KR102381648B1 - 자기 쌍극자 공진을 이용하여 생체 정보를 측정하는 안테나 장치 - Google Patents

자기 쌍극자 공진을 이용하여 생체 정보를 측정하는 안테나 장치 Download PDF

Info

Publication number
KR102381648B1
KR102381648B1 KR1020200073518A KR20200073518A KR102381648B1 KR 102381648 B1 KR102381648 B1 KR 102381648B1 KR 1020200073518 A KR1020200073518 A KR 1020200073518A KR 20200073518 A KR20200073518 A KR 20200073518A KR 102381648 B1 KR102381648 B1 KR 102381648B1
Authority
KR
South Korea
Prior art keywords
conductor
antenna device
plane
antenna
conductive wire
Prior art date
Application number
KR1020200073518A
Other languages
English (en)
Other versions
KR20200145728A (ko
Inventor
프랭클린 돈 변
변강일
Original Assignee
울산과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산과학기술원 filed Critical 울산과학기술원
Priority to PCT/KR2020/008013 priority Critical patent/WO2020256498A1/ko
Priority to CA3139920A priority patent/CA3139920A1/en
Priority to JP2021568556A priority patent/JP2022537641A/ja
Priority to EP20827589.1A priority patent/EP3957243A1/en
Priority to CN202080036001.5A priority patent/CN114051678A/zh
Publication of KR20200145728A publication Critical patent/KR20200145728A/ko
Priority to US17/526,980 priority patent/US11864879B2/en
Application granted granted Critical
Publication of KR102381648B1 publication Critical patent/KR102381648B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/155Devices specially adapted for continuous or multiple sampling, e.g. at predetermined intervals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • A61B2560/0219Operational features of power management of power generation or supply of externally powered implanted units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue

Abstract

일 실시예에 따른 안테나 장치(antenna device)는 제1 평면 상 제1 영역의 경계의 일부를 따라 서로 이격 배치되는 제1 도선 및 제2 도선, 상기 제1 평면으로부터 평행하게 이격된 제2 평면 상 제2 영역의 경계의 일부를 따라 서로 이격 배치되는 제3 도선 및 제4 도선, 상기 제2 평면으로부터 평행하게 이격된 제3 평면 상 제3 영역의 경계의 일부를 따라 서로 이격 배치되는 제5 도선 및 제6 도선, 상기 제1 도선의 제1 단(first end) 및 상기 제3 도선의 제1 단을 연결하는 제1 연결부, 상기 제2 도선의 제1 단 및 상기 제4 도선의 제1 단을 연결하는 제2 연결부, 상기 제3 도선의 제2 단(second end) 및 상기 제5 도선의 제2 단을 연결하는 제3 연결부, 및 상기 제4 도선의 제2 단 및 상기 제6 도선의 제2 단을 연결하는 제4 연결부를 포함할 수 있다.

Description

자기 쌍극자 공진을 이용하여 생체 정보를 측정하는 안테나 장치{ANTENNA DEVICE FOR MEASURING BIOMETRIC INFORMATION USING MAGNETIC DIPOLE RESONANCE}
이하, 자기 쌍극자 공진을 이용하여 생체 정보를 측정하는 안테나 장치에 관한 기술이 제공된다.
최근 현대인들은 식생활습관 서구화로 인해 당뇨병, 고지혈증, 혈전환자 등 소위 성인 질환으로 고통받는 사람들이 늘고 있다. 이러한 성인 질환의 경중 여부를 알 수 있는 간단한 방법은 혈액 내의 생체 성분 측정이다. 생체 성분 측정은 혈당, 빈혈, 혈액응고 등 혈중에 포함된 여러 가지 성분의 양을 알 수 있어 특정 성분의 수치가 정상 영역에 있는지, 비정상 영역에 있는지 일반인도 병원에 가지 않고 쉽게 이상 여부의 판단이 가능하다는 장점이 있다.
생체 성분 측정의 손쉬운 방법 중 하나는 손가락 끝에서 채혈한 혈액을 테스트 스트립에 주입 후 전기화학적 혹은 광도법을 이용하여 출력신호를 정량 분석하는 것인데, 이러한 방법은 측정기에서 해당 성분량이 디스플레이 될 수 있으므로 전문지식이 없는 일반인에게 적합하다.
이하에서는, 혈액을 직접 채취하지 않고 체내에 혈당 측정 센서를 삽입하고, 주파수 천이를 관찰하여 체내의 혈당을 측정할 수 있는 기술을 설명한다.
[선행기술문헌]
한국공개특허 제10-2008-0075332호 (공개일: 2008년 08월 18일)
일 실시예에 따른 안테나 장치(antenna device)는, 제1 평면 상 제1 영역의 경계의 일부를 따라 서로 이격 배치되는 제1 도선 및 제2 도선; 상기 제1 평면으로부터 평행하게 이격된 제2 평면 상 제2 영역의 경계의 일부를 따라 서로 이격 배치되는 제3 도선 및 제4 도선; 상기 제2 평면으로부터 평행하게 이격된 제3 평면 상 제3 영역의 경계의 일부를 따라 서로 이격 배치되는 제5 도선 및 제6 도선; 상기 제1 도선의 제1 단(first end) 및 상기 제3 도선의 제1 단을 연결하는 제1 연결부; 상기 제2 도선의 제1 단 및 상기 제4 도선의 제1 단을 연결하는 제2 연결부; 상기 제3 도선의 제2 단(second end) 및 상기 제5 도선의 제2 단을 연결하는 제3 연결부; 및 상기 제4 도선의 제2 단 및 상기 제6 도선의 제2 단을 연결하는 제4 연결부를 포함할 수 있다.
일 실시예에 따른 안테나 장치는 상기 제1 도선의 제2단 및 상기 제2 도선의 제2 단은 안테나 포트와 연결되고, 상기 제1 도선 및 상기 제2 도선은 상기 안테나 포트 및 상기 제1 영역의 중심점을 통과하면서 상기 제1 평면에 수직하는 가상의 평면을 기준으로 서로 반대편에 배치되고, 상기 제3 도선 및 상기 제4 도선은 상기 가상의 평면을 기준으로 서로 반대편에 배치되며, 상기 제5 도선 및 상기 제6 도선은 상기 가상의 평면을 기준으로 서로 반대편에 배치될 수 있다.
일 실시예에 따른 안테나 장치는 상기 제1 도선 및 상기 제2 도선이 연결되는 안테나 포트; 및 상기 안테나 포트를 통해 피딩 신호(feed signal)를 공급하는 급전부(feeder)를 더 포함할 수 있다.
일 실시예에 따른 안테나 장치는, 상기 제1 도선, 상기 제2 도선, 상기 제3 도선, 상기 제4 도선, 상기 제5 도선, 및 상기 제6 도선 중 하나 또는 둘 이상의 조합은 타겟 주파수(target frequency)에 대응하는 파장의 1/4의 길이를 가질 수 있다.
일 실시예에 따른 안테나 장치의 상기 제1 영역, 상기 제2 영역, 및 상기 제3 영역의 형태는 다각형 및 원형 중 하나일 수 있다.
일 실시예에 따른 안테나 장치의 상기 제1 영역, 상기 제2 영역, 및 상기 제3 영역은 상기 제1 평면에서 수직한 방향으로 볼 때 동일한 크기 및 동일한 형태일 수 있다.
일 실시예에 따른 안테나 장치의 상기 제1 연결부 및 상기 제2 연결부는 서로 분리(disconnected)되고, 상기 제3 연결부 및 상기 제4 연결부는 서로 분리될 수 있다.
일 실시예에 따른 안테나 장치는 상기 급전부로부터 상기 제1 연결부를 향하는 가상의 직선은 상기 가상의 평면에 대하여 임계 각도 이하의 각도를 형성하며, 상기 급전부로부터 상기 제2 연결부를 향하는 가상의 직선은 상기 가상의 평면에 대하여 임계 각도 이하의 각도를 형성할 수 있다.
일 실시예에 따른 안테나 장치는 서로 평행하게 이격되어 위치되는 복수의 평면들 중 중심에 위치되는 기준 평면 상에 배치되는 도선들이, 피딩 신호에 응답하여, 자기 쌍극자에 의한 공진을 생성(generate)할 수 있다.
일 실시예에 따른 안테나 장치는 상기 기준 평면을 기준으로 일측에 위치되는 하나 이상의 평면 상에 배치되는 도선들이, 상기 피딩 신호에 응답하여, 제1 전기 쌍극자에 의한 공진을 생성하고, 상기 기준 평면을 기준으로 타측에 위치되는 하나 이상의 평면 상에 배치되는 도선들이, 상기 피딩 신호에 응답하여, 상기 제1 전기 쌍극자에 반대되는 극성을 갖는 제2 전기 쌍극자에 의한 공진을 생성할 수 있다.
일 실시예에 따른 안테나 장치의 상기 연결부들은, 비아 홀(via hole)을 통하여 도선들 사이를 연결할 수 있다.
일 실시예에 따른 안테나 장치는 상기 제5 도선 및 상기 제6 도선이 서로 전기적으로(electrically) 연결될 수 있다.
일 실시예에 따른 안테나 장치는 상기 제3 평면으로부터 평행하게 이격된 하나 이상의 추가 평면 상에서 영역의 경계의 일부를 따라 서로 이격 배치되는 상기 제5 도선 및 상기 제6 도선과 전기적으로 연결되는 하나 이상의 추가 도선을 포함할 수 있다.
일 실시예에 따른 안테나 장치의 도선들은 원기둥의 형태를 가지는 인쇄 회로 기판(printed circuit board, PCB)의 표면에 프린팅(printing)될 수 있다.
일 실시예에 따른 안테나 장치의 공진 주파수는 상기 안테나 장치 주변 대상 피분석물의 농도 변화에 응답하여 변화할 수 있다.
일 실시예에 따른 안테나 장치는 상기 안테나 장치의 공진 주파수의 변화 정도 및 측정된 산란 파라미터에 관한 생체 관련 파라미터 데이터를 외부 장치로 송신하는 통신부를 더 포함할 수 있다.
일 실시예에 따른 안테나 장치는 상기 안테나 장치로 피딩 신호가 급전될 시, 상기 제1 도선은 상기 제3 도선과 용량성 결합을 형성하고, 상기 제3 도선은 상기 제5 도선과 용량성 결합을 형성하며, 상기 제2 도선은 상기 제4 도선과 용량성 결합을 형성하고, 상기 제4 도선은 상기 제6 도선과 용량성 결합을 형성할 수 있다.
일 실시예에 따른 안테나 장치는 제1 평면 상 제1 영역의 일부를 따라 배치되는 제1 도선들; 상기 제1 평면으로부터 평행하게 이격되는 제2 평면 상 제2 영역의 일부를 따라 배치되고 상기 제1 도선들과 용량성 결합을 형성하는 제2 도선들; 및 상기 제2 평면으로부터 평행하게 이격되는 제3 평면 상 제3 영역의 일부를 따라 배치되고 상기 제2 도선들과 용량성 결합을 형성하는 제3 도선을 포함하고, 상기 제1 도선들은 안테나 포트에 연결되고 상기 안테나 포트를 기준으로 원위단에서 상기 제2 도선들과 연결되며, 상기 제2 도선들은 상기 안테나 포트를 기준으로 근위단에서 상기 제3 도선과 연결되고, 상기 안테나 포트로 피딩 신호가 급전되는 경우에 응답하여, 자기 쌍극자에 의한 공진 및 전기 쌍극자에 의한 공진을 개별적으로 형성할 수 있다.
일 실시예에 따른 안테나 장치는 서로 평행하게 이격되는 복수의 평면들 중 중심에 위치된 기준 평면 상에 배치되어 자기 쌍극자에 의한 공진을 생성 가능한 제1 도선; 상기 기준 평면을 기준으로 일측에 위치되는 하나 이상의 평면 상에 배치되어 제1 전기 쌍극자에 의한 공진을 생성 가능한 제2 도선; 및 상기 기준 평면을 기준으로 타측에 위치되는 하나 이상의 평면 상에 배치되어 상기 제1 전기 쌍극자에 반대되는 극성을 갖는 제2 전기 쌍극자에 의한 공진을 생성 가능한 제3 도선을 포함할 수 있다.
도 1은 다이폴 안테나의 일반적인 형상을 도시한다.
도 2는 루프(loop)의 형태를 가지는 안테나 소자(200)를 도시한다.
도 3에서는 2개의 다이폴 안테나가 서로 인접하여 배치되는 안테나 소자를 도시한다.
도 4는 안테나 소자의 형태에 따른 전자기파에 대한 주파수 응답 특성을 도시한다.
도 5a는 일 실시예에 따른 안테나 장치의 형상을 설명한다.
도 5b는 일 실시예에 따른 안테나 장치에서 흐르는 전류의 방향에 대하여 설명한다.
도 6은 일 실시예에 따른 안테나 장치의 형상을 설명한다.
도 7은 일 실시예에 따른 안테나 장치를 포함하는 원기둥형(cylindrical) 센서에 대하여 도시한다.
도 8은 일 실시예에 따른 안테나 장치를 포함하는 기판형 센서에 대하여 도시한다.
도 9a 내지 도 9b는 일 실시예에 따른 안테나 장치를 포함하는 체내 생체 센서의 형상을 도시한다.
도 10a 내지 도 10c는 센서의 형태에 따른 전자기파에 대한 주파수 응답 특성을 도시한다.
도 11a는 일 실시예에 따른 안테나 장치의 주변 대상 피분석물의 농도 변화에 따라 안테나 장치의 공진 주파수가 변화를 설명한다.
도 11b는 상대 유전율의 변화에 따른 공진 주파수(resonance frequency)의 변화를 나타낸다.
도 12a 내지 도 12c는 자기 쌍극자 및 전기 쌍극자에 대한 주파수 응답 특성을 도시한다.
도 13은 전자기파에 대한 주파수 응답 특성을 도시한다.
도 14는 일 실시예에 따른 혈당 측정 시스템을 나타낸 블록도이다.
이하에서, 첨부된 도면을 참조하여 실시예들을 상세하게 설명한다. 그러나, 실시예들에는 다양한 변경이 가해질 수 있어서 특허출원의 권리 범위가 이러한 실시예들에 의해 제한되거나 한정되는 것은 아니다. 실시예들에 대한 모든 변경, 균등물 내지 대체물이 권리 범위에 포함되는 것으로 이해되어야 한다.
실시예에서 사용한 용어는 단지 설명을 목적으로 사용된 것으로, 한정하려는 의도로 해석되어서는 안된다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 실시예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한, 첨부 도면을 참조하여 설명함에 있어, 도면 부호에 관계없이 동일한 구성 요소는 동일한 참조부호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 실시예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 실시예의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.
또한, 실시 예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성요소에 직접적으로 연결되거나 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
어느 하나의 실시 예에 포함된 구성요소와, 공통적인 기능을 포함하는 구성요소는, 다른 실시 예에서 동일한 명칭을 사용하여 설명하기로 한다. 반대되는 기재가 없는 이상, 어느 하나의 실시 예에 기재한 설명은 다른 실시 예에도 적용될 수 있으며, 중복되는 범위에서 구체적인 설명은 생략하기로 한다.
일 실시예에 따르면, 반영구적으로 혈당을 측정할 수 있는 체내 생체 측정 센서에 관한 기술이 제공된다. 체내 생체 센서(in-body bio sensor)는 침습형 생체 센서, 삽입형 생체 센서, 이식형 생체 센서라고도 나타낼 수 있다. 체내 생체 센서는 전자기파를 이용하여 대상 피분석물(target analyte)을 센싱하는 센서일 수 있다. 예를 들어, 체내 생체 센서는 대상 피분석물과 연관된 생체 정보를 측정할 수 있다. 이하, 대상 피분석물은 생체(living body)와 연관된 물질(material)로서, 생체 물질(analyte)이라고도 나타낼 수 있다. 참고로, 본 명세서에서 대상 피분석물은 주로 혈당으로 설명하였으나, 이로 한정하는 것은 아니다. 생체 정보는 대상자의 생체 성분과 관련된 정보로서, 예를 들어, 피분석물의 농도, 수치 등을 포함할 수 있다. 피분석물이 혈당인 경우, 생체 정보는 혈당 수치를 포함할 수 있다.
체내 생체 센서는 상술한 생체 성분과 연관된 생체 파라미터(이하, '파라미터')를 측정하고, 측정된 파라미터로부터 생체 정보를 결정할 수 있다. 본 명세서에서 파라미터는 생체 센서 및/또는 생체 센싱 시스템을 해석하기 위해 사용되는 회로망 파라미터(circuit network parameter)를 나타낼 수 있고, 아래에서는 설명의 편의를 위해 주로 산란 파라미터(scattering parameter)를 예로 들어 설명하나 이로 한정하는 것은 아니다. 파라미터로서 예를 들어, 어드미턴스 파라미터, 임피던스 파라미터, 하이브리드 파라미터, 및 전송 파라미터 등이 사용될 수도 있다. 산란 파라미터의 경우 투과계수 및 반사계수가 사용될 수 있다. 참고로, 상술한 산란 파라미터로부터 산출되는 공진 주파수는 대상 피분석물의 농도와 관련될 수 있고, 생체 센서는 투과계수 및/또는 반사계수의 변화를 감지함으로써 혈당을 예측할 수 있다.
체내 생체 센서는 공진기 조립체(resonator assembly)(예를 들어, 안테나)를 포함할 수 있다. 이하, 공진기 조립체는 안테나인 예시를 주로 설명한다. 안테나의 공진 주파수는 하기 수학식 1과 같이 커패시턴스 성분 및 인덕턴스 성분으로 표현될 수 있다.
[수학식 1]
Figure 112020062210636-pat00001
상술한 수학식 1에서 f는 전자기파를 이용한 생체 센서에 포함된 안테나의 공진 주파수, L은 안테나의 인덕턴스, C는 안테나의 커패시턴스를 나타낼 수 있다. 안테나의 커패시턴스 C는 아래 수학식 2와 같이 상대 유전율(relative dielectric constant)
Figure 112020062210636-pat00002
에 비례할 수 있다.
[수학식 2]
Figure 112020062210636-pat00003
안테나의 상대 유전율
Figure 112020062210636-pat00004
은 주변의 대상 피분석물의 농도에 의해 영향을 받을 수 있다. 예를 들어, 전자기파가 임의의 유전율을 가지는 물질을 통과하는 경우, 전파 반사 및 산란으로 인해 투과된 전자기파에서 진폭과 위상의 변화가 발생할 수 있다. 생체 센서 주변에 존재하는 대상 피분석물의 농도에 따라 전자기파의 반사 정도 및/또는 산란 정도가 달라지므로, 상대 유전율
Figure 112020062210636-pat00005
도 달라질 수 있다. 이는 안테나를 포함하는 생체 센서에 의해 방사된 전자기파에 의한 주변 장(fringing field)로 인해, 생체 센서와 대상 피분석물 간에 생체 커패시턴스가 형성되는 것으로 해석될 수 있다. 대상 피분석물의 농도 변화에 따라 안테나의 상대 유전율
Figure 112020062210636-pat00006
이 변하므로, 안테나의 공진 주파수도 함께 변화한다. 다시 말해, 대상 피분석물의 농도는 공진 주파수에 대응할 수 있다.
일 실시예에 따른, 체내 생체 센서는 주파수를 스윕하면서 전자기파를 방사하고, 방사된 전자기파에 따른 산란 파라미터를 측정할 수 있다. 체내 생체 센서는 측정된 산란 파라미터로부터 공진 주파수를 결정하며, 결정된 공진 주파수에 대응하는 혈당 수치를 추정할 수 있다. 체내 생체 센서는 피하층에 삽입될 수 있고, 혈관으로부터 간질액으로 확산된 혈당을 예측할 수 있다.
체내 생체 센서는 공진 주파수(resonance frequency)의 주파수 천이 정도를 판별함으로써, 생체 정보를 추정할 수 있다. 보다 정확한 공진 주파수의 측정을 위해, 품질 지수(quality factor)가 극대화될 수 있다. 이하에서는, 전자기파를 이용한 생체 센서에 사용되는 안테나 장치에서 품질 지수가 개선된 안테나 구조를 설명한다.
도 1은 다이폴 안테나의 일반적인 형상을 도시한다.
일반적인 다이폴 안테나(100)는 급전부(120)와 연결되는 2개의 직선 도선(conductive wire)을 포함할 수 있다. 2개의 직선 도선은 급전부(120)를 통해 연결될 수 있다. 다이폴 안테나(100)의 제1 도선(111) 및 제2 도선(112)은 서로 마주보지 않고, 직선형(straight)으로 급전부(120)에 연결될 수 있다. 여기서, 직선형(straight)이란, 다이폴 안테나(100)의 제1 도선(111) 및 제2 도선(112)이 서로 정반대의 방향으로 연장하는(extend) 형태를 나타낼 수 있다.
급전부(feeder)(120)는 포트를 통해 다이폴 안테나에 피딩 신호를 공급할 수 있다. 피딩 신호는 다이폴 안테나에 급전(feed)되는 신호로서, 목표 주파수로 발진하는 발진 신호(oscillation signal)일 수 있다. 급전부(120)는 직선의 형태를 가지는 다이폴 안테나의 제1 도선(111) 및 제2 도선(112)에 동일한 방향으로 전류가 흐르도록 피딩 신호를 공급할 수 있다. 예를 들어, 임의의 시점(time point)에서 다이폴 안테나의 제1 도선(111)의 전류는 방향(130)으로 흐를 수 있고, 동시에 다이폴 안테나의 제2 도선(112)의 전류도 동일한 방향(130)으로 흐를 수 있다. 또한, 다른 시점에서는 다이폴 안테나의 제1 도선(111) 및 제2 도선(112)에서 방향(130)에 반대되는 방향의 전류가 동시에 흐를 수도 있다.
다이폴 안테나(100)의 제1 도선(111)에 흐르는 전류에 의하여 전기 쌍극자(electric dipole)가 형성될 수 있으며, 마찬가지로 제2 도선(112)에 흐르는 전류에 의하여 전기 쌍극자가 형성될 수 있다. 다이폴 안테나의 제1 도선 및 제2 도선에 흐르는 전류의 방향은 동일하므로, 제1 도선 및 제2 도선에 의하여 형성되는 전기 쌍극자의 전기 쌍극자 모멘트(electric dipole moment)의 방향은 서로 동일할 수 있다.
도 2는 루프(loop)의 형태를 가지는 안테나 소자(200)를 도시한다.
안테나 소자는 폐쇄된 루프(closed loop, 폐루프)의 형태를 가질 수 있다. 예를 들어, 도 2에 도시된 바와 같이 안테나 소자(200)는 서로 연결되며, 원형의 형태를 가지는 제1 도선(211), 제2 도선(212), 제3 도선(213), 및 제4 도선(214)을 포함할 수 있다. 제1 도선(211) 및 제4 도선(214)는 원의 중심점(270) 및 안테나 포트(221)를 통과하는 가상의 직선(281)을 기준으로 서로 반대편에 배치되며, 제2 도선(212) 및 제3 도선(213)은 가상의 직선(281)을 기준으로 서로 반대편에 배치될 수 있다. 또한, 제1 도선(211) 및 제2 도선(212)은 원의 중심점(270)을 통과하며 가상의 직선(281)과 직교하는(orthogonal) 가상의 직선(282)을 기준으로 서로 반대편에 배치되며, 제3 도선(213) 및 제4 도선(214)은 가상의 직선(282)을 기준으로 서로 반대편에 배치될 수 있다.
또한, 안테나 소자(200)는 포트를 통해 안테나에 피딩 신호를 공급하는 급전부(221)를 더 포함할 수 있다. 급전부(221)는 제1 도선(211) 및 제4 도선(214) 사이에 배치될 수 있다. 이하에서는 급전부(221)를 통하여 안테나 소자(200)에 피딩 신호가 공급되는 경우, 각 도선에 흐르는 전류의 방향에 대하여 설명한다.
예를 들어, 안테나 소자(200)에서 제1 도선(211), 제2 도선(212), 제3 도선(213), 및 제4 도선(214)의 길이는 급전부(221)로부터 공급되는 피딩 신호의 주파수에 대응하는 파장의 1/4의 길이를 가질 수 있다. 급전부(221)가 정현파(sinusoidal wave)의 피딩 신호를 급전하는 동한 해당 정현파에서 최대 세기의 전류를 급전부(221)가 공급하는 시점(time point)에서, 급전부(221)로부터 파장의 1/4에 대응하는 지점에 흐르는 전류의 세기는 0일 수 있다. 해당 시점에서, 제1 도선(211)에서는 전류가 방향(231)으로 흐를 수 있고, 제4 도선(214)에서는 전류가 방향(231)으로 흐를 수 있다. 동시에, 교류 전원이 급전부(221)로부터 인가되며, 각 도선의 길이가 전원에 대응하는 파장의 1/4 길이를 가지므로 제2 도선(212) 및 제3 도선(213)에서 전류는 방향(231)과 반대의 방향인 방향(232)으로 흐를 수 있다. 방향(231)은 반시계 방향(counterclockwise)일 수 있으며, 방향(232)은 시계 방향(clockwise)일 수 있다. 결국, 해당 시점에서 제1 도선 및 제4 도선에 의하여 전기 쌍극자가 형성되고, 제2 도선 및 제3 도선에 의하여 전기 쌍극자가 형성되는 것으로 해석될 수 있다.
도 3에서는 2개의 다이폴 안테나가 서로 인접하여 배치되는 안테나 소자(300)를 도시한다.
안테나 장치(300)는 제1 다이폴 안테나 및 제2 다이폴 안테나를 포함할 수 있다. 제1 다이폴 안테나는 제1 도선(311) 및 제2 도선(312)을 포함할 수 있고, 제2 다이폴 안테나는 제3 도선(313) 및 제4 도선(313)을 포함할 수 있다. 제1 다이폴 안테나의 제1 도선(311) 및 제2 다이폴 안테나의 제3 도선(313)은 제1 평면(381) 상에 배치될 수 있다. 제1 도선(311) 및 제3 도선(313)은 제1 평면(381)에 수직하는 가상의 평면(390)을 기준으로 서로 반대편에 배치될 수 있다. 가상의 평면(390)은 제1 다이폴 안테나 및 제2 다이폴 안테나 사이에 위치될 수 있다. 마찬가지로, 제1 다이폴 안테나의 제2 도선(312) 및 제2 다이폴 안테나의 제4 도선(314)은 제2 평면(382) 상에 배치될 수 있다. 제2 도선(312) 및 제4 도선(314)은 가상의 평면(390)을 기준으로 서로 반대편에 배치될 수 있다.
제1 다이폴 안테나 및 제2 다이폴 안테나는 각각 타겟 주파수(target frequency)에 대응하는 파장과 동일한 길이(length)를 가질 수 있다. 예를 들어, 도 3에서는 폐루프 형상이 원형 형상인 예시를 설명하며, 제1 도선(311) 및 제2 도선(312)의 각각은 타겟 주파수에 대응하는 파장의 절반에 대응하는 길이를 가질 수 있다. 유사하게, 제3 도선(313) 및 제4 도선(314)의 각각은 타겟 주파수에 대응하는 파장의 절반에 대응하는 길이를 가질 수 있다.
본 명세서에서, 타겟 주파수(target frequency)는 안테나 장치를 동작시키고자 하는 주파수로서, 예를 들어, 체내에 삽입된 안테나 장치가 생체 내 주어진 농도의 대상 피분석물에 대해 생체 커패시턴스를 형성할 시 해당 안테나 장치를 공진시키고자 하는 주파수를 나타낼 수 있다.
제1 다이폴 안테나는 제1 급전부(321)를 포함하고, 제2 다이폴 안테나는 제2 급전부(322)를 포함할 수 있다. 제1 다이폴 안테나는 도 2에 도시된 폐루프 형상을 이루는 안테나 소자를 반으로 접은(folded) 형태를 가질 수 있다. 제2 다이폴 안테나도 폐루프 형상을 이루는 안테나 소자가 반으로 접혀진 형태를 가질 수 있다. 예시적으로, 제1 다이폴 안테나는 제1 급전부(321)로부터 파장의 1/4에 대응하는 길이만큼 떨어진 도선 상의 지점들에서 접혀진(folded) 형상을 가질 수 있다. 제1 다이폴 안테나의 제1 도선(311)과 제2 도선(312)은 서로 이격된 평면 상에서 평행하도록 배치되며, 비아 홀(via hole)을 가지는 연결부들을 통하여 연결될 수 있다. 예시적으로 그러나 한정되지 않게, 제1 도선(311) 및 제2 도선(312)는 제1 평면(381) 및 제2 평면(283) 사이의 가상의 평면을 기준으로 대칭일 수 있다. 마찬가지로, 제2 다이폴 안테나는 제2 급전부(322)로부터 파장의 1/4에 대응하는 길이만큼 떨어진 도선 상의 지점들에서 접혀진(folded) 형상을 가질 수 있다.
제1 급전부(321)는 제1 다이폴 안테나에 전원을 공급할 수 있으며, 제2 급전부(322)는 제2 다이폴 안테나에 전원을 공급할 수 있다. 이하에서는 급전부들(321, 322)를 통하여 안테나 소자(300)에 피딩 신호가 공급되는 경우, 각 도선에 흐르는 전류의 방향에 대하여 설명한다.
앞서 설명한 바와 같이, 도 2에 도시된 원형 루프에서는 급전부(221)가 최대 세기 전류를 공급하는 시점에서 급전부(221)로부터 파장의 1/4인 길이에 대응하는 도선(conductive wire) 상 지점을 기준으로 서로 반대 방향의 전류가 흐르는 것으로 해석될 수 있다. 따라서 도 2에 도시된 루프 형태의 안테나 소자가 도 3에 도시된 바와 같이 접히는 경우, 접힌 루프 형태의 안테나 소자는 제1 평면(381)에 수직한 방향으로 볼 때 도선들에서 동일한 방향으로 전류가 흐를 수 있다. 예를 들어, 제1 다이폴 안테나의 제1 도선(311) 및 제2 도선(312)에서는 전류가 제1 순환 방향(331)(예를 들어, 도 3에서는 반시계 방향)으로 흐를 수 있으며, 제2 다이폴 안테나의 제3 도선(313) 및 제4 도선(314)에서는 전류가 제1 순환 방향(331)과 동일한 순환 방향인 제2 순환 방향(332)(예를 들어, 반시계 방향)으로 흐를 수 있다.
참고로, 본 명세서에서 전류의 순환 방향은, 안테나 소자에서 평면 상 가상의 폐루프 및/또는 가상의 폐루프의 일부를 따라 배치된 도선들에 흐르는 전류의 방향으로서, 도선들이 배치되는 평면들에 수직한 방향에서 볼 때 시계 방향(clockwise) 또는 반시계 방향(counterclockwise)으로 전류가 순환하는 방향을 나타낼 수 있다. 시계 방향 또는 반시계 방향의 기준은 해당 평면을 위에서 바라보는 경우, 아래에서 바라보는 경우 및 교류 전류의 극성 등에 따라 전환될 수 있다. 참고로, 도 3의 제1 순환 방향(331) 및 제2 순환 방향(332)은 급전부(321, 322)가 피딩 신호의 극성이 양(positive)인 최대 전류 세기를 급전하는 시점에서 시계 방향일 수 있다.
제1 평면(381)에서 폐루프(closed loop)의 일부에 대응하는 형태를 따라 배치되는 제1 도선(311) 및 제3 도선(313)에서 한 방향으로 전류가 흐르게 되어 제1 자기 쌍극자(magnetic dipole)가 형성될 수 있다. 마찬가지로, 제2 평면(382)에서 폐루프의 일부에 대응하는 형태를 따라 배치되는 제2 도선(312) 및 제4 도선(314)에서 한 방향으로 전류가 흐르게 되어 제2 자기 쌍극자가 형성될 수 있다. 제1 자기 쌍극자 및 제2 자기 쌍극자의 자기 쌍극자 모멘트(magnetic dipole moment)의 방향은 서로 동일할 수 있다. 제1 자기 쌍극자에 의한 전자기파와 제2 자기 쌍극자에 의한 전자기파는 보강 간섭(constructive interference)을 발생시킬 수 있다.
자기 쌍극자에 의한 공진은 전기 쌍극자에 의한 공진과 비교하여 품질 인자(quality factor)가 높으며, 품질 인자는 아래 수학식과 같이 표현될 수 있다.
Figure 112020062210636-pat00007
이때, Q는 품질 인자, RL 은 손실 저항의 크기, Rr은 방사 저항의 크기를 나타낼 수 있다.
도 4는 안테나 소자의 형태에 따른 전자기파에 대한 주파수 응답 특성을 도시한다.
주파수 응답 특성(400)은 안테나 소자의 형태에 따른 전자기파에 대한 주파수 응답 특성을 도시한다. 주파수를 스윕하면서 파라미터를 측정함으로써, 산란된 전자기파에 대한 주파수 응답 특성이 획득될 수 있다. 주파수 응답 특성은 도 4에 도시된 바와 같이 산란 파라미터 중 반사 계수(reflection coefficient)일 수 있다.
제1 반사 계수 곡선(410)은 도 1의 직선(straight)형의 다이폴 안테나에 대한 주파수 응답 특성을 나타낸다. 제2 반사 계수 곡선(420)은 도 2의 폐쇄된 루프(closed loop)의 형태를 가지는 안테나 소자에 대한 주파수 응답 특성을 나타낸다. 제3 반사 계수 곡선(430)은 도 3의 자기 쌍극자(magnetic dipole)를 형성하는 안테나 소자(300)에 의한 주파수 응답 특성을 나타낸다. 자기 쌍극자(magnetic dipole)를 형성하는 안테나 소자(300)의 품질 계수(quality factor)가 상대적으로 높게 나타날 수 있다.
도 5a는 일 실시예에 따른 안테나 장치(501)의 형상을 설명한다.
일 실시예에 따른 안테나 장치(501)는 도선형 센서일 수 있다. 일 실시예에 따른 안테나 장치(501)는 제1 평면(581) 상 제1 영역의 경계의 일부를 따라 서로 이격 배치되는 제1 도선(511) 및 제2 도선(512), 제1 평면(581)으로부터 평행하게 이격된 제2 평면(582) 상 제2 영역의 경계의 일부를 따라 서로 이격 배치되는 제3 도선(513) 및 제4 도선(514), 제2 평면(582)으로부터 평행하게 이격된 제3 평면(583) 상 제3 영역의 경계의 일부를 따라 서로 이격 배치되는 제5 도선(515) 및 제6 도선(516)을 포함할 수 있다. 안테나 장치(501)는 제1 도선(511)의 제1 단(first end) 및 제3 도선(513)의 제1 단을 연결하는 제1 연결부(521), 제2 도선(512)의 제1 단 및 제4 도선(514)의 제1 단을 연결하는 제2 연결부(522), 제3 도선(513)의 제2 단(second end) 및 제5 도선(515)의 제2 단을 연결하는 제3 연결부(523), 및 제4 도선(514)의 제2 단 및 제6 도선(516)의 제2 단을 연결하는 제4 연결부(524)를 포함할 수 있다. 이때, 제1 단은 안테나 포트를 기준으로 원위단(distal end)을 나타낼 수 있으며, 제2 단은 안테나 포트를 기준으로 근위단(proximal end)를 나타낼 수 있다.
일 실시예에 따른 안테나 장치(501)에서 제1 도선(511)의 제2 단 및 제2 도선(512)의 제2 단은 안테나 포트와 연결될 수 있다. 제1 도선(511) 및 제2 도선(512)은 안테나 포트 및 제1 영역의 중심점(570)을 통과하면서 제1 평면(581)에 수직하는 가상의 평면(590)을 기준으로 서로 반대편에 배치될 수 있다. 제3 도선(513) 및 제4 도선(514)은 가상의 평면(590)을 기준으로 서로 반대편에 배치되며, 제5 도선(515) 및 제6 도선(516)은 가상의 평면(590)을 기준으로 서로 반대편에 배치될 수 있다. 제5 도선(515) 및 제6 도선(516)은 서로 전기적으로 연결될 수 있다.
일 실시예에 따른 안테나 장치(501)는 제1 도선(511) 및 제2 도선(512)이 연결되는 안테나 포트 및 안테나 포트를 통해 피딩 신호(feed signal)를 공급하는 급전부(feeder, 540)를 더 포함할 수 있다. 급전부(540)는 안테나 장치에 전력을 공급함으로써, 각 도선에 전류를 흐르게 할 수 있다. 일 실시예에 따른 안테나 장치(501)로 피딩 신호(feed signal)가 급전되는 경우, 제1 도선(511)은 제3 도선(513)과 용량성 결합을 형성하고, 제3 도선(513)은 제5 도선(515)와 용량성 결합을 형성하며, 제2 도선(512)는 제4 도선(514)과 용량성 결합을 형성하며, 제4 도선(514)은 제6 도선(516)과 용량성 결합을 형성할 수 있다.
정리하면, 일 실시예에 따른 안테나 장치(501)는 제1 평면(581) 상 제1 영역의 일부를 따라 배치되는 제1 도선(511) 및 제2 도선(512), 제1 평면(581)로부터 평행하게 이격되는 제2 평면(582) 상 제2 영역의 일부를 따라 배치되고 제1 도선(511) 및 제2 도선(512)과 각각 용량성 결합을 형성하는 제3 도선(513) 및 제4 도선(514), 제2 평면(582)로부터 평행하게 이격되는 제3 평면(583) 상 제3 영역의 일부를 따라 배치되고 제3 도선(513) 및 제4 도선(514)과 용량성 결합을 형성하는 제5 도선(515) 및 제6 도선(516)을 포함할 수 있다.
일 실시예에 따른 안테나 장치(501)에서 제1 도선(511), 제2 도선(512), 제3 도선(513), 제4 도선(514), 제5 도선(515), 및 제6 도선(516) 중 하나 또는 둘 이상의 조합은 타겟 주파수(target frequency)에 대응하는 파장의 1/4의 길이를 가질 수 있다. 예를 들어, 제1 도선(511), 제2 도선(512), 제3 도선(513), 제4 도선(514), 제5 도선(515), 및 제6 도선(516)의 각각은 파장의 1/4의 길이를 가질 수 있다.
여기서, 타겟 주파수(target frequency)에 대응하는 파장이란 관내 파장(guide wavelength)을 나타낼 수 있다. 공기 중에서의 파장과 관내 파장은 아래 수학식 4과 같은 관계를 가질 수 있다.
[수학식 4]
Figure 112020062210636-pat00008
Figure 112020062210636-pat00009
는 관내 파장,
Figure 112020062210636-pat00010
는 공기 중 파장,
Figure 112020062210636-pat00011
은 관내 매질의 유전율을 나타낼 수 있다.
일 실시예에 따른 안테나 장치(501)는 도선들 사이에서 용량성 결합을 형성하므로, 관내 물질의 유전율에 따라 타겟 주파수에 대응하는 파장이 변할 수 있다. 예를 들어, 안테나 장치(501)의 각 도선의 길이는 타겟 주파수에 대응하는 파장의 1/4이므로, 관내 매질의 유전율을 증가시킴에 따라 안테나 장치의 도선 길이를 축소시킬 수 있다.
일 실시예에 따른 안테나 장치(501)에서 제1 영역, 제2 영역, 및 제3 영역의 형태는 다각형 및 원형 중 하나일 수 있다. 예시적으로, 도 5a에 도시된 바와 같이, 제1 영역의 형태가 원형인 경우, 제1 도선(511) 및 제2 도선(512)는 제1 평면(581) 상에서 원주의 일부에 대응하는 형태를 따라 배치될 수 있다. 제2 영역의 형태가 원형인 경우, 제3 도선(513) 및 제4 도선(514)는 제2 평면(582) 상에서 원주의 일부에 대응하는 형태를 따라 배치될 수 있다. 제3 영역의 형태가 원형인 경우, 제5 도선(515) 및 제6 도선(516)은 제3 평면(583) 상에서 원주의 일부에 대응하는 형태를 따라 배치될 수 있다. 다른 예로, 도 5a에 도시된 바와 달리, 제1 영역의 형태가 다각형인 경우, 제1 도선(511) 및 제2 도선(512)은 제1 평면(581) 상에서 다각형의 일부에 대응하는 형태를 따라 배치될 수 있다. 예를 들어, 그러나 한정되지 않게, 제1 영역, 제2 영역, 제3 영역의 반지름의 길이는 2.4mm이며, 제1 영역과 제3 영역 사이의 간격은 0.6mm일 수 있다.
더 나아가, 제1 영역, 제2 영역, 제3 영역은 폐루프(closed loop)의 형태를 나타낼 수 있으며, 각 도선들은 영역에 대응하는 형태를 따라 배치될 수 있다.
다른 일 실시예에 따른 안테나 장치(501)에 따르면 제1 영역, 제2 영역, 제3 영역은 제1 평면(581)에서 수직한 방향으로 볼 때 동일한 크기 및 동일한 형태를 나타낼 수 있다.
일 실시예에 따른 안테나 장치(501)는 하나의 안테나 포트를 사용하여 각 도선들에 전원을 공급할 수 있다. 안테나 장치(501)는 연결부들에 의하여 서로 연결된 형태의 도선들을 포함할 수 있다. 하나의 포트를 사용하여 각 도선들에 전력이 공급될 수 있다. 예를 들어, 안테나 포트의 제1 단자로부터 제1 도선(511), 제3 도선(513), 제5 도선(515), 제6 도선(516), 제4 도선(514), 제2 도선(512), 및 안테나 포트의 제2 단자까지 순차적으로 연결되는 전기적 경로가 형성될 수 있다.
예를 들어, 제1 도선(511)의 제1 단 및 제2 도선(512)의 제1 단은 서로 분리될 수 있다. 제1 도선(511)은 제1 연결부(521)와 연결되고, 제2 도선(512)는 제2 연결부(522)와 연결될 수 있다. 제1 연결부(521) 및 제2 연결부(522)는 서로 분리(disconnected)될 수 있다. 제3 연결부(523) 및 제4 연결부(524)도 서로 분리될 수 있다. 급전부(540)로부터 제1 연결부(521)를 향하는 가상의 직선은 가상의 평면(590)에 대하여 임계 각도 이하의 각도를 형성할 수 있다. 급전부(540)로부터 제2 연결부(522)를 향하는 가상의 직선은 가상의 평면(590)에 대하여 임계 각도 이하의 각도를 형성할 수 있다. 제1 연결부(521) 및 제2 연결부(522)는 가상의 평면(590)을 기준으로 대칭적으로 배치될 수 있다. 예를 들어, 급전부(540)로부터 제1 연결부(521)를 향하는 가상의 직선은 가상의 평면(590)에 대하여 5도의 각도를 이루며, 급전부(540)로부터 제2 연결부(522)를 향하는 가상의 직선은 가상의 평면(590)에 대하여 5도의 각도를 이룰 수 있다.
도 5b는 일 실시예에 따른 안테나 장치에서 흐르는 전류의 방향에 대하여 설명한다.
도 5a에 도시된 안테나 장치(502)의 제1 도선(511), 제2 도선(512), 제3 도선(513), 제4 도선(514), 제5 도선(515), 및 제6 도선(516)은 타겟 주파수에 대응하는 파장의 1/4의 길이를 가질 수 있다. 안테나 장치의 급전부(540)는 안테나 장치(502)에 전력(예를 들어, 피딩 신호)을 공급할 수 있다. 도 5b는 전류 방향의 해석을 위하여 도 5a에 도시된 안테나 장치(502)의 도선들을 평면적으로 펼친(unfold) 것이다. 참고로, 본 명세서에서 전류의 방향 및/또는 순환 방향은 전류의 극성이 반대인 경우 반전되는 것으로 해석된다.
도 5b는, 급전부(540)로부터 파장의 1/8 만큼 떨어진 지점에서 흐르는 전류의 세기가 0인 시점의 전류 그래프를 도시한다. 이하에서는 해당 시점에서 각 도선에 흐르는 전류의 방향을 설명한다. 급전부(540)로부터 파장의 1/8 만큼 떨어진 지점(이하, '1/8 파장 지점')까지의 도선 구간에서 전류는 시계 방향으로 흐를 수 있다. 1/8 파장 지점을 기준으로 전류 극성이 반전되므로, 순환 방향도 반전되는 것으로 해석될 수 있다. 1/8 파장 지점부터 파장의 5/8 만큼 떨어진 지점(이하, '5/8 파장 지점')까지의 도선 구간에서 전류는 반시계방향으로 흐를 수 있다. 5/8 파장 지점에서 다시 전류 극성이 반전되므로, 순환 방향도 다시 반전되는 것으로 해석될 수 있다. 5/8 파장 지점부터 파장의 3/4만큼 떨어진 지점(이하, '3/4 파장 지점')까지의 도선 구간에서 전류를 시계 방향으로 흐를 수 있다.
따라서 제3 도선(513) 및 제4 도선(514)에 의해 정의되는 제2 영역에서는 전류가 한 순환 방향(도 5b에서는 반시계 방향)으로 흐르므로, 제3 도선(513) 및 제4 도선(514)에 흐르는 순환 전류에 의하여 자기 쌍극자(magnetic dipole)에 따른 공진이 생성될 수 있다. 또한, 제1 도선(511) 및 제2 도선(512)에 의해 정의되는 제1 영역에서는 전류가 1/8 파장 지점을 기준으로 선대칭으로 전류가 흐르는 바, 동일한 제1 직선 방향(예를 들어, 도 5b에서는 아래에서 위를 향하는 방향)으로 전류가 흐르는 것으로 해석될 수 있다. 다시 말해, 제1 도선(511) 및 제2 도선(512)은 각각 제1 직선 방향으로 전류가 흐르는 다이폴 안테나로서 동작할 수 있고, 제1 전기 쌍극자(electric dipole)에 의한 공진을 생성할 수 있다. 유사하게, 해당 시점에서 제5 도선(515) 및 제6 도선(516)에 의해 정의되는 제3 영역에서는 전류가 5/8 파장 지점을 기준으로 선대칭으로 전류가 흐르는 바, 제1 직선 방향에 반대되는 제2 직선 방향(예를 들어, 도 5b에서는 위에서 아래를 향하는 방향)으로 전류가 흐르는 것으로 해석될 수 있다. 다시 말해, 제5 도선(515) 및 제6 도선(516)은 각각 제2 직선 방향으로 전류가 흐르는 다이폴 안테나로서 동작할 수 있고, 제2 전기 쌍극자(electric dipole)에 의한 공진을 생성할 수 있다. 제1 전기 쌍극자와 제2 전기 쌍극자는 반대되는 극성의 전기 쌍극자 모멘트(electric dipole moment)를 가질 수 있다.
정리하면, 일 실시예에 따른 안테나 장치는 서로 평행하게 이격되어 위치되는 복수의 평면들 중 중심에 위치되는 기준 평면 상에 배치되는 도선들이, 피딩 신호에 응답하여, 자기 쌍극자에 의한 공진을 생성(generate)할 수 있다. 일 실시예에 따른 안테나 장치는 기준 평면을 기준으로 일측에 위치되는 하나 이상의 평면 상에 배치되는 도선들이, 피딩 신호에 응답하여, 제1 전기 쌍극자에 의한 공진을 생성하며, 기준 평면을 기준으로 타측에 위치되는 하나 이상의 평면 상에 배치되는 도선들이, 피딩 신호에 응답하여, 제1 전기 쌍극자에 반대되는 극성을 갖는 제2 전기 쌍극자에 의한 공진을 생성할 수 있다.
도 5a에 도시된 바와 같이 제1 평면에 배치된 도선에 의한 제1 전기 쌍극자와 제3 평면에 배치된 도선에 의한 제2 전기 쌍극자의 극성이 서로 반대이므로, 그 사이에 배치된 제2 평면에 배치된 도선에서는 제1 평면 및 제3 평면에서의 전기 쌍극자에 의한 공진들이 서로 상쇄될 수 있다. 시간 흐름에 따라 정현파의 세기가 변화하면, 기준 평면에 배치된 도선들은 제1 순환 방향을 따라 흐르는 전류에 의한 자기 쌍극자 세기의 증가, 감소, 제2 순환 방향을 따라 흐르는 전류에 의한 자기 쌍극자 세기의 증가, 및 감소를 반복할 수 있다. 나머지 평면에 배치된 도선들은 제1 직선 방향 및 제2 직선 방향을 따라 흐르는 전류에 의한 전기 쌍극자 세기의 증가 및 감소를 반복할 있다. 이 때, 기준 평면을 기준으로 서로 반대편에 위치되는 평면에서는 반대 극성의 전기 쌍극자가 형성될 수 있다.
따라서, 안테나 장치(501)는 안테나 포트로 피딩 신호가 급전되는 경우에 응답하여, 높은 품질 계수(quality factor)를 가지는 자기 쌍극자에 의한 공진과 함께, 제1 전기 쌍극자 및 제2 전기 쌍극자에 의한 2개의 공진을 개별적으로 형성할 수 있다. 안테나 장치(501)는 적어도 3개의 공진 주파수를 나타낼 수 있다.
도 6은 일 실시예에 따른 안테나 장치의 형상을 설명한다.
일 실시예에 따르면 제5 도선 및 제6 도선은 서로 전기적으로(electrically) 연결될 수 있다. 예를 들어, 안테나 장치의 제5 도선의 제1 단 및 제6 도선의 제1 단은 서로 연결될 수 있다. 상술한 도 5a에서는 안테나 장치의 제5 도선의 제1 단 및 제6 도선의 제1 단이 물리적으로 직접 연결되는 예시를 설명하였으며, 도 6에서는 추가 도선을 통해 간접적으로 연결되는 예시를 설명한다.
예를 들어, 안테나 장치(600)는 도 5a의 안테나 장치(501)에서 추가 도선을 더 포함할 수 있다. 안테나 장치(600)는 제3 평면으로부터 평행하게 이격된 제4 평면(684) 상 제4 영역의 경계의 일부를 따라 서로 이격 배치되는 제7 도선(631) 및 제8 도선(632), 제4 평면으로부터 평행하게 이격된 제5 평면(685) 상 제5 영역의 경계의 일부를 따라 서로 이격 배치되는 제9 도선(633) 및 제10 도선(634)을 더 포함할 수 있다. 또한, 일 실시예에 따른 안테나 장치(600)는 제5 도선의 제1 단(first end) 및 제7 도선의 제1 단을 연결하는 제5 연결부(651), 제6 도선의 제1 단 및 제8 도선(632)의 제1 단을 연결하는 제6 연결부(652), 제7 도선(631)의 제2 단(second end) 및 제9 도선(633)의 제2 단을 연결하는 제7 연결부(653), 제8 도선(632)의 제2 단 및 제10 도선(634)의 제2 단을 연결하는 제8 연결부(654)를 더 포함할 수 있다.
다만, 이로 한정하는 것은 아니고, 일 실시예에 따른 안테나 장치는 안테나 장치(600)와 같이, 제3 평면으로부터 평행하게 이격된 하나 이상의 추가 평면 상에서 영역의 경계의 일부를 따라 서로 이격 배치되는 도선들을 추가로 포함할 수 있다. 예를 들어, 안테나 장치는 자기 쌍극자(magnetic dipole)에 의한 공진 주파수를 구현하기 위하여 서로 평행하여 이격되는 2n+1 개의 평면들 상에 배치된 도선들을 포함할 수 있다. 여기서, n은 1 이상의 자연수를 나타낼 수 있다. 이때, 각 도선들의 길이(length)는 파장의 1/4을 가질 수 있으나, 이로 한정하는 것은 아니다. 도선들의 길이는 파장의 1/4과 약간(slightly) 다를 수 있다.
도 7은 일 실시예에 따른 안테나 장치를 포함하는 원기둥형(cylindrical) 센서에 대하여 도시한다.
원기둥형 센서(700)는 일 실시예에 따른 안테나 장치(710)가 원기둥의 옆면의 형태를 가지는 인쇄 회로 기판(printed circuit board, PCB, 760)의 표면에 프린팅(printing)된 센서를 나타낼 수 있다. 예를 들어, 안테나 장치(710)는 도 5a에 도시된 안테나 장치일 수 있다. 예를 들어, 인쇄 회로 기판(760)은 속이 비어 있는 원기둥의 형태를 가질 수 있다. 안테나 장치(710)의 도선부들 및 연결부들이 인쇄 회로 기판에 프린팅(printing)될 수 있다. 연결부들도 도선으로 구성될 수 있다. 다른 예를 들어, 안테나 소자의 도선들 및 연결부들이 평평한 플렉서블 인쇄회로기판(Flexible Printed Circuit Board, FPCB) 상에 인쇄되고, 안테나 소자가 프린팅된 FPCB는 안테나 포트의 단자들이 인접하게 배치되도록 원통형으로 말려짐(rolled)으로써 원기둥형 센서(700)가 제조될 수 있다.
도 8은 일 실시예에 따른 안테나 장치를 포함하는 기판형 센서에 대하여 도시한다.
도 8에서는 일 실시예에 따른 안테나 장치(810)가 다층 레이어로 된 인쇄 회로 기판(PCB, 870)에 프린팅(printing)되는 기판형 센서(800)를 도시한다. 예를 들어, 안테나 장치(810)은 도 5에 도시된 안테나 장치일 수 있다.
안테나 장치의 제1 도선 및 제2 도선은 기판(870)의 제1 면(881)에 배치될 수 있고, 제5 도선 및 제6 도선은 제1 면(881)의 반대편의 제2 면(882)에 배치될 수 있다. 또한, 제3 도선 및 제4 도선은 제1 면(881) 및 제2 면(882) 사이의 제3 면(883)에 배치될 수 있다. 각 면은 레이어로 구성될 수 있다. 안테나 장치(810)의 제1 연결부, 제2 연결부, 제3 연결부, 및 제4 연결부는 비아 홀(via hole)을 통하여 도선들 사이를 연결할 수 있다.
일 실시예에 따른 안테나 장치(810)의 제1 도선 및 제2 도선은 각각 안테나 포트와 연결될 수 있다. 안테나 포트는 동축 케이블(890)과 연결될 수 있다. 동축 케이블(890)은 내부 도체(inner conductor, 891) 및 외부 도체(outer conductor, 892)를 포함할 수 있다. 예를 들어, 내부 도체(891)는 안테나 장치(810)의 제1 도선의 제2 단과 연결될 수 있으며, 외부 도체(892)는 안테나 장치(810)의 제2 도선의 제2 단과 연결될 수 있다. 동축 케이블은 내부 도체(891) 및 외부 도체(892)를 이용하여 안테나 장치(810)에 전원을 공급할 수 있다. 예를 들어, 제1 도선의 제2 단은 안테나 포트의 입력 포트이며, 제2 도선의 제2 단은 안테나 포트의 출력 포트일 수 있다.
도 9a 내지 도 9b는 일 실시예에 따른 안테나 장치를 포함하는 체내 생체 센서의 형상을 도시한다.
도 9a는 일 실시예에 따른 센서의 사시도(perspective view)를 나타낼 수 있다. 도 9b는 일 실시예에 따른 센서의 정면도(front view)를 나타낼 수 있다.
일 실시예에 따른 안테나 장치를 포함하는 기판인쇄형 센서(900)는 체내에서 전자기파를 이용하여 대상 피분석물(target analyte)을 센싱할 수 있다. 도 9a 및 도 9b는 테스트를 위해, 기판인쇄형 센서(900) 주변에 물을 수용하는 테스트 장치(901)를 도시한다. 테스트 장치(901)에서 도 8의 기판인쇄형 센서(800)가 원통형 내부 공간(992) 내에 수용될 수 있다. 원통형 내부 공간(992) 보다 큰 직경을 갖는 원통형 공간(991)이 원통형 내부 공간(992)을 둘러쌀 수 있다. 테스팅 장치(901)에서는 온도 변화에 따른 유전율 변화가 관측될 수 있다.
도 10a 내지 도 10c는 센서의 형태에 따른 전자기파에 대한 주파수 응답 특성을 도시한다.
주파수를 스윕하면서 파라미터를 측정함으로써, 산란된 전자기파에 대한 주파수 응답 특성이 획득될 수 있다. 주파수 응답 특성은 산란 파라미터 중 반사 계수(reflection coefficient)일 수 있다. 도 10a의 주파수 응답 특성(1001)은 도선형 센서(501)에 따른 전자기파에 대한 주파수 응답 특성을 나타낼 수 있다. 도 10b의 주파수 응답 특성(1002)은 기판형 센서(800)에 따른 전자기파에 대한 주파수 응답 특성을 나타낼 수 있다. 도 10c의 주파수 응답 특성(1003)은 도 9a의 센서(901)에 따른 전자기파에 대한 주파수 응답 특성을 나타낼 수 있다. 주파수 응답 특성에 의하여 공진 주파수를 획득할 수 있으며, 공진 주파수(resonance frequency)는 주변 주파수보다 반사 계수가 작게 나타나는 주파수를 의미할 수 있다.
도 11a는 일 실시예에 따른 안테나 장치의 주변 대상 피분석물의 농도 변화에 따라 안테나 장치의 공진 주파수가 변화를 설명한다.
일 실시예에 따른 안테나 장치는 서로 이격되어 배치되는 도선들(1111, 1112)을 포함할 수 있다. 예를 들어, 도선(1111)은 도 5a에 도시된 안테나 장치(501)의 제1 연결부(521)에 대응하고, 도선(1112)은 제2 연결부(522)에 대응할 수 있다. 다만, 이는 설명의 편의를 위한 예시로서, 서로 이격된 다른 연결부들에 대해서도 유사한 설명이 적용될 수 있다.
예를 들어, 도선(1111) 및 도선(1112) 사이에는 강한 전기장이 발생할 수 있다. 다시 말해, 도선(1111) 및 도선(1112)는 사이에서는 용량성 결합이 형성될 수 있다. 반면, 도선(1111) 및 도선(1112) 주변 3차원적 공간에서는 상대적으로 작은 전기장의 세기를 가지는 주변 장(fringing field)이 형성될 수 있다. 대상 피분석물이 안테나 장치 주변의 주변 장에 위치하는 경우, 센서와 대상 피분석물 간에 생체 커패시턴스가 변할 수 있다. 결국, 대상 피분석물의 농도가 주변 농도 변화에 따라 안테나의 상대 유전율
Figure 112020062210636-pat00012
이 변하게 되며, 안테나의 공진 주파수도 함께 변화할 수 있다. 따라서, 안테나의 공진 주파수의 변화를 측정함으로써 대상 피분석물의 농도를 계산할 수 있다.
도 11b는 상대 유전율의 변화에 따른 공진 주파수(resonance frequency)의 변화를 나타낸다.
그래프(1110)는 자기 쌍극자(magnetic dipole)에 의한 공진 주파수를 나타낸다. 그래프(1110)에서 안테나 장치 주변 피분석물의 상대 유전율이 증가함에 따라 공진 주파수의 크기가 줄어들 수 있다. 그래프(1120)는 전기 쌍극자(electric dipole)에 의한 공진 주파수를 나타낸다. 그래프(1120)에서 안테나 장치 주변 피분석물의 상대 유전율이 증가함에 따라 공진 주파수의 크기가 줄어들 수 있다. 그러나, 상대 유전율이 증가함에 따라 자기 쌍극자에 의한 공진 주파수의 천이(transition) 정도와 전기 쌍극자에 의한 공진 주파수의 천이 정도는 서로 상이하다. 예를 들어, 피분석물의 상대 유전율이 증가함에 따라 자기 쌍극자에 의한 공진 주파수와 전기 쌍극자의 공진 주파수의 차이가 감소한다.
도 12a 내지 도 12c는 자기 쌍극자 및 전기 쌍극자에 대한 주파수 응답 특성을 도시한다.
일 실시예에 따른 안테나 장치를 포함하는 센서는 자기 쌍극자 및 전기 쌍극자에 대하여 독립적으로 공진(resonance)을 생성할 수 있다. 도 12a 내지 도 12c는 센서의 형태에 따른 주파수 응답 특성을 도시한다. 주파수를 스윕하면서 쌍극자 마다 모멘트를 측정함으로써, 각 쌍극자에 대한 주파수 응답 특성이 획득될 수 있다. 주파수 응답 특성은 모멘트의 강도(intensity)를 나타낼 수 있다. 도 12a의 주파수 응답 특성(1201)은 도선형 센서(501)에 따른 쌍극자에 대한 주파수 응답 특성을 나타낼 수 있다. 그래프(1211) 및 그래프(1212)는 전기 쌍극자에 대한 주파수 응답 특성, 그래프(1221) 및 그래프(1222)는 자기 쌍극자에 대한 주파수 응답 특성을 나타낼 수 있다. 도 12b의 주파수 응답 특성(1202)은 기판형 센서(800)에 따른 쌍극자에 대한 주파수 응답 특성을 나타낼 수 있다. 그래프(1213) 및 그래프(1214)는 전기 쌍극자에 대한 주파수 응답 특성, 그래프(1223) 및 그래프(1224)는 자기 쌍극자에 대한 주파수 응답 특성을 나타낼 수 있다. 도 12c의 주파수 응답 특성(1203)은 도 9a의 센서(901)에 따른 전자기파에 대한 주파수 응답 특성을 도시한다. 그래프(1215) 및 그래프(1216)는 전기 쌍극자에 대한 주파수 응답 특성, 그래프(1225) 및 그래프(1226)는 자기 쌍극자에 대한 주파수 응답 특성을 나타낼 수 있다.
도 13은 전자기파에 대한 주파수 응답 특성을 도시한다.
주파수 응답 특성(1300)은 안테나 소자의 전자기파에 대한 주파수 응답 특성을 나타낼 수 있다. 주파수를 스윕하면서 파라미터를 측정함으로써, 산란된 전자기파에 대한 주파수 응답 특성을 획득할 수 있다. 주파수 응답 특성은 도 13에 도시된 바와 같이 산란 파라미터 중 반사 계수(reflection coefficient)일 수 있다. 제1 반사 계수 곡선(1310)은 기판형 센서(800)에 대한 측정된 주파수 응답 특성을 나타낼 수 있다. 예를 들어, 제1 반사 계수 곡선(1310)에서는 4.387GHz 및 5.975GHz에서 공진 주파수가 발생할 수 있다. 제2 반사 계수 곡선(1320)은 시뮬레이션을 통하여 측정된 주파수 응답 특성을 나타낼 수 있다. 예를 들어, 제2 반사 계수 곡선(1320)에서는 4.281GHz 및 5.996GHz에서 공진 주파수가 발생할 수 있다.
도 14는 일 실시예에 따른 혈당 측정 시스템을 나타낸 블록도이다.
일 실시예에 따른 혈당 측정 시스템(1400)은 체내 생체 센서(1401)와 외부 장치(1430)를 포함할 수 있다. 체내 생체 센서(1401)는 측정부(1410) 및 통신부(1420)를 포함할 수 있다.
예시적으로 도 14에 도시된 체내 생체 센서(1401)는 대상자의 피하에 배치되고, 외부 장치(1430)는 대상자의 인체 외부에 배치될 수 있다.
측정부(1410)는, 안테나 소자로서, 공진 조립체, 예를 들어, 공진 소자를 포함할 수 있다. 안테나 소자 및/또는 공진 조립체는 도 5a 또는 도 7에 도시된 안테나 장치의 구조를 가질 수 있다. 체내 생체 센서(1401)의 측정부(1410)는 안테나 장치에 대해 생체 관련 파라미터를 측정할 수 있다. 대상자의 피하에 배치된 체내 생체 센서(1401)는 미리 지정되는 주파수 대역 내에서 주파수를 스윕함으로써 신호를 생성하고, 생성된 신호를 공진 소자에 피딩할 수 있다. 센서(1401)는, 주파수가 변화하는 신호가 공급되는 공진 소자에 대한 산란 파라미터를 측정할 수 있다.
통신부(1420)는 측정된 산란 파라미터를 지시하는 데이터를 외부 장치(1430)로 송신할 수 있다. 또한 통신부(1420)는, 측정부(1410)로 공급되는 신호를 생성하기 위한 전력을 무선 전력 전송 방식을 사용하여 수신할 수도 있다. 통신부(1420)는 코일을 포함하여 무선으로 전력을 수신하거나 데이터를 송신하도록 할 수 있다.
외부 장치(1430)는 통신부(1431) 및 프로세서(1432)를 포함할 수 있다. 외부 장치(1430)의 통신부(1431)는 대상 피분석물과 연관된 생체 정보에 따라 변화하는 생체 관련 파라미터를 측정하는 혈당 측정 장치로부터 상기 생체 관련 파라미터를 수신할 수 있다. 예를 들어, 통신부(1431)는 측정부(1410)에 대해 측정된 공진 소자의 생체 관련 파라미터 데이터(예를 들어, 산란 파라미터 및 공진 주파수의 변화 정도)를 수신할 수 있다. 외부 장치(1430)의 프로세서(1432)는 수신된 생체 관련 파라미터 데이터를 이용하여 생체 정보(예를 들어, 혈당 수치)를 결정할 수 있다. 외부 장치(1430)는 생체 정보 처리 장치라고도 나타낼 수 있다. 생체 정보로서 혈당을 지시하는 정보를 결정하는 생체 정보 처리 장치를 혈당 결정 장치라고 나타낼 수 있다. 예를 들어, 외부 장치(1430)의 프로세서(1432)는 생체 관련 파라미터 데이터를 이용하여 생체에 대한 혈당 수치를 결정할 수 있다.
앞서 설명한 바와 같이, 안테나 소자는 전기 쌍극자 및 자기 쌍극자에 의한 3개 이상의 공진 주파수를 나타낼 수 있다. 따라서 혈당 측정 시스템(1400)은 안테나 소자의 3개 이상의 공진 주파수의 개별적인 변화를 추적함으로써 생체 정보(예를 들어, 혈당 수치 및 혈당 변화 정도 등)를 결정할 수 있다. 예시적으로 혈당 수치 별로 3개 이상의 공진 주파수들의 주파수 값들이 매핑될 수 있다. 예를 들어, 혈당 수치 XX mg/dL <-> (공진 주파수 1GHz, 1.25Ghz, 1.5Ghz)와 같이 매핑된 룩업테이블이 저장될 수 있다. 혈당 측정 시스템(1400)은 측정된 공진 주파수들에 매칭하는 혈당 수치를 룩업테이블로부터 검색할 수 있다. 다만, 혈당 수치의 결정을 상술한 바로 한정하는 것은 아니고, 설계에 따라 다양한 방식이 사용될 수 있다.
또한, 체내 생체 센서(1401)가 생체 관련 파라미터의 처리 없이 외부 장치(1430)로 전송하는 예시를 주로 설명하였으나, 이로 한정하는 것은 아니다. 예를 들어, 체내 생체 센서(1401)가 자체적으로 프로세서를 더 포함하고, 체내 생체 센서(1401)의 프로세서가 혈당 수치를 결정할 수도 있다. 이 경우, 센서(1401)는 결정된 혈당 수치를 통신부를 통해 외부 장치로 전송할 수도 있다. 또한, 프로세서를 포함하는 추가 장치(미도시됨)가 피하에 배치되어 체내 생체 센서(1401)와 인체 통신을 수립할 수도 있다. 이 때, 추가 장치(미도시됨)는 측정되는 생체 관련 파라미터 데이터를 체내 생체 센서(1401)로부터 직접 수신하여 혈당 수치를 결정할 수 있다. 그리고 추가 장치(미도시됨)는 결정된 혈당 수치를 대상자의 인체 내부에서 외부 장치(1430)로 송신할 수 있다.
이상과 같이 실시예들이 비록 한정된 도면에 의해 설명되었으나, 해당 기술분야에서 통상의 지식을 가진 자라면 상기를 기초로 다양한 기술적 수정 및 변형을 적용할 수 있다. 예를 들어, 설명된 기술들이 설명된 방법과 다른 순서로 수행되거나, 및/또는 설명된 시스템, 구조, 장치, 회로 등의 구성요소들이 설명된 방법과 다른 형태로 결합 또는 조합되거나, 다른 구성요소 또는 균등물에 의하여 대치되거나 치환되더라도 적절한 결과가 달성될 수 있다.
그러므로, 다른 구현들, 다른 실시예들 및 특허청구범위와 균등한 것들도 후술하는 청구범위의 범위에 속한다.

Claims (19)

  1. 안테나 장치(antenna device)에 있어서,
    제1 평면 상 제1 영역의 경계의 일부를 따라 서로 이격 배치되는 제1 도선 및 제2 도선;
    상기 제1 평면으로부터 평행하게 이격된 제2 평면 상 제2 영역의 경계의 일부를 따라 서로 이격 배치되는 제3 도선 및 제4 도선;
    상기 제2 평면으로부터 평행하게 이격된 제3 평면 상 제3 영역의 경계의 일부를 따라 서로 이격 배치되는 제5 도선 및 제6 도선;
    상기 제1 도선의 제1 단(first end) 및 상기 제3 도선의 제1 단을 연결하는 제1 연결부;
    상기 제2 도선의 제1 단 및 상기 제4 도선의 제1 단을 연결하는 제2 연결부;
    상기 제3 도선의 제2 단(second end) 및 상기 제5 도선의 제2 단을 연결하는 제3 연결부; 및
    상기 제4 도선의 제2 단 및 상기 제6 도선의 제2 단을 연결하는 제4 연결부
    를 포함하는 안테나 장치.
  2. 제1항에 있어서,
    상기 제1 도선의 제2단 및 상기 제2 도선의 제2 단은 안테나 포트와 연결되고, 상기 제1 도선 및 상기 제2 도선은 상기 안테나 포트 및 상기 제1 영역의 중심점을 통과하면서 상기 제1 평면에 수직하는 가상의 평면을 기준으로 서로 반대편에 배치되고,
    상기 제3 도선 및 상기 제4 도선은 상기 가상의 평면을 기준으로 서로 반대편에 배치되며,
    상기 제5 도선 및 상기 제6 도선은 상기 가상의 평면을 기준으로 서로 반대편에 배치되는,
    안테나 장치.
  3. 제1항에 있어서,
    상기 안테나 장치는,
    상기 제1 도선 및 상기 제2 도선이 연결되는 안테나 포트; 및
    상기 안테나 포트를 통해 피딩 신호(feed signal)를 공급하는 급전부(feeder)
    를 더 포함하는 안테나 장치.
  4. 제1항에 있어서,
    상기 제1 도선, 상기 제2 도선, 상기 제3 도선, 상기 제4 도선, 상기 제5 도선, 및 상기 제6 도선 중 하나 또는 둘 이상의 조합은 타겟 주파수(target frequency)에 대응하는 파장의 1/4의 길이를 가지는,
    안테나 장치.
  5. 제1항에 있어서,
    상기 제1 영역, 상기 제2 영역, 및 상기 제3 영역의 형태는 다각형 및 원형 중 하나인,
    안테나 장치.
  6. 제1항에 있어서,
    상기 제1 영역, 상기 제2 영역, 및 상기 제3 영역은 상기 제1 평면에서 수직한 방향으로 볼 때 동일한 크기 및 동일한 형태인,
    안테나 장치.
  7. 제1항에 있어서,
    상기 제1 연결부 및 상기 제2 연결부는 서로 분리(disconnected)되고, 상기 제3 연결부 및 상기 제4 연결부는 서로 분리되는,
    안테나 장치.
  8. 제3항에 있어서,
    상기 급전부로부터 상기 제1 연결부를 향하는 가상의 직선은 상기 가상의 평면에 대하여 임계 각도 이하의 각도를 형성하며,
    상기 급전부로부터 상기 제2 연결부를 향하는 가상의 직선은 상기 가상의 평면에 대하여 임계 각도 이하의 각도를 형성하는,
    안테나 장치.
  9. 제1항에 있어서,
    서로 평행하게 이격되어 위치되는 복수의 평면들 중 중심에 위치되는 기준 평면 상에 배치되는 도선들이, 피딩 신호에 응답하여, 자기 쌍극자에 의한 공진을 생성(generate)하는,
    안테나 장치.
  10. 제9항에 있어서,
    상기 기준 평면을 기준으로 일측에 위치되는 하나 이상의 평면 상에 배치되는 도선들이, 상기 피딩 신호에 응답하여, 제1 전기 쌍극자에 의한 공진을 생성하고,
    상기 기준 평면을 기준으로 타측에 위치되는 하나 이상의 평면 상에 배치되는 도선들이, 상기 피딩 신호에 응답하여, 상기 제1 전기 쌍극자에 반대되는 극성을 갖는 제2 전기 쌍극자에 의한 공진을 생성하는,
    안테나 장치.
  11. 제1항에 있어서,
    상기 연결부들은,
    비아 홀(via hole)을 통하여 도선들 사이를 연결하는,
    안테나 장치.
  12. 제1항에 있어서,
    상기 제5 도선 및 상기 제6 도선이 서로 전기적으로(electrically) 연결되는,
    안테나 장치.
  13. 제1항에 있어서,
    상기 제3 평면으로부터 평행하게 이격된 하나 이상의 추가 평면 상에서 영역의 경계의 일부를 따라 서로 이격 배치되는 상기 제5 도선 및 상기 제6 도선과 전기적으로 연결되는 하나 이상의 추가 도선
    을 포함하는 안테나 장치.
  14. 제1항에 있어서,
    상기 안테나 장치의 도선들은,
    원기둥의 형태를 가지는 인쇄 회로 기판(printed circuit board, PCB)의 표면에 프린팅(printing)되는,
    안테나 장치.
  15. 제1항에 있어서,
    상기 안테나 장치의 공진 주파수는 상기 안테나 장치 주변 대상 피분석물의 농도 변화에 응답하여 변화하는,
    안테나 장치.
  16. 제1항에 있어서,
    상기 안테나 장치는,
    상기 안테나 장치의 공진 주파수의 변화 정도 및 측정된 산란 파라미터에 관한 생체 관련 파라미터 데이터를 외부 장치로 송신하는 통신부
    를 더 포함하는 안테나 장치.
  17. 제1항에 있어서,
    상기 안테나 장치로 피딩 신호가 급전될 시, 상기 제1 도선은 상기 제3 도선과 용량성 결합을 형성하고, 상기 제3 도선은 상기 제5 도선과 용량성 결합을 형성하며, 상기 제2 도선은 상기 제4 도선과 용량성 결합을 형성하고, 상기 제4 도선은 상기 제6 도선과 용량성 결합을 형성하는,
    안테나 장치.
  18. 안테나 장치에 있어서,
    제1 평면 상 제1 영역의 일부를 따라 배치되는 제1 도선들;
    상기 제1 평면으로부터 평행하게 이격되는 제2 평면 상 제2 영역의 일부를 따라 배치되고 상기 제1 도선들과 용량성 결합을 형성하는 제2 도선들; 및
    상기 제2 평면으로부터 평행하게 이격되는 제3 평면 상 제3 영역의 일부를 따라 배치되고 상기 제2 도선들과 용량성 결합을 형성하는 제3 도선들
    을 포함하고,
    상기 제1 도선들은 안테나 포트에 연결되고 상기 안테나 포트를 기준으로 원위단에서 상기 제2 도선들과 연결되며, 상기 제2 도선들은 상기 안테나 포트를 기준으로 근위단에서 상기 제3 도선과 연결되고,
    상기 안테나 포트로 피딩 신호가 급전되는 경우에 응답하여, 자기 쌍극자에 의한 공진 및 전기 쌍극자에 의한 공진을 개별적으로 형성하는,
    안테나 장치.
  19. 삭제
KR1020200073518A 2019-06-21 2020-06-17 자기 쌍극자 공진을 이용하여 생체 정보를 측정하는 안테나 장치 KR102381648B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/KR2020/008013 WO2020256498A1 (ko) 2019-06-21 2020-06-19 자기 쌍극자 공진을 이용하여 생체 정보를 측정하는 안테나 장치
CA3139920A CA3139920A1 (en) 2019-06-21 2020-06-19 Antenna device for measuring biometric information by using magnetic dipole resonance
JP2021568556A JP2022537641A (ja) 2019-06-21 2020-06-19 磁気双極子共振を利用して生体情報を測定するアンテナ装置
EP20827589.1A EP3957243A1 (en) 2019-06-21 2020-06-19 Antenna device for measuring biometric information by using magnetic dipole resonance
CN202080036001.5A CN114051678A (zh) 2019-06-21 2020-06-19 利用磁偶极子共振测量生物信息的天线装置
US17/526,980 US11864879B2 (en) 2019-06-21 2021-11-15 Antenna device for measuring biometric information by using magnetic dipole resonance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190074031 2019-06-21
KR1020190074031 2019-06-21

Publications (2)

Publication Number Publication Date
KR20200145728A KR20200145728A (ko) 2020-12-30
KR102381648B1 true KR102381648B1 (ko) 2022-04-05

Family

ID=74088303

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020200053397A KR102378779B1 (ko) 2019-06-21 2020-05-04 생체 센싱을 위한 공진기 조립체 및 전자기파를 이용한 바이오 센서
KR1020200069613A KR102381649B1 (ko) 2019-06-21 2020-06-09 어레이 안테나를 이용한 바이오 센서
KR1020200072552A KR102381650B1 (ko) 2019-06-21 2020-06-15 전자기파를 이용하여 생체 정보를 측정하기 위한 폴디드 암을 포함하는 안테나 장치
KR1020200073518A KR102381648B1 (ko) 2019-06-21 2020-06-17 자기 쌍극자 공진을 이용하여 생체 정보를 측정하는 안테나 장치

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020200053397A KR102378779B1 (ko) 2019-06-21 2020-05-04 생체 센싱을 위한 공진기 조립체 및 전자기파를 이용한 바이오 센서
KR1020200069613A KR102381649B1 (ko) 2019-06-21 2020-06-09 어레이 안테나를 이용한 바이오 센서
KR1020200072552A KR102381650B1 (ko) 2019-06-21 2020-06-15 전자기파를 이용하여 생체 정보를 측정하기 위한 폴디드 암을 포함하는 안테나 장치

Country Status (2)

Country Link
KR (4) KR102378779B1 (ko)
CA (3) CA3139918A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220156198A (ko) * 2021-05-18 2022-11-25 주식회사 에스비솔루션 생체 정보 측정 시스템 및 방법
KR102474118B1 (ko) * 2021-06-02 2022-12-05 주식회사 에스비솔루션 선택적 주파수 특성을 갖는 오실레이터 기반의 분석물 농도 검출 방법 및 시스템
KR20220162995A (ko) * 2021-06-02 2022-12-09 주식회사 에스비솔루션 동물 체온 연속 측정 방법 및 시스템
KR20230013534A (ko) * 2021-07-19 2023-01-26 주식회사 에스비솔루션 전자기파 방식을 이용한 생체 정보 센서 구동 장치 및 방법
KR20230013535A (ko) * 2021-07-19 2023-01-26 주식회사 에스비솔루션 연속생체정보측정기의 보정
KR20230025624A (ko) * 2021-08-13 2023-02-22 주식회사 에스비솔루션 생체 정보 측정을 위한 익스터널 디바이스, 생체 정보 측정 장치, 체내 센서 및 임플란트 디바이스
KR20230025285A (ko) * 2021-08-13 2023-02-21 주식회사 에스비솔루션 누설파를 이용하여 생체 정보를 측정하는 안테나 장치
KR20230027468A (ko) 2021-08-19 2023-02-28 주식회사 에스비솔루션 사물인터넷 기반 스마트 가축 관리 방법 및 시스템
KR20230027469A (ko) * 2021-08-19 2023-02-28 주식회사 에스비솔루션 분석물 검출용 센서로서의 전자기 근거리 공진기
KR20230118349A (ko) * 2022-02-04 2023-08-11 주식회사 에스비솔루션 전자기 기반 삽입형 센서
US20240108238A1 (en) * 2022-10-03 2024-04-04 Know Labs, Inc. Analyte sensors with position adjustable transmit and/or receive components

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246816A (ja) * 2000-12-12 2002-08-30 Matsushita Electric Ind Co Ltd リング型共振器及びリング型アンテナ
JP2015508987A (ja) * 2012-01-26 2015-03-23 ワイトリシティ コーポレーションWitricity Corporation 減少した場を有する無線エネルギー伝送

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101167216B (zh) * 2005-04-29 2013-03-27 艾利森电话股份有限公司 具有偶极子的三重偏振苜蓿叶形天线
KR100856507B1 (ko) * 2007-02-12 2008-09-04 (주)안테나 텍 이동통신 단말기용 다중대역 내장형 안테나 및 그 제조방법
KR101003509B1 (ko) * 2008-07-11 2010-12-30 한국전자통신연구원 전자파 특성을 이용한 인체 암 진단 장치 및 방법
AU2010265891B2 (en) * 2009-06-26 2016-06-23 Cianna Medical, Inc. Apparatus, systems, and methods for localizing markers or tissue structures within a body
US8325101B2 (en) * 2009-08-03 2012-12-04 Venti Group, LLC Cross-dipole antenna configurations
KR101184420B1 (ko) * 2011-03-29 2012-09-20 서강대학교산학협력단 비?침습 센서를 이용한 혈당 측정 장치 및 방법
US9236653B2 (en) * 2011-05-17 2016-01-12 Kuang-Chi Innovative Technology Ltd. Antenna device
JP6078801B2 (ja) * 2012-11-02 2017-02-15 株式会社ユピテル 変位測定方法及び変位測定装置
GB201602773D0 (en) * 2016-02-17 2016-03-30 Orsus Medical Ltd A method and apparatus for measuring the concentration of target substances in blood
WO2018046111A1 (en) * 2016-09-07 2018-03-15 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Terahertz transceivers
KR101925632B1 (ko) * 2017-01-26 2018-12-05 울산과학기술원 체내 이식형 혈당 측정 장치 및 방법
KR101953293B1 (ko) * 2017-03-14 2019-03-04 서강대학교산학협력단 전자기파 및 멀티 캐비티 공진을 이용한 글루코스 농도 측정 장치 및 방법
KR101952908B1 (ko) * 2018-03-08 2019-03-05 울산과학기술원 무선 통신 장치 및 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246816A (ja) * 2000-12-12 2002-08-30 Matsushita Electric Ind Co Ltd リング型共振器及びリング型アンテナ
JP2015508987A (ja) * 2012-01-26 2015-03-23 ワイトリシティ コーポレーションWitricity Corporation 減少した場を有する無線エネルギー伝送

Also Published As

Publication number Publication date
CA3139918A1 (en) 2020-12-24
KR20200145664A (ko) 2020-12-30
KR102381650B1 (ko) 2022-04-05
CA3139920A1 (en) 2020-12-24
KR20200145710A (ko) 2020-12-30
KR20200145728A (ko) 2020-12-30
KR102381649B1 (ko) 2022-04-05
KR102378779B1 (ko) 2022-03-25
KR20200145694A (ko) 2020-12-30
CA3139921A1 (en) 2020-12-24

Similar Documents

Publication Publication Date Title
KR102381648B1 (ko) 자기 쌍극자 공진을 이용하여 생체 정보를 측정하는 안테나 장치
US11864879B2 (en) Antenna device for measuring biometric information by using magnetic dipole resonance
CN101991415B (zh) 用于组织表征的电磁传感器
US8882670B2 (en) Apparatus and method for measuring constituent concentrations within a biological tissue structure
CN103339490B (zh) 用于检测血像参数的检测装置
CN103347444B (zh) 用于检测血像参数的检测装置
CN103338701A (zh) 包含用于检测血象参数的检测装置的臂带
JP2022537884A (ja) 生体センシングのための共振器アセンブリおよび電磁波を利用したバイオセンサ
CN111432713B (zh) 能够被摄入和植入在体内的生物遥测装置
US9880118B2 (en) Planar Probe and system for measuring dielectric properties of biological materials
CN113950286A (zh) 使用阵列天线的生物传感器
CN115666383A (zh) 基于对准键进行工作的植入传感器、包括该植入传感器的植入设备及包括该植入设备的活体信息测定系统
US20200243953A1 (en) Multi-band low profile radio antenna
KR102474119B1 (ko) 슈퍼스트레이트를 통해 전자기파를 이용하여 생체 정보를 센싱하는 바이오 센서
US20230052649A1 (en) External device, biometric information measuring device, implant sensor and implant device for measuring biometric information
El-Saboni Antennas and Propagation for Intra-body Channels
KR20230123171A (ko) 바이오 임플란트를 위한 리더 안테나
CN101548431A (zh) 用于胸部无线电探询的天线

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant