KR102404964B1 - 도포막 형성 방법, 도포막 형성 장치 및 기억 매체 - Google Patents

도포막 형성 방법, 도포막 형성 장치 및 기억 매체 Download PDF

Info

Publication number
KR102404964B1
KR102404964B1 KR1020160013310A KR20160013310A KR102404964B1 KR 102404964 B1 KR102404964 B1 KR 102404964B1 KR 1020160013310 A KR1020160013310 A KR 1020160013310A KR 20160013310 A KR20160013310 A KR 20160013310A KR 102404964 B1 KR102404964 B1 KR 102404964B1
Authority
KR
South Korea
Prior art keywords
film thickness
coating film
substrate
parameter
film
Prior art date
Application number
KR1020160013310A
Other languages
English (en)
Other versions
KR20160100234A (ko
Inventor
고스케 요시하라
Original Assignee
도쿄엘렉트론가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도쿄엘렉트론가부시키가이샤 filed Critical 도쿄엘렉트론가부시키가이샤
Publication of KR20160100234A publication Critical patent/KR20160100234A/ko
Application granted granted Critical
Publication of KR102404964B1 publication Critical patent/KR102404964B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02307Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment treatment by exposure to a liquid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions

Abstract

도포막의 막 두께를 조정하기 위한 각종 파라미터를 조정하는 데 있어서, 조정 작업마다의 파라미터 값의 편차를 억제함과 함께 각 파라미터 값을 적정한 범위 내로 설정하는 것이다. 막 두께 분포를 조정하기 위한 제1 파라미터 및 제2 파라미터를 포함하는 레시피에 기초하여 도포막을 형성하고, 제1 도포막의 막 두께 분포를 취득하는 공정과, 제1 도포막의 막 두께 분포를 기판의 위치와 막 두께와의 관계를 나타내는 제1 차수의 함수에 근사시키고, 당해 함수에 기초하여 제1 파라미터를 변경하는 공정과, 제1 변경 공정에 의해 변경한 레시피에 기초하여 기판에 도포막을 형성하고, 당해 기판에 있어서의 제2 도포막의 막 두께 분포를 취득하는 공정과, 제2 도포막의 막 두께 분포를 기판의 위치와 막 두께와의 관계를 나타냄과 함께 제1 차수보다도 큰 제2 차수의 함수에 근사시키고, 당해 함수에 기초하여 상기 제2 파라미터를 변경하는 공정을 실시한다.

Description

도포막 형성 방법, 도포막 형성 장치 및 기억 매체 {COATING FILM FORMING METHOD, COATING FILM FORMING APPARATUS AND STORAGE MEDIUM}
본 발명은, 기판에 약액을 공급해서 도포막을 형성하는 도포막 형성 장치, 도포막 형성 방법 및 기억 매체에 관한 것이다.
반도체 디바이스의 제조 공정에 있어서의 포토리소그래피 공정에서는, 반도체 웨이퍼(이하, 웨이퍼라고 기재함)에 레지스트 등의 각종 약액을 공급해서 도포막이 형성된다. 이 도포막의 형성을 행하는 도포막 형성 장치에 있어서는, 회전하는 웨이퍼의 중심부에 노즐로부터 약액을 토출하고, 원심력에 의해 당해 중심부로부터 주연부로 신전시키는, 소위 스핀 코팅에 의한 성막이 행해진다.
상기의 도포막 형성 장치에 있어서, 반도체 디바이스를 제조하기 위해 웨이퍼에 처리를 행하기 전에, 웨이퍼의 면 내 각 부에 있어서의 도포막의 막 두께가 목표값에 일치 내지는 대략 일치하도록, 작업원에 의해 각종 파라미터의 조정 작업이 행해진다. 이 조정 작업은, 파라미터 값을 변경해서 도포막을 형성할 때마다, 막 두께 측정기에 의해 도포막의 막 두께를 측정함으로써 행해진다.
그러나 발명의 실시 형태에서도 나타내는 바와 같이, 이 막 두께를 조정하기 위한 파라미터는, 예를 들어, 웨이퍼의 온도, 약액의 온도, 약액의 토출 시간, 약액 토출 시의 웨이퍼의 회전수 등, 다수 존재한다. 그로 인해 각 조정 작업에 의해 막 두께의 목표값이 동일해도, 조정된 파라미터의 각 값이 작업마다 다른 경우가 있다. 그리고, 실제로 반도체 디바이스를 양산하기 위해 도포막 형성 장치를 운용하는 데 있어서는, 파라미터 값에는 적정한 범위가 있고, 적정한 범위를 일탈한 값이 설정되면, 웨이퍼의 각 부에 있어서의 막 두께의 편차가 커지거나, 목표값으로부터의 어긋남이 커지게 될 우려가 있다. 작업원이 장치의 기술에 대해 숙지하고 있지 않으면, 그와 같이 적정한 범위로부터 벗어난 값의 파라미터가 설정되어 버릴 염려가 있어, 개선이 요구되고 있었다. 특허문헌 1에는, 상기의 조정 작업에 있어서 웨이퍼의 회전수를 자동으로 설정하는 기술에 대해 기재되어 있지만, 상기와 같이 파라미터는 다양하고, 앞에서 설명한 문제를 해결하기 위해서는 불충분하다.
일본 특허 공개 제2002-141273호 공보
본 발명은 이러한 점을 감안하여 이루어진 것이며, 기판에 약액을 공급해서 도포막을 형성하는 도포막 형성 장치에 있어서, 도포막의 막 두께를 조정하기 위한 각종 파라미터를 조정하는 데 있어서, 조정 작업마다의 파라미터 값의 편차를 억제함과 함께 각 파라미터 값을 적정한 범위 내로 설정할 수 있는 기술을 제공하는 것이다.
본 발명의 도포막 형성 방법은, 회전하는 기판의 중심부에 약액을 공급하고, 당해 약액을 원심력에 의해 상기 기판의 주연부로 확산해서 도포막을 형성하는 도포막 형성 방법에 있어서,
상기 기판의 면 내에 있어서의 상기 도포막의 막 두께 분포를 조정하기 위한 제1 파라미터 및 제2 파라미터를 포함하는 레시피에 기초하여 상기 도포막을 형성하고, 기판의 면 내에 있어서의 제1 도포막의 막 두께 분포를 취득하는 공정과,
계속해서, 상기 제1 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타내는 제1 차수의 함수에 근사시키고, 당해 제1 차수의 함수에 기초하여 상기 제1 파라미터를 변경하는 제1 변경 공정과,
계속해서, 상기 제1 변경 공정에 의해 변경한 레시피에 기초하여 기판에 도포막을 형성하고, 당해 기판에 있어서의 제2 도포막의 막 두께 분포를 취득하는 공정과,
그 후, 상기 제2 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타냄과 함께 제1 차수보다도 큰 제2 차수의 함수에 근사시키고, 당해 제2 차수의 함수에 기초하여 상기 제2 파라미터를 변경하는 제2 변경 공정과,
그 후, 상기 제1 변경 공정 및 제2 변경 공정에 의해 변경한 레시피에 기초하여, 기판에 도포막을 형성하는 공정
을 구비한 것을 특징으로 한다.
본 발명의 다른 도포막 형성 방법은, 회전하는 기판의 중심부에 약액을 공급하고, 당해 약액을 원심력에 의해 상기 기판의 주연부로 확산해서 도포막을 형성하는 도포막 형성 방법에 있어서,
상기 기판의 면 내에 있어서의 상기 도포막의 막 두께 분포를 조정하기 위한 제1 파라미터 및 제2 파라미터를 포함하는 레시피에 기초하여 상기 도포막을 형성하고, 기판의 면 내에 있어서의 당해 도포막의 막 두께 분포를 취득하는 공정과,
상기 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타내는 제1 차수의 함수에 근사시키고, 당해 제1 차수의 함수에 기초하여 상기 제1 파라미터를 변경하는 제1 변경 공정과,
상기 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타냄과 함께 제1 차수보다도 큰 제2 차수의 함수에 근사시키고, 당해 제2 차수의 함수에 기초하여 상기 제2 파라미터를 변경하는 제2 변경 공정과,
상기 제1 변경 공정 및 제2 변경 공정에 의해 변경한 레시피에 기초하여, 기판에 도포막을 형성하는 레시피 변경 후의 도포막 형성 공정
을 구비한 것을 특징으로 한다.
본 발명의 도포막 형성 장치는, 회전하는 기판의 중심부에 약액을 공급하고, 당해 약액을 원심력에 의해 상기 기판의 주연부로 확산해서 도포막을 형성하는 도포막 형성 장치에 있어서,
상기 기판을 적재하고, 회전 기구에 의해 회전하는 적재부와,
상기 적재부에 적재된 기판에 약액을 공급하는 약액 공급부와,
상기 기판에 약액을 공급하기 전에 기판의 온도 혹은 약액의 온도 중 적어도 한쪽을 조정하는 온도 조정 기구와,
상기 기판의 면 내에 있어서의 도포막의 막 두께 분포를 검출하기 위한 막 두께 검출부와,
상기 기판의 면 내에 있어서의 상기 도포막의 막 두께 분포를 조정하기 위한 제1 파라미터 및 제2 파라미터를 포함하는 레시피를 기억하는 기억부와,
상기 레시피에 기초하여 상기 도포막을 형성하고, 기판의 면 내에 있어서의 제1 도포막의 막 두께 분포를 취득하는 스텝과, 계속해서, 상기 제1 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타내는 제1 차수의 함수에 근사시키고, 당해 제1 차수의 함수에 기초하여 상기 제1 파라미터를 변경하는 제1 변경 스텝과, 계속해서, 상기 제1 변경 스텝에 의해 변경한 레시피에 기초하여 기판에 도포막을 형성하고, 당해 기판에 있어서의 제2 도포막의 막 두께 분포를 취득하는 스텝과, 그 후, 상기 제2 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타냄과 함께 제1 차수보다도 큰 제2 차수의 함수에 근사시키고, 당해 제2 차수의 함수에 기초하여 상기 제2 파라미터를 변경하는 제2 변경 스텝과, 그 후, 상기 제1 변경 스텝 및 제2 변경 스텝에 의해 변경한 레시피에 기초하여, 기판에 도포막을 형성하는 스텝을 실행하도록 제어 신호를 출력하는 제어부
를 구비한 것을 특징으로 한다.
본 발명의 다른 도포막 형성 장치는, 회전하는 기판의 중심부에 약액을 공급하고, 당해 약액을 원심력에 의해 상기 기판의 주연부로 확산해서 도포막을 형성하는 도포막 형성 장치에 있어서,
상기 기판을 적재하고, 회전 기구에 의해 회전하는 적재부와,
상기 적재부에 적재된 기판에 약액을 공급하는 약액 공급부와,
상기 기판에 약액을 공급하기 전에 기판의 온도 혹은 약액의 온도 중 적어도 한쪽을 조정하는 온도 조정 기구와,
상기 기판의 면 내에 있어서의 도포막의 막 두께 분포를 검출하기 위한 막 두께 검출부와,
상기 기판의 면 내에 있어서의 상기 도포막의 막 두께 분포를 조정하기 위한 제1 파라미터 및 제2 파라미터를 포함하는 레시피를 기억하는 기억부와,
상기 레시피에 기초하여 상기 도포막을 형성하고, 기판의 면 내에 있어서의 당해 도포막의 막 두께 분포를 취득하는 스텝과, 상기 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타내는 제1 차수의 함수에 근사시키고, 당해 제1 차수의 함수에 기초하여 상기 제1 파라미터를 변경하는 제1 변경 스텝과, 상기 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타냄과 함께 제1 차수보다도 큰 제2 차수의 함수에 근사시키고, 당해 제2 차수의 함수에 기초하여 상기 제2 파라미터를 변경하는 제2 변경 스텝과, 상기 제1 변경 스텝 및 제2 변경 스텝에 의해 변경한 레시피에 기초하여, 기판에 도포막을 형성하는 레시피 변경 후의 도포막 형성 스텝을 실행하도록 제어 신호를 출력하는 제어부
를 구비한 것을 특징으로 한다.
본 발명의 기억 매체는, 회전하는 기판의 중심부에 약액을 공급하고, 당해 약액을 원심력에 의해 상기 기판의 주연부로 확산해서 도포막을 형성하는 도포막 형성 장치에 사용되는 컴퓨터 프로그램을 기억하는 기억 매체이며,
상기 컴퓨터 프로그램은, 상기의 도포막 형성 방법을 실행하도록 스텝군이 짜여져 있는 것을 특징으로 한다.
본 발명은, 측정된 기판의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타내는 제1 차수의 함수 및 제1 차수보다도 높은 제2 차수의 함수에 근사시키고, 제1 차수의 함수에 기초하여 상기 제1 파라미터를 변경하고, 제2 차수의 함수에 기초하여 상기 제2 파라미터를 변경한다. 이와 같이 파라미터의 변경을 행함으로써, 조정 작업 사이에서 설정되는 파라미터 값의 편차가 억제됨과 함께, 부적절한 값이 설정되는 것을 방지할 수 있다.
도 1은 본 발명에 관한 도포, 현상 장치의 개략적인 구성도이다.
도 2는 도포, 현상 장치를 구성하는 레지스트 도포 모듈의 개략적인 종단 측면도이다.
도 3은 도포, 현상 장치를 구성하는 막 두께 검출 모듈의 개략적인 종단 측면도이다.
도 4는 도포, 현상 장치를 구성하는 제어부의 개략적인 구성도이다.
도 5는 레지스트 도포 모듈에 의해 행해지는 처리를 나타내는 차트도이다.
도 6은 도포, 현상 장치에 의해 행해지는 레지스트막의 막 두께 조정용의 파라미터가 설정되는 수순을 나타내는 흐름도이다.
도 7은 웨이퍼의 직경에 있어서의 레지스트막의 막 두께 분포를 나타내는 그래프도이다.
도 8은 웨이퍼의 직경에 있어서의 레지스트막의 막 두께 분포를 나타내는 그래프도이다.
도 9는 웨이퍼의 직경에 있어서의 레지스트막의 막 두께 분포를 나타내는 그래프도이다.
도 10은 웨이퍼의 직경에 있어서의 레지스트막의 막 두께 분포를 나타내는 그래프도이다.
도 11은 웨이퍼의 직경에 있어서의 레지스트막의 막 두께 분포를 나타내는 그래프도이다.
도 12는 웨이퍼의 직경에 있어서의 레지스트막의 막 두께 분포를 나타내는 그래프도이다.
도 13은 웨이퍼의 직경에 있어서의 레지스트막의 막 두께 분포를 나타내는 그래프도이다.
도 14는 웨이퍼의 직경에 있어서의 레지스트막의 막 두께 분포를 나타내는 그래프도이다.
도 15는 웨이퍼의 직경에 있어서의 레지스트막의 막 두께 분포를 나타내는 그래프도이다.
도 16은 막 두께 분포를 근사한 함수로부터 얻어지는 그래프도이다.
도 17은 상기 도포, 현상 장치의 평면도이다.
도 18은 상기 도포, 현상 장치의 사시도이다.
도 19는 상기 도포, 현상 장치의 개략적인 종단 측면도이다.
(제1 실시 형태)
도 1은, 본 발명의 도포막 형성 장치를 구성하는 도포, 현상 장치(1)의 개략적인 구성을 도시하고 있다. 도포, 현상 장치(1)는, 예를 들어, 실온이 23℃로 조정된 클린룸 내에 배치되어 있다. 도면 중 C는 원형의 기판인 복수의 웨이퍼(W)를 저장하여 도포, 현상 장치(1)로 반송하는 캐리어이다. 도면 중 부호 11은 온도 조정 모듈이며, 온도 변경 가능한 스테이지를 구비하고, 당해 스테이지에 적재된 웨이퍼(W)의 온도는, 당해 스테이지의 온도에 일치하도록 조정된다.
도면 중 부호 21은 레지스트 도포 모듈이며, 배경기술의 항목에서 설명한 스핀 코팅에 의해, 웨이퍼(W)의 표면에 레지스트를 도포해서 도포막인 레지스트막을 형성한다. 도면 중 부호 31은 막 두께 검출부를 구성하는 막 두께 검출 모듈이다. 도면 중 부호 12는 웨이퍼(W)의 반송 기구이며, 도 1 중의 화살표로 나타낸 바와 같이 캐리어(C)→온도 조정 모듈(11)→레지스트 도포 모듈(21)→막 두께 검출 모듈(31)→캐리어(C)의 순서대로 웨이퍼(W)를 반송한다. 온도 조정 모듈(11)에 의해 온도 조정된 상태에서, 웨이퍼(W)는 레지스트 도포 모듈(21)로 반송되어, 레지스트 도포 처리를 받는다.
도 2는 레지스트 도포 모듈(21)의 구성을 도시하고 있다. 도면 중 부호 22는 기판의 적재부를 이루는 스핀 척이며, 웨이퍼(W)의 이면 중앙부를 흡착해서 당해 웨이퍼(W)를 수평으로 보유 지지한다. 부호 23은 회전 기구이며, 스핀 척(22)에 보유 지지된 웨이퍼(W)를 연직축 주위로 회전시킨다. 부호 24, 25는 각각 레지스트 토출 노즐, 시너 토출 노즐이며, 이들 레지스트 토출 노즐(24), 시너 토출 노즐(25)은 유로를 통하여 당해 노즐(24, 25)에 레지스트, 시너를 각각 공급하는 레지스트 공급 기구(24A), 시너 공급 기구(25A)에 접속되어 있다.
레지스트 공급 기구(24A)는 약액 공급부를 구성한다. 도면 중 부호 26은 유로 온도 조정부이며, 레지스트 공급 기구(24A)와 레지스트 토출 노즐(24)을 접속하는 유로의 온도를 조정함으로써, 레지스트 토출 노즐(24)로부터 웨이퍼(W)에 토출되는 레지스트를 임의의 온도로 조정할 수 있다.
도면 중 부호 27은 컵이며, 스핀 척(22)에 보유 지지된 웨이퍼(W)를 둘러싼다. 상기의 레지스트 토출 노즐(24) 및 시너 토출 노즐(25)은, 도시하지 않은 이동 기구에 의해 컵(27)의 외측과 컵(27) 내의 웨이퍼(W)의 중심부 상 사이에서 이동 가능하게 구성되어 있다. 도면 중 부호 28은 배기관이며, 컵(27) 내를 배기한다. 부호 29는 액체 배출관이며, 웨이퍼(W)로부터 컵(27) 내에 흘러넘친 액체를 제거한다. 도면 중 부호 20은 기류 형성 유닛이며, 컵(27)의 상방에 설치되고, 당해 컵(27)을 향하여 대기를 공급하고, 하강 기류를 형성한다. 기류 형성 유닛(20)은 컵(27)에 공급하는 대기의 온도를 변경하는 것이 가능하고, 이 온도 변경에 의해, 컵(27) 내에 있어서의 웨이퍼(W)의 주위 분위기의 온도를 임의의 온도로 조정할 수 있다. 따라서, 기류 형성 유닛(20)은 레지스트 도포 전의 웨이퍼(W)의 온도를 조정하고, 이 기류 형성 유닛(20), 온도 조정 모듈(11) 및 유로 온도 조정부(26)는 온도 조정 기구를 구성한다.
레지스트 도포 모듈(21)에 있어서는, 배경기술의 항목에서 설명한 스핀 코팅에 의해, 웨이퍼(W)의 표면 전체에 레지스트막이 형성된다. 또한, 시너 토출 노즐(25)로부터 웨이퍼(W)에 토출되는 시너도, 레지스트와 마찬가지로 스핀 코팅에 의해 웨이퍼(W)의 표면 전체에 도포된다. 시너는 레지스트보다도 먼저 웨이퍼(W)에 도포되고, 레지스트의 습윤성을 향상시키는 약액이다.
도 3은 막 두께 검출 모듈(31)의 구성을 도시하고 있다. 도면 중 부호 32는 하우징, 부호 33은 하우징(32) 내에 설치되는 웨이퍼(W)가 적재되는 스테이지이며, 부호 34는 구동 기구이다. 구동 기구(34)에 의해, 웨이퍼(W)는 회전 가능 또한 전후 방향, 좌우 방향으로 각각 수평으로 이동 가능하게 구성되어 있다. 도면 중 부호 35는 광간섭식 막 두께 측정기이며, 스테이지(33) 상의 웨이퍼(W) 표면과 대향하도록 설치된 프로브(35a)와 광파이버(35b)와 분광기 및 컨트롤러를 포함하는 분광기 유닛(35c)을 구비하고 있고, 웨이퍼(W) 표면에 조사한 광의 반사광 스펙트럼을 취득하고, 당해 스펙트럼의 데이터를 막 두께 검출 데이터로서 후술하는 제어부(4)에 송신한다. 스테이지(33)의 이동에 의해, 웨이퍼(W)의 직경을 따른 영역에서의 다수의 개소의 막 두께 검출 데이터가 취득되고, 제어부(4)에 의해 막 두께 검출 데이터가 취득된 각 개소에 있어서의 레지스트막의 막 두께가 측정된다.
도포, 현상 장치(1)는, 상기의 레지스트막의 막 두께 측정 결과에 기초하여, 웨이퍼(W)의 각 부에 있어서의 레지스트막의 막 두께의 편차를 억제함과 함께, 각 부에 있어서의 막 두께의 평균값이 목표값에 일치 혹은 대략 일치하도록, 웨이퍼(W)의 면 내 각 부에 있어서의 레지스트막의 막 두께를 변경하는 파라미터로 이루어지는 레시피를 자동으로 조정할 수 있도록 구성되어 있다. 도포, 현상 장치(1)는, 이와 같은 레시피의 조정을 행할 수 있도록, 컴퓨터인 제어부(4)를 구비하고 있다. 도 4에는, 당해 제어부(4)의 구성을 도시하고 있다. 도면 중 부호 40은 버스이며, 버스(40)에는 각종 연산을 행하는 CPU(41)와, 프로그램(42)이 저장된 컴퓨터의 기억 매체인 프로그램 저장부(43)가 접속되어 있다. 또한, 이미 설명한 도포, 현상 장치(1)를 구성하는 각 모듈(11, 21, 31) 및 반송 기구(12)도 버스(40)에 접속되어 있다.
상기의 프로그램(42)은 프로그램 저장부(43)에 저장된 상태에서 제어부(4)에 인스톨되고, 도포, 현상 장치(1)의 각 부에 제어 신호를 보내고, 그 동작을 제어할 수 있고, 후술하는 각 스텝을 실행시키도록 명령이 내장되어 있다. 프로그램 저장부는, 예를 들어, 플렉시블 디스크, 콤팩트 디스크, 하드 디스크, MO(광자기 디스크) 및 메모리 카드 등에 의해 구성된다.
또한, 버스(40)에는 상기의 레시피를 저장하는 기억부인 메모리(44)가 접속되어 있다. 레시피를 구성하는 파라미터로서는, 레지스트 도포 모듈(21)에 있어서의 웨이퍼(W)의 회전수의 추이와, 시너 및 레지스트가 웨이퍼(W)에 토출되는 타이밍과의 대응에 대해서 설정된 파라미터군이 있고, 이 파라미터군을 처리 데이터라고 기재한다. 이 처리 데이터에 기초하여, 레지스트 도포 모듈(21)에 있어서의 웨이퍼(W)의 회전수, 레지스트 공급 기구(24A)로부터 레지스트 토출 노즐(24)에의 레지스트의 급단 및 시너 공급 기구(25A)로부터 시너 토출 노즐(25)에의 시너의 급단이 제어된다.
상기의 처리 데이터 외에는, 레시피를 구성하는 파라미터로서, 온도 조정 모듈(11)의 스테이지의 설정 온도가 메모리(44)에 기억되어 있고, 이 설정 온도가 되도록 당해 스테이지의 온도가 조정된다. 또한, 레시피를 구성하는 파라미터로서, 레지스트 도포 모듈(21)에 있어서 웨이퍼(W)에 토출되는 레지스트의 온도, 레지스트 도포 모듈(21)의 컵(27) 내의 분위기의 온도 및 후술하는 웨이퍼(W)에 레지스트가 공급되는 시간 내에 웨이퍼(W)에 토출되는 레지스트의 공급량이 메모리(44)에 기억되어 있다. 이 파라미터에 기초하여, 유로 온도 조정부(26)에 의해 조정되는 레지스트의 온도, 기류 형성 유닛(20)으로부터 공급되는 대기의 온도, 레지스트 공급 기구(24A)로부터 웨이퍼(W)에 공급되는 레지스트의 공급량이 각각 제어된다.
도 5 중의 상단은, 메모리(44)에 기억되는 상기의 처리 데이터에 기초하여 제어되는 웨이퍼(W)의 회전수의 추이를, 타이밍 차트로서 나타낸 것이다. 이 도 5를 참조하면서, 이 회전수의 추이와 레지스트 및 시너가 공급되는 타이밍에 대해 시계열로 설명한다. 웨이퍼(W)가 스핀 척(22)에 적재됨으로써, 레지스트 도포 처리가 개시된다. 그리고 시각 t1에서 예를 들어 회전이 정지된 상태의 웨이퍼(W)에 시너가 토출되고, 시각 t2에서 시너의 토출이 정지됨과 함께 웨이퍼(W)의 회전수가 0rpm으로부터 A1rpm으로 되도록 상승하고, 당해 A1rpm으로 유지된다. 계속해서, 시각 t3에서 레지스트가 웨이퍼(W)에 토출됨과 함께 회전수가 A2rpm으로 되도록 상승하고, 당해 A2rpm으로 유지된다. 그리고, 시각 t4에서 레지스트의 토출이 종료되고, 시각 t5에서 웨이퍼(W)의 회전수가 A3rpm으로 되도록 저하되고, 당해 A3rpm으로 유지된다. 그 후, 시각 t6에서 회전수가 A4rpm으로 되도록 상승하고, 당해 A4rpm으로 유지된 후, 시각 t7에서 저하되어 0rpm으로 되고, 레지스트 도포 처리가 종료된다. 회전수 A1 내지 A4의 크기의 관계에 대해서는, A2>A4>A1>A3>0rpm이다.
시각 t2 내지 시각 t3에서는, 시너가 웨이퍼(W)의 중심부로부터 주연부로 신전되고, 잉여의 시너는 웨이퍼(W)로부터 원심 탈수된다. 시각 t3 내지 t4에서는, 레지스트가 웨이퍼(W)의 중심부로부터 주연부로 신전된다. 시각 t5 내지 t6에서는, 웨이퍼(W)에 작용하는 원심력이 억제되어, 웨이퍼(W)의 주연부로부터 중심부로 레지스트가 이동되고, 웨이퍼(W)의 직경 방향에 있어서의 막 두께 분포가 조정된다. 시각 t6 내지 t7에서는, 레지스트가 건조되어 레지스트막이 형성된다.
제어부(4)는, 상기의 처리 데이터를 구성하는 레지스트 토출 시의 웨이퍼(W)의 회전수 A2 및 레지스트 건조 시의 회전수 A4와, 온도 조정 모듈(11)의 스테이지의 설정 온도에 대해 메모리(44) 내의 데이터를 재기입하고, 자동으로 조정한다. 이 파라미터와 웨이퍼(W)의 막 두께와의 대응을 이하에 설명해 둔다.
회전수 A2가 클수록 웨이퍼(W)에 작용하는 원심력이 크므로, 웨이퍼(W)에 토출된 레지스트 중 대부분이 웨이퍼(W)의 중심부로부터 웨이퍼(W)의 주연부로 이동함으로써, 웨이퍼(W)의 중심부에 대해 주연부의 막 두께가 커진다. 또한, 회전수 A4가 클수록, 웨이퍼(W)의 표면 기류의 유속이 커짐으로써, 레지스트에 포함되는 용제가 보다 많이 휘발하고, 웨이퍼(W)의 표면 전체에 있어서, 레지스트막의 막 두께가 작아진다.
또한, 웨이퍼(W)에 토출된 레지스트는, 당해 웨이퍼(W) 상에서 웨이퍼(W)의 온도에 따른 속도로 건조하고, 유동성이 저하된다. 따라서, 온도 조정 모듈(11)에 의해 웨이퍼(W)의 온도를 조정함으로써, 웨이퍼(W)의 면 내에 있어서의 레지스트막의 막 두께 분포를 조정할 수 있다. 예를 들어 웨이퍼(W)의 온도가 비교적 높으면, 웨이퍼(W)의 중심부에 대해, 중심부와 주연부 사이의 영역의 막 두께가 커진다. 반대로 웨이퍼(W)의 온도가 비교적 낮으면, 웨이퍼(W)의 중심부에 대해, 중심부와 주연부 사이의 영역의 막 두께가 작아진다.
계속해서, 도 6의 흐름도와 도 7 내지 도 14의 그래프를 참조하면서, 도포, 현상 장치(1)에 의해 행해지는 파라미터의 조정 동작에 대해서 설명한다. 도 7 내지 도 14의 그래프는, 웨이퍼(W)의 직경에 있어서의 레지스트막의 막 두께 분포를 나타내는 그래프이며, 그래프의 종축은 레지스트막의 막 두께(단위:㎚)를 나타내고 있다. 그래프의 횡축은 웨이퍼(W)의 직경에 있어서의 위치를 나타내고 있고, 보다 상세하게 설명하면 웨이퍼(W)의 중심을 0㎜로서, 당해 중심으로부터 이격된 거리(단위:㎜)를 나타내고 있다. 웨이퍼(W)의 중심으로부터 웨이퍼(W)의 일단부측으로 이격된 거리에 플러스의 부호, 웨이퍼(W)의 중심으로부터 웨이퍼(W)의 타단부측으로 이격된 거리에 마이너스의 부호를 각각 부여하고 있다. 이 예에서는 레지스트막의 막 두께 목표값이 7180㎚로 설정되어 있다. 도 7의 플롯 P1군은, 이 목표값을 나타내고 있다.
예를 들어 조정 동작의 개시 시점에서는, 메모리(44)에 기억되는 온도 조정 모듈(11)의 스테이지의 설정 온도, 레지스트 도포 모듈(21)에 있어서 웨이퍼(W)에 토출되는 레지스트의 온도 및 레지스트 도포 모듈(21)에 있어서의 컵(27) 내의 분위기의 온도는, 예를 들어, 클린룸의 실온과 동일한 23℃가 된다. 이후의 설명에서는, 조정 동작의 개시 시점에서 메모리(44)에 저장되어 있는 파라미터 값을, 초기값으로서 기재하는 경우가 있다.
조정 동작이 개시되면, 캐리어(C)로부터 1매째의 웨이퍼(W)가 온도 조정 모듈(11)로 반송되고, 온도 조정된 후, 레지스트 도포 모듈(21)로 반송되어 레지스트 도포 처리가 행해진다. 도 5의 상단의 타이밍 차트에서 설명한 바와 같이 웨이퍼(W)의 회전수가 변화됨과 함께 시너 및 레지스트가 공급되고, 1매째의 웨이퍼(W)에 레지스트막이 형성된다. 그리고 나서, 당해 1매째의 웨이퍼(W)는 막 두께 검출 모듈(31)로 반송되어 막 두께가 측정되고, 당해 웨이퍼(W)의 직경에 있어서의 레지스트막의 막 두께 분포가 취득된다. 또한, 이 막 두께 분포에 있어서의 웨이퍼(W)의 중심의 막 두께와 막 두께의 목표값과의 차분이 취득된다(스텝 S1). 도 7에 플롯 P2로서, 이 스텝 S1에서 측정된 1매째의 웨이퍼(W)의 각 부의 막 두께를 나타내고 있다.
그리고 나서, 메모리(44)에 기억되는 처리 데이터의 웨이퍼(W)의 건조 시의 회전수 A4가, 초기값에 대해 예를 들어 200rpm 증가, 혹은 저감된다. 여기서는 200rpm 저감되는 것으로 한다. 이 회전수 A4의 보정 후, 캐리어(C)로부터 반출된 2매째의 웨이퍼(W)가 온도 조정 모듈(11), 레지스트 도포 모듈(21)의 순서로 반송되어, 레지스트막이 형성된다. 그리고 나서, 2매째의 웨이퍼(W)는 막 두께 검출 모듈(31)로 반송되고, 당해 웨이퍼(W)의 직경에 있어서의 레지스트막의 막 두께 분포가 취득된다(스텝 S2). 도 7 중의 플롯 P3은, 이 스텝 S2에서 측정된 2매째의 웨이퍼(W)의 각 부의 막 두께를 나타내고 있다.
1매째 및 2매째의 웨이퍼(W)의 막 두께 분포로부터, 예를 들어, 도 7의 그래프 중에 C1로 나타내는 웨이퍼(W) 표면 전체의 막 두께의 변화량이 취득된다. 이 변화량 C1과 회전수 A4의 보정량이 비례하는 것으로 하여, 회전수 A4의 보정량(단위:rpm)과 당해 웨이퍼(W)의 표면 전체의 막 두께의 변화량(단위:㎚)과의 대응 관계가 취득된다. 이 대응 관계, 회전수 A4의 초기값 및 스텝 S1에서 산출한 웨이퍼(W)의 중심의 막 두께와 막 두께의 목표값과의 차분으로부터, 웨이퍼(W)의 중심의 막 두께를 목표값으로 하는 회전수 A4가 산출되고, 메모리(44) 내의 회전수 A4가, 그와 같이 산출된 값으로 보정된다(스텝 S3).
계속해서, 캐리어(C)로부터 반출된 3매째의 웨이퍼(W)가, 온도 조정 모듈(11), 레지스트 도포 모듈(21)의 순서로 반송되고, 레지스트막이 형성된 후에 막 두께 검출 모듈(31)로 반송되어, 당해 웨이퍼(W)의 직경에 있어서의 레지스트막의 막 두께 분포가 취득된다. 도 8의 플롯 P4는, 이 3매째의 웨이퍼(W)의 각 부의 막 두께를 나타내고 있다. 이와 같이 막 두께 분포가 취득되면, 플롯 P4군이 2차 근사되고, 막 두께 및 웨이퍼(W)의 중심으로부터의 거리를 좌표계로 하는 2차 함수가 취득된다. 즉, 기판의 위치와 막 두께와의 대응을 나타내는 제1 차수의 함수가 취득된다. 도 9에서는, 이 2차 함수로부터 얻어지는 2차 곡선을 B1로서 나타내고 있고, 이 2차 곡선 B1에 있어서의 웨이퍼(W)의 중심과 웨이퍼(W)의 주연과의 막 두께의 차 C2가 취득된다(스텝 S4).
그리고 나서, 메모리(44)의 처리 데이터에 있어서의 웨이퍼(W)에 레지스트를 토출할 때의 회전수 A2가, 초기값에 대해 소정량 증가, 혹은 저감되도록 보정된다. 구체적으로 설명하면, 이 보정은 웨이퍼(W)의 각 부의 막 두께가 균일화되도록 행해진다. 즉, 2차 곡선 B1로 표시되는 막 두께 분포에 대해, 웨이퍼(W)의 중심부에 대해 주연부의 막 두께가 작은 경우, 회전수 A2는 초기값에 대해 소정량 증가되도록 보정되고, 웨이퍼(W)의 중심부에 대해 주연부의 막 두께가 큰 경우, 회전수 A2는 초기값에 대해 소정량 저감되도록 보정된다. 도 9에 도시하는 예에서는, 2차 곡선 B1로 나타나는 막 두께 분포에 대해, 웨이퍼(W)의 중심부에 대해 주연부의 막 두께가 작으므로, 회전수 A2는 초기값에 대해 소정량 증가되도록 보정된다.
회전수 A2의 보정 후, 캐리어(C)로부터 반출된 4매째의 웨이퍼(W)가, 온도 조정 모듈(11), 레지스트 도포 모듈(21)의 순서로 반송되고 레지스트막이 형성된 후에, 막 두께 검출 모듈(31)로 반송되어, 당해 웨이퍼(W)의 직경에 있어서의 레지스트막의 막 두께 분포가 취득된다. 이 4매째의 웨이퍼(W)의 막 두께 분포에 대해서도, 3매째의 웨이퍼(W)로부터 얻어진 막 두께 분포와 마찬가지로 2차 근사되어, 2차 함수가 취득된다. 그리고, 이 2차 함수로부터도, 도 9에서 설명한 웨이퍼(W)의 중심과 웨이퍼(W)의 주연과의 막 두께의 차 C2가 취득된다(스텝 S5).
계속해서, 3매째의 웨이퍼(W)로부터 얻어진 막 두께차 C2와 4매째의 웨이퍼(W)로부터 얻어진 막 두께차 C2와의 변위량이 산출된다. 이 C2의 변위량(단위:㎚)과, 회전수 A2의 보정량(단위 rpm)이 예를 들어 비례하는 것으로 하여, C2의 변위량과 회전수 A2의 보정량과의 대응 관계가 취득된다. 그리고, 이 대응 관계와, 3매째의 웨이퍼(W)의 막 두께차 C2와, 회전수 A2의 초기값으로부터, 막 두께차 C2가 0으로 되는 회전수 A2의 값이 산출되고, 메모리(44)에 기억되는 회전수 A2가, 이 산출된 값으로 보정된다(스텝 S6). 도 10의 직선 B2는, 이와 같이 제1 파라미터에 상당하는 회전수 A2가 보정됨으로써, 다음에 레지스트 도포 처리가 행해졌다고 했을 때에 얻어지는 이상의 막 두께 분포이다.
캐리어(C)로부터 반출된 5매째의 웨이퍼(W)가, 온도 조정 모듈(11), 레지스트 도포 모듈(21)의 순서로 반송되어 레지스트막이 형성된 후, 막 두께 검출 모듈(31)로 반송되고, 당해 웨이퍼(W)의 직경에 있어서의 레지스트막의 막 두께 분포가 취득된다. 도 11은 이 막 두께 분포의 일례를 나타내고 있고, 플롯 P5에서 웨이퍼(W)의 각 부의 막 두께를 나타내고 있다. 이와 같이 막 두께 분포가 취득되면, 플롯 P5군이 4차 근사되어, 막 두께 및 웨이퍼(W)의 중심으로부터의 거리를 좌표계로 하는 4차 함수가 취득된다. 즉, 기판의 위치와 막 두께와의 대응을 나타내는 제2 차수의 함수가 취득된다. 도 12에서는, 이 4차 함수로부터 얻어지는 4차 곡선을 B3으로서 나타내고 있다. 이 4차 곡선 B3에 있어서, 예를 들어, 도면 중에 C3으로 나타내는, 웨이퍼(W)의 중심부와 주연부 사이의 영역에서의 정점의 막 두께와, 웨이퍼(W)의 중심부에 있어서의 정점의 막 두께와의 차분이 취득된다(스텝 S7).
이 스텝 S7에서 취득되는 4차 곡선 B3의 개략적인 형태는, M형 또는 W형으로 된다. 상세하게 설명하면, M형인 경우는, 웨이퍼(W)의 중심부 및 주연부의 막 두께에 대해, 중심부와 주연부 사이의 영역(이하, 설명의 편의상, 중간부라고 기재함)의 막 두께가 크고, W형인 경우는, 웨이퍼(W)의 중심부 및 주연부의 막 두께에 대해 중간부의 막 두께가 작다. 이 4차 곡선으로 나타내는 막 두께 분포가 평탄화되도록, 메모리(44)에 기억되는 온도 조정 모듈(11)의 스테이지의 설정 온도가, 소정량 증가 또는 저감되도록 보정된다. 구체적으로는, 예를 들어, 4차 곡선의 개략적인 형태가 M형인 경우, 온도 조정 모듈(11)의 스테이지의 설정 온도가, 초기값인 23℃에 대해 소정량 저감되도록 보정되고, 4차 곡선의 개략적인 형태가 W형인 경우, 온도 조정 모듈(11)의 설정 온도가 초기값인 23℃에 대해 소정량 증가되도록 보정된다. 도 12에 나타내는 예에서는, 4차 곡선 B3의 개략적인 형태가 W형이므로, 스테이지의 설정 온도가 초기값에 대해 소정량 증가하도록 보정된다.
스테이지의 설정 온도의 보정 후, 캐리어(C)로부터 반출된 6매째의 웨이퍼(W)가 온도 조정 모듈(11), 레지스트 도포 모듈(21)의 순서로 반송되고, 레지스트막이 형성된 후, 막 두께 검출 모듈(31)로 반송되어, 웨이퍼(W)의 직경에 있어서의 레지스트막의 막 두께 분포가 취득된다. 그리고, 이 6매째의 웨이퍼(W)로부터 취득된 막 두께 분포가, 5매째의 웨이퍼(W)로부터 취득된 막 두께 분포와 마찬가지로 4차 근사되어, 4차 함수가 취득된다. 그리고 나서, 이 6매째의 웨이퍼(W)로부터 취득된 4차 함수로부터 얻어지는 4차 곡선에 대해, 도 12에서 설명한, 웨이퍼(W)의 중심부와 주연부 사이의 영역에서의 정점의 막 두께와, 웨이퍼(W)의 중심부에 있어서의 정점의 막 두께와의 차분 C3이 취득된다(스텝 S8).
그 후, 5매째의 웨이퍼(W)로부터 얻어진 막 두께차 C3과, 6매째의 웨이퍼(W)로부터 얻어진 막 두께차 C3과의 변위량이 산출된다. 이 C3의 변위량(단위:㎚)과 온도 조정 모듈(11)에 있어서의 스테이지의 설정 온도의 보정량(단위:℃)이 예를 들어 비례하는 것으로 하여, C3의 변위량과 스테이지의 설정 온도의 보정량과의 대응 관계가 취득된다. 그리고, 이 대응 관계와, 5매째의 웨이퍼(W)의 막 두께차 C3과, 스테이지의 설정 온도의 초기값으로부터, 막 두께차 C3이 0으로 되는 스테이지의 설정 온도가 산출되고, 메모리(44)에 기억되는 스테이지의 설정 온도가, 이 산출된 설정 온도로 보정된다(스텝 S9). 도 13의 직선 B4는, 이와 같이 제2 파라미터에 상당하는 스테이지의 설정 온도가 보정됨으로써, 다음에 레지스트 도포 처리가 행해졌을 때에 얻어지는 이상의 막 두께 분포를 나타내고 있다.
그리고 나서, 7매째의 웨이퍼(W)가 온도 조정 모듈(11), 레지스트 도포 모듈(21)의 순서로 반송되고, 레지스트막이 형성된 후에 막 두께 검출 모듈(31)로 반송되어, 웨이퍼(W)의 직경에 있어서의 레지스트막의 막 두께 분포가 취득된다. 도 14는, 이 막 두께 분포의 일례를 나타내고 있고, 웨이퍼(W)의 각 부의 막 두께를 플롯 P6으로서 나타내고 있다. 이 플롯 P6으로 표시되는 막 두께의 평균값이 산출되고, 당해 평균값과 막 두께의 목표값과의 차분이 산출된다.
그리고 나서, 스텝 S3에서 취득한 회전수 A4의 보정량과 당해 웨이퍼(W)의 표면 전체의 막 두께의 변화량과의 대응 관계에 기초하여, 막 두께의 평균값을 막 두께의 목표값에 일치시키는 회전수 A4의 보정량이 구해지고, 이 보정량에 기초하여 메모리(44)에 기억되는 회전수 A4가 보정되어, 파라미터의 조정 동작이 종료된다(스텝 S10). 이미 스텝 S3에서 회전수 A4가 보정되어 있으므로, 이 스텝 S10의 회전수 A4의 보정은 웨이퍼(W)의 각 부에 있어서의 막 두께를 미세 조정하기 위한 보정이다.
이와 같은 파라미터의 조정 동작 종료 후, 반도체 디바이스를 제조하기 위한 도포, 현상 장치(1)의 운용이 개시된다. 이 운용 시에 있어서, 캐리어(C)로부터 반송된 웨이퍼(W)는, 온도 조정 모듈(11), 레지스트 도포 모듈(21)에 순서로 반송되어, 온도 조정된 후, 레지스트 도포 처리되어 레지스트막이 형성된다. 이 레지스트 도포 처리에 있어서는, 이미 설명한 스텝 S3, S6에서 회전수 A2 및 A4가 보정되어 있음으로써, 웨이퍼(W)의 회전수는, 도 5의 하단의 타이밍 차트로 나타내는 바와 같이 추이한다. 그리고, 상기의 일련의 스텝에 따라서 레시피를 구성하는 파라미터가 조정되어 있음으로써, 이 웨이퍼(W)에 형성되는 레지스트막에 대해서는, 웨이퍼(W)의 면 내 각 부에 있어서의 편차가 억제됨과 함께, 면 내 각 부의 막 두께의 평균값이 목표값에 일치 내지는 대략 일치한 것으로 된다.
이미 설명한 바와 같이 스텝 S4 내지 스텝 S6에 있어서는, 막 두께 분포를 2차 함수에 근사함으로써 웨이퍼(W)의 주연부의 막 두께와 중심부의 막 두께 사이의 차가 검출되고, 이 차를 억제하기 위해 레지스트 공급 시의 회전수 A2가 보정된다. 또한, 스텝 S7 내지 S9에서는, 막 두께 분포를 4차 함수에 근사함으로써, 2차 함수로 근사한 경우보다도, 당해 막 두께 분포가 보다 상세하게 파악됨으로써, 웨이퍼(W)의 주연부 및 중심부의 막 두께와 중간부와의 막 두께의 차가 검출되고, 이 차를 억제하기 위해 온도 조정 모듈(11)의 스테이지의 설정 온도[웨이퍼(W)의 온도]가 보정된다. 이들 스텝 S4 내지 S6 및 S7 내지 S9의 보정은, 막 두께의 평균값에 대한 막 두께의 최소값과의 차, 막 두께의 평균값에 대한 최대값과의 차를 각각 억제하는 것을 목적으로서 행해진다.
이상에서 설명한 바와 같이 도포, 현상 장치(1)에 의하면, 웨이퍼(W)의 막 두께 분포를 2차 근사해서 취득한 2차 함수에 기초하여, 웨이퍼(W)의 주연부의 막 두께와 중심부의 막 두께와의 차가 억제되도록, 레지스트가 공급될 때의 회전수 A2가 보정된다. 또한, 웨이퍼(W)의 막 두께 분포를 4차 근사해서 취득한 4차 함수에 기초하여, 웨이퍼(W)의 면 내에 있어서의 막 두께의 차가 억제되도록, 온도 조정 모듈(11)에 의한 웨이퍼(W)의 온도가 보정된다. 이와 같이 막 두께를 조정하기 위한 파라미터군 중, 각 함수에 대응하는 파라미터가 변경된다. 그로 인해, 조정 동작이 시행될 때마다 동일한 종류의 파라미터에 다른 값이 설정되는 것을 방지하고, 그에 의해 반도체 디바이스를 양산하기 위해 도포, 현상 장치(1)를 운용하는 데 있어서, 부적절한 파라미터 값이 설정되어 버리는 것을 방지할 수 있다. 또한, 조정하는 파라미터의 종류가 많아지는 것을 방지할 수 있음과 함께, 동종의 파라미터에 대해 변경하는 횟수가 많아지는 것을 방지할 수 있으므로, 파라미터의 조정에 필요로 하는 시간의 단축화를 도모할 수 있다.
파라미터 값이 부적절하게 되는 것에 대해, 일례를 설명해 둔다. 반도체 디바이스를 양산하기 위해 도포, 현상 장치(1)를 운용할 때에는, 온도 조정 모듈(11)로부터 레지스트 도포 모듈(21)에 웨이퍼(W)의 반송에 필요로 하는 시간이, 예정되는 시간으로부터 어긋날 우려가 있다. 구체적인 예를 들면, 레지스트 도포 모듈(21)에 의해 웨이퍼(W)를 처리 중일 때에 반송 기구(12)가 온도 조정 모듈(11)에 의해 온도 조정된 웨이퍼(W)를 보유 지지한 상태로, 레지스트 도포 모듈(21)로부터 처리 완료된 웨이퍼(W)가 반출될 때까지 대기하는 것이 생각되고, 이 대기에 의해, 반송에 필요로 하는 시간에 어긋남이 발생한다. 그리고, 온도 조정 모듈(11)의 스테이지의 설정 온도, 즉 온도 조정 모듈(11)에 의해 온도 조정되는 웨이퍼(W)의 온도가, 클린룸의 실온으로부터 크게 이격되어 있을수록, 당해 실온의 영향을 받음으로써, 반송 시간의 어긋남에 대한 웨이퍼(W)의 온도 변화량이 커지므로, 결과적으로, 레지스트 도포 모듈(21)에 반입 시의 웨이퍼(W)의 온도가, 예정되는 온도로 크게 어긋나 버린다. 즉, 클린룸의 실온으로부터 크게 이격된 스테이지의 설정 온도는, 상기의 도포, 현상 장치(1)를 운용하는 데 있어서 부적절한 파라미터값이다.
그러나 상기의 파라미터의 조정 작업에 있어서는, 회전수 A2를 보정해서 미리 웨이퍼(W)의 막 두께 분포를 조정한 후에, 온도 조정 모듈(11)의 스테이지의 설정 온도가 보정되어 있다. 이와 같은 순번대로 보정이 행해지고 있음으로써, 예를 들어, 회전수 A2보다도 먼저 스테이지의 설정 온도를 보정하고, 웨이퍼(W)의 각 부의 막 두께가 대략 균일해지도록 설정한 후, 회전수 A2를 보정하는 것에 비해, 스테이지의 설정 온도의 보정량을 작게 억제할 수 있다. 따라서, 스테이지의 설정 온도가, 부적절한 파라미터값이 되는 것을 방지할 수 있다.
그런데, 도 5의 타이밍 차트로 나타내는 시각 t3 내지 시각 t4의 레지스트 토출 시간과, 이 시각 t3 내지 시각 t4에 있어서 웨이퍼(W)에 토출되는 레지스트의 공급량은, 레지스트 토출 시의 회전수 A2와 마찬가지로, 웨이퍼(W)에 있어서의 레지스트의 확대 상태를 조정하고, 웨이퍼(W)의 중심부와 주연부 사이에 있어서의 막 두께 분포를 조정할 수 있는 파라미터이다. 따라서, 상기의 스텝 S5 내지 S6에서는 회전수 A2 대신에, 이 레지스트의 토출 시간 또는 레지스트의 공급량을 보정하도록 해도 좋다.
또한, 웨이퍼(W)에 토출되는 레지스트의 온도 및 컵(27) 내의 분위기의 온도는, 온도 조정 모듈(11)의 스테이지의 설정 온도와 마찬가지로, 웨이퍼(W)에 토출된 레지스트의 건조 속도를 조정하고, 웨이퍼(W)의 중심부 및 주연부의 막 두께에 대해 중간부의 막 두께를 변이시킬 수 있는 파라미터이다. 따라서, 상기의 스텝 S8, S9에 있어서는, 온도 조정 모듈(11)의 스테이지의 설정 온도 대신에, 이 레지스트의 온도 또는 컵(27) 내의 분위기의 온도를 보정하도록 해도 좋다.
레지스트의 온도에 대해, 클린룸의 실온으로부터 크게 이격된 값이 설정된 경우, 당해 레지스트가 유로 온도 조정부(26)에서 온도 조정되고 나서 웨이퍼(W)에 공급될 때까지, 외란에 의해 그 온도가 변동되기 쉬워질 우려가 있다. 또한, 컵(27) 내의 분위기의 온도에 대해서도 클린룸의 실온으로부터 크게 이격된 값이 설정된 경우에는, 대기가 기류 형성 유닛(20)으로부터 공급된 후, 컵(27) 내에 공급될 때까지, 외란에 의해 그 온도가 변동되기 쉬워질 우려가 있다. 따라서, 온도 조정 모듈(11)의 스테이지의 설정 온도와 마찬가지로, 레지스트의 온도 및 컵(27) 내의 분위기의 온도에 대해서도, 클린룸의 실온으로부터 크게 이격된 값은, 부적절한 파라미터값이다. 그러나, 스텝 S8, S9에 있어서, 온도 조정 모듈(11)의 스테이지의 설정 온도 대신에, 레지스트의 온도 혹은 컵(27) 내의 분위기의 온도를 보정하는 경우도, 당해 레지스트의 온도 보정은 회전수 A2의 보정 후에 행해지므로, 그와 같은 부적절한 파라미터값으로서 설정되는 것을 방지할 수 있다.
그런데, 상기의 스텝 S1 내지 S3에서 웨이퍼(W)의 전체의 막 두께의 변위량과 레지스트막의 건조 시의 회전수 A4의 보정량과의 대응 관계(이하, 막 두께-회전수 A4 대응 관계라고 기재함)를 취득하고 있지만, 실험을 행함으로써, 조정 동작을 행하기 전에 미리 이 막 두께-회전수 A4 대응 관계에 대해 취득해 두고, 당해 대응 관계를 제어부(4)의 메모리에 기억해 둔다. 그리고, 당해 메모리에 기억된 막 두께-회전수 A4 대응 관계에 기초하여, 회전수 A4의 보정을 행해도 좋다. 그렇게 함으로써, 상기의 조정 동작에 있어서, 일련의 웨이퍼(W)의 온도 조정, 웨이퍼(W)에의 레지스트 도포 처리 및 막 두께 측정을 행하는 횟수를 줄이고, 조정 동작에 필요로 하는 시간을 보다 단축할 수 있다. 또한, 스텝 S4 내지 S6에서 취득하고 있는 2차 곡선 상의 막 두께차 C2의 변위량과 회전수 A2의 보정량과의 대응 관계 및 스텝 S7 내지 S9에서 취득하고 있는 4차 곡선 상의 막 두께 C3의 변위량과 스테이지의 설정 온도의 보정량과의 대응 관계에 대해서도 미리 취득해서 메모리에 기억시켜 두고, 기억된 이들 대응 관계에 기초하여 보정이 행해지도록 해도 좋다.
상기의 스텝 S1 내지 S3은, 회전수 A4를 보정하여, 이후의 스텝에서 웨이퍼(W)의 막 두께를 평균 막 두께에 정밀도 높게 맞춰 넣는 것 및 막 두께-회전수 A4 대응 관계를 취득하는 것을 목적으로서 행하는 것이다. 회전 수 A4의 보정은 스텝 S10에서도 행하기 때문에, 상기와 같이 막 두께-회전수 A4 대응 관계를 미리 취득하고 있는 경우, 스텝 S1에서, 취득된 웨이퍼(W)의 중심의 막 두께와 막 두께의 목표값과의 차분이 미리 설정한 허용 범위 내인지 여부를 제어부(4)가 판정하고, 이 판정 결과에 따라서, 회전수 A4의 보정을 행할지 여부가 결정되도록 해도 좋다. 구체적으로는 예를 들어, 허용 범위 외라고 판정된 경우에는, 상기 막 두께-회전수 A4 대응 관계에 따라서, 회전수 A4가 보정되고, 보정 후는 스텝 S4 이하의 스텝이 실시되고, 후속의 웨이퍼(W)에 형성된 레지스트막의 막 두께 분포가 2차 함수로 근사되도록 한다. 허용 범위 내라고 판정된 경우에는, 회전수 A4가 보정되지 않고, 스텝 S1에서 취득된 막 두께 분포가 2차 함수에 근사되고, 그 후 스텝 S5 이하의 스텝이 실시되도록 한다.
또한, 스텝 S1 내지 S3에서는 웨이퍼(W)의 중심을 기준 위치로서, 당해 기준 위치의 막 두께가 목표값이 되도록 회전수 A4를 보정하고 있지만, 중심 이외의 위치를 기준 위치로서 회전수 A4를 보정해도 좋다. 또한, 스텝 S1, S2로부터 얻어진 막 두께 분포에 대해서도 각각 2차 함수로 근사해서 2차 곡선을 구하고, 이 2차 곡선으로 나타내는 막 두께 분포에 기초하여, 상기 기준 위치의 막 두께와 막 두께의 목표값과의 차를 구하고, 그에 의해 회전수 A4의 보정량을 산출해도 좋다.
그런데, 스텝 S4, S5에 있어서, 레지스트막의 막 두께 분포를 2차보다도 고차의 함수에 근사해도 좋다. 또한, 스텝 S7, S8에 있어서는, 레지스트막의 막 두께 분포를 4차보다도 고차의 함수에 근사해도 좋다. 단, 스텝 S7, S8에서는, 스텝 S4, S5보다도 상세한 막 두께 분포를 파악하기 위해, 스텝 S7, S8에서 근사한 함수의 차수>스텝 S4, S5에서 근사한 함수의 차수로 한다. 스핀 코팅에 의해 레지스트는 웨이퍼(W)의 둘레 방향으로 균일성 높게 확대되므로, 웨이퍼(W)의 중심으로부터 일단부측에서 본 레지스트막의 막 두께 분포와, 웨이퍼(W)의 중심으로부터 타단부측에서 본 레지스트막의 막 두께 분포와는 서로 대략 동등하다. 따라서, 웨이퍼(W)의 직경에 있어서의 막 두께 분포를 정밀도 높게 나타내기 위해, 근사한 함수의 차수는, 짝수의 차수로 하는 것이 바람직하다.
(제2 실시 형태)
제2 실시 형태의 파라미터의 조정 동작에 대해, 제1 실시 형태의 조정 동작과의 차이점을 중심으로 설명한다. 우선, 제1 실시 형태의 스텝 S1과 마찬가지로, 1매째의 웨이퍼(W)가 온도 조정 모듈(11), 레지스트 도포 모듈(21), 막 두께 검출 모듈(31)에 순서로 반송되어, 웨이퍼(W)의 직경에 있어서의 레지스트막의 막 두께 분포가 취득된다(스텝 S11). 예를 들어, 도 15의 플롯 P2군으로 나타내는, 막 두께 분포가 얻어진 것으로 한다.
그리고 나서, 이 플롯 P2군이 2차 근사되어 2차 함수가 취득된다. 도 15 중 B5는, 이 2차 함수로부터 얻어지는 2차 곡선을 나타내고 있다. 또한 플롯 P2군이 4차 근사되어 4차 함수가 취득된다. 그리고, 이 4차 함수로부터 얻어지는 4차 곡선(도시는 생략하고 있음)으로 표시되는 막 두께 분포로부터 2차 곡선 B5로 표시되는 막 두께 분포를 차감한다. 보다 상세하게 설명하면, 횡축의 좌표가 서로 동일한 4차 곡선으로 나타내는 막 두께의 값과, 2차 곡선 B5로 표시되는 막 두께의 값과의 차분이 산출되고, 웨이퍼(W)의 직경에 있어서의, 이 차분의 분포가 취득된다. 도 16에 곡선 B6으로, 이 차분의 분포를 나타내고 있다.
계속해서, 2차 곡선 B5에 있어서의 정점의 막 두께[웨이퍼(W)의 중심의 막 두께]와 막 두께의 목표값과의 차 C4 및 2차 곡선 B5에 있어서의 웨이퍼(W)의 중심의 막 두께와 주연의 막 두께와의 차 C5가 취득된다. 또한 차분의 분포 곡선 B6에 대해, 웨이퍼(W)의 중심에 있어서의 정점의 막 두께차와 웨이퍼(W)의 중간부에 있어서의 정점의 막 두께차와의 차 C6이 취득된다(스텝 S12).
그 후, 메모리(44)에 기억되는 회전수 A2, A4, 스테이지의 설정 온도에 대해, 각각 소정량 보정된다. 보정 후에 2매째의 웨이퍼(W)가, 스텝 S11과 마찬가지로 온도 조정 모듈(11), 레지스트 도포 모듈(21), 막 두께 검출 모듈(31)에 순서로 반송되어, 웨이퍼(W)의 직경에 있어서의 레지스트막의 막 두께 분포가 취득된다(스텝 S13). 이 2매째의 웨이퍼(W)의 막 두께 분포에 대해서도 스텝 S12와 마찬가지로 2차 함수 및 4차 함수로 근사되고, 2차 곡선 B5에 있어서의 웨이퍼(W)의 중심의 막 두께와 막 두께의 목표값과의 차 C4, 2차 곡선 B5에 있어서의 웨이퍼(W)의 중심의 막 두께와 주연의 막 두께와의 차 C5 및 차분의 분포 곡선 B6에 있어서의 정점간의 차 C6이 취득된다(스텝 S14). 그리고, C4, C5, C6에 대해, 각각 스텝 S12에서 얻어진 값과 스텝 S14에서 얻어진 값과의 차가 취득된다.
취득된 C4에 대한 차와 회전수 A4의 보정량이 비례 관계에 있는 것으로서, C4에 대한 차와 회전수 A4의 보정량과의 대응 관계가 취득된다. 이 대응 관계와 회전수 A4의 초기값과 스텝 S12에서 취득된 C4로부터, 당해 C4를 0으로 하는 회전수 A4가 산출되고, 메모리(44) 내의 A4가 이 산출값으로 보정된다. 또한, 취득된 C5에 대한 차와 회전수 A2의 보정량이 비례 관계에 있는 것으로서, C5에 대한 차와 회전수 A2의 보정량과의 대응 관계가 취득된다. 이 대응 관계와 회전수 A2의 초기값과 스텝 S12에서 취득된 C5로부터, 당해 C5를 0으로 하는 회전수 A2가 산출되고, 메모리(44) 내의 A2가 이 산출값으로 보정된다. 또한, 취득된 C6에 대한 차와 스테이지의 설정 온도의 보정량이 비례 관계에 있는 것으로서, C6에 대한 차와 스테이지의 설정 온도의 보정량과의 대응 관계가 취득된다. 이 대응 관계와 스테이지의 설정 온도의 초기값과 스텝 S12에서 취득된 C6으로부터, 당해 C6을 0으로 하는 스테이지의 설정 온도가 산출되고, 메모리(44) 내의 스테이지의 설정 온도가 이 산출값으로 보정된다(스텝 S15).
계속해서 3매째의 웨이퍼(W)가 온도 조정 모듈(11), 레지스트 도포 모듈(21), 막 두께 검출 모듈(31)에 순서로 반송되어, 웨이퍼(W)의 직경에 있어서의 레지스트막의 막 두께 분포가 취득된다(스텝 S16). 그리고, 제1 실시 형태의 스텝 S10과 마찬가지로, 3매째의 웨이퍼(W)의 막 두께 분포로부터 막 두께의 평균값이 산출되고, 이 평균값과 막 두께의 목표값과의 차분이 산출된다. 이 차분과, 스텝 S15에서 취득된 C4에 대한 차와 회전수 A4의 보정량과의 대응 관계와, 메모리에 기억된 회전수 A4에 기초하여, 당해 차분을 0으로 하는 회전수 A4가 산출되고, 이 산출값에 메모리(44)에 기억되는 회전수 A4가 보정되어, 파라미터의 조정 동작이 종료된다(스텝 S17).
이 제2 실시 형태에 있어서는, 제1 실시 형태와 마찬가지의 효과를 갖는 것 외에, 웨이퍼(W)의 온도 조정, 레지스트 도포 처리 및 막 두께의 측정을 행하는 횟수를, 보다 적게 할 수 있어, 조정 동작에 필요로 하는 시간을 억제할 수 있는 이점이 있다.
또한, 제1 실시 형태에서 설명한 기술은, 제2 실시 형태에도 적용할 수 있다. 구체적으로는, 예를 들어, 막 두께 분포를 4차 함수에 근사한 대신에, 보다 고차의 함수에 근사해도 좋다. 또한, 본 발명은 레지스트막을 형성하는 장치에 적용되는 것에 한정되지 않고, 예를 들어, 반사 방지막을 형성하는 장치나 폴리이미드 등의 절연막을 형성하는 장치에도 적용할 수 있다.
도 17 내지 도 19에, 도포, 현상 장치(1)의 상세한 구성의 일례를 나타낸다. 도 17, 도 18, 도 19는 각각 당해 도포, 현상 장치(1)의 평면도, 사시도, 개략적인 종단 측면도이다. 이 도포, 현상 장치(1)는 캐리어 블록(D1)과, 처리 블록(D2)과, 인터페이스 블록(D3)을 직선 형상으로 접속해서 구성되어 있다. 인터페이스 블록(D3)에는 노광 장치(D4)가 접속되어 있다. 이후의 설명에서는 블록(D1 내지 D3)의 배열 방향을 전후 방향으로 한다. 캐리어 블록(D1)은 캐리어(C)를 도포, 현상 장치(1) 내에 대해 반입출하고, 캐리어(C)의 적재대(51)와, 개폐부(52)와, 개폐부(52)를 통하여 캐리어(C)로부터 웨이퍼(W)를 반송하기 위한 이동 탑재 기구(53)를 구비하고 있다.
처리 블록(D2)은 웨이퍼(W)에 액 처리를 행하는 제1 내지 제6 단위 블록(E1 내지 E6)이 아래로부터 순서대로 적층되어 구성되어 있다. 설명의 편의상 웨이퍼(W)에 하층측의 반사 방지막을 형성하는 처리를 「BCT」, 웨이퍼(W)에 레지스트막을 형성하는 처리를 「COT」, 노광 후의 웨이퍼(W)에 레지스트 패턴을 형성하기 위한 처리를 「DEV」로 각각 표현하는 경우가 있다. 이 예에서는, 도 18에 도시하는 바와 같이 아래로부터 BCT층, COT층, DEV층이 2층씩 쌓아 올려져 있다. 동일한 단위 블록에 있어서 서로 병행하여 웨이퍼(W)의 반송 및 처리가 행해진다.
여기서는 단위 블록 중 대표해서 COT층(E3)을, 도 17을 참조하면서 설명한다. 캐리어 블록(D1)으로부터 인터페이스 블록(D3)을 향하는 반송 영역(54)의 좌우 일방측에는 선반 유닛(U)이 전후 방향으로 복수 배치되고, 타방측에는 각각 레지스트 도포 모듈(21), 보호막 형성 모듈(ITC)이 전후 방향으로 배열되어 설치되어 있다. 보호막 형성 모듈(ITC)은 레지스트막 상에 소정의 처리액을 공급하고, 당해 레지스트막을 보호하는 보호막을 형성한다. 선반 유닛(U)은 가열 모듈을 구비하고 있다. 상기 반송 영역(54)에는 웨이퍼(W)의 반송 기구인 반송 아암(F3)이 설치되어 있고, 이 반송 아암(F3)과 COT층(E4)에 설치되는 반송 아암(F4)이 각각 상기의 반송 기구(12)에 상당한다.
다른 단위 블록(E1, E2, E5 및 E6)은, 웨이퍼(W)에 공급하는 약액이 다른 것을 제외하고, 단위 블록(E3, E4)과 마찬가지로 구성된다. 단위 블록(E1, E2)은 레지스트 도포 모듈(21) 대신에 웨이퍼(W)에 반사 방지막 형성용의 약액을 공급하는 반사 방지막 형성 모듈을 구비하고, 단위 블록(E5, E6)은 웨이퍼(W)에 약액으로서 현상액을 공급하는 현상 모듈을 구비한다. 도 19에서는 각 단위 블록(E1 내지 E6)의 반송 아암은 F1 내지 F6으로서 나타내고 있다.
처리 블록(D2)에 있어서의 캐리어 블록(D1)측에는, 각 단위 블록(E1 내지 E6)에 걸쳐서 상하에 신장하는 타워(T1)와, 타워(T1)에 대해 웨이퍼(W)의 전달을 행하기 위한 승강 가능한 전달 기구인 전달 아암(55)이 설치되어 있다. 타워(T1)는 서로 적층된 복수의 모듈에 의해 구성되어 있고, 전달 모듈(TRS)과, 상기의 온도 조정 모듈(11) 및 막 두께 검출 모듈(31)을 구비하고 있다. 단위 블록(E1 내지 E6)의 각 높이에 설치되는 전달 모듈(TRS) 및 온도 조정 모듈(11)은, 당해 단위 블록(E1 내지 E6)의 각 반송 아암(F1 내지 F6) 사이에서 웨이퍼(W)를 전달할 수 있다. 이후, 단위 블록(E1, E2, E3, E4)의 각 높이에 설치되는 온도 조정 모듈(11)을, 각각 11A, 11B, 11C, 11D라고 기재한다.
인터페이스 블록(D3)은, 단위 블록(E1 내지 E6)에 걸쳐서 상하에 신장하는 타워 T2, T3, T4를 구비하고 있고, 타워 T2와 타워 T3에 대해 웨이퍼(W)의 전달을 행하기 위한 승강 가능한 전달 기구인 인터페이스 아암(56)과, 타워 T2와 타워 T4에 대해 웨이퍼(W)의 전달을 행하기 위한 승강 가능한 전달 기구인 인터페이스 아암(57)과, 타워 T2와 노광 장치(D4) 사이에 웨이퍼(W)의 전달을 행하기 위한 인터페이스 아암(58)이 설치되어 있다.
타워(T2)는 전달 모듈(TRS), 노광 처리 전의 복수매의 웨이퍼(W)를 저장하여 체류시키는 버퍼 모듈, 노광 처리 후의 복수매의 웨이퍼(W)를 저장하는 버퍼 모듈 및 웨이퍼(W)의 온도 조정을 행하는 온도 조정 모듈 등이 서로 적층되어 구성되어 있지만, 여기서는, 버퍼 모듈 및 온도 조정 모듈의 도시는 생략한다. 이 도포, 현상 장치(1)에 있어서는, 웨이퍼(W)가 적재되는 장소를 모듈이라고 기재한다. 또한, 타워(T3, T4)에도 각각 모듈이 설치되어 있지만, 여기서는 설명을 생략한다.
이 도포, 현상 장치(1) 및 노광 장치(D4)로 이루어지는 시스템에 있어서, 상기의 파라미터 조정 후의 반도체 디바이스의 제조 시에서의 웨이퍼(W)의 반송 경로에 대해 설명한다. 웨이퍼(W)는 캐리어(C)로부터 이동 탑재 기구(53)에 의해, 처리 블록(D2)에 있어서의 타워(T1)의 전달 모듈(TRS0)로 반송된다. 이 전달 모듈(TRS0)로부터 웨이퍼(W)는 단위 블록(E1, E2)에 할당되어 반송된다.
예를 들어 웨이퍼(W)를 단위 블록(E1)에 전달하는 경우에는, 타워(T1)의 온도 조정 모듈(11) 중, 단위 블록(E1)에 대응하는 온도 조정 모듈(11A)[반송 아암(F1)에 의해 웨이퍼(W)의 전달이 가능한 전달 모듈]에 대해, 상기 TRS0으로부터 웨이퍼(W)가 전달된다. 또한 웨이퍼(W)를 단위 블록(E2)에 전달하는 경우에는, 타워(T1)의 전달 모듈(TRS) 중, 단위 블록(E2)에 대응하는 온도 조정 모듈(11B)에 대해, 상기 TRS0으로부터 웨이퍼(W)가 전달된다. 이들 웨이퍼(W)의 전달은, 전달 아암(55)에 의해 행해진다. 이와 같이 할당된 웨이퍼(W)는, 온도 조정 모듈[11A(11B)]→반사 방지막 형성 모듈→가열 모듈→타워(T1)의 전달 모듈[TRS1(TRS2)]의 순서로 반송되고, 계속해서 전달 아암(55)에 의해 단위 블록(E3)에 대응하는 온도 조정 모듈(11C)과, 단위 블록(E4)에 대응하는 온도 조정 모듈(11D)에 할당된다.
이와 같이 11C, 11D에 할당된 웨이퍼(W)는, 온도 조정 모듈[11C(11D)]→레지스트 도포 모듈(21)→가열 모듈→보호막 형성 모듈(ITC)→가열 모듈→타워(T2)의 전달 모듈(TRS)의 순서로 반송된다. 그리고 나서, 이 웨이퍼(W)는 인터페이스 아암(56, 58)에 의해, 타워(T3)를 통하여 노광 장치(D4)에 반입된다. 노광 후의 웨이퍼(W)는 인터페이스 아암(57)에 의해 타워(T2, T4) 사이를 반송하여, 단위 블록(E5, E6)에 대응하는 타워(T2)의 전달 모듈(TRS5, TRS6)에 각각 반송된다. 그리고 나서, 가열 모듈→현상 모듈→가열 모듈→타워(T1)의 전달 모듈(TRS)로 반송된 후, 이동 탑재 기구(53)를 통하여 캐리어(C)로 되돌려진다.
상기의 스텝에서 설명한 파라미터의 조정 동작 시에는, 웨이퍼(W)는 캐리어(C)로부터 이동 탑재 기구(53)에 의해, 타워(T1)의 전달 모듈(TRS0)로 반송되고, 전달 아암(55)에 의해, 온도 조정 모듈[11C(11D)]→레지스트 도포 모듈(21)→타워(T1)의 전달 모듈[TRS3(TRS4)]→막 두께 검출 모듈(31)의 순서로 반송되고, 이동 탑재 기구(53)를 통하여 캐리어(C)로 되돌려진다.
1 : 도포, 현상 장치
11 : 온도 조정 모듈
21 : 레지스트 도포 모듈
22 : 스핀 척
24A : 레지스트 공급 기구
31 : 막 두께 검출 모듈
4 : 제어부
42 : 프로그램
43 : 프로그램 저장부
44 : 메모리

Claims (12)

  1. 회전하는 기판의 중심부에 약액을 공급하고, 당해 약액을 원심력에 의해 상기 기판의 주연부로 확산해서 도포막을 형성하는 도포막 형성 방법에 있어서,
    상기 기판의 면 내에 있어서의 상기 도포막의 막 두께 분포를 조정하기 위한 제1 파라미터 및 제2 파라미터를 포함하는 레시피에 기초하여 상기 도포막을 형성하고, 기판의 면 내에 있어서의 제1 도포막의 막 두께 분포를 취득하는 공정과,
    계속해서, 상기 제1 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타내는 제1 차수의 함수에 근사시키고, 당해 제1 차수의 함수에 기초하여 상기 제1 파라미터를 변경하는 제1 변경 공정과,
    계속해서, 상기 제1 변경 공정에 의해 변경한 레시피에 기초하여 기판에 도포막을 형성하고, 당해 기판에 있어서의 제2 도포막의 막 두께 분포를 취득하는 공정과,
    그 후, 상기 제2 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타냄과 함께 제1 차수보다도 큰 제2 차수의 함수에 근사시키고, 당해 제2 차수의 함수에 기초하여 상기 제2 파라미터를 변경하는 제2 변경 공정과,
    그 후, 상기 제1 변경 공정 및 제2 변경 공정에 의해 변경한 레시피에 기초하여, 기판에 도포막을 형성하는 공정
    을 구비하고,
    상기 제1 변경 공정은, 상기 제1 파라미터를 각각 제1 값, 제2 값으로 하여 형성되는 각 도포막의 막 두께 분포로부터 각각 얻어지는 제1 차수의 함수에 기초하여, 당해 제1 파라미터를 변경하는 공정을 포함하고,
    상기 제2 변경 공정은, 상기 제2 파라미터를 각각 제3 값, 제4 값으로 하여 형성되는 각 도포막의 막 두께 분포로부터 각각 얻어지는 제2 차수의 함수에 기초하여, 당해 제2 파라미터를 변경하는 공정을 포함하는 것을 특징으로 하는, 도포막 형성 방법.
  2. 제1항에 있어서,
    상기 레시피는 기판의 면 내 전체에서 막 두께를 변이시키기 위한 제3 파라미터를 포함하고,
    상기 제1 도포막의 막 두께 분포를 취득하는 공정을 행하기 전에, 상기 레시피에 기초하여 상기 기판에 상기 도포막을 형성하고, 당해 기판의 기준 위치에 있어서의 상기 도포막의 막 두께를 취득하는 공정과,
    취득된 기준 위치의 막 두께와, 기준의 막 두께와의 차에 기초하여, 상기 제3 파라미터를 변경하는 공정을 포함하고,
    상기 제1 도포막의 막 두께 분포를 취득하는 공정에 있어서는, 상기 제3 파라미터가 변경된 레시피에 기초하여 도포막이 형성되는 것을 특징으로 하는, 도포막 형성 방법.
  3. 회전하는 기판의 중심부에 약액을 공급하고, 당해 약액을 원심력에 의해 상기 기판의 주연부로 확산해서 도포막을 형성하는 도포막 형성 방법에 있어서,
    상기 기판의 면 내에 있어서의 상기 도포막의 막 두께 분포를 조정하기 위한 제1 파라미터 및 제2 파라미터를 포함하는 레시피에 기초하여 상기 도포막을 형성하고, 기판의 면 내에 있어서의 당해 도포막의 막 두께 분포를 취득하는 공정과,
    상기 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타내는 제1 차수의 함수에 근사시키고, 당해 제1 차수의 함수에 기초하여 상기 제1 파라미터를 변경하는 제1 변경 공정과,
    상기 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타냄과 함께 제1 차수보다도 큰 제2 차수의 함수에 근사시키고, 당해 제2 차수의 함수에 기초하여 상기 제2 파라미터를 변경하는 제2 변경 공정과,
    상기 제1 변경 공정 및 제2 변경 공정에 의해 변경한 레시피에 기초하여, 기판에 도포막을 형성하는 레시피 변경 후의 도포막 형성 공정
    을 구비하고,
    상기 제1 변경 공정은, 상기 제1 파라미터를 각각 제1 값, 제2 값으로 하여 형성되는 각 도포막의 막 두께 분포로부터 각각 얻어지는 제1 차수의 함수에 기초하여, 당해 제1 파라미터를 변경하는 공정을 포함하고,
    상기 제2 변경 공정은, 상기 제2 파라미터를 각각 제3 값, 제4 값으로 하여 형성되는 각 도포막의 막 두께 분포로부터 각각 얻어지는 제2 차수의 함수에 기초하여, 당해 제2 파라미터를 변경하는 공정을 포함하는 것을 특징으로 하는, 도포막 형성 방법.
  4. 제3항에 있어서,
    상기 레시피는 기판의 면 내 전체에서 막 두께를 변이시키기 위한 제3 파라미터를 포함하고,
    상기 막 두께 분포에 있어서의 기판의 기준 위치의 상기 도포막의 막 두께와, 기준의 막 두께와의 차에 기초하여, 상기 제3 파라미터를 변경하는 제3 변경 공정을 포함하고,
    상기 레시피 변경 후의 도포막 형성 공정은, 상기 제1 변경 공정, 제2 변경 공정 및 제3 변경 공정에 의해 변경한 레시피에 기초하여 행해지는 것을 특징으로 하는, 도포막 형성 방법.
  5. 제3항 또는 제4항에 있어서,
    상기 제2 변경 공정에 있어서, 상기 제2 파라미터는 제1 차수의 함수와 제2 차수의 함수에 기초하여 변경되는 것을 특징으로 하는, 도포막 형성 방법.
  6. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 제2 파라미터는, 기판의 온도 또는 약액의 온도를 조정하기 위한 온도 조정용의 파라미터이며,
    상기 제1 파라미터는 상기 온도 조정용의 파라미터와는 다른 파라미터인 것을 특징으로 하는, 도포막 형성 방법.
  7. 삭제
  8. 회전하는 기판의 중심부에 약액을 공급하고, 당해 약액을 원심력에 의해 상기 기판의 주연부로 확산해서 도포막을 형성하는 도포막 형성 장치에 있어서,
    상기 기판을 적재하고, 회전 기구에 의해 회전하는 적재부와,
    상기 적재부에 적재된 기판에 약액을 공급하는 약액 공급부와,
    상기 기판에 약액을 공급하기 전에 기판의 온도 혹은 약액의 온도 중 적어도 한쪽을 조정하는 온도 조정 기구와,
    상기 기판의 면 내에 있어서의 도포막의 막 두께 분포를 검출하기 위한 막 두께 검출부와,
    상기 기판의 면 내에 있어서의 상기 도포막의 막 두께 분포를 조정하기 위한 제1 파라미터 및 제2 파라미터를 포함하는 레시피를 기억하는 기억부와,
    상기 레시피에 기초하여 상기 도포막을 형성하고, 기판의 면 내에 있어서의 제1 도포막의 막 두께 분포를 취득하는 스텝과, 계속해서, 상기 제1 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타내는 제1 차수의 함수에 근사시키고, 당해 제1 차수의 함수에 기초하여 상기 제1 파라미터를 변경하는 제1 변경 스텝과, 계속해서, 상기 제1 변경 스텝에 의해 변경한 레시피에 기초하여 기판에 도포막을 형성하고, 당해 기판에 있어서의 제2 도포막의 막 두께 분포를 취득하는 스텝과, 그 후, 상기 제2 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타냄과 함께 제1 차수보다도 큰 제2 차수의 함수에 근사시키고, 당해 제2 차수의 함수에 기초하여 상기 제2 파라미터를 변경하는 제2 변경 스텝과, 그 후, 상기 제1 변경 스텝 및 제2 변경 스텝에 의해 변경한 레시피에 기초하여, 기판에 도포막을 형성하는 스텝을 실행하도록 제어 신호를 출력하는 제어부
    를 구비한 도포막 형성 장치에 있어서,
    상기 제1 변경 스텝은, 상기 제1 파라미터를 각각 제1 값, 제2 값으로 하여 형성되는 각 도포막의 막 두께 분포로부터 각각 얻어지는 제1 차수의 함수에 기초하여, 당해 제1 파라미터를 변경하는 스텝을 포함하고,
    상기 제2 변경 스텝은, 상기 제2 파라미터를 각각 제3 값, 제4 값으로 하여 형성되는 각 도포막의 막 두께 분포로부터 각각 얻어지는 제2 차수의 함수에 기초하여, 당해 제2 파라미터를 변경하는 스텝을 포함하는 것을 특징으로 하는, 도포막 형성 장치.
  9. 제8항에 있어서,
    상기 레시피는 기판의 면 내 전체에서 막 두께를 변이시키기 위한 제3 파라미터를 포함하고,
    상기 제어부는, 상기 제1 도포막의 막 두께 분포를 취득하는 스텝을 행하기 전에, 상기 레시피에 기초하여 상기 기판에 상기 도포막을 형성하고, 당해 기판의 기준 위치에 있어서의 상기 도포막의 막 두께를 취득하는 스텝과, 취득된 기준 위치의 막 두께와, 기준의 막 두께와의 차에 기초하여, 상기 제3 파라미터를 변경하는 스텝을 실행하고,
    상기 제1 도포막의 막 두께 분포를 취득하는 스텝에 있어서는, 상기 제3 파라미터가 변경된 레시피에 기초하여 도포막이 형성되도록 제어 신호를 출력하는 것을 특징으로 하는, 도포막 형성 장치.
  10. 회전하는 기판의 중심부에 약액을 공급하고, 당해 약액을 원심력에 의해 상기 기판의 주연부로 확산해서 도포막을 형성하는 도포막 형성 장치에 있어서,
    상기 기판을 적재하고, 회전 기구에 의해 회전하는 적재부와,
    상기 적재부에 적재된 기판에 약액을 공급하는 약액 공급부와,
    상기 기판에 약액을 공급하기 전에 기판의 온도 혹은 약액의 온도 중 적어도 한쪽을 조정하는 온도 조정 기구와,
    상기 기판의 면 내에 있어서의 도포막의 막 두께 분포를 검출하기 위한 막 두께 검출부와,
    상기 기판의 면 내에 있어서의 상기 도포막의 막 두께 분포를 조정하기 위한 제1 파라미터 및 제2 파라미터를 포함하는 레시피를 기억하는 기억부와,
    상기 레시피에 기초하여 상기 도포막을 형성하고, 기판의 면 내에 있어서의 당해 도포막의 막 두께 분포를 취득하는 스텝과, 상기 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타내는 제1 차수의 함수에 근사시키고, 당해 제1 차수의 함수에 기초하여 상기 제1 파라미터를 변경하는 제1 변경 스텝과, 상기 도포막의 막 두께 분포를 상기 기판의 위치와 막 두께와의 관계를 나타냄과 함께 제1 차수보다도 큰 제2 차수의 함수에 근사시키고, 당해 제2 차수의 함수에 기초하여 상기 제2 파라미터를 변경하는 제2 변경 스텝과, 상기 제1 변경 스텝 및 제2 변경 스텝에 의해 변경한 레시피에 기초하여, 기판에 도포막을 형성하는 레시피 변경 후의 도포막 형성 스텝을 실행하도록 제어 신호를 출력하는 제어부
    를 구비한 도포막 형성 장치에 있어서,
    상기 제1 변경 스텝은, 상기 제1 파라미터를 각각 제1 값, 제2 값으로 하여 형성되는 각 도포막의 막 두께 분포로부터 각각 얻어지는 제1 차수의 함수에 기초하여, 당해 제1 파라미터를 변경하는 스텝을 포함하고,
    상기 제2 변경 스텝은, 상기 제2 파라미터를 각각 제3 값, 제4 값으로 하여 형성되는 각 도포막의 막 두께 분포로부터 각각 얻어지는 제2 차수의 함수에 기초하여, 당해 제2 파라미터를 변경하는 스텝을 포함하는 것을 특징으로 하는, 도포막 형성 장치.
  11. 제10항에 있어서,
    상기 레시피는 기판의 면 내 전체에서 막 두께를 변이시키기 위한 제3 파라미터를 포함하고,
    상기 제어부는, 상기 막 두께 분포에 대해서 기판의 기준 위치에 있어서의 상기 도포막의 막 두께와, 기준의 막 두께와의 차에 기초하여, 상기 제3 파라미터를 변경하는 제3 변경 스텝을 실행하도록 제어 신호를 출력하고,
    상기 레시피 변경 후의 도포막 형성 스텝은, 상기 제1 변경 스텝, 제2 변경 스텝 및 제3 변경 스텝에 의해 변경한 레시피에 기초하여 행해지는 것을 특징으로 하는, 도포막 형성 장치.
  12. 회전하는 기판의 중심부에 약액을 공급하고, 당해 약액을 원심력에 의해 상기 기판의 주연부로 확산해서 도포막을 형성하는 도포막 형성 장치에 사용되는 컴퓨터 프로그램을 기억하는 기억 매체이며,
    상기 컴퓨터 프로그램은, 제1항 내지 제4항 중 어느 한 항에 기재된 도포막 형성 방법을 실행하도록 스텝군이 짜여져 있는 것을 특징으로 하는, 기억 매체.
KR1020160013310A 2015-02-13 2016-02-03 도포막 형성 방법, 도포막 형성 장치 및 기억 매체 KR102404964B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015026635A JP6299624B2 (ja) 2015-02-13 2015-02-13 塗布膜形成方法、塗布膜形成装置及び記憶媒体
JPJP-P-2015-026635 2015-02-13

Publications (2)

Publication Number Publication Date
KR20160100234A KR20160100234A (ko) 2016-08-23
KR102404964B1 true KR102404964B1 (ko) 2022-06-07

Family

ID=56688110

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160013310A KR102404964B1 (ko) 2015-02-13 2016-02-03 도포막 형성 방법, 도포막 형성 장치 및 기억 매체

Country Status (2)

Country Link
JP (1) JP6299624B2 (ko)
KR (1) KR102404964B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802501B (zh) * 2017-03-20 2020-07-21 信利(惠州)智能显示有限公司 显影液循环管理方法
JP2019096669A (ja) * 2017-11-20 2019-06-20 東京エレクトロン株式会社 基板処理装置及び塗布モジュールのパラメータの調整方法並びに記憶媒体
WO2021145175A1 (ja) * 2020-01-16 2021-07-22 東京エレクトロン株式会社 基板処理方法、記憶媒体、及び基板処理装置
TW202236117A (zh) * 2021-02-03 2022-09-16 日商東京威力科創股份有限公司 膜厚分析方法、膜厚分析裝置及記錄媒體

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218219A (ja) * 1999-02-02 2000-08-08 Tokyo Electron Ltd 塗布膜形成方法および塗布処理システム
JP2012119536A (ja) 2010-12-01 2012-06-21 Tokyo Electron Ltd 塗布装置、塗布方法及び記憶媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3516195B2 (ja) * 1996-05-28 2004-04-05 東京エレクトロン株式会社 塗布膜形成方法及びその装置
JP3598054B2 (ja) 2000-11-06 2004-12-08 東京エレクトロン株式会社 塗布膜形成装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000218219A (ja) * 1999-02-02 2000-08-08 Tokyo Electron Ltd 塗布膜形成方法および塗布処理システム
JP2012119536A (ja) 2010-12-01 2012-06-21 Tokyo Electron Ltd 塗布装置、塗布方法及び記憶媒体

Also Published As

Publication number Publication date
KR20160100234A (ko) 2016-08-23
JP6299624B2 (ja) 2018-03-28
JP2016147246A (ja) 2016-08-18

Similar Documents

Publication Publication Date Title
KR102404964B1 (ko) 도포막 형성 방법, 도포막 형성 장치 및 기억 매체
US20220392779A1 (en) Substrate processing system and substrate processing method
KR102086170B1 (ko) 기판 주연부의 도포막 제거 방법, 기판 처리 장치 및 기억 매체
US8318247B2 (en) Coating treatment method, coating treatment apparatus, and computer-readable storage medium
US8231285B2 (en) Substrate processing method and apparatus
KR20090125097A (ko) 도포 처리 방법, 도포 처리 장치 및 컴퓨터 판독 가능한 기억 매체
US10649335B2 (en) Substrate processing apparatus, substrate processing method and storage medium
KR20170021727A (ko) 기판 처리 장치 및 기판 처리 방법
KR20160065757A (ko) 현상 처리 방법, 컴퓨터 기억 매체 및 현상 처리 장치
US6471421B2 (en) Developing unit and developing method
JP4941570B2 (ja) 液処理装置、液処理方法及び記憶媒体
KR101072282B1 (ko) 기판 처리 장치, 기판 처리 방법, 기판 처리 프로그램 및 그 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체
KR100567523B1 (ko) 현상처리방법 및 현상처리장치
KR101072330B1 (ko) 기판 처리 장치, 기판 처리 방법, 기판 처리 프로그램을 기록한 컴퓨터 판독 가능한 기록 매체
US10520831B2 (en) Substrate processing method, substrate processing system and substrate processing apparatus
WO2007032369A1 (ja) 基板処理装置、基板処理方法、基板処理プログラム、及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JP2019068001A (ja) 塗布膜形成装置及び半導体装置の製造システム
JP7291515B2 (ja) 基板処理システム、基板処理方法、記憶媒体及び基板処理システムの制御装置
JP2004214385A (ja) 塗布膜形成装置及びその方法
KR102339249B1 (ko) 액 처리 방법, 액 처리 장치 및 기억 매체
US7884950B2 (en) Substrate processing method, program, computer-readable storage medium, and substrate processing system
US20220359243A1 (en) Substrate processing apparatus, substrate processing method and storage medium
WO2023106084A1 (ja) 基板処理方法及び基板処理システム
KR20220017831A (ko) 기판 처리 장치 및 반송 스케줄 제작 방법
JP2023067122A (ja) 基板処理方法及び基板処理システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant