405nm의 빛에서는 직접 여기되지 않는다. 450~700nm의 가시광에 의해 여기되나, 여기의 최대 파장은 약 630nm이다. 그 결과, 910nm에 피크를 가지는 발광을 만든다. 발광 전폭은 약 150nm이다.(3) Third phosphor: This phosphor does not contain a special light emitting sensor. In light of 405 nm, it is not directly excited. It is excited by visible light from 450 to 700 nm, but the maximum wavelength of excitation is about 630 nm. As a result, light emission having a peak at 910 nm is produced. The emission width is about 150 nm.

이상, (1)~(3)의 근적외 형광체의 여기/발광 과정을 고려하면 본 발명의 초광대역 발광 소자에는 Cr3+ 발광 센서를 포함하는 근적외 형광체와, 결함에서 유래하는 발광 중심을 포함하는 근적외 형광체를 혼합한 형광체가 포함되는 것이 된다. 따라서, 3종류의 여기 효율(흡수 효율)의 중첩이 되어, 특히 공통 여기 파장인 630nm에서 제 2 형광체와 제 3 형광체의 효율이 약 2배 다르다. 즉, 제 2 형광체의 흡수 효율이 낮기 때문에 제 3 형광체를 혼합함에 따라 630nm의 여기 에너지가 대부분 제 3 형광체를 여기시키는 것에 소모되므로, 이 때문에 제 2 형광체와 제 3 형광체를 동시에 혼합하는 방법으로는 810nm의 발광을 효율적으로 발생시키는 것은 곤란하다. 따라서, 810nm의 근적외 발광을 효율적으로 발생시키기 위해서는, 본 발명에서 제작한 각각의 발광 소자를 조합한 파장 가변 발광 모듈이 유효하다. As mentioned above, considering the excitation/emission process of the near-infrared phosphor of (1) to (3), the ultra-wideband light emitting device of the present invention includes a near-infrared phosphor including a Cr3+ light emitting sensor and a root including a light-emitting center derived from a defect. A phosphor mixed with an infrared phosphor is included. Accordingly, the three types of excitation efficiencies (absorption efficiencies) are superimposed, and in particular, the efficiencies of the second phosphor and the third phosphor differ by about two times at 630 nm, which is a common excitation wavelength. That is, since the absorption efficiency of the second phosphor is low, most of the excitation energy of 630 nm is consumed to excite the third phosphor when the third phosphor is mixed. It is difficult to efficiently generate light emission at 810 nm. Therefore, in order to efficiently generate 810 nm near-infrared light emission, the wavelength tunable light emitting module in which each light emitting element manufactured in the present invention is combined is effective.

이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although preferred embodiments of the present invention have been described in detail above, the rights of the present invention are not limited thereto, and various modifications and improvements by those skilled in the art using the basic concept of the present invention as defined in the following claims are also provided. is within the scope of the right.

Claims (8)

색온도 3000~4000K의 백색 LED칩;
상기 백색 LED칩의 발광 파장에 의해 여기되어 발광하는 3종 이상의 근적외 형광체가 분산되어 있는 형광체 층을 포함하는 제1발광소자; 및
상기 백색 LED칩의 발광 파장에 의해 여기되어 발광하는 2종 이상의 근적외 형광체가 분산되어 있는 형광체 층을 포함하는 제2발광소자를 포함하고,
상기 근적외 형광체는, 450nm 내지 630nm의 파장 영역에서 여기되어, 710nm에 발광 피크를 가지는 제1형광체, 470nm 내지 630nm의 파장 영역에서 여기되어, 810nm에 발광 피크를 가지는 제2형광체, 및 630nm의 파장 영역에서 여기되어, 910nm에 발광 피크를 가지는 제3형광체로 이루어지는 군으로부터 선택되는 것인, 근적외 발광 장치.
White LED chip with a color temperature of 3000~4000K;
a first light emitting device including a phosphor layer in which three or more kinds of near-infrared phosphors that emit light by being excited by the emission wavelength of the white LED chip are dispersed; and
a second light emitting device including a phosphor layer in which two or more kinds of near-infrared phosphors that emit light by being excited by the emission wavelength of the white LED chip are dispersed;
The near-infrared phosphor is excited in a wavelength range of 450 nm to 630 nm and has an emission peak at 710 nm, a second phosphor excited in a wavelength range of 470 nm to 630 nm and having an emission peak at 810 nm, and a wavelength of 630 nm A near-infrared light emitting device, which is selected from the group consisting of a third phosphor excited in the region and having an emission peak at 910 nm.
제1항에 있어서,
상기 제1발광소자는, 제1형광체, 제2형광체 및 제3형광체가 분산된 형광체 층을 포함하는 것이고,
상기 제2발광소자는, 제1형광체 및 제2형광체가 분산된 형광체 층을 포함하는 것인, 근적외 발광 장치.
According to claim 1,
The first light emitting device includes a phosphor layer in which a first phosphor, a second phosphor, and a third phosphor are dispersed,
The second light emitting device, the near-infrared light emitting device comprising a phosphor layer in which the first phosphor and the second phosphor are dispersed.
제1항에 있어서,
상기 제1형광체는 710nm에 중심 발광 피크를 가지는 Gd3Ga5O12:Cr이고, 상기 제2형광체는 810nm에 발광 피크를 가지는 ScBO3:Cr이며, 상기 제3형광체는 910nm에 발광 피크를 가지는 CaCuSi4O10인 것인, 근적외 발광 장치.
According to claim 1,
The first phosphor is Gd3Ga5O12:Cr having a central emission peak at 710 nm, the second phosphor is ScBO3:Cr having an emission peak at 810 nm, and the third phosphor is CaCuSi4O10 having an emission peak at 910 nm. Infrared light emitting device.
제2항에 있어서,
상기 제1발광소자의 형광체 층은,
제1형광체, 제2형광체 및 제3형광체를, 16~24 : 5~24 : 4~7의 중량비로 포함하는 것인, 근적외 발광 장치.
3. The method of claim 2,
The phosphor layer of the first light emitting device,
A near-infrared light emitting device comprising the first phosphor, the second phosphor, and the third phosphor in a weight ratio of 16 to 24: 5 to 24: 4 to 7.
제1항에 있어서,
상기 백색 LED칩은, 600nm 내지 700nm의 발광 파장 중심 피크를 가지는 것인, 근적외 발광 장치.
According to claim 1,
The white LED chip will have an emission wavelength center peak of 600 nm to 700 nm, a near-infrared light emitting device.
제5항에 있어서,
상기 백색 LED칩은,
청록색 형광체로써 (Sr,Br)10(PO4)6Cl:Eu,
녹색 형광체로써 SiAlON:Eu,
황색 형광체로써 (Ba,Sr)Si2(O,Cl))2N2:Eu, 및
적색 형광체로써 CaAlSi(ON)2:Eu를 포함하는 것인, 근적외 발광 장치.
6. The method of claim 5,
The white LED chip,
As a cyan phosphor (Sr,Br)10(PO4)6Cl:Eu,
SiAlON:Eu as a green phosphor,
(Ba,Sr)Si2(O,Cl))2N2:Eu as a yellow phosphor, and
A near-infrared light emitting device comprising CaAlSi(ON)2:Eu as a red phosphor.
제6항에 있어서,
상기 청록색 형광체, 녹색 형광체, 황색 형광체 및 적색 형광체는, 8~10 : 1 : 0.1~0.9 : 4~8의 중량비로 포함되는 것인, 근적외 발광 장치.
7. The method of claim 6,
The cyan phosphor, the green phosphor, the yellow phosphor and the red phosphor are included in a weight ratio of 8-10: 1:0.1-0.9: 4-8, a near-infrared light emitting device.
제1항에 있어서,
상기 근적외 발광 장치는 380~1200nm에서 광범위한 발광 스펙트럼 분포를 갖는 것인, 근적외 발광 장치.

According to claim 1,
The near-infrared light-emitting device will have a broad emission spectrum distribution in 380 ~ 1200nm, the near-infrared light-emitting device.

KR1020200117845A 2020-09-14 2020-09-14 Tunable ultra-broad band near-infrared light-emitting device KR102408688B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020200117845A KR102408688B1 (en) 2020-09-14 2020-09-14 Tunable ultra-broad band near-infrared light-emitting device
JP2020558475A JP2022553459A (en) 2020-09-14 2020-09-15 Wavelength tunable ultra-broadband near-infrared light emitting device
PCT/KR2020/012421 WO2022055009A1 (en) 2020-09-14 2020-09-15 Wavelength tunable ultra-wideband near-infrared light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200117845A KR102408688B1 (en) 2020-09-14 2020-09-14 Tunable ultra-broad band near-infrared light-emitting device

Publications (2)

Publication Number Publication Date
KR20220036409A KR20220036409A (en) 2022-03-23
KR102408688B1 true KR102408688B1 (en) 2022-06-16

Family

ID=80631869

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200117845A KR102408688B1 (en) 2020-09-14 2020-09-14 Tunable ultra-broad band near-infrared light-emitting device

Country Status (3)

Country Link
JP (1) JP2022553459A (en)
KR (1) KR102408688B1 (en)
WO (1) WO2022055009A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185378A (en) 2007-01-29 2008-08-14 Univ Nagoya Light source for optical interference tomographic device constituted of infrared glass phosphor and semiconductor light-emitting element
WO2010013893A1 (en) 2008-07-29 2010-02-04 Seoul Semiconductor Co., Ltd. Warm white light emitting apparatus and back light module comprising the same
US20140072790A1 (en) 2012-09-12 2014-03-13 University Of Georgia Research Foundation, Inc. Metal silicate nanosheets, methods of making metal silicate nanosheets, and methods of use
JP6589048B2 (en) 2016-03-14 2019-10-09 三井金属鉱業株式会社 Phosphor
JP2019189721A (en) 2018-04-23 2019-10-31 大電株式会社 Near infrared light emitting phosphor, phosphor mixture, light emitter, and light emitting device
WO2019208562A1 (en) 2018-04-23 2019-10-31 大電株式会社 Near-infrared light-emitting phosphor, phosphor mixture, light-emitting element, and light-emitting device
KR102100193B1 (en) 2014-11-10 2020-04-13 엘지전자 주식회사 Light emitting device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007080880A (en) * 2005-09-09 2007-03-29 Matsushita Electric Works Ltd Light emitting device
KR100818162B1 (en) * 2007-05-14 2008-03-31 루미마이크로 주식회사 White led device capable of adjusting correlated color temperature
JP2009289957A (en) * 2008-05-29 2009-12-10 Yamaguchi Univ Semiconductor light-emitting device and imaging device
WO2014119313A1 (en) * 2013-01-31 2014-08-07 株式会社 東芝 Light emitting device and led light bulb
JP6477779B2 (en) * 2016-05-26 2019-03-06 日亜化学工業株式会社 Light emitting device
KR101990475B1 (en) * 2018-03-21 2019-06-19 (주)올릭스 Ultra-high color white light-emitting device with controlled emission spectrum and lighting device containing the same
KR20210019427A (en) * 2018-06-12 2021-02-22 고쿠리츠켄큐카이하츠호진 상교기쥬츠 소고켄큐쇼 Light emitting device
KR20200024604A (en) * 2018-08-28 2020-03-09 주식회사 올릭스 Spectrum controlled led device and illumination apparatus for museum lighting application
JP2021150360A (en) * 2020-03-17 2021-09-27 サンケン電気株式会社 Light-emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008185378A (en) 2007-01-29 2008-08-14 Univ Nagoya Light source for optical interference tomographic device constituted of infrared glass phosphor and semiconductor light-emitting element
WO2010013893A1 (en) 2008-07-29 2010-02-04 Seoul Semiconductor Co., Ltd. Warm white light emitting apparatus and back light module comprising the same
US20140072790A1 (en) 2012-09-12 2014-03-13 University Of Georgia Research Foundation, Inc. Metal silicate nanosheets, methods of making metal silicate nanosheets, and methods of use
KR102100193B1 (en) 2014-11-10 2020-04-13 엘지전자 주식회사 Light emitting device
JP6589048B2 (en) 2016-03-14 2019-10-09 三井金属鉱業株式会社 Phosphor
JP2019189721A (en) 2018-04-23 2019-10-31 大電株式会社 Near infrared light emitting phosphor, phosphor mixture, light emitter, and light emitting device
WO2019208562A1 (en) 2018-04-23 2019-10-31 大電株式会社 Near-infrared light-emitting phosphor, phosphor mixture, light-emitting element, and light-emitting device

Also Published As

Publication number Publication date
JP2022553459A (en) 2022-12-23
WO2022055009A1 (en) 2022-03-17
KR20220036409A (en) 2022-03-23

Similar Documents

Publication Publication Date Title
US10837608B1 (en) Full spectrum white light emitting devices
US10109773B2 (en) Light-emitting devices having closely-spaced broad-spectrum and narrow-spectrum luminescent materials and related methods
CN105814699B (en) White light emitting device with high color rendering
JP5085815B2 (en) Light emitting device with high visibility phosphor
WO2017164214A1 (en) Light source apparatus and light-emitting apparatus
CN111180427B (en) Spectrum dimming packaging structure and manufacturing method thereof
JP6223479B2 (en) Solid light emitter package, light emitting device, flexible LED strip, and luminaire
JP7504980B2 (en) Full spectrum white light emitting device
KR102121266B1 (en) High-color-rendering white light-emitting device containing near-infrared light component
WO2021007123A1 (en) Full spectrum white light emitting devices
WO2012165032A1 (en) Light-emitting device
KR102193591B1 (en) Broad band light-emitting device
CN209766413U (en) High-luminous-efficiency high-light-quality strip-shaped filament packaging form
KR102408688B1 (en) Tunable ultra-broad band near-infrared light-emitting device
JP2011014697A (en) White light-emitting device
KR101164368B1 (en) Light emitting diode package and method for fabricating the same
US9054278B2 (en) Lighting apparatuses and driving methods regarding to light-emitting diodes
TW556365B (en) Method to fabricate LED for white light source
JP2019062063A (en) Light-emitting device
TWI837763B (en) Light-emitting module
US11887973B2 (en) Full spectrum white light emitting devices
US20050167684A1 (en) Device and method for emitting output light using group IIB element selenide-based phosphor material
TWI251943B (en) A method of making yellow-white light source by UV-LED
KR20240108727A (en) D65 spectrum controlled LED lighting device based on tunable LED lighting device
KR20240108728A (en) LED lighting device with chlorophyll wavelength conversion for improving photosynthetic efficiency of medical canabis hemp

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right