TW556365B - Method to fabricate LED for white light source - Google Patents
Method to fabricate LED for white light source Download PDFInfo
- Publication number
- TW556365B TW556365B TW91121283A TW91121283A TW556365B TW 556365 B TW556365 B TW 556365B TW 91121283 A TW91121283 A TW 91121283A TW 91121283 A TW91121283 A TW 91121283A TW 556365 B TW556365 B TW 556365B
- Authority
- TW
- Taiwan
- Prior art keywords
- light
- white light
- light source
- white
- led
- Prior art date
Links
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
556365 556365556365 556365
五、發明說明(1) 【發明領域】 本發明是一種製作白光發光二極體光源之方法, 一種利用半導體型螢光體配合發光二極體(LED )製作、心 光光源之方法。此一半導體塑螢光體以硫化(鋅、鎬白 〔(Zn Cd)S〕為主要成分,其中換雜一^種或以上里 子所組成,並可受發光二極體之激發而發出螢光。此^離 與發光二極體所發之光經光色混合後可產生白色光,、光 製得一高亮度之白光發光二極體。 ^可 【發明背景】 白光是一種多顏色的混合光,可被人眼感覺為白光、 至少包括二種以上波長之混合光。例如人眼同時受紅 的 藍、綠光的刺激時,或同時受到藍光與黃光的刺數時均。 感文為白光’故依此原理可製作發白光之led光源。習。可 之白光LED製造方法主要有五種: 用 第 種方法係使用以鱗化紹蘇姻(AlInGaP)、氮 鎵(InGaN)與磷化鎵(GaP)為材質的三顆LE1),分 制通過LED的電流而發出紅、綠及藍光。因這三顆晶粒= 放在同一個燈泡(1 amp )中,透鏡可將發出的光加以、、曰疋 第二種方法係使用InGaN與A1 InGaP或GaP為材質的一 顆LED,亦分別控制通過LED電流而發出藍及黃綠光以、產— 白光,目前這二種方式的發光效率可達到2〇 lm/w。 第二種是1996年曰本日亞化學公司(Nichia C h e m i c a 1 )發展出以氮化銦錁藍光發光二極體配合發黃光V. Description of the invention (1) [Field of the invention] The present invention is a method for manufacturing a white light emitting diode light source, and a method for manufacturing a light source using a semiconductor-type phosphor and a light emitting diode (LED). This semiconductor plastic phosphor is mainly composed of sulfide (zinc, pick white [(Zn Cd) S]), which is composed of one or more kinds of ions, and can be excited by a light emitting diode to emit fluorescent light. The light emitted from the light-emitting diode is mixed with light to produce white light, and the light produces a high-brightness white light-emitting diode. ^ Can [Background of the Invention] White light is a multi-color mixture Light can be perceived by the human eye as white light, including at least two wavelengths of mixed light. For example, when the human eye is stimulated by red, blue, and green light at the same time, or by the number of spines of blue and yellow light at the same time. According to this principle, a white light-emitting LED light source can be produced according to this principle. Xi. There are five main methods for manufacturing white LEDs: The first method is to use AlInGaP, NiGaN, and InGaN. Gallium Phosphide (GaP) is made of three LE1), which emits red, green and blue light through the current of the LED. Because these three crystal grains are placed in the same bulb (1 amp), the lens can add the emitted light. The second method is to use InGaN and A1 InGaP or GaP as an LED. Controlled by the LED current to emit blue and yellow-green light to produce white light. At present, the luminous efficiency of these two methods can reach 20lm / w. The second type was developed in 1996 by Nichia Chemical Co., Ltd. (Nichia C h e mi c a 1).
556365 五、發明說明 之㈣^石型螢光粉亦可成為—白光光源。& 效率目前可達20 lra/W,因只需一組LED晶片即可,大: 降低製造成本,再加上所搭配之螢光粉調 心 熟,故目前已有商品呈現。 〇療成 第四種可產生白光之方案係曰本住友電工(— ,Ltd)在1991年1月研發出使用石西 化辞(ZnSe)材料的白光LED,其技術是先在以以單晶美556365 V. Description of the invention ㈣ ^ stone-type fluorescent powder can also become-white light source. & The efficiency is currently up to 20 lra / W. Because only one set of LED chips is needed, the big one: reducing the manufacturing cost, coupled with the matching fluorescent powder, the products have been presented. 〇Healing The fourth solution that can produce white light was developed by Sumitomo Electric (—, Ltd) in January 1991. White light LEDs using ZnSe materials were first developed.
板上形成CdZnSe薄膜,通電後薄膜會發出藍光,同時曰曰部&八 的藍光照射在基板上而發出黃光,最後藍、黃光形成互^ 色而發出白光。由於此法也只採用單顆LED晶粒,其操作 電壓僅2·7 V比GaN之LED的3·5 V要低,且不需要螢光物曾 即可得到白光。 J M 第五種可產生白光之方案係目前正在開發中的紫外光 白光LED ’其原理是利用紫外光led激發三種或以上的蔡杏 粉發出螢光,經混色後產生白光。 曰 别述第一種與第二種可產生白光之方案,其共同缺點 是這些同時使用的不同光色LED其中之一發生故障,則將 無法得到正常的白光;且因其正向偏壓各不相同,故需多A CdZnSe thin film is formed on the board. After being energized, the thin film emits blue light. At the same time, the blue light emitted by the lamp is irradiated on the substrate to emit yellow light. Finally, the blue and yellow light form mutual colors and emit white light. Since this method also uses only a single LED die, its operating voltage is only 2 · 7 V lower than the 3 · 5 V of GaN LEDs, and no white light is needed to obtain white light. J M The fifth solution that can generate white light is currently under development. Ultraviolet light white LED ’The principle is to use ultraviolet light to excite three or more Cai Xing powders to emit fluorescent light, and generate white light after color mixing. Say goodbye to the first and second solutions that can produce white light. The common disadvantage is that if one of these different light-color LEDs is used at the same time, normal white light will not be obtained. Different, so more
組控制電路,致使成本較高,此皆為實際應用上之不利 素0 第二種與第三種可產生白光之方案,皆是利用互補色 1理以產生白光,其光譜波長分布之連續性不如真實的太 陽光’使色光混和後會在可見光光譜範圍( 40 0 nm〜700 m )出現色彩的不均勻,導致色彩飽合度較低;雖然人類Control circuit, resulting in higher cost, which are all unfavorable factors in practical application. The second and third schemes that can generate white light are both using complementary color to produce white light, and the continuity of its spectral wavelength distribution. It is not as good as the real sunlight ', after mixing colored light, color unevenness will appear in the visible light spectral range (40 nm ~ 700 m), resulting in lower color saturation; although humans
556365556365
的眼睛可以忽略這些現象,只會看見白色的 精密度較高之光學偵檢器的感測下,例如攝与i但在一些 ’其演色性在實質上仍偏低,亦即物體色彩機或相機等 生誤差,所以這種方式產生之白光光源只人,原時會產 照明用途。 5作為簡單的 至於’第四種可產生白光之方案,其缺 曰 僅8 1 m/ w,壽命也只有8 〇 〇 〇小時,在實用、思、疋發光效率 仍須更進一步地突破。 只用層面的考量上 最 白光光 上螢光 決條件 ,且各 同光能 適用之 混色原 以上方,所以 困難。 後,第 源在製 粉。而 之一乃 螢光體 轉換的 螢光材 理’使 程式非 在調配 五種產生 作時為提 欲同時利 是所選用 對此波長 量子效率 料種類, 用三種或 線性方程 三原色螢 白光之方案 高其演色性 用多種螢光 之激發光恰 的光之吸收 也盡可能接 造成選用勞 以上螢光粉 式,亦即其 光粉的比例 ,—般乃 粉體使其 可被這些 係數不能 近為佳, 光材料的 ,其混色 顏色變化 以得到白 使用三種或 發出螢光, 螢光粉所吸 相差太多, 因此大幅限 困難。且根 方程式為二 率為二維以 光之技術上 鬌 【發明目的】 緣是,本 針對習知技術 製作之難度, 發光一極體做These eyes can ignore these phenomena, and only see the detection of white high-precision optical detectors, such as photography and i, but in some of the 'color rendering is still substantially low, that is, the object color machine or Cameras have errors, so the white light source produced by this method is only human, and it will be used for lighting purposes. 5 As a simple As for the fourth solution that can generate white light, its shortcomings are only 81 m / w and its life time is only 8000 hours. In terms of practical, thinking, and luminous efficiency, it must be further broken. It is difficult to use only the layer to consider the most white light on the fluorescent conditions, and the above-mentioned color mixing principle applicable to each light energy. After that, the source was milling. One is the fluorescent material conversion of phosphor conversion, which makes Cheng Fei use five kinds of quantum efficiency materials at the same time in the deployment of five kinds of production. At the same time, three types or linear equations of three primary colors of fluorescent white light are used. High color rendering, using a variety of fluorescent excitation light, the absorption of light is also as much as possible to use the above-mentioned fluorescent powder type, that is, the proportion of light powder, the powder is so that it can not be close to these coefficients It is better to use three kinds of light materials or to change the color of the mixed material to get white or emit fluorescent light. The difference in the absorption of fluorescent powder is too large, so it is difficult to limit it greatly. In addition, the root equation is two-dimensional. It is technically two-dimensional with light. [Objective of the invention] The reason is that the light-emitting monopolar
發明人乃特潛心的研究並配合學理運用,以 之缺點,突破上述習知技術之限制,以降低 乃提出利用單一種半導體型螢光粉體搭配二 為激發光源,即可製得一白光發光二極體之The inventor was dedicated to research and cooperated with scientific application. With the shortcomings, he broke through the limitations of the conventional technology to reduce the problem. He proposed to use a single type of semiconductor fluorescent powder with two as the excitation light source to obtain a white light emission. Of the diode
556365 五、發明說明(4) 製作方法。如前所述,白忠 _ . ^ ,^ ^ ^ ^ ^ 白先了以紅、綠與藍等三原色光組 成’然依光學混色原理,/ _ ^ ^ ^ , 人類視神經若同時受二種光色刺 >關筏。Μ 4 ·、+ e見見,此時该二種光色則稱為互補色 之關係。例如.波長為4 ^ λ Λ η r7[) rR() +至&為400〜410 nm之藍紫光可與波長為 主要化與:八Λ光混合而形成白光。故本發明乃利用 =色:==鋅之單一種榮光粉體,配合-與其螢 二極體:方法。朵光二極體做為激發光源製作白光發光556365 V. Description of the invention (4) Production method. As mentioned before, Bai Zhong _. ^, ^ ^ ^ ^ ^ White first composed of three primary colors of light: red, green, and blue. However, according to the principle of optical color mixing, / _ ^ ^ ^, if the human optic nerve receives two kinds of light at the same time Color Thorn > Off Raft. See M 4 ·, + e. At this time, the two light colors are called complementary colors. For example, blue-violet light with a wavelength of 4 ^ λ Λ η r7 [) rR () + to & 400 to 410 nm can be mixed with a wavelength of main and eight-Λ light to form white light. Therefore, the present invention uses a single kind of glorious powder of = color: == zinc, combined with its fluorescent diode: method. White light emitting diode as light source
本發明之另一目的,+ M L #、4g 1 ^ t 在於提供一可將半導體型硫化( 鋅、鎘)糸螢光體與封梦紝 ^ ^ Φ ^ ^ ^ ,、釕衣材枓依適當比例混合或組合,配 合可發出適當波長之菸伞- ^ ^ η ^ ^ ^ Α先一極體作為激發光源,經適當封 件。 1」獲付一發光特性佳之白光發光元 本發明之又一目的,*从丄 高亮度與高演色性之白弁提供一可利用單一粉體製作 【發明特點】 之白先發光二極體。 作白ί i:::利:::,型螢光體搭配-激發光源製 )〔(Zn、Cd) s 2導體型螢光體以硫化(鋅、鎘 離子摻雜於結構中,做成分,並利用一種或以上之異 之赘井中心 计丄 #1文外部激發源激發而發出榮光 光則nm之激發源之波長範圍可圖⑽之藍綠 【發明内谷祥細說明】 為了使責審杳委員能承、4 一女貝月b更進一步了解本發明之特徵及 556365 五、發明說明(5) 技術内容,請參閱以下有關本 ~ 而所附圖示僅供參老盥十、BB m 、<砰細說明與附圖,然 制者。 乂 並非用來對本發明加以限 本發明乃關於利用+導體 作白光光源之方法。本發明所指之,配合發光二極體製 要成分為硫化(鋅、鎘)f 導體型螢光體,其主 以上之異離子(即不同於辞或鑛及硫〕’利用一種或 如:銀離子、銅離子或氯離子等) 子他種離子,例 外部光源激發而發出螢光之發光中故為可受 光源可利用發出適當波長之發光二m之外部 圍可從495_之藍綠光至34〇nm之紫外^。丄:、波長範 體型螢光體與封裝材料之混合比例 、=U配半導 之電流即可獲得—發光特性佳之 妒施以極低 前述之螢光粉體之主要化學#八:先一桎體。 Γ ΓΗ、Q Ί 予成分為硫化(鋅、錳、 〔(Zn、Cd ) S〕,此化合物可形成 低溫下形成正方晶系相“ubi彳 日日體、、、口構,一為Another object of the present invention, + ML #, 4g 1 ^ t is to provide a semiconductor type sulfide (zinc, cadmium) 糸 phosphor and Feng Meng 纴 ^ ^ Φ ^ ^ ^ Proportional mixing or combination, combined with an umbrella that can emit an appropriate wavelength-^ ^ η ^ ^ ^ Α The first polar body is used as the excitation light source and properly sealed. "1" was awarded a white light emitting element with excellent light emitting characteristics. Another object of the present invention is to provide a white light-emitting diode that can be made from a single powder. For white ί i ::: 利 :::, made of type phosphor with excitation light source) [(Zn, Cd) s 2 conductor type phosphor with sulfide (zinc, cadmium ions doped in the structure as a component , And use one or more of the difference between the center of the superficial well # 1, the external excitation source is excited and emits glory light, the wavelength range of the excitation source in nm can be plotted in blue and green [Detailed description of Inner Valley Xiang]杳 Committee members, 4 a female Beiyue b to further understand the characteristics of the present invention and 556365 V. Description of the invention (5) Technical content, please refer to the following about this ~ The attached picture is for reference only. BB m ≪ Bang detailed description and drawings, but the producer. 乂 is not used to limit the present invention. The present invention is related to the use of + conductor as a white light source method. The present invention refers to the combination of the main component of the light-emitting diode system is vulcanization. (Zinc, cadmium) f Conductor-type phosphors, the main ion of which is different (that is, different from the word or ore and sulfur) 'use one or such as: silver ion, copper ion or chloride ion, etc., other ion, with the exception The light source is excited by the light source and emits fluorescent light. By using an external envelope with a light emission of 2 m at an appropriate wavelength, it can be from 495_ blue-green light to 34nm UV ^. 丄:, the mixing ratio of the wavelength range phosphor and the packaging material, = U with semiconducting current It can be obtained—the jealousy with good luminous properties applies the aforementioned main chemical # 8 of the fluorescent powder, which is extremely low. Γ ΓΗ, Q Ί The pre-composition is sulfide (zinc, manganese, [(Zn, Cd) S ], This compound can form a tetragonal phase "ubi 彳 日 日 体 ,、,、 口 构" at low temperature, one is
(―);另-C二下V:礦結構 (hexagonal)之烏采結構(wurtzite)。一曰H 者之發光效率較前者高’亦為製備此類螢光二,後 鍛燒之原因。由於硫化(鋅、鎘)屬固態晶體經高溫 帶以及此二帶間之能隙大小而呈現。由r 帶與傳導 化(鋅、編)於長波長紫外光(波長b 骑觀之,硫 見光之範圍而言,其本身並非發光材料。然若;(―); Another-C two times V: Wuertzite of hexagonal structure. It is said that the luminous efficiency of H is higher than that of the former ', which is also the reason for the preparation of such fluorescent II and subsequent calcination. Because sulfide (zinc, cadmium) is a solid crystal, it appears through the high temperature band and the energy gap between the two bands. From the band of r and conduction (zinc, weave) to long-wavelength ultraviolet light (wavelength b, as far as sulfur is concerned, the scope of light is not itself a luminescent material. Ranruo;
第9頁 乃6365 五、發明說明(6) 料中添加少量異離子 經由外界吸收之光 < 例如·銀離子,則可接受母體材料 釋放出能量。然而:生激發狀態,隨後再以螢光之形式 價:A g + )之價之陽離子(如銀離子,其為正一 入適量之陰離子(如;1、j或鎘之正二價不同時,則須再加 衡電荷。此時所添Λ虱子,其為負一價·· C 1 一)以平 ,而用以平衡電冇^陽離子稱為活化劑(activator) 之陰離子則稱為共活Mi 電子施予接受機制完;::::光中心、’藉類似半導體之 又’本發明亦可 半導體型材料中形成 子於硫化(鋅、鑛)之 極體之方法。此外2為f發光源製作白光發光二 鎘)結構中,故亦可制2夺添加夕種異離子於硫化(辞、 二:二導體Γ合物所發出之光譜;再 長型光光譜,其演色性將高於習用之三波 窄…’此乃因構成後者之單光譜帶大多較前者為 關於本發明白光光源之製作方法,包括所選擇之螢光 七,、其調配及封裝之技術,以下為其具體實施之說明: 1 ·合成一具半導體型之硫化(鋅、鎘)系螢光粉, =上Zn、Cd ) S : Ag+,C卜之配方。其合成方法可利用化 干合成法、固體一氣態燒結法、直接反應法與有機金屬熱Page 9 is 6365 V. Description of the invention (6) Adding a small amount of foreign ions to the material Light absorbed by the outside < For example, silver ions, it is acceptable to release energy from the parent material. However: in the excited state, and then fluoresced in the form of valence: A g +) cation (such as silver ions, which is a positive ion into an appropriate amount of anion (such as; 1, j, or cadmium when the positive divalent is different, The charge must be added. At this time, the Λ lice added is negative one valence · C 1 a) to flat, and the anion used to balance the electric cations called activators is called co-living The Mi electron donation acceptance mechanism is completed; :::: Photocenter, 'By semiconductor-like' The present invention also can be used in semiconductor-type materials to form ions in sulfide (zinc, ore) polar bodies. In addition, 2 is f luminescence Source to produce white light-emitting dicadmium) structure, it can also be prepared by adding a heterogeneous ion to the vulcanization (Ci, II: two-conductor Γ compound emission spectrum; the longer the light spectrum, its color rendering will be higher than The conventional three waves are narrow ... 'This is because the single-spectrum bands constituting the latter are mostly compared to the former. The method of making the white light source of the present invention includes the selected fluorescent seven, its deployment and packaging technology, and the following are specific implementations of it. Description: 1 · Synthesis of a semiconductor type vulcanization Zn, Cd) -based phosphor, a = Zn, Cd) S: Ag +, C BU formulation. The synthesis method can use the dry synthesis method, solid-gaseous sintering method, direct reaction method and organometallic heat.
第10頁 556365 五、發明說明(7) '^ 分解法等。 2·利用X光粉末繞射儀鑑定其晶相之純度,^ 圖A所示。由此圖可發現,經與第一圖b之標準硫 合物(J C P D S no: 7 9-2 2 0 4)比較,可知本^ 之硫化(鋅、鎘)螢光體為單一相之具六方晶系的 構(wur t z i t e)粉體。 3·以波長5 54 nm為偵測處測得(Zn、Cd) s · C 1 -螢光粉之激發光譜,如第二圖a所示。由該光言 此螢光體可以4 9 5 nm之藍綠光至34〇 nm之紫外光做 光源。 4. 以紫外光為激發源測量(Zn、以)S: Ag+: 光私之發射光谱,如弟一圖B所示,由光譜可知, 外光激發之摻雜銀與氯離子之硫化(鋅、録)系型 可產生黃綠色螢光。將此發射光譜之數據以1931年 照明委員會(commission internationale del’ Eel air age,Cl E)所制定的色度座標圖 (chromaticity diagram)之公式換算成此螢光體 之色度座標,並以A點標記於第四圖。 5. 將上述硫化(辞、鎘)〔(Zn、Cd) S〕系 與環氧樹脂以不同重量比混合〔如硫化(鋅、錦) 樹脂為0、0 · 1、0 · 1 4、0 · 1 8與0 _ 2 2〕再搭配主波長 nm之藍紫光發光二極體做為激發光源並進行封裝, 測量其光譜。由第三圖可明顯發現,光譜1至5依序 光體之比例逐漸減少,造成光譜結構中黃光所占比 :口第一 化鋅化 明所用 烏采結 Ag+, I可知 為激發 C1-螢 經由紫 螢光體 由國際 所代表 螢光粉 /環氧 為405 再分別 為因螢 例逐漸Page 10 556365 V. Description of the invention (7) '^ Decomposition method and so on. 2. Using X-ray powder diffraction to identify the purity of its crystal phase, as shown in Figure A. From this figure, it can be found that by comparison with the standard sulfur compound (JCPDS no: 7 9-2 2 0 4) in the first figure b, it can be seen that the sulfide (zinc, cadmium) phosphor of this sample is a single-phase hexagonal Crystalline structure (wur tzite) powder. 3. Measure the excitation spectrum of (Zn, Cd) s · C 1-phosphor with the wavelength of 5 54 nm as the detection point, as shown in the second figure a. From this light, this phosphor can be used as a light source from 495 nm blue-green light to 34 nm light. 4. Using ultraviolet light as the excitation source to measure the (Zn, to) S: Ag +: light emission spectrum, as shown in Figure 1B, from the spectrum, we can know that the doped silver and chloride ion sulfide (zinc) excited by external light , Record) type can produce yellow-green fluorescence. The data of this emission spectrum was converted into the chromaticity coordinates of this phosphor using the formula of the chromaticity diagram developed by the Commission for Illumination (Commission internationale del 'Eel air age, Cl E) in 1931, and A The dots are marked in the fourth figure. 5. Mix the above vulcanized (phrase, cadmium) [(Zn, Cd) S] system with epoxy resin at different weight ratios [such as vulcanized (zinc, bromide) resins 0, 0 · 1, 0 · 1 4, 0 · 1 8 and 0 _ 2 2] Then, a blue-violet light emitting diode with a main wavelength of nm is used as an excitation light source and packaged, and the spectrum is measured. From the third figure, it can be clearly found that the proportion of sequential light bodies in the spectrum 1 to 5 gradually decreases, resulting in the proportion of yellow light in the spectral structure: the first picking junction Zinc and Mingming used Wu Cai junction Ag +, I can be seen as exciting C1- Fluorescent powder represented by International Fluorescent Powder / Epoxy by Fluorescent Phosphor is 405 and then gradually changed due to fluorescent examples
第11頁 556365 五、發明說明(8) 降低之結果。 ^在色度座標圖中以虛線畫出Α、β〔硫化(鋅、鎘 j j氧樹脂之比為〇〕二點間之連線,發現此色光混合 响連線可通過色度座標圖中之白色區域。此外,於步驟 —以不同比例混合螢光粉所得光譜之光色變化亦符合沿 者A、B二點間之色光混合理論連線。 綜上所述,與習用之白光發光二極體需使用多種螢光 材料之製作方法相較,本發明之方法具有下列幾項優點:Page 11 556365 V. Description of the invention (8) The result of the reduction. ^ In the chromaticity coordinate diagram, draw a line between A and β [the sulfide (the ratio of zinc and cadmium jj oxygen resin is 〇]) with a dashed line. It is found that this chromatic light mixed resonance connection can pass through the chromaticity diagram. White area. In addition, the light-color change of the spectrum obtained by mixing phosphors in different proportions in step-also conforms to the connection of the color-light mixing theory along the two points A and B. In summary, the conventional white light-emitting diodes Compared with the production method that requires the use of multiple fluorescent materials, the method of the present invention has the following advantages:
口 1、本發明僅使用單一螢光體搭配單一發光二極體即 可發出白光,故本發明之白光發光二極體製作方法簡易且 成本低廉,優於習用之三波長型白光光源。 2 本發明所使用之半導體型螢光材料其激發過程所 而之能$大部分由能帶間隙大小所決定,故添加不同種類 之異離子做為發光中心時,可受同一波長之光所激發且發 出不同光色之螢光。亦即單一螢光粉可發出複色光,無習 用方法品求所有螢光體使用同一激發波長之限制,而可取 传較廣之應用範圍。1. The present invention can emit white light only by using a single phosphor with a single light emitting diode. Therefore, the method for manufacturing the white light emitting diode of the present invention is simple and low cost, and is superior to the conventional three-wavelength white light source. 2 The energy of the semiconductor-type fluorescent material used in the present invention is largely determined by the energy band gap. Therefore, when different types of foreign ions are added as the light emitting center, they can be excited by light of the same wavelength. And emit fluorescent light of different light colors. That is, a single phosphor can emit multi-colored light. There is no conventional method to limit all phosphors to the same excitation wavelength, and it can be used in a wide range of applications.
3、 本發明所使用之半導體型螢光材料,因可於同一 主體結構中添加多種異離子發光中心,亦可形成多種光色 混合形成白光之結果,其光譜特性之實質功效幾可等同甚 至優於習用之三波長型白光光源。 4、 本發明之半導體型硫化(鋅、鎘)系螢光粉體, 可利用發光波長為495 nm之藍綠光至340 nm之紫外光發光3. The semiconductor-type fluorescent material used in the present invention can add multiple light-emitting centers of different ions in the same main structure, and can also form the result of mixing multiple light colors to form white light. The substantial effect of its spectral characteristics can be almost equal or even superior. A conventional three-wavelength white light source. 4. The semiconductor sulfide (zinc, cadmium) series fluorescent powder of the present invention can emit blue-green light with a wavelength of 495 nm to ultraviolet light with a wavelength of 340 nm
第12頁 556365Page 12 556365
二極體所激發,適用範圍廣泛,且具高發光效率,極具產 業應用之價值。 以下係將ZnS —Cd螢光粉製作白光發光二極體之實 驗: 一、實驗說明:Excited by the diode, it has a wide range of applications, has high luminous efficiency, and has great industrial application value. The following is an experiment of making white light emitting diodes from ZnS-Cd phosphors: 1. Experimental description:
1· 該實驗樣品係以5 mm Standard Lamp 封裝技術, 分別使用ZnS-Cd/BAM/YAG螢光粉搭配405 nm/450 nm藍 光晶片製作成白光發光二極體。 2. 實驗樣品共計五種組合如下表所示,實驗組為1、 2、3,對照組為4、5,顏色調整以(0 · 3 0、0 · 31 )為中 心 〇1. The experimental samples were fabricated into white light-emitting diodes using 5 mm Standard Lamp packaging technology, using ZnS-Cd / BAM / YAG phosphors and 405 nm / 450 nm blue wafers. 2. A total of five combinations of experimental samples are shown in the table below. The experimental group is 1, 2, 3, the control group is 4, 5, and the color adjustment is centered at (0. 30, 0. 31).
No. 螢光粉 廷光晶片 說明 1 ZnS-Cd 405 nm 晶片波長為λ p 2 ZnS-Cd 450 nm 晶片波長為λ d 3 ZnS-Cd+BAM 405 nm 晶片波長為λ p 4 ZriS-Cd+YAG 405 nm 晶片波長為λ p 5 YAG 450 nm 晶片波長為λ d 第13頁 556365 五、發明說明(ίο) 二、測試資料. 1. 實驗樣品色座標圖: C.I.E. Chromaticily DiagramNo. Description of phosphor powder wafer 1 ZnS-Cd 405 nm wafer wavelength is λ p 2 ZnS-Cd 450 nm wafer wavelength is λ d 3 ZnS-Cd + BAM 405 nm wafer wavelength is λ p 4 ZriS-Cd + YAG 405 nm wafer wavelength is λ p 5 YAG 450 nm wafer wavelength is λ d. Page 13 556365 V. Description of the invention (ίο) 2. Test data. 1. Color coordinates of experimental samples: CIE Chromaticily Diagram
-Bbct curve • (0ΧΪ0.0.01) d.〇Snm-^ZnS Λ AS0nm-+ZnS a A〇Snm4ZnS+BAW( 〇 AOSnrn+YAG^BAM ❖ ^SOnm-^YAG 0.2 0.25 0.3 0.35 0.4 0.45 0.5 2. 實驗樣品光譜圖: 2·1 405nm Dice+ZnS-Cd-Bbct curve • (0 × Ϊ0.0.01) d.〇Snm- ^ ZnS Λ AS0nm- + ZnS a A〇Snm4ZnS + BAW (〇AOSnrn + YAG ^ BAM ❖ ^ SOnm- ^ YAG 0.2 0.25 0.3 0.35 0.4 0.45 0.5 2. Experiment Spectral chart of the sample: 2.1 · 405nm Dice + ZnS-Cd
The spectrum of 405 nm dice + ZnS SampleThe spectrum of 405 nm dice + ZnS Sample
6.00E-05 5.00E-05 4.00E-05 2 3.00E-056.00E-05 5.00E-05 4.00E-05 2 3.00E-05
CDCD
2.00E-05 1.00E-05 O.OOE^OO 330 430 4i30 530 580 630 680 730 7802.00E-05 1.00E-05 O.OOE ^ OO 330 430 4i30 530 580 630 680 730 780
WavelengthWavelength
第14頁 556365 五、發明說明(11) 2.2 2 4 )Onm Dice + ZnS-CdPage 14 556365 V. Description of the invention (11) 2.2 2 4) Onm Dice + ZnS-Cd
The spectrum of 450 nm dice + ZnS Sample λ=3υω-»-·υιThe spectrum of 450 nm dice + ZnS Sample λ = 3υω-»-· υι
Wavelength 5nm Dice +ZnS-Cd+BAM The spectrum of 405 nm dice + ZnS+BAM Sample λιιωυωμϋιWavelength 5nm Dice + ZnS-Cd + BAM The spectrum of 405 nm dice + ZnS + BAM Sample λιιωυωμϋι
WavelengthWavelength
第15頁 556365 五、發明說明(12)Page 15 556365 V. Description of the invention (12)
2.4 405nm Dice +YAG+BAM2.4 405nm Dice + YAG + BAM
The spectrum of 405 nm dice +YAG+BAM SampleThe spectrum of 405 nm dice + YAG + BAM Sample
380 430 480 530 580 630 680 730 780 2.00E-05 1.80E-05 1.60E-05 1.40E-05 孟 1.20E-05 § 1.00E-05 ^ 8.00E-0E 6.00E-06 4.00E-06 2.00E-06 0.00E4O0380 430 480 530 580 630 680 730 780 2.00E-05 1.80E-05 1.60E-05 1.40E-05 Bangladesh 1.20E-05 § 1.00E-05 ^ 8.00E-0E 6.00E-06 4.00E-06 2.00E -06 0.00E4O0
WavelengthWavelength
2. 5 450nm Dice +YAG2. 5 450nm Dice + YAG
The spectrum of 450 nm dice + YAG SampleThe spectrum of 450 nm dice + YAG Sample
WavelengthWavelength
第16頁 556365 五、發明說明(13) 三、貢料分析: 1 · 根據實驗樣品色座標圖,3種實驗組樣品皆 可調出白光,比較下,ZnS —Cd搭配40 5 nm藍光晶片最接 近目標點(0· 30、0. 31 ),其次為ZnS — Cd搭配450 nm藍 光晶片,最後為ZnS-Cd + BAM搭配4 50 nm藍光晶片。 2·根據本貫驗結果,ZnS—Cd搭配405〜450 nm藍 紫光晶片可製作出白光。 疋以’本發明完全符合專利申請之進步性及產業上利 用性要件,故爰依專利法提出申請之,請詳查並准予本案 滅=保障發明者之權益,若鈞局之貴審查委員有任何的 稽疑’請不吝來函指示。 之鮮t丄以上所述,僅為本發明之具體實施例,惟本發曰; 系螢光;:中ί或以上之半導體型摻雜異離子之硫化# 光以目:可=色彩均勻度、高亮度等優良白以 修飾皆# = j i k一白光發光二極體所實施之變化邊 涵盍在以下本案之專利範圍内。 556365 圖式簡單說明 第一圖A係半 鎘)〔(Zn、Cd) 第一圖B係半 標準X光粉末繞射 第二圖A係半 編)〔(Zn、Cd) 第二圖B係半 鎘)螢光體之致發 第三圖係利用 樹脂以不同比例混 二極體搭配封裝成 第四圖係將第 之光色變化圖。Page 16 556365 V. Explanation of the invention (13) III. Tribute analysis: 1 · According to the color coordinates of the experimental samples, all three samples of the experimental group can be adjusted to white light. In comparison, ZnS-Cd with 40 5 nm blue light chip is the best Close to the target point (0.30, 0.31), followed by ZnS-Cd with 450 nm blue wafer, and finally ZnS-Cd + BAM with 4 50 nm blue wafer. 2. According to the results of this test, ZnS-Cd can be used to produce white light with 405 ~ 450 nm blue-violet wafers.疋 The invention is in full compliance with the progressiveness of the patent application and the industrial application requirements. Therefore, if you file an application in accordance with the Patent Law, please check and approve the case in detail. = Protect the rights and interests of the inventor. Any scrutiny, please follow the instructions of the letter. The above description is only a specific embodiment of the present invention, but the present invention is: Fluorescent ;: Medium or more semiconductor type doped heteroion sulfide # 光 目 目: May = color uniformity High-brightness, high-brightness, etc. are all modified # = jik-a white light emitting diode is implemented within the scope of the following patents. 556365 Schematic description of the first picture A series of semi-cadmium] [(Zn, Cd) The first picture B series of semi-standard X-ray powder diffraction The second picture A series of semi-editing] [(Zn, Cd) The second picture B series The third picture is the use of resin mixed with diodes in different proportions and packaged into a fourth picture is the first light color change diagram.
導體型摻雜銀與氯離子於硫化(鋅 、 S〕螢光體之X光粉末繞射圖譜。 導體型摻雜銀與氯離子於硫化硫化鋅之 圖譜。 導體型摻雜銀與氯離子於硫化(辞 、 S〕螢光體之光激發光光譜圖。 導體型摻雜銀與氯離子於硫化(鋅 、 光譜圖。 (Zn、Cd) S: Ag+,C卜螢光粉與環氧 合後,以主波長為4 0 5 n m之藍紫光發光 白光光源所測得之光譜變化圖。 三圖中各光譜標於C I Ε色度座標圖所得X-ray powder diffraction pattern of conductor-type doped silver and chloride ions in sulfide (zinc, S) phosphors. Pattern of conductor-type doped silver and chloride ions in zinc sulfide. Conductor-type doped silver and chloride ions in zinc sulfide. Light-excitation spectrum of sulfide (word, S) phosphor. Conductor-type doped silver and chloride ions in sulfide (zinc, spectrum. (Zn, Cd) S: Ag +, C, phosphor powder and epoxy, Spectral change graphs measured with a blue-violet light-emitting white light source with a dominant wavelength of 40 nm. Each spectrum in the three figures is obtained by plotting the EI chromaticity coordinates.
第18頁Page 18
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91121283A TW556365B (en) | 2002-09-17 | 2002-09-17 | Method to fabricate LED for white light source |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW91121283A TW556365B (en) | 2002-09-17 | 2002-09-17 | Method to fabricate LED for white light source |
Publications (1)
Publication Number | Publication Date |
---|---|
TW556365B true TW556365B (en) | 2003-10-01 |
Family
ID=32228128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW91121283A TW556365B (en) | 2002-09-17 | 2002-09-17 | Method to fabricate LED for white light source |
Country Status (1)
Country | Link |
---|---|
TW (1) | TW556365B (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI423472B (en) * | 2010-01-29 | 2014-01-11 | Everlight Electronics Co Ltd | Method for generating white light and white light emitting diode device |
US9084328B2 (en) | 2006-12-01 | 2015-07-14 | Cree, Inc. | Lighting device and lighting method |
US9417478B2 (en) | 2006-04-18 | 2016-08-16 | Cree, Inc. | Lighting device and lighting method |
US9441793B2 (en) | 2006-12-01 | 2016-09-13 | Cree, Inc. | High efficiency lighting device including one or more solid state light emitters, and method of lighting |
-
2002
- 2002-09-17 TW TW91121283A patent/TW556365B/en not_active IP Right Cessation
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9417478B2 (en) | 2006-04-18 | 2016-08-16 | Cree, Inc. | Lighting device and lighting method |
US9084328B2 (en) | 2006-12-01 | 2015-07-14 | Cree, Inc. | Lighting device and lighting method |
US9441793B2 (en) | 2006-12-01 | 2016-09-13 | Cree, Inc. | High efficiency lighting device including one or more solid state light emitters, and method of lighting |
TWI423472B (en) * | 2010-01-29 | 2014-01-11 | Everlight Electronics Co Ltd | Method for generating white light and white light emitting diode device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2717337B1 (en) | Semiconductor light-emitting device, exhibit irradiation illumination device, meat irradiation illumination device, vegetable irradiation illumination device, fresh fish irradiation illumination device, general-use illumination device, and semiconductor light-emitting system | |
JP2021536118A (en) | Full spectrum white light emitting device | |
US20060082296A1 (en) | Mixture of alkaline earth metal thiogallate green phosphor and sulfide red phosphor for phosphor-converted LED | |
US20050093422A1 (en) | White light-emitting device | |
US8044410B2 (en) | White light-emitting diode and its light conversion layer | |
GB2410612A (en) | White light and colour controlled LEDs | |
KR100911001B1 (en) | A novel phosphor for white light-emitting diodes and fabrication of the same | |
JP5562534B2 (en) | Novel phosphor and its production | |
JP2009535441A (en) | Illumination system comprising a radiation source and a luminescent material | |
US10340426B2 (en) | Phosphor and illumination device utilizing the same | |
TWI309257B (en) | ||
JP2005079500A (en) | White light emitting device | |
TWI242893B (en) | White light-emitting apparatus | |
TW556365B (en) | Method to fabricate LED for white light source | |
CN1233046C (en) | Making method of white light LED light source | |
US7591963B2 (en) | White light emitting device | |
KR101017136B1 (en) | A novel phosphor and fabrication of the same | |
KR100672972B1 (en) | White diode | |
US20090176430A1 (en) | Method of making white light source by violet-LED | |
TWI251943B (en) | A method of making yellow-white light source by UV-LED | |
TWI234294B (en) | White light-emitting device | |
KR102408688B1 (en) | Tunable ultra-broad band near-infrared light-emitting device | |
JP2011096685A (en) | Light-emitting module using phosphor and lighting fixture for vehicle using same | |
US20050167684A1 (en) | Device and method for emitting output light using group IIB element selenide-based phosphor material | |
JP2004153058A (en) | Method of manufacturing white light emitting diode light source |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent | ||
MK4A | Expiration of patent term of an invention patent |